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Abstract. High-throughput DNA sequencing data is accumulating in public repositories, and efficient
approaches for storing and indexing such data are in high demand. In recent research, several graph
data structures have been proposed to represent large sets of sequencing data and to allow for efficient
querying of sequences. In particular, the concept of labeled de Bruijn graphs has been explored by several
groups. While there has been good progress towards representing the sequence graph in small space,
methods for storing a set of labels on top of such graphs are still not sufficiently explored. It is also
currently not clear how characteristics of the input data, such as the sparsity and correlations of labels,
can help to inform the choice of method to compress the graph labeling. In this work, we present a new
compression approach, Multi-BRW'T, which is adaptive to different kinds of input data. We show an up to
29% improvement in compression performance over the basic BRWT method, and up to a 68% improvement
over the current state-of-the-art for de Bruijn graph label compression. To put our results into perspective,
we present a systematic analysis of five different state-of-the-art annotation compression schemes, evaluate
key metrics on both artificial and real-world data and discuss how different data characteristics influence the
compression performance. We show that the improvements of our new method can be robustly reproduced
for different representative real-world datasets.
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1 Introduction

Over the past decade, there has been an exponential growth in the global capacity for generating DNA sequencing
data [22]. Various sequencing efforts have started to amass data from populations of humans [I] and other
organisms [23]24]. For these well studied organisms, already assembled reference sequences are the common
starting point for comparative and functional analyses. Unfortunately, a large proportion of DNA sequencing
data, in particular data originating from non-model organisms or collected in metagenomics studies, are lacking
a genome reference. Whereas general guidelines exist for the former case [8], genome assembly for metagenomics
is much less well defined. Its vastness and the currently lacking standards for indexing such data make an
integrated analysis daunting even for field experts.

To make this host of data efficiently searchable, it is necessary to employ a search index. However, when
building an index on the sequence data alone, only presence or absence of a query can be tested. To support
relating queries to information such as source genomes, haplotypes, or functional annotations, additional labels
must be associated with the index. To facilitate this, approaches for storing additional data on an indexed graph
have been suggested, such as the gPBWT [16] for storing haplotype information as genome graphs or succinct
representations of labeled de Bruijn graphs [T3[TT4] for the representation of sets of sequences. In this context,
dynamic representations of such data have also recently received attention [I4UT9].

The problem of efficiently representing these types of relations is also addressed in other fields. Commonly
referred to as compressed binary relations, a growing body of theoretical work addresses such approaches [6].
Successful applications of similar techniques include the efficient representation of large web-graphs [7] and RDF
data sets [B]. We will provide a more detailed description of some of these approaches in Section

In this work, we present a new method for compressing abstract binary relations. Providing as background a
comprehensive benchmark of existing compression schemes, we show that our approach has superior performance
on both artificial and real-world data sets.

Our paper has the following structure: After introducing our notation, we begin by defining the abstract
graph, and the associated annotation structures that we wish to compress (Section [2.1). We then provide
descriptions of our proposed compression technique and competing methods (Section inally, we compare
the compression performance of these methods on different types of graph annotations (Section [3)) and close
with a brief discussion of our results and an outlook on future work (Section ).
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2 Methods

After introducing our notation, we will give an overview of all methods implemented for this work and provide
a description of our methodological contributions.

2.1 Preliminaries

We will operate in the following setting: We are given a k-dimensional de Bruijn graph over a set of given input
sequences S. The node set V shall be defined as the set of all consecutive sub-sequences of length k (k-mers) of
sequences in S

V:{Si:i+kfl|365ai:17~"7|8|_k+1}7 (1)

where s;.; denotes the sub-sequence of s from position ¢ up to and including position j, and |s| is the length of
s. A directed edge exists from node u to node v, if ug.p = v1.5_1.

In order to represent relations between sources of the input sequences S and the nodes V, we now define
the concept of a labeled de Bruijn graph and proceed by discussing the more general problem of representing a
graph labeling.

Each node v € V' that we refer to as an object is assigned a finite set of labels ¢(v) C L. We represent this
graph labeling as a binary relation R C V' x L. A trivial representation of R taking |V'| - |L| bits of space is a
binary matrix A € {0, 1}VI*ILl We will use A* and A;j to denote its rows and columns, respectively.

