

1 **A Novel Root-Knot Nematode Resistance QTL on Chromosome Vu01 in Cowpea**

2 Arsenio D. Ndeve*, Jansen R. P. Santos*¹, William. C. Matthews*, Bao L. Huynh*, Yi-

3 Ning Guo[†], Sassoum Lo[†], Maria Muñoz-Amatriaín[†] and Philip A. Roberts*.

4 *Dept. Nematology, University of California, Riverside, CA 92521, USA;

5 ¹Departamento de Fitopatología, Universidade de Brasilia, Brasilia, DF, 70910-900

6 Brazil;

7 ¹Dept. Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 **Running title:**

23 Novel Root-knot Resistance in Cowpea

24 **Keywords:**

25 *Meloidogyne* spp., quantitative trait loci, *Vigna unguiculata*.

26 **Corresponding authors:**

27 Philip A. Roberts, proberts@ucr.edu.

28 Arsenio D. Ndeve, andev002@ucr.edu

29 2251 Spieth Hall, Office phone: (951) 827-7332, Fax: (951) 827-3719, Department of

30 Nematology, University of California, Riverside, CA 92521, USA

31 **ABSTRACT** The root-knot nematode (RKN) species *Meloidogyne incognita* and *M.*
32 *javanica* cause substantial root system damage and suppress yield of susceptible
33 cowpea cultivars. The narrow-based genetic resistance conferred by the *Rk* gene,
34 present in some commercial cultivars, is not effective against *Rk*-virulent populations
35 found in several cowpea production areas. The dynamics of virulence within RKN
36 populations require a broadening of the genetic base of resistance in elite cowpea
37 cultivars. As part of this goal, F_1 and F_2 populations from the cross CB46-Null
38 (susceptible) x FN-2-9-04 (resistant) were phenotyped for *M. javanica* induced root-
39 galling (RG) and egg-mass production (EM) in controlled growth chamber and
40 greenhouse infection assays. In addition, $F_{2:3}$ families of the same cross were
41 phenotyped for RG on field sites infested with *Rk*-avirulent *M. incognita* and *M.*
42 *javanica*. The response of F_1 to RG and EM indicated that resistance to RKN in FN-2-
43 9-04 is partially dominant, as supported by the degree of dominance in the F_2 and $F_{2:3}$
44 populations. Two QTLs associated with both RG and EM resistance were detected on
45 chromosomes Vu01 and Vu04. The QTL on Vu01 was most effective against
46 aggressive *M. javanica*, whereas both QTLs were effective against avirulent *M.*
47 *incognita*. Allelism tests with CB46 x FN-2-9-04 progeny indicated that these parents
48 share the same RKN resistance locus on Vu04, but the strong, broad-based resistance
49 in FN-2-9-04 is conferred by the additive effect of the novel resistance QTL on Vu01.
50 This novel resistance in FN-2-9-04 is an important resource for broadening RKN
51 resistance in elite cowpea cultivars.

52
53
54
55
56
57
58
59

60 **INTRODUCTION**

61
62 Root-knot nematode (RKN) species, particularly *Meloidogyne incognita* and *M.*
63 *javanica*, cause substantial damage to root systems and suppress yield of susceptible
64 cowpea (*Vigna unguiculata* L. Walp) cultivars by impairing water and nutrient uptake,
65 and the partitioning and translocation of photo-assimilates (Bird and Loveys 1975;
66 McClure 1977; Taylor and Sasser 1978; Williamson and Hussey 1996; Sikora *et al.*
67 2005). Host-plant resistance is an important strategy to mitigate the impact of
68 nematode infestation (Hall and Frate 1996; Roberts 1992; Ehlers *et al.* 2000;
69 Castagnone-Sereno 2002; National Research Council 2006), both in Africa where
70 access to agronomic inputs including nematicides is limited (Sasser 1980; Luc *et al.*
71 2005), and in developed agriculture where resistant varieties are the best option
72 economically (Ehlers *et al.* 2000).

73 Narrow-based resistance to conferred by gene *Rk* has provided protection against
74 RKN in cowpea agricultural systems worldwide (Amosu and Franckowiak 1974; Singh
75 and Reddy 1986; Helms *et al.* 1991; Fery *et al.* 1994; Roberts *et al.* 1995; Roberts *et*
76 *al.* 1996; Roberts *et al.* 1997; Ehlers and Hall 1997; Ehlers *et al.* 2009). The resistance
77 conferred by gene *Rk* is highly effective against avirulent forms of RKN populations
78 (Roberts *et al.* 1995; Hall and Frate 1996; Roberts *et al.* 1997; Ehlers *et al.* 2000;
79 Roberts *et al.* 2013), but *Rk*-virulent and aggressive forms of common RKN species
80 have been identified (Swanson and Van Gundy 1984; Roberts *et al.* 1995; Hall and
81 Frate 1996; Roberts *et al.* 1997; Petrillo *et al.* 2006). Selection for virulence to *Rk*
82 (Roberts *et al.* 1997; Petrillo and Roberts 2005; Petrillo *et al.* 2006) has prompted
83 efforts to broaden the genetic base of resistance in elite cowpea cultivars (Hall and
84 Frate 1996; Roberts *et al.* 1996; Roberts *et al.* 1997; Ehlers *et al.* 2000; Roberts *et al.*
85 2013). The threat imposed by virulence in RKN populations led to the discovery of new

86 resistance genes, *Rk*² and *rk*³ to broaden the genetic base of resistance, and
87 advanced breeding materials with one or more of these genes have shown promising
88 performance under RKN infestation (Roberts *et al.* 1996; Roberts *et al.* 1997; Ehlers
89 *et al.* 2000; Ehlers *et al.* 2002). Broad-based genetic resistance can be developed
90 through effective gene pyramiding of independent sets of resistance genes from
91 distinct genetic sources (Ehlers *et al.* 2002).

92 The RKN resistance currently deployed in many cowpea cultivars is governed by a
93 single dominant gene, *Rk* (Fery *et al.* 1994; Singh and Reddy 1986), but additional
94 resistance genes *Rk*², with a dominant effect, (Roberts *et al.* 1996; Roberts *et al.* 1997;
95 Ehlers *et al.* 2000), and *rk*³, with a recessive and additive effect, (Roberts *et al.* 1996;
96 Ehlers *et al.* 2000), have been identified in cowpea backgrounds (Roberts *et al.* 1997;
97 Ehlers *et al.* 2000). The action of gene *Rk*² alone is not clearly understood, but in
98 breeding line IT84S-2049 (which also carries gene *Rk*) its additive effect contributes
99 substantially to an enhanced resistance to *Rk*-virulent populations of *M. incognita* and
100 to *M. javanica* compared to gene *Rk* alone (Roberts *et al.* 1996; Roberts *et al.* 1997;
101 Roberts *et al.* 2005). The *rk*³ locus was characterized as a modifier which improves
102 resistance of cowpea cultivars carrying *Rk* when challenged with *Rk*-virulent RKN
103 isolates (Ehlers *et al.* 2000b) and was bred into cowpea cv. CB27 (Ehlers *et al.* 2000a).

104 The *Rk* locus has been mapped on chromosome Vu04 (Huynh *et al.* 2016) previous
105 cowpea linkage group 11 of the cowpea consensus genetic map (Lucas *et al.* 2011;
106 Muñoz-Amatriaín *et al.* 2017). This genomic region and flanking markers associated
107 with RKN resistance within this region are important resources for introgressing this
108 resistance into elite cowpea cultivars. Also, markers flanking the resistance in this
109 genomic region can be utilized as a reference to decipher the genetic relationship

110 between the resistance conferred by gene *Rk* and potential novel sources of
111 resistance to RKN.

112 A broad-based resistance to RKN has been identified through a series of field,
113 greenhouse and seedling growth pouch tests in a cowpea accession FN-2-9-04 from
114 Mozambique (Ndeve *et al.* 2018). This accession carries higher levels of resistance to
115 avirulent *M. incognita* and *M. javanica* than that conferred by the *Rk* gene alone. The
116 performance of FN-2-9-04 under *M. javanica* infestation was contrasted to cowpea
117 breeding lines and cowpea cultivars carrying sets of RKN resistance genes, including
118 *RkRk/Rk²Rk²*, *RkRk/rk³rk³*, *RkRk/Rk²Rk²/gg* and IT84S-2049 which indicated that the
119 RKN resistance in accession FN-2-9-04 is unique. Therefore, to characterize the
120 resistance in FN-2-9-04, genetic analyses were conducted to determine its genomic
121 architecture and localization through genetic linkage analysis and QTL mapping.

