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Abstract

Prediction of peptide binding to MHC molecules plays a vital role in the development of
therapeutic vaccines for the treatment of cancer. Although numerous computational methods
have been developed to this end, several challenges still remain in predicting peptide-MHC in-
teractions. Many previous methods are allele-specific, training separate models for individual
alleles and are thus unable to yield accurate predictions for those alleles with limited training
data. Despite that there exist several pan-specific algorithms that train a common model for dif-
ferent alleles, they only adopt simple model structures that generally have limited performance
in capturing the complex underlying patterns of peptide-MHC interactions. Here we present
ACME (Attention-based Convolutional neural networks for MHC Epitope binding prediction),
a new pan-specific algorithm to accurately predict the binding affinities between peptides and
MHC class I molecules, even for those new alleles that are not seen in the training data. Ex-
tensive tests have demonstrated that ACME can significantly outperform other state-of-the-art
prediction methods with an increase of the Pearson Correlation Coefficient by up to 23 percent.
In addition, its ability to identify strong-binding peptides has been experimentally validated.
Moreover, by integrating the convolutional neural network with attention mechanism, ACME is
able to extract interpretable patterns that can provide useful and detailed insights into the bind-
ing preferences between peptides and their MHC partners. All these results have demonstrated
that ACME can provide a powerful and practically useful tool for the studies of peptide-MHC
class I interactions.
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1 Introduction

Presentation of antigen peptides by major histocompatibility complex (MHC) class I molecules
plays a vital role in initiating an immune response to identify and kill cancer cells. Peptides derived
from mutant proteins in cancer cells can be engineered into cancer vaccines, which can stimulate a
specific immune response against the cancer cells presenting these antigen peptides [1-3]. However,
in most cases, for a peptide to effectively elicit an immune response, it needs to bind to an MHC
molecule with a sufficiently high affinity (IC50<500 nM), making peptide-MHC binding the most
crucial and selective step in antigen presentation [4]. Hence, identifying the peptides that can be
presented by MHC molecules is a vital step in developing effective therapeutic cancer vaccines [5].
This underscores the importance of developing in silico algorithms that can accurately predict the
binding affinities of peptides to MHC molecules.

In the past two decades, numerous computational methods have been proposed for this purpose
[6-15]. Two general strategies (i.e., allele-specific and pan-specific predictors) have typically been
adopted by the computational methods presented so far. (1) The allele-specific predictors generally
train one model for each MHC allele. For example, NetMHC, one of the most widely used allele-
specific models, employs a conventional feed-forward neural network with a single hidden layer to
predict peptide-MHC interactions for individual alleles [11, 12]. When training these allele-specific
methods, we have to split the binding data into individual smaller datasets, each specific for a single
allele, making it difficult to derive accurate predictions for those data-deficient alleles. (2) On the
other hand, the pan-specific methods take both peptide and MHC sequences as input features,
thus allowing to pool all the data for different alleles together and train one common model for all
alleles. For instance, the widely used method, NetMHCpan, uses a simple neural network model
with one hidden layer and takes information extracted from both peptide and MHC sequences as
its input to perform the pan-specific prediction task [6-9]. However, such neural networks with a
single hidden layer are generally not sophisticated enough to capture all the intrinsically complex
patterns in the data. The recently proposed method, ConvMHC, uses deep convolutional networks
[14] to address this problem. Unfortunately, it cannot integrate the binding data of peptides with
different lengths, and is only applicable to 9-mer peptides.