In the following sections, we will discuss various methods described in the recent literature and present our
improvements in efficiently representing R. In addition to minimal space, we also require that the following set
of operations can be carried out efficiently on the compressed representation of R:

query_labels(v) = {l € L | (v,l) € R} Given an object v € V' (a k-mer in the underlying de Bruijn graph),
return the set of labels ¢(v) assigned to it.

query_objects(l) = {v eV | (v,l) € R} Given a label [ € L (e.g., a genome or sample ID), return the set of
objects assigned to that label.

query_relation(v,!) Given an object v € V and a label | € L, check whether (v,[) is in the relation R,
query relation(v,l) = 1{(yyer}-

2.2 Binary Relation Representation Schemes

For compressing the binary relation R, we consider the following representations suggested in recent literature.
As an abstraction, we will use the representation of R as a binary matrix A € {0, 1}/VI*IEl (referred to as the
binary relation matriz) to illustrate the individual methods.

Column-major Sparse Matrix Representation. As a simple baseline technique, we compress the positions
of the non-zero indices in each column independently using Elias-Fano encoding [17]. While this method does
not take into account correlations between columns for compression, this feature allows for a trivial parallel
construction implementation in which each column is computed in a separate process. For our experiments, this
serves as the initial representation of the binary matrix, which is then queried during the construction of all
other matrix representations.

Flat Row-major Representation. As a second baseline method, this representation concatenates all rows
of A into a joint vector that is subsequently compressed using Elias-Fano encoding. This approach, for instance,
is used by VARI [13] and its extensions [3].

Rainbowfish. The current state-of-the-art for genome graph labeling is a row-major representation of the
binary relation matrix A in which an optimal coding is constructed for the set of rows in A [4]. More precisely,
let A%,... A% € {0,1}/Fl denote the unique rows of A, sorted by their number of occurrences in A in non-
increasing order, where < |V|. To encode A, we start by forming a matrix A’ € {0,1}"**I of sorted unique
rows, A;t = A’. Then we compress A’ with the flat row-major representation using an RRR vector (named after
the initials of the three original authors [20]) as the underlying storage technique and construct a coding vector
(i(v) — 1)yev, where i(v) maps each node v € V' to the index of the row in A’ corresponding to the labeling
of v. The coding vector is represented in a variable-length packed binary coding with a delimiter vector [4]
compressed into an RRR vector [20].
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Binary Relation Compressed with Wavelet Trees (BinRel-WT). This method involves a translation
of the |R| non-zero elements of A into a string, which is then represented using a conventional wavelet tree [6].
Given the binary relation matrix, its set bits are iterated in row-major order and their respective column indices
are stored contiguously in a string over the alphabet {1,...,|L|} represented with a wavelet tree that enables
efficient queries. The numbers of set bits in each row of A are stored in a delimiter vector using unary coding
and compressed into an RRR vector.

Hierarchical Compressed Column-major Representation (BRWT). Described as Binary Relation
Wavelet Trees (BRWT) in the original literature [6], in contrast to BinRel-W'T, this representation directly
acts on binary matrices without translation into a sequence. First, an index vector I with elements I; = \/ j A;
is computed by merging all matrix columns through bitwise-OR operations on the rows and stored to represent
the root of the tree. Then, the rows composed entirely of Os are discarded from A and two equal-sized submatri-
ces A" and A” (which may contain rows composed entirely of 0s) of the binary relation matrix A are constructed
by splitting A and are passed to the left and right children of the root. The compression proceeds recursively.
Construction terminates when a node is assigned a single column, which is stored as its index column (see

Figure )) For reconstruction of the matrix elements, it is sufficient to only store the index vectors associated
with each node of the BRWT tree.
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Fig. 1. Schematic of hierarchical compressed column-major representations — a) BRWT for the binary case. Grey rows
correspond to all-zero rows, also indicated through the vector to the right of each matrix. Each child encodes only non-
zero rows of the submatrix passed to it by its respective parent. Numbers to the left of each matrix are the respective
row-indices in the initial matrix. b) Multi-BRWT in the multiary case. Notation is as in the binary case. Stored vectors
are shown in red.