122 **Data Availability**

123 All F₂ and F_{2:3} populations and root-knot nematode isolates are available upon request.
124 Phenotypic and genotypic data are included in data (D) files 1 - 5. These data files and
125 supplementary tables and figures are available at Figuresshare.

126 **MATERIALS AND METHODS**

127 **Plant materials**

128 Four F₁, three F₂ and one F_{2:3} populations (Table 1) were developed under greenhouse
129 conditions at the University of California Riverside (UCR). Accession FN-2-9-04 was
130 crossed with CB46-Null, CB46, Ecute and INIA-41. A single F₁ seed from each of the
131 crosses CB46-Null x FN-2-9-04, CB46 x FN-2-9-04 and INIA-41 x FN-2-9-04 was
132 grown to derive three independent F₂ populations, and 150 F₂ lines of population

133 CB46-Null x FN-2-9-04 were advanced to generate 150 F_{2:3} families (Table 1). Four F₁
134 populations (CB46-Null x FN-2-9-04, CB46 x FN-2-9-04, INIA-41 x FN-2-9-04, Ecute
135 x FN-2-9-04) and subsets of their F₂ populations were phenotyped for root-galling and
136 egg-mass production in greenhouse and seedling growth-pouch screens, respectively,
137 following infection with nematode isolates listed in Table 1. Five to ten seeds per F₁
138 population were also screened in each test. The subsets of F₂ populations and F_{2:3}
139 families (Table 1) also were phenotyped for root-galling in field experiments.
140 CB46 is a California blackeye cultivar carrying gene *Rk* (Helms *et al.*, 1991), and the
141 CB46-Null genotype is a near-isogenic breeding line (NIL) derived from CB46. This
142 breeding line has the CB46 background, but it is susceptible (minus *Rk* via
143 backcrossing) (Huynh *et al.*, 2016). Ecute and INIA-41 are landraces and FN-2-9-04
144 is an accession from Mozambique. FN-2-9-04 is resistant to both the avirulent *M.*
145 *incognita* isolates and *M. javanica* isolate used in this study, whereas CB46-Null,
146 CB46, Ecute and INIA-41 are all susceptible to *M. javanica*. In addition, CB46-Null and
147 Ecute are susceptible to the avirulent *M. incognita* isolates (Beltran and Project 77),
148 whereas INIA-41 is resistant.
149 **Table 1.** Cowpea populations used for inheritance studies and QTL mapping, their
150 size, phenotyping conditions, target trait, nematode isolate used and year of testing.

Exp	Population	Size	Environment	Trait	Nematode isolate	Year
1	^a CB46-Null/FN-2-9-04 (F ₂)	163	SGP-UCR	EM	<i>M.j</i>	2015
2	^a CB46/FN-2-9-04 (F ₂)	172	SGP-UCR	EM	<i>M.j</i>	2015
3	^a INIA-41/FN-2-9-04 (F ₂)	126	GH-UCR	RG	<i>M.j</i>	2015
4	^a CB46-Null/FN-2-9-04 (F ₂)	177	GH-UCR	RG	<i>M.j</i>	2015
5	^a CB46/FN-2-9-04 (F ₂)	197	GH-UCR	RG	<i>M.j</i>	2015
6	CB46/ FN-2-9-04 (F ₂)	400	CVARS	RG	Avr- <i>M.i</i>	2015
7	CB46/FN-2-9-04 (F ₂)	162	KARE	RG	Avr- <i>M.i</i>	2015
8	CB46-Null/FN-2-9-04 (F _{2:3})	150	SCREC	RG	<i>M.j</i>	2016
9	CB46-Null/FN-2-9-04 (F _{2:3})	150	SCREC	RG	Avr- <i>M.i</i>	2016

151 Exp. = experiment; SGP = seedling growth-pouches; GH = greenhouse; RG = root-galling;
152 EM = egg masses; Avr-*M.i* = avirulent *M. incognita* and *M.j* – *M. javanica* Project 811; UCR =
153 University of California Riverside; CVARS = University of California Coachella Valley

154 Agricultural Research Station; KARE = University of California Kearney Agricultural Research
155 and Extension Center; ^aExperiment included the F₁ plus Ecute x FN-2-9-04 F1 plants.
156

157 **Root-knot nematode isolates**

158 Four RKN isolates were used to phenotype plant materials for response to infection.
159 Three *M. incognita* isolates, Beltran, Project 77 and an equivalent isolate indigenous
160 to CVARS are avirulent to the *Rk* gene, with little or no galling and EM production on
161 root systems of plants carrying gene *Rk* (Roberts *et al.*, 1995; Roberts *et al.*, 1996;
162 Roberts *et al.*, 1997), whereas *M. javanica* isolate Project 811 is an aggressive isolate
163 due to its enhanced parasitic ability (Ehlers *et al.*, 2000; Ehlers *et al.*, 2009), inducing
164 galling and reproducing successfully on roots of plants carrying *Rk* (Thomason and
165 Mckinney, 1960; Roberts *et al.*, 1997; Ehlers *et al.*, 2009).

166 **Resistance phenotyping: egg-mass production**

167 The F₁ and F₂ populations (Table 1) plus parental genotypes were phenotyped for *M.*
168 *javanica* EM production in seedling growth-pouches according to Ehlers *et al.* 2000
169 and Atamian *et al.*, 2012. Briefly, a single seed of each F₁ and F₂ was planted per
170 plastic pouch, and the plants were grown in a controlled environment chamber with
171 day/night temperatures set at 28/22 °C under 16 h day-length. Plants were inoculated
172 two weeks after germination with 1500 freshly hatched second-stage juveniles (J₂) of
173 *M. javanica*. Two days after inoculation, plants were supplied daily with fertilizer for 3-
174 5 days using half-strength Hoagland's solution (Hoagland and Arnon, 1950). Thirty-
175 five days after inoculation, the pouches were irrigated with erioglaucine dye (Sigma
176 Chemical Co., St. Louis, MO, USA) to stain egg-masses, which were counted under
177 10X magnification.

178

179

180 **Resistance phenotyping: root-galling**

181 Phenotyping for resistance to root-galling was conducted under greenhouse and field
182 conditions in 2015 and 2016 (Table 1). In the greenhouse, the F₁ and F₂ populations
183 and parental genotypes phenotyped for response to *M. javanica* egg-mass production
184 in seedling growth-pouches (in growth chamber conditions) were then transplanted
185 into 4L pots containing soil UC-mix 3 and maintained at 28/22 °C day/night
186 temperatures. After 21 days, each plant was inoculated with 10 ml of *M. javanica* egg
187 suspension in water adjusted to 1000 egg/ml. All greenhouse-grown plants were
188 irrigated twice per day by drip-irrigation for about 90 days to allow seed production,
189 and F_{2:3} seeds were collected from each F₂ plant. After seed collection, the plant tops
190 were cut at 2 – 3 cm above the soil line, and the roots were washed and scored for
191 root-galling response under 10X magnification, using a 0 - 9 gall index (GI) modified
192 from Bridge and Page (1980): 0 = no galls on root system; 1 = very few, small galls
193 and hard to see; 5 = generally large galls can be seen on the root system and the
194 taproot slightly bumped, with bumps of different sizes; 9 = large galls on the root
195 system, and most lateral roots lost.

196 Field experiments were conducted in 2015 and 2016 at three sites (Table 1). At
197 CVARS and KARE, 400 and 162 CB46 x FN-2-9-04 F₂ lines, respectively, were
198 phenotyped for root-galling response to avirulent *M. incognita* (isolate Project 77 at
199 KARE and an equivalent to it at CVARS). In 2016 at SCREC parental genotypes, F₂
200 and F_{2:3} populations were phenotyped for root-galling response in separate fields
201 infested with avirulent *M. incognita* isolate Beltran or *M. javanica* (Table 3). In both
202 experiments (Exps. 8 and 9), F_{2:3} families with 25 – 30 plants/family were planted in
203 single plots. The *M. javanica* isolate used in the pot and seedling growth-pouch
204 screens was the same isolate used to infest field sites. For both F₂ and F_{2:3}

205 generations, 25 - 30 seeds were planted on a 1.5 m-long single row plot, and 60 days
206 after plant emergence plant tops were cut at 2 – 3 cm above the soil line, and the root
207 systems dug and evaluated for root-galling using the same root-galling index
208 described for the pot tests (Bridge and Page 1980).