Despite the progress made so far, there is still a need for developing a more precise method
for peptide-MHC binding prediction, because weak binders greatly outnumber strong ones in this
scenario, leading to a considerable number of false positives when identifying antigen peptides. In
addition, the prediction results from most of the previous methods lack interpretability. Although
there existed several studies on the interpretable binding patterns between peptides and MHC
modules [16-18], they only focused on a limited number of alleles. Thus, it becomes increasingly
necessary to develop a model that can not only make accurate binding prediction but also reveal
interpretable patterns to characterize peptide-MHC interactions. Recently, the attention mecha-
nism has been used in natural language processing [19, 20], computer vision [21] and bioinformatics
[22] to produce interpretable results. It assigns different weights to individual positions of the
input, so that the model can focus on the most crucial features to perform better prediction. In
sequence analysis, the attention values (weights) for individual sites (e.g., base pairs or amino acid
residues) derived by the embedded attention mechanism allow one to spot those important sites
that significantly contribute to the final predictions. Hence, here attention is a suitable technique
for interpreting the binding patterns of MHC molecules.

In this article, we propose a new deep learning based method, called ACME (Attention-based
Convolutional neural networks for MHC Epitope binding prediction), for the pan-specific prediction
of the binding affinities between peptides and MHC class I molecules. We combine a deep convolu-
tional neural network with an attention module to build an accurate and interpretable prediction
model, in which features of different levels are extracted from multiple layers of the convolutional
network, and then integrated together to effectively capture the intrinsic characteristics of peptide-
MHC binding. Extensive tests on existing benchmark and external datasets have demonstrated
that ACME can significantly outperform other existing state-of-the-art prediction methods with
an increase of the Pearson Correlation Coefficient by up to 23 percent. More importantly, we
have also shown that ACME can be effectively used to make accurate predictions for those new
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MHC alleles that are not seen in the training data. In addition, the ability of ACME to identify
strong binding peptides has been well validated experimentally. Moreover, comprehensive analyses
have indicated that ACME can extract interpretable molecular interaction patterns and generate
accurate peptide binding motifs for different MHC alleles, including those MHC alleles with scarce
or no available experimental data. Overall, our model can provide a powerful and useful tool for
predicting peptide-MHC binding as well as investigating the underlying patterns of this biological
process. ACME is available as an open source software at https://github.com/HYsxe/ACME

2 Materials and methods

2.1 Datasets

The widely used IEDB MHC class I binding affinity dataset was downloaded from the IEDB
website (http://tools.immuneepitope.org/mhci/download/) [23, 24]. We first carried out a
five-fold cross-validation procedure on this dataset to evaluate the performance of our model and
other state-of-the-art prediction methods. Afterwards, we combined this IEDB dataset with another
dataset obtained from Pearson et al. [25], to train a final version of our model (Redundant data were
removed). To test if our final model can be generalized to other datasets, we further tested our model
on the data obtained from the IEDB weekly benchmarking website (http://tools.iedb.org/
auto_bench/mhci/weekly/) [26], which had also been previously used to test other methods as well
[14, 15]. In particular, the datasets published within the last three years were chosen. These datasets
were not used in model optimization and training of our final model. The sequences of different
MHC molecules were obtained from the IPD-IMGT/HLA Database (ftp://ftp.ebi.ac.uk/pub/
databases/ipd/imgt/hla/,hla_prot.fasta) [27]. More details about dataset preprocessing and
filtering can be found in Supplementary Notes Section 1.1.

2.2 Data encoding

The input data to our prediction framework ACME include peptide and MHC sequences, which
are both encoded based on the standard BLOSUMS50 scoring matrix [28], with each residue encoded
by the corresponding row of this matrix. In our framework, the elements of the BLOSUM matrix are
also divided by a scaling factor to facilitate model training, which was set to 10 after hyperparameter
tuning using a grid search scheme. Each peptide is encoded into a 24x20 matrix in a pair-end
manner (Figure 1a). In particular, the first 12 rows of the input matrix encode the input peptide
with the N terminus aligned to the first row, while the last 12 rows encode the peptides with the C
terminus aligned to the last row. For those peptides shorter than 12 residues, the vacancies in the
middle are filled with zero padding. For instance, a peptide sequence of length 9 is encoded into
the 15¢-9t" and 16!"-24*" rows, in which the 1% and 16" row encode the N terminus while the 9"
and 24" rows encode the C terminus. In this case, the 10" to 15" rows are all padded with zeros.