In the next section we consider the problem of topology optimization during BRWT tree construction and
propose Multi-BRWT, an extension of BRWT that allows its nodes to have arbitrary numbers of children as
well as to arbitrarily distribute the columns of a parent node to its children. Afterwards, we propose a two-step
approach for Multi-BRWT construction along with two specific algorithms as its implementation for improving
the compression performance of Multi-BRWT.

2.3 Multiary, Topology-Optimized BRWTs

Our first extension to the BRWT scheme is the introduction of an n-ary tree topology, Multi-BRWT (Split n),
allowing for matrices to be vertically split into more than two submatrices (see Figure [1p)). The construction
and querying for Multi-BRWT (Split n) is analogous to the case of binary BRWT. In computational experiments
on artificial and real-world data we show that in most cases, Multi-BRWT (Split n) with arity greater than two
provides a higher compression ratio than the simple binary BRWT scheme (see Section . Note that Multi-
BRWT (Split n) with the maximum allowed arity n = |L| is equivalent to the baseline column-major sparse
matrix representation as it keeps all columns of the input binary relation matrix unchanged except for the case
when the input matrix has all-zero rows.
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Fig. 2. Schematic describing the construction of Multi-BRWT — a) The columns of the input binary matrix depicted
as numbered black dots are considered independently. b/c) Columns are hierarchically pair-matched based on number of
shared entries, forming the base Multi-BRWT topology. d) Pruning internal nodes of Multi-BRWT to optimize the tree
structure for a smaller representation size.

To proceed with our second extension, let us consider binary relations with far fewer labels than objects,
|L| < |V|, a condition that is commonly met in annotated genome graphs from biological data. In these
contexts, the number of k-mers is usually in the billions and the number of labels is on the order of thousands
(see Section [3.2)).

Our second extension consists in introducing arbitrary assignments of columns from the matrices encoded
in the nodes of the Multi-BRWT to their children. These assignments are represented by dictionaries stored in
the Multi-BRWT nodes, but the |L| < |V| constraint makes the space overhead from storing these negligible
compared to the space needed to encode the index vectors. Thus, we exclude the problem of representing these
assignments from further consideration and leave that as a small technical detail.

We now focus on the problem of constructing a Multi-BRWT tree structure that satisfies certain local
optimality conditions with respect to compression ratio.

Problem Setting. Let us set this problem formally. Given a binary matrix A, let 7 be the set of all Multi-
BRWT trees representing A (i.e., the set of all rooted trees with |L| labeled leaves). Let Size(I) denote the size
of a compressed binary vector I in bits. For instance, if I is of length n with m set bits, Size(I) = n for an
uncompressed bit vector, and Size(I) & [log, ()] for RRR vectors [20]. We then neglect the space required
for dictionaries defining the column assignments and we define the size of the Multi-BRWT tree T' € T as the
space required to store all its index vectors including the vectors in leaves:

Size(T) := Z Size(I;), (2)

iEN

where N is the set of all nodes of the Multi-BRWT tree T and I; corresponds to the index vector stored in node
1. Thus, we wish to find an optimal Multi-BRW'T tree by minimizing the storage space,

T* = argmin Size(T). (3)
TeT

We will refer to this as the MULTI-BRWT problem.

Optimized Multi-BRWT Construction. By analogy to the NoSQL table compaction problem [9], it can
be shown that Multi-BRWT constrained on the space of binary trees with the uncompressed bit vector rep-
resentation as the underlying structure for storing the index vectors is NP-hard. Thus, we propose a two-step
approach for finding a good Multi-BRWT structure (see Figure . First, we build a binary Multi-BRWT tree by
hierarchical clustering of the index vectors according to their similarity, the number of shared set bits. Then, we
optimize the arity of the chosen Multi-BRWT by selecting a node subset N’ which includes the root and leaves
of the base Multi-BRWT tree, {r,v1,...,v1)} C N' C N. To keep the resulting Multi-BRWT tree valid (allow-
ing for reconstruction of the initial matrix A), we reassign all nodes in N’ to their nearest common ancestors
remaining in N'.