209 **Inheritance of resistance and allelism test**

210 Segregation for the FN-2-9-04 resistance to root-galling and reproduction by *M.*
211 *javanica* and root-galling by avirulent *M. incognita* isolates was determined using both
212 phenotypic (root-galling and egg-masses) and genotypic data. In addition, phenotypic
213 data of F₁, F₂ and F_{2:3} populations, and SNP marker genotypes of F₂ populations at
214 mapped QTL regions were processed for goodness-of-fit analysis to determine the
215 genetic model underlying resistance to RKN in FN-2-9-04. Analysis of goodness-of-fit
216 of segregation ratio between resistant-susceptible lines in the F₂ was performed
217 through marker-trait association analysis using marker genotypes within mapped QTL
218 regions (see Table 2) and phenotypic response of F₂ and F_{2:3} populations. Each F₂
219 line was scored for presence of parental alleles at each locus within the mapped QTL,
220 and scores 2, 1 and 0 were assigned to homozygous favorable allele (BB = resistant
221 parent), heterozygous (AB) and homozygous non-favorable allele (AA = susceptible
222 parent), respectively. The genotype of each F₂ line, within the QTL region, was
223 determined as the mean score across all marker loci, and it was associated with its
224 RG or EM phenotypic response determined at the F₂ and F_{2:3} generations. The data
225 for frequency distribution of genotypes (BB, AB and AA) (Table 3) were processed for
226 goodness-of-fit analysis, and the chi-square values were determined following Yates
227 correction for continuity (Little and Hills 1978). The numbers of genetic determinants
228 associated with resistance were estimated using the Castle-Wright (1921) estimator
229 of gene number, = $\frac{(P1-P2)^2}{8Vg}$, where *n* is the estimated number of genes influencing

230 the trait, $P1$ and $P2$ are the mean phenotypic values of the parents of the population
231 and Vg is the genetic variance of the trait. To estimate the number of genes governing
232 response to root-galling and egg-mass production, the Vg influencing these traits was
233 derived as the genetic variance in the mapped QTL regions, flanked by known SNP
234 markers.

235 Broad-sense heritability ($H^2 = Vg/Vp$) of resistance was estimated using two methods,
236 midparent-offspring regression analysis (Fernandez and Miller 1985; Falconer and
237 Mackay 1996) and the phenotypic variation among F_2 lines and among $F_{2:3}$ families
238 accounted for by Vg^* at the QTL regions associated with resistance. The phenotypic
239 variance, Vp , in root-galling or egg-masses attributed to genetic factors, Vg^* , was
240 estimated using SNP marker genotype scores (Vgs) and SNP marker effects (SNP_{eff})
241 at the mapped QTL regions plus the observed root-galling or egg-masses phenotypes
242 using the algorithm: $Vp = \frac{Vgs \times (SNP_{eff})^2}{Vp} \times 100$. In this algorithm (adapted from Xu
243 2013), the product $Vgs \times (SNP_{eff})^2$ is the Vg^* associated with the variation in root-
244 galling or egg-masses phenotypes in tested F_2 and 2 $F_{2:3}$ populations. To estimate the
245 narrow-sense heritability ($h^2 = V_a/Vp$), the genetic variance ($Vg^* = V_a + V_d$) was
246 partitioned into additive and dominance variances, and the V_a component was used to
247 compute the h^2 of the trait. Root-galling data of seven F_2 populations (populations in
248 Table 1 plus their subsets) and parental genotypes were used to perform midparent-
249 offspring regression analysis, and four mapping populations (two F_2 and two $F_{2:3}$,
250 Exps. 1, 4, 8 and 9, Table 1) were used to derive genetic variances (Vg^*) within the
251 QTL regions, influencing the response to galling and egg-mass production. Allelic
252 relationships between the Rk locus present in cv. CB46 (Roberts *et al.* 1995; Hall and
253 Frate 1996; Roberts *et al.* 1996; Roberts *et al.* 1997; Ehlers *et al.* 2009; Huynh *et al.*
254 2016) and the genetic determinants of resistance in FN-2-9-04 were determined using

255 the four F₂ population sets of CB46 x FN-2-9-04 phenotyped with *M. incognita* isolate
256 Project 77 and *M. javanica* infestation (Table 1).

257 **Genotyping and QTL mapping**

258 Leaf samples were collected from parents and each of 119 and 137 F₂ lines of
259 populations CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04, respectively (Exp. 1, 5,
260 Table 1) 30 days after transplanting and dried in plastic ziploc bags containing silica
261 gel packs. Genomic DNA was extracted from dried leaves using Plant DNeasy
262 (Qiagen protocol) and quantified using Quant-iTTM dsDNA Assay Kit and
263 fluorescence measured using a microplate reader. In addition, each F₂ plant of
264 population CB46-Null x FN-2-9-04 was selfed to generate F_{2:3} seeds for field
265 phenotyping (Table 1). The 119 F₂ lines are part of the 163 lines tested for egg-mass
266 production (Exp. 1) and transplanted for root-galling assay (Exp. 4, Table 1).

267 Each DNA sample was assayed for single nucleotide polymorphism (SNP) using the
268 Cowpea iSelect Consortium Array containing 51128 SNPs (Muñoz-Amatriaín *et al.*
269 2017). The SNP data were filtered for quality as follows: (i) elimination of SNPs with >
270 20% missing data; (ii) elimination of monomorphic SNPs; (iii) elimination of SNPs with
271 minor allele frequency (MAF) < 0.4 and < 0.3 for populations CB46-Null x FN-2-9-04
272 and CB46 x FN-2-9-04, respectively; iv) and elimination of duplicated lines. No loci
273 were detected with non-parental alleles.

274 Linkage-maps of the CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04 F₂ populations
275 were constructed with MSTmap (Wu *et al.*, 2015), and linkage groups were determined
276 at LOD threshold = 10 and marker placement followed the Kosambi mapping function.
277 The options “no mapping size threshold” and “no mapping distance threshold” were
278 fixed at 2 units and 10 cM, respectively. In addition, the no mapping distance threshold
279 option was set at 15 cM and the detection of genotyping errors was not solicited. The

280 linkage groups of the final genetic map were numbered and ordered following the
281 cowpea consensus genetic map order (Muñoz-Amatriaín *et al.* 2017) and the cowpea
282 pseudomolecules (Lonardi *et al.* 2017 in preparation; <https://phytozome.jgi.doe.gov/>).
283 Also, the cowpea reference genome was used to determine the physical positions of
284 the SNPs and to identify candidate genes on mapped QTLs associated with the traits
285 (Lonardi *et al.* 2017 in preparation; <https://phytozome.jgi.doe.gov/>). Using physical
286 position, candidate genes were retrieved from the Joint Genome Institute cowpea
287 genome portal
288 (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vunguiculata_er).
289 QTL mapping was performed using five phenotypic data sets comprising two F₂
290 populations of crosses CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04, and two F_{2:3}
291 populations of cross CB46-Null x FN-2-9-04 (Exps. 1, 4, 5, 8 and 9, Table 1). QTL
292 analysis was performed following the mixed-model for QTL mapping described by Xu
293 (2013) using RStudio v1.1.442, and significant QTLs were declared using Bonferroni
294 adjusted threshold value -log (P-value) at P < 0.05. Reported QTL regions associated
295 with resistance were based on the SNP markers with the most significant threshold
296 values.