When encoding the input MHC sequences, we only consider those residues that are in close
contact with the peptide (i.e., within 4.0 A distance). These residues form a short sequence, called
the MHC pseudo-sequence, as defined in [6]. In particular, 34 such residues are chosen and encoded
into a 34 x 20 matrix, where each residue is represented by the corresponding row in the BLOSUMS50
matrix (Figure 1b).

The peptide-MHC binding affinities, which were represented by the ICsy values in nM units,

were first transformed using the equation scorerans formed = 1— %, as previously described

in [29], and then used as the label values to train and test our model.
2.3 Network architecture

Our model ACME mainly consists of two modules, including a convolutional module and an
attention module (Figure 1¢). ACME first passes the encoded peptide and MHC pseudo-sequences
through one convolutional layer for initial feature extraction, and then sends the extracted feature
maps into both convolutional module and attention modules. After the that, the outputs of these
two modules are combined together to make the final prediction. The model is implemented using
Keras [30]. Below we will describe each part of the model in detail.
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2.3.1 Initial feature extraction

The encoded peptide and MHC feature representations as input to our model are first processed
separately by a one-dimensional convolutional layer with rectified linear unit (ReLU) activation [31]
for initial feature extraction. The convolutioal layers mentioned hereafter all use ReLLU activation.
The convolutional layer outputs a feature map matrix F', in which each column corresponds to one
convolutional filter and each row represents a position of the input, that is,

Fy, = f(b + Z Z i4d,iWai k)

where M stands for the input matrix (24 x 20 for the peptide sequence or 34 x 20 for the MHC
pseudo-sequence). f stands for the ReLU activation function, i.e., f(X);r = max{X;r,0}. Wy,
stands for the element in the d*" row and the i*" column of the k" filter, and b, stands for the
corresponding bias. Note that the ranges of d and j may vary due to different padding results. The
resulting feature maps for the peptide and MHC sequences, extracted by the first convolutional
layers, are then separately forwarded into both convolutional and attention modules.
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Figure 1: Schematic illustration of the ACME framework. a Our scheme for encoding peptide
sequences. Each peptide sequence is encoded into a 24 x 20 matrix in a pair-end manner. b Our
scheme for encoding MHC sequences. For each MHC sequence, the 34 residues that are in close
spatial proximity with the peptide partner (< 4.0 A) are selected as pseudo-sequence and then
encoded into a 34 x 20 matrix. ¢ The architecture of the deep neural networks employed in our
model. MHC and peptide sequences are encoded and used as input. After initial feature extraction,
the encoded feature representations are channeled into both attention and convolutional modules.
The output of these two modules are then combined to make the final prediction.

2.3.2 Convolutional module

The convolutional module is mainly designed to extract features of different levels and then
integrate them to make prediction. In our convolutional module (Figure 1c), the MHC feature
map F' first goes through a max-pooling layer, followed by another round of one-dimensional
convolution and max-pooling operations, while the peptide feature map does not go through further
convolution and pooling operations mainly due to its short sequence length (i.e., 9-12 residues).
The MHC features extracted after 0, 1 and 2 rounds of convolution and max-pooling operations
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are then concatenated separately with the peptide feature map after one convolution layer, thus
preserving the MHC features of different levels. Here, each concatenated layer is also connected
to a separate fully connected layer. The outputs of these three fully connected layers are then
concatenated together and forwarded into two consecutive fully connected layers. The output of
the latter is the output of the convolutional module. More details on the network architecture can
be found in Supplementary Notes Section 1.2.

2.3.3 Attention Module

The attention module in our framework cooperates with the convolutional module to extract
interpretable binding patterns (i.e., motifs). In particular, it assigns different weights to the feature
vectors corresponding to individual residue positions and then computes their weighted average to
facilitate prediction. As a result, it learns to assign higher weights to those residues that are more
important in predicting peptide-MHC interactions.