As a specific implementation of the proposed two-step construction approach, we consider two heuristic
greedy optimization procedures. In the first step, we perform greedy matching of the index vectors starting
from the columns of the input binary relation matrix, and repeat recursively for the aggregated parent index
vectors until we merge all into a single index vector placed in the root. In the second step of the construction
approach, we consider another greedy algorithm for optimizing the size of the Multi-BRWT tree by removing
some of its internal nodes and thereby increasing the arity of the tree.
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Greedy Pairwise Matching for Finding a Base Multi-BRWT Approximation. To find an initial approximate
solution to the MULTI-BRWT problem (base Multi-BRWT), we propose a greedy algorithm in which an initial
greedy pairwise matching (GPM) step is performed on the columns of the input binary relation matrix A
to optimize their initial order prior to construction (see Figure 7c)). Given the input columns Ay, ..., A
and their corresponding object queries 0; = query_objects(i), we first compute cardinalities of their pairwise
intersections s;; = |o; No;|. Then, we sort all the computed similarities {s;;} in non-increasing order and match
pairs of columns greedily. Afterwards, we compute the aggregated index columns by merging the matched
columns through bitwise-OR operations to form the index vectors and repeat this algorithm recursively.

Efficient Pairwise Distance Estimation. The proposed greedy approximation method takes as input a matrix of
pairwise column similarities {s;;}. For m input columns of length n, computing each entry of this matrix costs
O(n), and thus, the time complexity of computing the full similarity matrix is O(nm?), which is a considerable
overhead for datasets with a typical size of m ~ 10% and n ~ 10°. To make the estimation of the pairwise
similarities cheaper, we approximate these on a submatrix composed of rows sampled randomly from matrix
A. Moreover, we prove the following lemma to show that using just O (log(m)/e?) random rows is sufficient for
approximating the pairwise similarities with a small relative error € with high probability, if each column has a
sufficiently large number of set bits.

Lemma 1 (Subsampling lemma). Suppose we are given subsets of a universe set, oy,...,0m C {1,...,n},
with the minimum cardinality d = minj*, |o;|, d > 0. We sample the elements of {1,...,n} independently with
the same probability p, to form a sampled set of objects S C {1,...,n} and define subsampled sets as 6; = 0;NS.
Consider the union cardinalities u;; = |o; U 0j| with their approzimators t;; = %|6i U o;|. For all0 < e < 1,
0<d<1, and
_ 3111(7"2(;””)
p > min{ e , 1},

we claim
Pr ( ﬂ {|ﬁ” — uij| < Euij}> >1-9.

See Supplementary Section 2 for proof.

According to Lemmal[I] with the subsampling technique we can approximate the union cardinalities up to an
e-fraction with high probability. Similar bounds can be obtained for sufficiently large intersection cardinalities,
estimated in the proposed greedy pairwise matching algorithm.

Refining Multi-BRWT by Pruning. Starting the procedure in the leaves’ parents and applying it to each node
except for the root recursively, we estimate the cost of removing each current node by the following formula

CostRem(v) = Z Size(I'(c)) — |Size(I(v)) + Z Size(I(c)) |, (4)

c€Children(v) ceChildren(v)

where I(v) denotes the index vector stored in the node v and I’(c) denotes the updated index vector that
would be stored in the node c¢ if its parent v was removed and the node ¢ was reassigned to its grandparent.
Now we simplify the formula for estimating the cost of removing a node in Multi-BRWT by introducing an
assumption that the size of bit vector I of length n with m set bits is fully defined by these two parameters,
i.e. Size(I) = Size(n,m). Now, it is easy to see that after reassigning the node ¢ with the index vector I(c) of
length n. with m, set bits to the parent of its parent v with index vector I(v) of length n, with m,, set bits, the
node ¢ updates and replaces its index vector I(c) with a vector I’(c) of length n, with m, set bits. This provides
us with the following simplified formula for estimating the cost of removing a node from the Multi-BRWT tree

CostRem(v) = Z Size(ny, me) — | Size(ny, my) + Z Size(ne,me) | - (5)

c€Children(v) c€Children(v)

Formula can be efficiently computed without rebuilding the current structure of the Multi-BRWT. As a
result, a decision about removing node v from the Multi-BRWT is made if the cost CostRem(v) is negative,
leading thereby to a decrease of the Multi-BRWT in size. In our practical implementation we use the following
formula for approximating the size required for storing an RRR bit vector [15] with block size ¢: Size(n,m) =

[ogy (™)1 + nflogy(t +1)/t].
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2.4 Implementation Details

We implement the underlying de Bruijn graph as a hash table storing k-mers packed into 64bit integers with
64bit indexes assigned to the k-mers, or as a complete de Bruijn graph represented by a mapping of k-mers to
4% row indexes of the binary relation matrix.