297 **Candidate genes within QTL regions**

298 Single nucleotide polymorphism markers flanking mapped QTL regions on Vu01 and
299 Vu04 were used to determine physical locations of the QTLs and associated candidate
300 genes on the cowpea reference genome v1.0 (Lonardi *et al.* 2017), and a list of gene
301 models and corresponding annotation within each QTL region was generated from the
302 Joint Genome Institute cowpea genome portal
303 (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vunguiculata_er)

304
305

306 **Results**

307 **Linkage and QTL mapping**

308 The linkage map of the F₂ population CB46-Null x FN-2-9-04 (n = 119) contained
309 17208 polymorphic SNP markers distributed on 11 chromosomes and spanned 985.89
310 cM (Supplementary file S1A). Of the total SNPs, 90.79% (15624 SNPs) were mapped
311 on the cowpea consensus genetic map (Muñoz-Amatriaín *et al.* 2017), while 9.21%
312 (1585 SNPs) were unique to this population, and this portion corresponds to 2.5% of
313 SNPs not mapped to the cowpea pseudomolecules. The linkage map comprised 1392
314 bins distributed at an average density of 1 bin per 0.71 cM. The linkage map of the F₂
315 population CB46 x FN-2-9-04 (n = 137 lines) contained a total of 17903 polymorphic
316 SNPs and spanned 1158.68 cM (Supplementary file S1B). Of these SNPs, 97.6%
317 (17465 SNPs) mapped to the cowpea consensus genetic map, while 9.4% (1675
318 SNPs) are not part of the cowpea consensus genetic map, and this portion makes
319 2.4% of the total SNPs not mapped on the cowpea pseudomolecules (Lonardi *et al.*
320 2017 in preparation; <https://phytozome.jgi.doe.gov/>).

321 **Table 2.** Chromosome locations of root-knot nematode (RKN) resistance determinants
322 in cowpea accession FN-2-9-04, mapped using F₂ and F_{2:3} populations of the cross
323 CB46-Null x FN-2-9-04 and the F₂ population of the cross CB46 x FN-2-9-04.

Pop	Trait	RKN	Vu	Position	Flanking markers	-log _p	PVE (%)	A	D/A
F _{2:3}	RG	Avr- <i>M.i</i>	1	34.4	2_04038-2_26991	5.4	33.0	-1.3	0.5
		<i>M.j</i>	4	24.7-27.6	2_44685-2_10583	20	73.3	-2.0	0.5
	RG	<i>M.j</i>	1	27.7-42.0	2_47796-1_0027	20	95.1	-2.3	0.3
F ₂	RG	<i>M.j</i>	1	30.3-38.7	2_32677-2_19840	20	47.3	-2.8	0.4
F ₂ ^a	RG	<i>M.j</i>	1	19.2-72.9	2_53036-2_18359	20	65.9	2.7	0.8
F ₂	EM	<i>M.j</i>	1	31.5-36.9	2_21671-2_07103	10.9	34.1	-17.0	0.5
F ₂ ^a	EM	<i>M.j</i>	1	47.1-52.1	2_21671-2_12209	8.8	24.7	-16.4	0.4

324 Pop = mapping population; the F_{2:3} were phenotyped in the field whereas the F₂ were
325 phenotyped in greenhouse and growth chamber (seedling-growth pouches) screens; RG =
326 root-galling; EM = egg-masses per root system; Avr-*M.i* = avirulent *M. incognita* isolate
327 Beltran; *M.j* = *M. javanica*; ^amapping population CB46 x FN-2-9-04 phenotyped for RG and
328 EM; Vu = cowpea chromosome pseudomolecule numbering (Lonardi *et al.* 2017); -log_p =

329 level of significance of the detected QTL ($P < 0.05$); PVE = percent of total phenotypic variation
330 explained; A = additive effect of favorable alleles from the resistant parent (negative values
331 indicate the extent of average reduction in RG or EM production due to the presence of
332 favorable alleles; D = dominance effect due to substitution of favorable allele; and D/A =
333 degree of dominance.

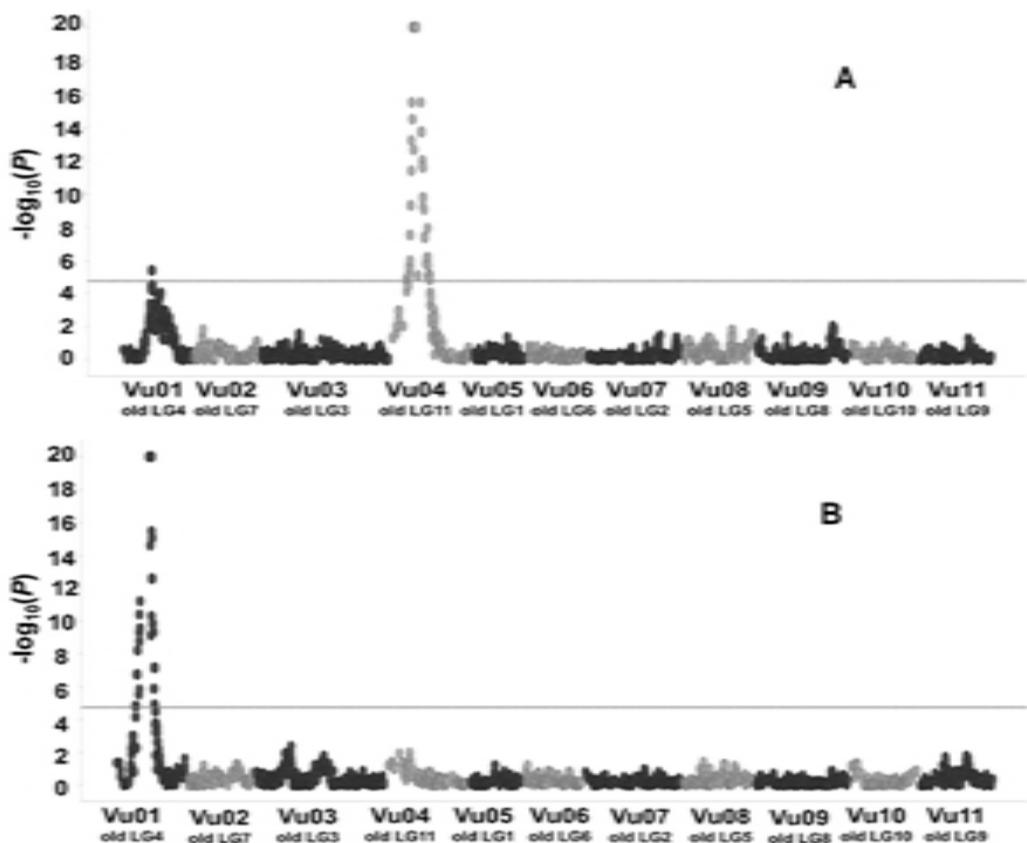
334

335 QTL analysis revealed two major QTLs associated with resistance to root-galling (RG)
336 and egg-mass (EM) production in FN-2-9-04 (Table 2; Figs. 1 and 2); these QTLs were
337 mapped on chromosomes Vu01 and Vu04 of the CB46-Null x FN-2-9-04 population
338 and chromosome Vu04 of the CB46 x FN-2-9-04 population. The QTL region on Vu01
339 consistently mapped almost within the same genomic location using F_2 and $F_{2:3}$
340 populations phenotyped under greenhouse, seedling-growth pouch and field
341 conditions using two RKN isolates (Table 2; Supplementary file S1C).

342 Two QTLs controlling resistance to RG by avirulent *M. incognita* Beltran were detected
343 and mapped on Vu01 and Vu04 ($P < 0.05$, threshold value $-\log(p) = 4.8$) (Fig. 1A) of
344 the CB46-Null x FN-2-9-04 $F_{2:3}$ population. The resistance QTL on Vu01 mapped to
345 position 34.4 cM which spanned 0.1 Mb (28855569 - 28960128 bp) on the cowpea
346 pseudomolecules (Supplementary file S1C) between flanking markers 2_04038 and
347 2_04039; it accounted for 33% of the total phenotypic variation (V_p) of the RG
348 resistance response and had a likelihood of occurrence expressed by $-\log_{10}(p) = 5.4$
349 (Table 2).