The structure of the attention module is shown in Figure 2. Each row vector Fj in the feature
map matrix F' is taken as the input to the attention layer and generates a real number w;. In
other words, the attention layer maps the feature map matrix F' into an attention weight vector
w. Then each element w; of w is converted into w; through softmax normalization. Then we
use the row vectors to compute their weighted average F,,4, with each w;- being the weight of the
corresponding F, that is,

w=b+ Fa;uw, =

j avg
Z "

where a stands for the weights of the attention layer and b is the corresponding bias term. Here,
F,, is the output of the attention module, which will be further combined with the output of the
convolutional module to produce the final prediction.
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Figure 2: Schematic illustration of the attention module. The convolutional layer extracts a feature
map F' from the input matrix. Each row vector F} of this feature map F' corresponds to a position
in the input sequence. F} is used as the input to the attention layer to generate its positional weight
wj, which becomes w’; after softmax normalization. Fy,, stands for the final weighted average over
all row vectors. More details of the attention module can be found in Section 2.3.3.

2.3.4 Performing the final prediction

The outputs of the convolutional module and the attention module are concatenated together
and then forwarded into a fully connected layer to perform the final prediction (Figure 1c). It is
worth noting that since the outputs of both modules are used to make prediction, the attention
module might not be able to account for all the features involved in peptide-MHC binding. Nev-
ertheless, as we will show in the Results section, the attention module can indeed help to capture
useful and interpretable patterns that well characterize peptide-MHC binding and provide useful
insights into understanding their interactions.
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2.4 Network training

To determine the hyperparameters of our model, we split the IEDB dataset into a 95% training
set and a 5% validation set. The model was optimized using the training set, and its optimal
hyperparameters were determined through a grid search approach on the validation set. The
performance was evaluated mainly using the Pearson correlation coefficient (PCC), while the Area
under the Receiver Operating Characteristics curve (AUROC) was also used as an additional metric
to evaluate the prediction results. For the calculation of AUROC, experimentally determined
affinities were converted into one or zero labels using a threshold of 500 nM. Each model consists of
an ensemble of n networks, where n = 5 in five-fold cross-validation and n = 25 in the final version
of our model. The average prediction score over all the networks in the ensemble is used as the
final output. We use the mean squared error as the loss function. In addition, the Adam optimizer
[32] is used to compute stochastic gradient descent in the training procedure.

After hyperparameter calibration, we ran a five-fold cross-validation procedure on the training
set mentioned above to evaluate the predictive performance of our model. Five trials of five-fold
cross-validation were conducted, each with a different random initialization and their average result
was reported. More details can be found in Supplementary Notes Section 1.3.

2.5 Testing the generalizability of ACME

To prove the generalization ability of our model, we also chose the most recent IEDB weekly
datasets as external test sets to evaluate our model. Before this test, we augmented the original
IEDB training data by also incorporating another dataset from [25] and applied a bootstrapping-
like strategy to train a more reliable version of our model. More specifically, the whole combined
dataset was randomly divided into five subsets of approximately the same size. Then every four
subsets were used to train a separate network, which resulted in five trained models in total. We
performed such a process with random partitions of the data five times, and overall we obtained an
ensemble of 25 trained networks, whose average prediction result was used as the final output. We
then evaluated this final version of our model on 30 datasets of human MHC molecules, which are
encoded by human leukocyte antigen type A and B genes (HLA-A and HLA-B). Here we mainly used
the Spearman Rank Correlation Coefficient (SRCC) as our performance metric. The performances
of five trials were averaged to obtain the final result. We also compared our prediction results to
those of previous methods, whose SRCC scores are available on the IEDB weekly benchmarking
website (http://tools.immuneepitope.org/auto_bench/mhci/weekly/).

We further tested whether our model can generalize what it has learned to make accurate
prediction for those alleles without any training data. Here, for each allele of interest, we removed
all the associated binding data from the training set and then used the remaining data to train our
model. In particular, data of all other alleles were split into five subsets of approximately equal
sizes. We then trained one network on every four subsets, resulting in an ensemble of five networks
which takes the average prediction over the five networks as its final output. After that, we used
this ensemble to make binding prediction for the allele of interest. Performances were measured in
PCC.