In the column-major representation, the columns of the binary relation matrix are stored using SD vectors
implemented in sdsl-lite [I0]. The same data structure is used for storing the single long vector in the row
flat representation.

BinRel-WT (sdsl) compressor uses the implementation of wavelet tree from the sdsl-1lite library, using an
RRR vector to store its underlying bit vector. The delimiter vector uses the RRR vector implementation from
sdsl-lite.

The BinRel-WT compressor uses the binary relation implementation from https://github.com/dieram3/
binrel_wtl This implementation stores the underlying bit vector of the wavelet tree in uncompressed form.

Our BRWT is implemented as a tree in memory, compressing the index vectors as RRR vectors. To avoid
multiple passes through the matrix rows, we construct the BRWT using a bottom-up approach. Given a fixed
clustering of the matrix columns, the leaves of the BRWT are constructed first, followed by their parents con-
structed for the index vectors propagated from the children nodes. To speed up the greedy matching algorithm,
we sample randomly 10° rows in each experiment and use those to approximate the number of bits shared in
the input columns and the index vectors during the Multi-BRW'T construction. When optimizing the tree arity
(as described in Section , we use the formula Size(n,m) = [log, ()] + n[logy(t + 1)/t] as an estimate
for the size of bit vector I of length n with m set bits, which is provided by the authors of sdsl-1lite for the
implementation of RRR vectors [I0]. We use a block size of t = 63.

All SD vectors are constructed with default template parameters, while all RRR vectors are constructed
with a block size of 63.

Code Availability. All methods implemented and evaluated in this paper are available at https://github.
com/ratschlab/genome_graph_annotation.

2.5 Data

Simulated Data. To profile our compressors, we generated several different series of synthetic binary matrices
of varying densities (see Supplementary Section 1 for a more detailed description). In total we generated three
different kinds of series: i) random matrices with uniformly distributed set bits, ii) initially generated random
matrix rows duplicated and permuted randomly, iii) initially generated random matrix columns duplicated
and permuted randomly. The motivation behind these series is as follows: The best performing state-of-the-art
compressors exploit redundancy between rows of the binary relation matrix [19]. However, the usual structure
of annotated de Bruijn graphs often implies a correlation structure on the columns not necessarily leading to
redundant rows, for instance when the sequences of many similar or closely related samples are inserted. While
for a small (and sufficiently highly correlated) number of columns this correlation translates into rows and
increases the number of redundant ones, for larger label sets this is usually not the case. Thus, approaches
exploiting correlation structure on the columns might fare better. To test this hypothesis, we generated three
different kinds of synthetic data, reflecting uncorrelated rows/columns, redundant rows, and redundant columns
for series 1), ii), and iii), respectively. Please note, that approach ii) is the most favorable for the state-of-the-art,
as row redundancy rather then high correlation is simulated.

Real-World Data. For evaluating all approaches in a real-world setting, we have chosen two data sets well-
known in the community and representative of typical applications.

Kingsford Human RINA-Seq. This dataset consists of 2,652 Human RNA-Seq experiments originally drawn
from [21I] and subsequently used in [19] for comparison.

NCBI RefSeq. This dataset consists of all 79,448 reference sequences from Release 88 of the NCBI RefSeq
database [I8]. Each sequence has been annotated with its associated family rank taxonomic ID from the
NCBI Taxonomy [2]. This results in a total of 3,173 unique labels for the sequences.

3 Results and Discussion

3.1 Experiments on Artificial Data

Based on the artificial dataset described in Section [2.5] we evaluated how the compression performance changes
depending on the characteristics of the input binary relation matrix A of a simple structure.
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Dependency of Compression Ratio on Matrix Structure. One of the key characteristics of the binary
relation matrix A is its density, the number of set bits divided by the total number of entries in A. For
reference, the labels for a sequencing-based de Bruijn graphs typically exhibit very low densities, commonly
< 0.5%. Especially in this low-density region, we find that the properties of the binary relation matrix have a

n=1000000, m=3000 n=1000000, m=3000 n=1000000, m=3000
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Fig. 3. Size of the representation of A € {0, 1}106X3'103 with densities d < 0.01 using different approaches: a) uniformly
random bits; b) uniformly random rows with multiplicity 5; ¢) uniformly random columns with multiplicity 5. We expect
approach c) to be best reflecting the real-world data of a de Bruijn graph built on related sequences.

strong effect on the compression ratio of individual methods. A second determinant of performance is whether
any assumptions are made on the properties of the data.