350

351


352

353

354

355

356

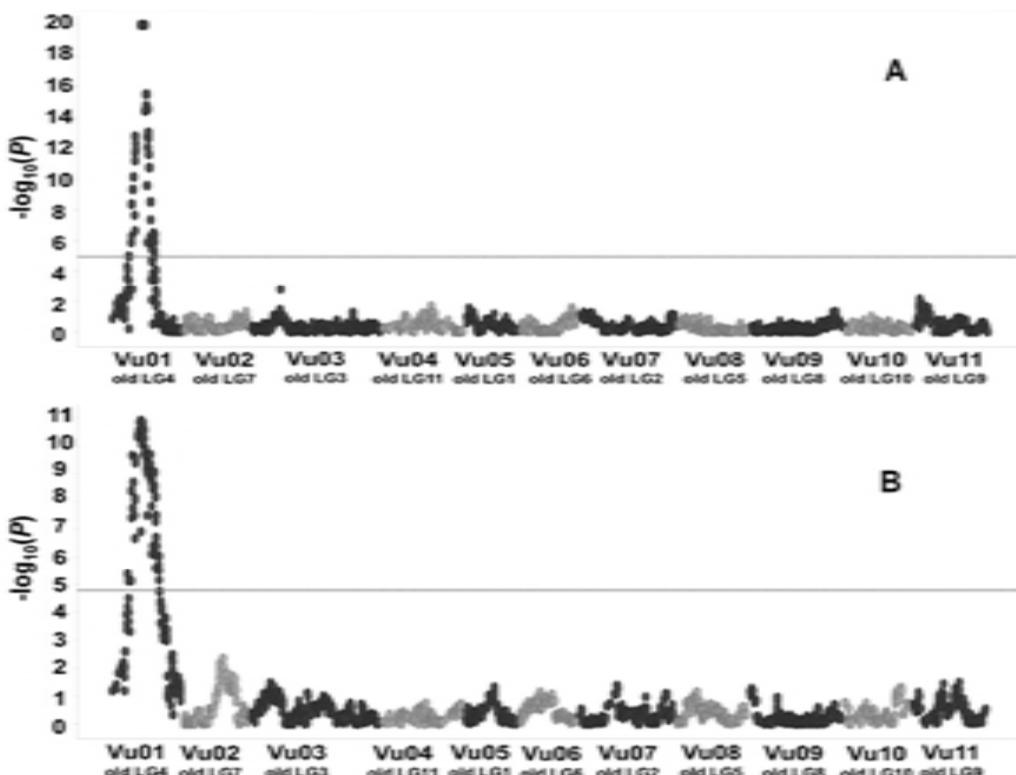


Fig. 1. Genomic localization of QTLs associated with resistance to root-galling (RG) by: **A**, avirulent *M. incognita* and **B**, aggressive *M. javanica*. The QTLs were detected in the CB46-Null x FN-2-9-04 $F_{2:3}$ population phenotyped for RG under field infestation. Horizontal dashed line represents the Bonferroni threshold of significance at $P < 0.05$ [$-\log(p) = 4.8$]. Old LG represents former cowpea linkage group numbering and Vu indicates the new cowpea linkage group numbering based on the cowpea pseudomolecules (Lonardi et al. 2017).

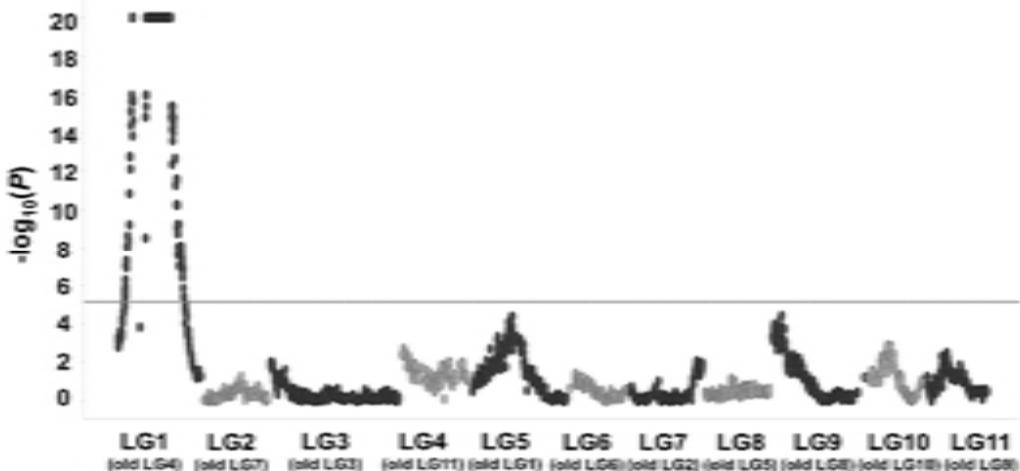
357

358 The resistance QTL on Vu01 (Fig. 1A) detected under plant infection by avirulent *M.*
359 *incognita*, exhibited additive and dominance effects of -1.3 and -0.6, respectively, and
360 the degree of dominance, measured as a ratio between dominance and additive
361 effects (D/A), indicated that the resistance in this QTL has partial dominant effect (D/A
362 = 0.5) (Table 2). A second resistance QTL associated with response to the avirulent
363 *M. incognita* was detected on Vu04 (Fig. 1A, Table 2) at chromosome position 24.7 -
364 27.6 cM of the CB46-Null x FN-2-9-04 $F_{2:3}$ population and spanned 2.9 cM which
365 corresponds to approximately 1 Mb (3141521 – 4138458 bp) on the cowpea

366 pseudomolecules (Supplementary file S1C), and it was flanked by SNP markers
367 2_44685 and 2_10583 (Table 2). This QTL explained 73.3% of the total V_p of the
368 resistance response, and it had an infinite likelihood of occurrence which was
369 represented by $-\log_{10}(p) = 20$ (Table 2). In addition, the additive ($A = -2$) and
370 dominance ($D = -1$) effects of the QTL on Vu04 were slightly higher than those of the
371 QTL on Vu01, but both QTLs showed the same degree of dominance ($D/A = 0.5$).

Fig. 2. Genomic localization of QTL associated with resistance to **A**, root-galling (RG) and **B**, egg-mass production (EM) by aggressive *M. javanica*. The QTLs were detected in the F₂ population CB46-Null x FN-2-9-04 phenotyped for RG in the greenhouse and for EM in seedling growth-pouch inoculations, respectively. Horizontal dashed-line represents the Bonferroni threshold of significance at $P < 0.05$ [-log (p)] (A and B = 4.9 and 4.8, respectively]. Old LG represents former cowpea linkage group numbering and Vu indicates the new cowpea linkage group numbering based on the cowpea pseudomolecules (Lonardi et al. 2017).

372


373

374

375 On Vu01, an additional genomic region controlling resistance to *M. javanica* RG (Figs.
376 1B; 2A) and EM production (Fig. 2B) was consistently mapped on the same
377 chromosomal region of the CB46-Null x FN-2-9-04 F₂ and F_{2:3} populations using RG
378 and EM phenotypic data from field, greenhouse and seedling-growth pouch
379 experiments (Table 2). The *M. javanica* root-galling resistance QTL mapped to
380 positions 30.3 - 38.7 cM and 27.7 - 42.0 cM on Vu01 using F₂ (greenhouse experiment)
381 and F_{2:3} (Field experiment) populations from the CB46-Null x FN-2-9-04 cross,
382 respectively. These genomic regions spanned 8.4 and 14.3 cM, which correspond to
383 4.4 (26617356 - 31070755 bp) and 6.2 Mb (25784028 - 31953708 bp) on the cowpea
384 pseudomolecules (Supplementary file S1C) and were flanked by SNP markers
385 2_32677 - 2_19840 and 2_47796 - 1_0027, respectively (Table 2). In both F₂ and F_{2:3}
386 populations, the RG resistance QTL was detected with infinite likelihood represented
387 by $-\log_{10}(p) = 20$ (Figs. 1B, 2A, Table 2). The percent of total phenotypic variation in
388 RG explained by the QTL effect in the F_{2:3} (PVE = 95.1%) was higher than in the F₂
389 (PVE = 47.2%), while the contributions of the additive and dominance effects in the
390 total phenotypic variation in the F₂ and F_{2:3} were similar (Table 2). Also, the degree of
391 dominance in both generations were comparable, D/A = 0.4 and 0.3, respectively,
392 indicating resistance with partial dominance.