2.6 Experimental validation

We experimentally validated the ability of ACME to identify neo-antigens derived from somatic
mutations in tumors. HLA-A*02:01 and HLA-B*27:05 were chosen as representative MHC alleles
with high and low population frequencies, respectively. We selected the most frequent 5000 somatic
mutations in human cancer from the COSMIC database [33] and then generated the sequences of all
the 9-mer peptides that may potentially present these mutations. For each allele, we used ACME
to predict the binding affinities of these peptides and selected the 25 peptides with the highest
predicted binding affinities and 25 with the lowest predicted binding affinities for the downstream
experimental validation.

We next experimentally measured the actual binding affinities for the above-chosen peptides.
For HLA-A*02:01, T2 cells (5 x 105 mL~!) were incubated with fom (3gmL~!, Sigma) and each
peptide (10 g mL ™!, Sangon Biotech) at 4 °C for 4 h. The cells were stained with mouse anti-HLA-
A2 antibody (abcam, ab79523) to measure the expression of HLA-A2 by flow cytometry. The mean
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fluorescence intensity (MFI) of HLA-A2 was used to indicate the binding affinity of each peptide
with HLA-A2 molecules. T2 cells with Som only were used as a negative control. T2 cells with
Pom and peptide OVAL235, which had been previously reported to bind to HLA-A2 molecules [34]
strongly, were used as a positive control.

For HLA-B*27:05, we used the Prolmmune REVEAL MHC-peptide binding assay to determine
the binding affinities of the chosen peptides. This assay evaluates the binding affinity of a peptide
to an MHC molecule by assessing its ability to stabilize the MHC complex. When the complex is
bound and stabilized by the peptide, the MHC protein and Som form a native conformation that
can be recognized by a labeled antibody and thus generate a positive signal. The percentage of
this signal relative to the reference signal generated by a known T cell epitope (positive control) is
defined as the Prolmmune REVEAL binding score and used to reflect the binding affinity of this
peptide.

2.7 Generating the binding motifs for different MHC alleles

To better illustrate the underlying biological principles captured by our model, we used ACME
to generate binding motifs for different alleles. In particular, we hypothesized that if a certain
amino acid type at a specific site contributes significantly to binding, then it should appear more
often among strong binders and also be associated with a higher attention score. We use a matrix
A to represent such an enrichment of attention, where the element in the i** row and j* column
corresponds to the summed attention score of the i*" amino acid type at the j** position in the
selected peptides, that is,

Aij = Z a0 (rij ),
k=1

where n represents the total number of strong binders and a; stands for the attention score assigned
to the j* position of the k** peptide. Here, ryj stands for the amino acid type at the 4t position

of the k¥ peptide. For example, rk; is O for the first type of residue (alanine) and 19 for the last
type of residue (valine). Besides, §(z,y) is a binary indicator function defined by

swn={5 520

For each allele, we selected the top 1000 peptides with the highest predicted binding affinities
(n = 1000) from 10,000 random ones and then generated the corresponding matrix A to identify
important residues that significantly contribute to MHC-peptide binding. To further investigate
the residues with the potential to severely destabilize peptide-MHC complexes, we also selected the
bottom 1000 peptides with the lowest predicted binding affinities from 10,000 random ones and
also generated their corresponding motifs.

3 Results
3.1 Five-fold cross-validation on the IEDB MHC class I binding affinity dataset

To evaluate the prediction performance of ACME, we first carried out a five-fold cross-validation
on the IEDB dataset for individual alleles and different peptide lengths, including 11-mers, 10-mers
and 9-mers (Section 2.4). We compared the performance of our model to that of the widely used
state-of-the-art method NetMHCpan [8]. Note that NetMHCpan 3.0 was used here because it was
the latest version of NetMHCpan with detailed performance data published for each allele and
peptide length.