On sparse, fully random data, the baseline compressors fare very well (Figure )), as no assumptions
can be made about relationships. Notably, Rainbowfish, which exploits redundancy among the rows, generates
considerable overhead for very low densities. In the field of BRWT methods, the Multi-BRWT is closest to the
best performing choices.

In the setting of redundant rows (data set ii); Figure|3p)), as expected, Rainbowfish shows the strongest per-
formance, clearly exploiting the row redundancy. Again, among the BRWT methods the Multi-BRWT performs
best.

Finally, in the setting that comes closest to a typical task of labeling de Bruijn graphs derived from sequencing
data (Figure )), the Multi-BRWT approach shows superior performance. Exploiting the correlated columns
of the matrix, Multi-BRWT achieves a 5-fold improvement in compression ratio compared to Rainbowfish and
more than 2-fold compared to the closest competitor. Notably, the baseline binary BRWT has no advantage
over the other baseline methods. Further, we observe that this performance gain increases with the total number
of columns in the matrix (Supplemental Figures 1 and 2).

3.2 Experiments on Real-World Data

To compare the compression performance of the considered methods under a variety of conditions, we have
constructed two test datasets that exhibit different matrix sparsity characteristics.

Kingsford Human RNAseq (2,652 read sets). We filtered the 2,652 raw sequencing read sets with the
KMC [12] tool to extract frequent unique canonical k-mers (defined as the lexicographical minimum of the
k-mer and its reverse complement) from each (k = 20). We used the same k value and thresholds for the k-
mer frequency level as [19]. Using the k-mers extracted, we constructed a de Bruijn graph with 3,693,178,415
nodes and annotated these with their source read sets, which resulted in 2,586 labels (66 filtered read sets were
empty) and a binary relation (annotation) matrix of density ~ 0.19%. As a baseline for comparison, we used
the straightforward column-compressed annotation, which required a total of 36.56 Gigabytes (Gb) of space.
We used this as a starting point to convert the annotation into the other formats.

The results are summarized in Table[I] As expected, the simple row-based and BinRel-WT representations
require more than 30Gb in total. The current state-of-the-art method, Rainbowfish, reduces this by 23% to
23.16Gb, exploiting the redundancy of rows in the input matrix. The basic BRWT benefits from the column
correlation and drastically improves on Rainbowfish, showing a 39% lower size. We further reduce this size
through our generalized approach using Multi-BRWT. While some increase in arity reduces size compared to
the binary case, a higher arity does not necessarily translate into lower space, as certain submatrices do not
benefit from being grouped. The smallest fixed-arity representation is Multi-BRWT (Split 5), requiring 13Gb
of storage space and 222 minutes of compute time to construct with four threads.
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Table 1. The measured size of the compressed binary relation matrix for different representations, in Gigabytes (Gb).

Methods Kingsford RefSeq
Column 36.56 80.18
Flat 41.21 121.60
Rainbowfish 23.16 136.65
BinRel-WT 49.57 N/A
BinRel-WT (sdsl) 31.44 150.59
BRWT 14.05 57.24
Multi-BRWT (Split 3) 13.20 53.95
Multi-BRWT (Split 5) 13.01 53.09
Multi-BRWT (Split 7) 13.27 53.54
Multi-BRWT (Split 10) 13.54 54.77
Multi-BRWT (Split 13) 14.10 56.25
Multi-BRWT (GPM) 10.60 50.13
Multi-BRWT (GPM + Relax 3) 10.16 47.20
Multi-BRWT (GPM + Relax 5) 9.94 44.22
Multi-BRWT (GPM + Relax 7) 9.94 44.03
Multi-BRWT (GPM + Relax 10) 9.95 43.73
Multi-BRWT (GPM + Relax 20) 9.95 43.62

We improved the compression performance of a binary BRWT through the greedy pairwise matching (GPM)
procedure described in Section This strategy further decreases the size by another 18% to 10.6Gb. Finally,
optimizing the tree topology using the GPM procedure and selectively removing internal nodes (reassigning
children to their grandparents) while maintaining a constraint on each node’s maximum number of children, leads
to the smallest space achieved in our experiments. By applying this technique, we decrease the required space to
9.94Gb (Multi-BRWT (GPM + Relax 5), with at most 5 children for each node). This is a 29% improvement over
the basic BRWT representation and a 57% improvement over Rainbowfish. The Multi-BRWT (GPM + Relax 5)
representation took 187 and 141 minutes of the compute time with 30 threads for the first and the second stages
of the construction algorithm, respectively.