393 The QTL on Vu01 associated with resistance to *M. javanica* reproduction (EM)
394 mapped to position 31.5-36.9 cM of the CB46-Null x FN-2-9-04 F₂ population (Fig. 2B;
395 Table 2). This QTL spanned 5.5 cM which corresponds to 2.7Mb (27254299 -
396 29984745 bp) on the cowpea pseudomolecules (Supplementary file S1C), and it was
397 flanked by SNP markers 2_21671 and 2_07103. This QTL accounted for 34.1% of the
398 total phenotypic variation in EM production with additive and dominance effects of 17.1
399 and 7.8, respectively; the gene action measured within the same QTL region indicated

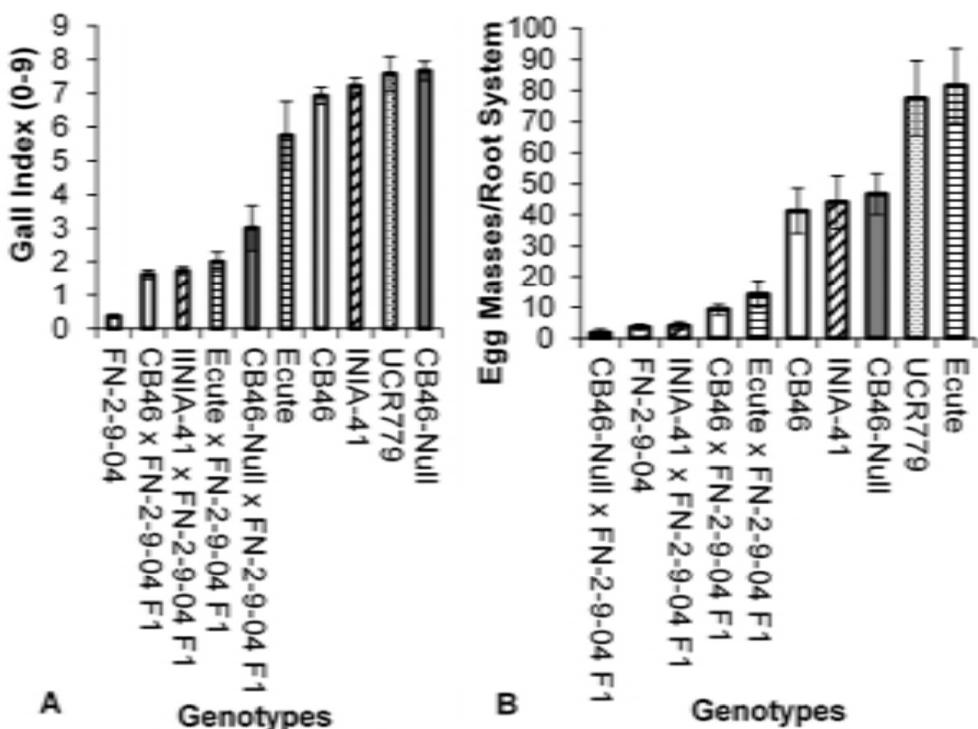
400 resistance with partial dominance ($D/A = 0.5$). Although this QTL was detected with
401 high likelihood, $-\log_{10}(p) = 10.9$ (critical threshold = 4.8) (Fig. 2B), it was lower than
402 that observed for the RG QTL (Table 2).
403 QTL mapping using the F_2 population of CB46 x FN-2-9-04 validated that the genomic
404 region on Vu01 is associated with resistance to *M. javanica* RG (Fig.3; Table 2).

Fig. 3. Genomic localization of QTL associated with resistance to root-galling induced by aggressive *M. javanica*. The QTL was detected in the CB46 x FN-2-9-04 F_2 population phenotyped for RG in the greenhouse. Horizontal dashed-line represents the Bonferroni threshold of significance at $P < 0.05$ [$-\log_{10}(p) = 5.1$]. Old LG represents former cowpea linkage group numbering and Vu indicates the new cowpea linkage group numbering based on the cowpea pseudomolecules (Lonardi et al., 2017).

405
406 This Vu01 genomic region was mapped to position 19.2-72.9 cM in the CB46 x FN-2-
407 9-04 F_2 population, and it spanned 53.7 cM which corresponds to 13.5 Mb (20889089
408 - 34401992 bp) on the cowpea pseudomolecules with flanking SNP markers 2_53036
409 - 2_18359 (Table 2; Supplementary file S1C). The QTL on Vu01 explained 65.9% of
410 the total phenotypic variation in *M. javanica* root-galling, and the contribution of the
411 additive and dominance effects were 2.7 and 2.1, respectively. The estimated gene
412 action within this region indicated resistance with partial dominance ($D/A = 0.8$) (Table
413 2). This QTL was detected with high likelihood, $-\log_{10}(p) = 20$ (critical threshold = 5.1)

414 (Fig. 3). In addition, a genomic region associated with resistance to *M. javanica* EM
415 production was mapped on Vu01 of the CB46 x FN-2-9-04 F₂ at position 46.7 – 53.5
416 cM, and it spanned 6.8 cM corresponding to 3.2 Mb (27254299 - 30434421 bp) on the
417 cowpea pseudomolecules flanked by SNP markers 2_21671 – 2_12209. This QTL
418 explained 24.7% of the total phenotypic variation in *M. javanica* EM production. (Table
419 2; Supplementary file S1C).

420 **Candidate genes within mapped QTL regions**


421 Candidate gene analysis identified a total 316 genes within the genomic region
422 associated with RKN resistance on Vu04 (Supplementary file S2B). Of these, three
423 encode for disease resistance family proteins belonging to leucine rich repeat (LRR)
424 family protein; two genes encode for LRR transmembrane protein kinase; eight
425 encode for disease resistance proteins belonging to toll-interleukin-1-receptor (TIR-
426 NBS_LRR); thirteen genes are putatively considered to also encode for TIR-NBS-LRR
427 class of resistance proteins; one gene encodes for MAP kinase 9; seven genes encode
428 for protein kinase superfamily proteins; three genes encode for receptor-like protein
429 kinase; one gene encodes for pathogenesis-related thaumatin superfamily protein;
430 and two genes encode for TIR-like proteins. Most of these classes of *R* genes were
431 found in adjacent physical positions on the cowpea pseudomolecules.

432 Within the resistance QTL region on Vu01 a total of 466 genes were identified
433 (Supplementary file S2A). Of these, three encode for LRR family resistance proteins;
434 one gene encodes for TIR-NBS-LRR resistance proteins; eight genes encode for
435 disease resistance-responsive proteins; one gene encodes for hypersensitive-like
436 lesion inducing protein; two genes encode for kinase interaction protein; three encode
437 for LRR protein kinase family protein; one genes encodes for LRR receptor-like protein
438 kinase; three genes encode for LRR and NB-ARC domains-containing disease

439 resistance proteins; fourteen genes encode for NB-ARC domain-containing disease
440 resistance proteins; and four genes encode for protein kinase family proteins.

441 **Inheritance of resistance in FN-2-9-04**

442 Figures 4A and 4B show the response of four F₁ populations and their parental
443 genotypes to root-galling (RG) and egg-mass (EM) production, respectively by *M.*
444 *javanica*. All recurrent parents (Ecute, CB46, INIA-41 and CB46-Null) exhibited
445 susceptible phenotypes for RG and EM, and their mean RG scores and EM scores
446 ranged from 5.8 to 7.7 and 41 to 82, respectively, whereas the resistant parent, FN-2-
447 9-04 had mean RG and EM scores of 0.4 and 4, respectively.

448
449 **Fig. 4.** Mean response of F₁ populations and their parents to: A, root-
450 gall and B, egg-mass production by *M. javanica* in greenhouse-pot and
451 seedling growth-pouch inoculations, respectively. Bars represent +/- SE.

452 All F₁ populations were resistant to *M. javanica* (Fig. 4), with mean RG and EM scores
453 below the mid-parent RG and EM score (GI = 6.9 and EM = 53). The CB46-Null x FN-
454 2-9-04 F₁ had the highest mean RG (GI = 3) of the four F₁ populations. The observed

452 differences in RG and EM between the resistant and susceptible parents were
453 significant ($P < 0.05$), but the RG phenotype of the resistant parent was only different
454 from F_1 populations CB46-Null x FN-2-9-04 and Ecute x FN-2-9-04. The EM
455 phenotypes of the resistant parent and F_1 were not different. Significant differences
456 among the genotypes were detected at GI = 1.3 and EM = 31.4 (Fig. 4A and 4B).
457 The segregation of F_2 (Fig. 5A) and $F_{2:3}$ (Fig. 5B) populations for *M. javanica* RG
458 response appeared to follow a bimodal distribution, skewed toward lower RG
459 phenotype. Also, a bimodal segregation pattern was observed for *M. javanica* EM
460 production in the CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04 F_2 populations (Fig.
461 5C). In these same experiments, the average RG observed for parents CB46-Null,