We mainly used the Pearson Correlation Coefficient (PCC) to assess the predictive abilities of
different models. Compared to the previously reported performance of NetMHCpan 3.0, ACME
achieved significantly better prediction results, with the average increase of PCC by 11, 5.3 and 3.4
percent for 11-mer, 10-mer and 9-mer, respectively (Figure 3). In addition, we also formulated the
peptide-MHC binding problem as a binary classification task and used the Area under the Receiver
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Operating Characteristic curve (AUROC) to evaluate the prediction performance of ACME. The
comparison results based on this metric also demonstrated that ACME significantly outperformed
NetMHCpan 3.0 (Supplementary Table 1).

Note that in the above comparison, ACME was trained mainly on human HLA-peptide binding
data while the training data of NetMHCpan 3.0 included additional binding data from other species
(which consisted of only 18% of their training data). To show that the improvement of our model
was not due to the difference in training data used, we also reimplemented a model with the
same model structure and encoding strategy as in NetMHCpan 3.0 [8] (since the source code of
NetMHCpan 3.0 was not available), and trained it using the exact same human HLA-peptide
binding data as in ACME. The additional comparison based on a five-fold cross-validation also
confirmed the significant performance improvement achieved by ACME (Supplementary Table 1).
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Figure 3: Performance comparison between our model and the state-of-the-art model, NetMHCpan
3.0. a Performances of the two models on peptides of different lengths. In the box plot, each data
point represents the Pearson Correlation Coefficient (PCC) value for a specific MHC allele. The
prediction results of NesMHCpan were obtained from [8]. b-d Performance improvement of ACME
over NetMHCpan 3.0 for 11-mer, 10-mer and 9-mer peptides, respectively. The horizontal axis
stands for the improvement (percent), while the vertical axis represents the number of alleles with
such improvements.

In addition, we also compared our model to the recently proposed deep learning model, Con-
vMHC [14], for pan-specific peptide-MHC binding prediction. Note that ConvMHC can only be
applied to 9-mers, while our model can also make accurate predictions for peptides with various
lengths because our encoding strategy can effectively incorporate critical peptide features that are
usually at the two ends of a peptide and is thus insensitive to the variation of peptide length. More-
over, even on 9-mers, ACME still outperformed ConvMHC by 1.2 percent in terms of accuracy.
Overall, the above results indicated that ACME can provide significantly more accurate predictions
of peptide-MHC binding than other state-of-the-art methods.

3.2 Testing the generalizability of ACME

We further conducted two additional tests to demonstrate the generalizability of ACME (Section
2.5). We first tested ACME on 30 other independent datasets, i.e., the most recent IEDB benchmark
datasets and compared its prediction performance to those of previous methods, whose Spearman
Rank Correlation Coefficient (SRCC) values had been reported previously in [26]. Our comparison
showed that the SRCCs of other methods were roughly on the same level, while ACME achieved
significantly better performance, with around 5 percent improvement in terms of SRCC (Figure 4a
and Supplementary Table 2). These results indicated that our model can be generalized well on
other independent data.

Next, we examined whether ACME can make accurate binding predictions for those novel
MHC alleles without any training data. Here we selected both common and rare MHC alleles
as representatives for testing. As shown in Figure 4b, ACME can still achieve good prediction
performance that was close to those alleles that had available training data, with an average PCC
score of 0.81 over all the 13 alleles tested (Supplementary Table 3 and Supplementary Notes Section
1.4). This new result indicated that ACME can fully exploit the knowledge from the common
alleles with available training data to make accurate predictions for those novel alleles with few or
no training data.
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Figure 4: Testing the generalizability of ACME. a The performance of different prediction algo-
rithms on the most recent IEDB benchmark datasets, measured in terms of the Spearman Rank
Correlation Coefficient (SRCC). The SRCC scores of other prediction methods were obtained from
[26]. Each bar represents the averaged performance of a specific prediction algorithm over all the
datasets tested. b The prediction results of the novel alleles that were not seen in the training data.
The prediction performance was evaluated in terms of the Pearson Correlation Coefficient (PCC)

3.3 Experimental validation

We selected the representative peptides with the highest and lowest predicted binding affinities
and experimentally measured their binding affinities to further validate the predictive ability our
algorithm.