RefSeq Reference Genomes. Compression of the complete RefSeq genome annotation (release 88) resulted
in a de Bruijn graph of dimension k£ = 15 containing n = 1,073,741, 824 nodes, leading to a binary relation
matrix of n rows and m = 3,173 columns with density ~ 3.8%, which is relatively high for a genome graph
annotation and can be explained by the small k-mer size used.

This is a substantially larger dataset with less dependency between labels (columns). With the Multi-
BRWT (GPM + Relax 20) representation, we were able to achieve a compressed storage size of only 43.6Gb
(Table. Conversion from the column-compressed representation to Multi-BRWT (GPM + Relax 20) took 625
and 733 minutes of the compute time with 30 threads for the first and the second Multi-BRWT construction
stages, respectively, which is quite reasonable for a real-world setting.

Also here, the basic BRWT method improves drastically over the column compressed baseline (29%), and
the Multi-BRWT approach considerably surpasses the basic BRWT method (24% reduction in size). One can
see that the state-of-the-art method Rainbowfish performs very poorly on the RefSeq dataset, which can be
explained by the high density of the annotation matrix.

The construction of the BinRel-WT representation exceeded our available RAM (2TD).

All experiments were performed on a Intel(R) Xeon(R) CPU E7-8867 v3 (2.50GHz) processor from ETH’s
shared high-performance compute systems.

Supplementary Results. Compression ratios for methods using RRR vectors of block size 127 can be found
in the Supplementary Materials.

4 Conclusion

We have presented a series of compressed representation methods for binary relations, building upon and im-
proving on the existing literature. By generalizing BRWTs to multiary trees with improved partitioning schemes
and adaptive arity to reduce data representation overhead, we have improved on state-of-the-art compression
techniques for both simulated and real-world biological datasets.


https://doi.org/10.1101/468512
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/468512; this version posted January 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Sparse Binary Relation Representations 9

We have shown that the structure of the input data has a strong influence on the compression performance
and methods such as Rainbowfish benefit from presence of redundancy in rows or their correlations (when
multiple objects carry a similar set of labels). It is noteworthy that in a real-world setting, where more and
more labels are added to the set, the number of redundant rows decreases (ultimately leading to a set of mostly
independent rows) and these methods work less well. Interestingly, it is especially this setting that regularly
occurs in the labeling of genome graphs, where an underlying set of (related) sequences is assigned a growing
set of different labels.

We have presented a method that copes very well with an increasing number of related columns as well as
with the increasing density of the compressed binary matrix, and we showed that this results in considerable
performance gains on both synthetic and typical real-world data. Our method, Multi-BRWT, led to a 24-29%
reduction in size compared to the basic BRWT scheme on real-world data, and to a 57-68% reduction compared
to the closest state-of-the-art method for compressing graph annotations, Rainbowfish.

A natural extension of this work will involve the utilization of dynamic vectors in the underlying storage of
BRWTs to allow for their use in dynamic database contexts. Of particular interest are the ability to rearrange
columns and use of dynamic compressed structures to avoid expensive decompression and recompression steps
when performing updates.

Another interesting direction is the development of hybrid BRWT schemes that take the shape of Multi-
BRWT but assign multiple columns to the leaves of the tree, using arbitrary schemes for compressing these.
This would take advantage of both column and row structure in the binary relation matrix. These approaches
are also beneficial for tackling the problem of achieving similar time complexities for both object and label
queries on the compressed representation of the binary relations.

Overall, we conclude that, despite the advancements in compression over the recent years, there is still much
room and many degrees of freedom in compressor design for further improvement.

Supplementary Materials. Supplementary materials may be accessed via the bioRxiv pre-print located at
https://doi.org/10.1101/468512,
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