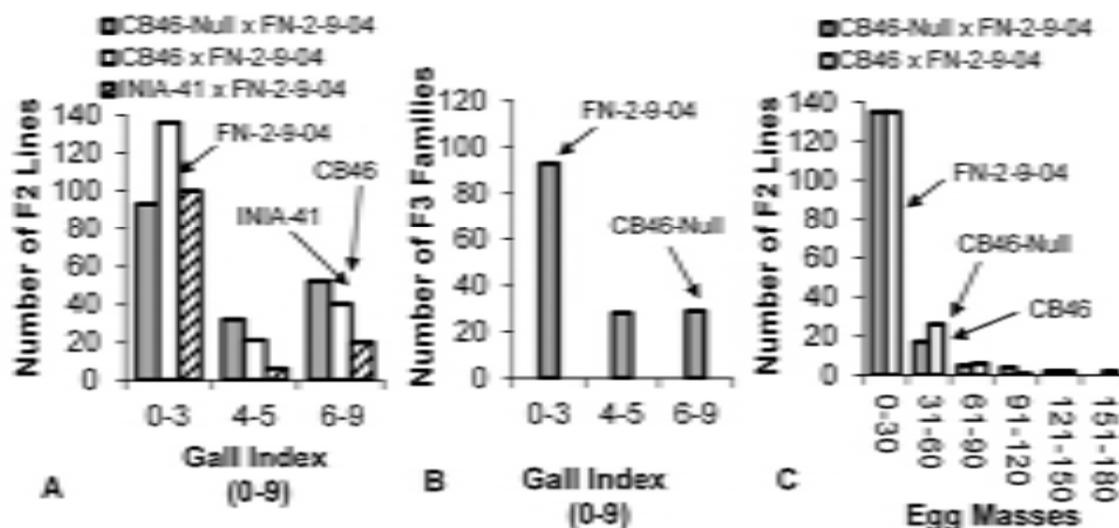
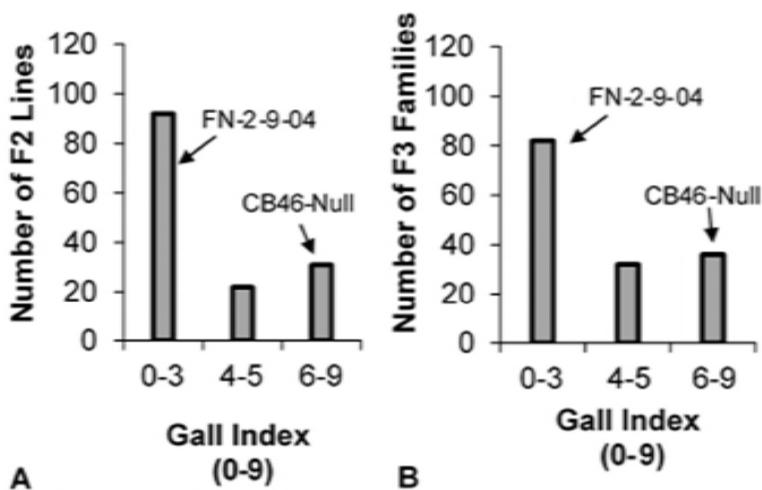



Fig. 5. Distribution of root-galling responses in A, F_2 populations (greenhouse), B, $F_{2:3}$ population CB46-Null x FN-2-9-04 (field), and C, egg-mass production in F_2 populations CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04 (seedling growth-pouch) under *M. javanica* infestation.

462 CB46, INIA-41 and FN-2-9-09 in greenhouse pots was 7.7, 6.9, 7.2 and 0.4,
463 respectively. In the field experiment (Fig. 5B), RG of 6.7 and 0.1 were observed for
464 parents CB46-Null and FN-2-9-09, respectively, while egg-mass counts per root
465 system equal to 46.7, 45 and 1.8 were observed for parents CB46-Null, CB46 and FN-
466 2-9-09, respectively (seedling-growth pouches).

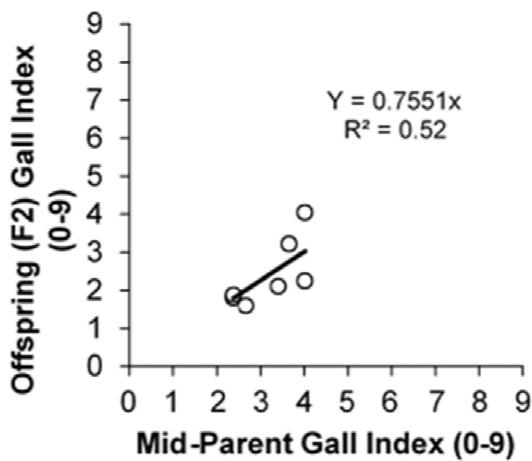

467 A similar pattern of root-galling distribution was observed in F_2 (Fig. 6A) and $F_{2:3}$ (Fig.
468 6B) populations of CB46-Null x FN-2-9-04 under field infestation by avirulent *M.*
469 *incognita* Beltran. This segregation pattern was consistent across all phenotyping
470 environments (greenhouse, field and seedling growth-pouches) and traits (RG and
471 EM). Egg-mass phenotypes ranged from 0 – 180 (Fig. 5C), and RG across
472 environments and generations ranged from 0 – 9 (Figs. 5 and 6). The resistant parent
473 FN-2-9-04 had consistently lower ($P < 0.05$) RG compared to all susceptible parents.
474 The average *M. incognita* root-galling indices for parents CB46-Null and FN-2-9-04 in
475 the field experiment were 6.4 and 0, respectively.

Fig. 6. Distribution of root-galling response in the F_2 (A) and $F_{2:3}$ (B) populations of CB46-Null x FN-2-9-04 under field infestation with avirulent *M. incognita* isolate Beltran.

476
477
478 The broad-sense heritability (H^2) of resistance to *M. javanica* root-galling estimated
479 through regression of 7 field phenotyped F_2 populations to the mean performance of
480 their parents (CB46-Null, CB46, FN-2-9-04 and INIA-41,) was high ($b = 0.76 \pm 0.07$, P
481 = 0.00004) (Fig. 7), while estimates of H^2 for the same trait computed using the genetic
482 variance (V_g^*) directly derived from the QTL region located on Vu01 were moderate

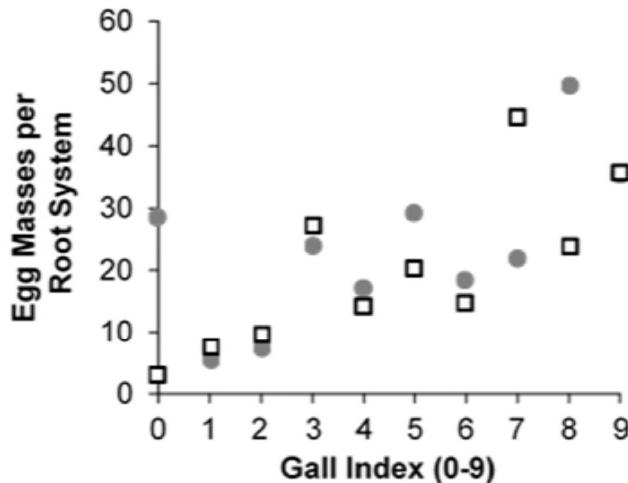

483 (0.47) and high (0.95) for greenhouse and field phenotyped F_2 and $F_{2:3}$ populations,
484 respectively. For these populations, the estimates of narrow-sense heritability (h^2) of
485 RG were 0.33 and 0.71, respectively. Egg mass production (EM) response in the F_2
486 had low H^2 (0.34) (Table 2) and h^2 (0.23). The estimated H^2 and h^2 for resistance to
487 avirulent *M. incognita* RG were 0.33 and 0.23 on Vu01 and 0.73 and 0.49 on Vu04,
488 respectively.

Fig 7. Midparent – offspring regression for F_2 population means regressed on the midparent root-galling values.

489
490 Because the *M. javanica* RG and EM resistance QTLs were co-located (Figs. 1B, 2A
491 and 2B), analysis of correlation between RG and EM responses was performed using
492 RG and EM data of F_2 populations CB46 x FN-2-9-04 and CB46-Null x FN-2-9-04.
493 These traits were highly correlated in both populations, CB46 x FN-2-9-04 and CB46-
494 Null x FN-2-9-04 ($r = 0.78$, $P = 0.008$ and $r = 0.62$, $P = 0.06$, respectively), although
495 the correlation in the F_2 population CB46-Null x FN-2-9-04 was not significant ($P =$
496 0.06) (Fig. 8). The relationship between RG and EM in populations CB46 x FN-2-9-04

497 and CB46-Null x FN-2-9-04 was explained at 60.3% and 38.1%, respectively, based
498 on the estimated coefficient of determination.