As shown in Figure 5a, the expression of HLA-A2 was increased when T2 cells were incubated
with the peptides with high predicted binding affinities. More importantly, some of the tested
peptides with high predicted affinities even displayed equivalent or higher binding affinities when
compared to the positive control peptide (OVAL235). Moreover, expectedly, the peptides with low
predicted binding affinities also led to a lower expression of HLA-A2 molecules than those with
high predicted affinities (p = 1.3 x 1079, one-sided Mann-Whitney U test).

We also used the Prolmmune REVEAL MHC-peptide binding assay to measure the binding
affinities with HLA-B*27:05. The experimental validation results, as shown in Figure 5b, demon-
strated that the peptides with high predicted affinities displayed accordingly significantly higher
experimentally measured affinities compared to those with low predicted affinities (p = 6.1 x 1072,
one-sided Mann-Whitney U test). Detailed results of the above two experiments can also be found
in Supplementary Table 4.

All these experimental validation results further demonstrated that our algorithm can yield
accurate predictions and thus provide a practically useful tool to identify neo-antigens in human
tumors.

3.4 ACME uncovers the underlying rules for MHC-peptide binding

To overcome the black-box nature of deep learning, here we combined our convolutional network
with an attention module to enhance the explainability of our model (Section 2.7). To validate the
quality of the attention values assigned to each position, we first conducted a masking experiment
and confirmed that the positions with higher attention values tend to make a greater contribution
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Figure 5: Experimental validation on the peptides with the highest and lowest predicted binding
affinities. a The flow cytometry results for HLA-A*02:01, where a higher mean fluorescence intensity
(MFI) value indicates a higher affinity. b The Prolmmune REVEAL MHC-peptide binding assay
results for HLA-B*27:05. Both experiments showed that our binding predictions are generally
accurate. Synthesis of one peptide with low predicted binding affinity failed.

to the prediction of MHC-peptide binding in our ACME framework (Supplementary Notes Section
1.5).

As a first attempt, we visualized the motifs for several MHC alleles whose binding patterns had
been well characterized previously (Figure 6a). Expectedly, we observed similar preferences for
amino acid types at different peptide positions as reported in previous studies [16]. For instance,
our model was able to identify the Lys at position 9 as an anchor residue, i.e., the residue making
major contributions to binding, for the peptide bound to HLA-A*11:01. Also, for HLA-B*40:01,
the previously reported anchor residue Glu at position 2 and Leu at position 9 were also successfully
identified by our model as important residues.

| | |
L L L
Ki K K-
F- F F
s s 5
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Y- Y- Y-
v v v
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-

B*57:03 B*44:02
(b)

Figure 6: Example of sequence motifs for the peptides bound to different MHC alleles. a The
heatmaps visualizing representative motifs for several well-characterized MHC alleles. b Structural
basis for the peptide sequence motifs generated by ACME.

In addition, by aligning the motifs discovered by ACME with the previous structural char-
acterizations of MHC-peptide complexes (Figure 6b), we found that our model was also able to
capture the local biochemical environment difference caused by the polymorphisms in different
MHC molecules, especially at the termini of the peptides. For instance, our analysis demonstrated
the Lys or Arg residue at position 9 of a peptide binder significantly contributes to peptide binding
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to HLA-A*68:01, which can actually be supported by a previously solved high-resolution structure
of HLA-A*68:01 complexed with a 9-mer peptide (PDB code 4HWZ) [35], where the C terminus
Lys of the peptide is involved in a hydrogen bond network with surrounding residues in the bound
MHC molecule. In particular, the e-amino group of this Lys forms a hydrogen bond with Aspl16
of the MHC molecule. In contrast, for the HLA-B*57:03 protein whose binding pocket is generally
formed by hydrophobic residues, our motif analysis indicated a preference for hydrophobic residues,
e.g., Leu, Phe or Trp at the C terminus, which is consistent with the previous structural data (PDB
code 2BVP) [36] showing that the C-terminus Trp of the peptide is involved in an aromatic stacking
with Tyr123 and makes close contacts with several residues in the MHC molecule, including Trp147,
Tyr116, 11e95 and I1e80. In addition, we also found that for our predicted peptides bound to allele
HLA-B*44:02, the anchor residue Glu2 near the N terminus is engaged in multiple hydrogen bonds
with neighboring MHC residues, and that its y-carboxyl group forms a salt bridge with the e-amino
group of Lys45 (PDB code 1M60) [37]. All these analyses results based on the existing structural
data supported the biological relevance of the binding motifs generated by ACME.

Next, we sought to extend this analysis to the MHC alleles whose binding preferences lack
experimental characterization. To test the validity of our result, we first confirmed that our model
can produce verified motifs for several alleles that were not included in the training data (Sup-
plementary Figure 8a). We then used ACME to generate motifs for a large number of alleles,
including those not previously characterized. In particular, we found that positions 2 and 9 in the
peptide play the most vital roles in MHC-peptide binding, which was consistent with the findings
of previous studies [38]. Our analyses showed that the aliphatic amino acid Leu and Val, the aro-
matic amino acid Phe and Tyr and the basic amino acid Lys and Arg are among the most common
anchor residues. In addition, we found that different alleles may employ different anchor strategy to
facilitate specific peptide binding. Specifically, some alleles, e.g., HLA-A*02:19 and HLA-A*24:02,
have anchor residues at both ends, while other alleles, e.g., HLA-A*03:02, HLA-A*11:01 and HLA-
A*11:02, are mainly anchored at one end. We also found that the residues in the middle can also
make a significant contribution to binding in some alleles, as can be seen in HLA-B*15:42.

In addition to the discovery of the residues that strengthen binding, we are also interested
in identifying the residues that may impair MHC-peptide binding. Therefore, in contrast to the
above analyses which focused on high-affinity binding peptides, we also generated a set of non-
binder motifs using the peptides with the lowest predicted affinities (Supplementary Figure 8b).
These non-binder motifs clearly show foci of attention at several positions, including Ser at position
9 in HLA-A*02:01 and Lys at position 7 in HLA-B*35:01, indicating that most likely these residues
are detrimental to binding. To test whether or not these residues can actually impair binding,
we conducted an additional test in which we replaced the original residues of the peptides with
random amino acids or the above found anti-binding amino acids, respectively. It turned out
that replacing the corresponding residues with these anti-binding amino acids indeed resulted in
significantly lower predicted binding affinities compared to replacement by random amino acids
(Supplementary Figure 7, p = 4.3 x 107 for HLA-A*02:01 and p = 2.9 x 10~ for HLA-B*35:01,
one-sided Mann-Whitney U test). This additional test result can thus support our discovery of the
non-binder motifs.

4 Conclusions

In this study, we have developed a new pan-specific algorithm, called ACME, for peptide-
MHC class I binding prediction. The algorithm uses convolutional neural networks to integrate
the features extracted from both peptide and the MHC sequences and also has a built-in attention
module to help extract interpretable binding patterns. Comprehensive tests on available benchmark
datasets have demonstrated the superior prediction performance of ACME over other state-of-the-
art methods. In addition, we have shown that ACME can be used to accurately generate the
binding motifs for different MHC alleles, which can be further used to investigate the patterns of
peptide-MHC class I binding. In the future, we will try to incorporate more information such as
peptide transportation and TCR recognition to improve the prediction of antigen peptides. We
expect that incorporating information about these biological processes into our prediction model
will further extend the application potentials of our model in cancer immunotherapies.
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