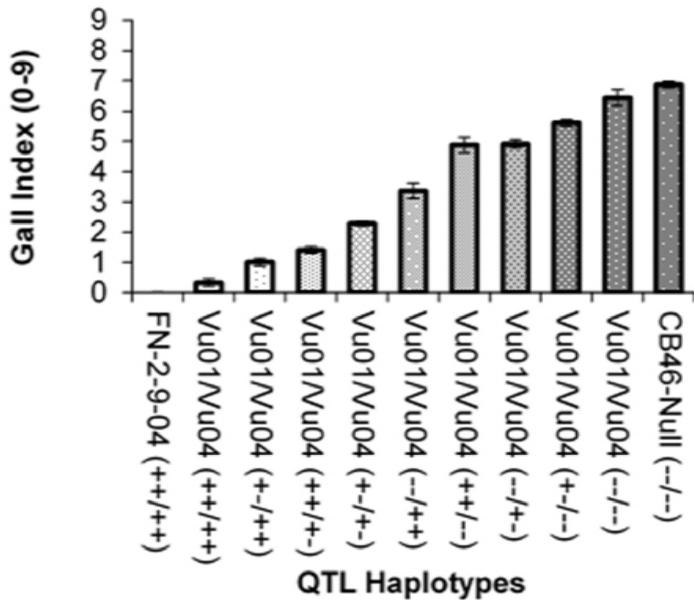
Fig. 8. Correlation between *M. javanica* root-galling (greenhouse) and egg-mass production, (seedling growth-pouch) in F₂ populations ● = CB46-Null x FN-2-9-04 ($r = 0.62$) and □ = CB46 x FN-2-9-04 ($r = 0.78$).

499
500 The 119 and 137 F₂ lines of populations CB46-Null x FN-2-9-04 and CB46 x FN-2-9-
501 04, respectively, assayed for 51128 SNP markers segregated for resistance-
502 susceptibility to RG and EM within each mapped QTL, and it fit closely a ratio of 13:3
503 for phenotypic traits (Table 3). Also, a 3:1 ratio was significant, suggesting that the
504 resistance at both QTL regions is mainly governed by one dominant gene or a
505 combination of genes acting under dominant-recessive interaction. The fit to a 13:3
506 ratio could also indicate genetic distortion for a single dominant gene.

507

508 **Table 3.** Best fit segregation ratios (resistant:susceptible) in 119 and 141 F₂ plants
509 from crosses CB46-Null x FN-2-9-04 and CB46 x FN-2-9-04, respectively, determined
510 using SNP marker loci at the two nematode resistance QTL regions.

F ₂ Population	Genotypes (Observed)			P value	Trait	Vu	Isolate
	BB + AB	AA	Exp				
	96	23	13:3 ^a	0.002	0.95-0.99	RG	1
CB46-NullxFN-2-9-04	93	26	13:3 ^a	0.56	0.25-0.50	RG	4
CB46-NullxFN-2-9-04	97	22	13:3 ^a	0.002	0.95-0.99	RG	1
CB46-NullxFN-2-9-04	98	21	13:3 ^a	0.04	0.75-0.90	EM	1
CB46xFN-2-9-04	111	30	13:3 ^a	0.44	0.50-0.75	RG	1
CB46xFN-2-9-04	109	32	13:3 ^a	1.19	0.25-0.50	EM	1

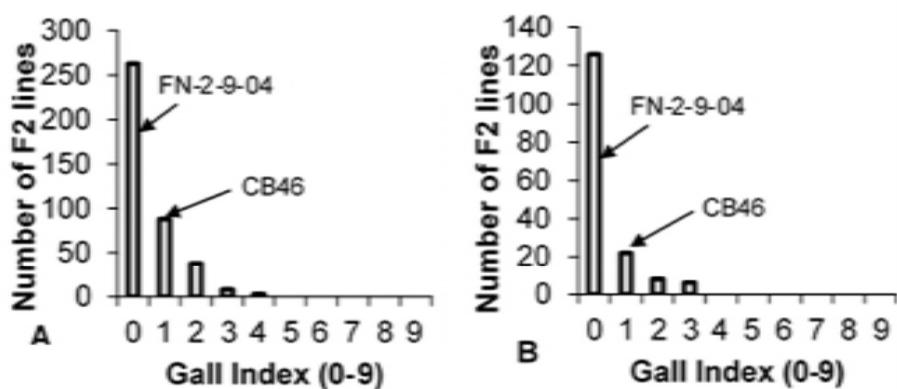

511 BB = alleles from resistant parent, AB = heterozygous, AA = alleles from susceptible parent;
512 Exp. = expected ratio; RG = root galling, EM = egg masses per root system; Vu = cowpea
513 chromosome naming (Lonardi *et al.*, 2017); Isolate = Nematode isolate; Avr = avirulent *M.*
514 *incognita* Beltran, *M.j* = *M. javanica*; ^aalso fit a 3:1 ratio.

515

516 To validate the genetic models of segregation for resistance-susceptibility to avirulent
517 *M. incognita* and *M. javanica*, gene enumerations were estimated at the mapped QTL
518 regions associated with resistance to RG (Vu01 and Vu04) and EM production (Vu01)
519 following the Castle-Wright (1921) algorithm. The estimates indicated that the
520 resistance to avirulent *M. incognita* RG is under control primarily by 2 and 5 genes
521 residing in QTL regions mapped on Vu04 and Vu01, respectively; whereas, the
522 responses to *M. javanica* RG and EM production mapped on Vu01 are governed
523 mainly by 2 genes each (Supplementary file S3).

524 Because two QTLs, on Vu01 and Vu04, were associated with resistance to avirulent
525 *M. incognita* RG, analysis of QTLs allele combinations were performed to understand
526 the interaction of both QTLs. Through SNP marker-trait association, the genotype
527 (AA, AB and BB) of each of the 119 F₂ lines was determined at the QTL regions on
528 Vu01 and Vu04 associated with resistance to avirulent *M. incognita* RG, and each
529 genotype was associated with the average RG phenotypic response of the

530 corresponding $F_{2:3}$. Based on this association, nine QTL combinations (Vu01/Vu04)
531 (Fig. 9) were derived by combining all possible haplotypes on Vu01 and Vu04
532 contributed from resistant (FN-2-9-04 – favorable allele donor) and susceptible (CB46-
533 Null – non-favorable allele donor) parents.


Fig. 9. Avirulent *M. incognita* root-galling values for QTL allele combinations for the resistance traits in accession FN-2-9-04 mapped to Vu01 and Vu04 of the cowpea consensus genetic map. The zygosity status within each QTL is indicated by ++, +- and --, representing homozygous favorable, heterozygous and homozygous un-favorable, respectively, in each QTL. Bars are standard errors.

534 Analysis of variance showed significant effect ($P < 0.05$) of combining QTLs on
535 avirulent *M. incognita* RG response; significant mean differences in RG phenotypes
536 between genotypes carrying combined QTLs were detected at gall index (GI) = 0.88.
537 The resistant parent FN-2-9-04 [Vu01/Vu04(++/++)] did not show any root-galling (Fig.
538 9), and its response was different ($P < 0.05$) from all genotypes carrying QTL
539 haplotypes with favorable allele dosage different from this parent. Any of the
540 genotypes carrying at least a single favorable allele on at least one of the chromosome
541 regions had less galling than the susceptible parent CB46-Null [Vu01/Vu04(--)].

542 Absence of a single favorable allele in either chromosome predisposed the plants to
543 root-galling, and substantial allele effect was observed for Vu04 [Vu01/Vu04(+/+)]
544 (Fig. 9). At both loci the favorable alleles must be in the homozygous condition for fully
545 effective *M. incognita* RG resistance.

546 **Resistance relationship between CB46 and FN-2-9-04**

547 The relationship between the root-galling and nematode reproduction resistance in
548 accession FN-2-9-04 and resistance conferred by the *Rk* gene in CB46 (Huynh *et al.*
549 2016) was determined through allelism tests using *F*₂ populations of CB46 x FN-2-9-
550 04. In addition, analysis of similarity was performed between FN-2-09-04, CB46 and
551 breeding line CB46-Null within the mapped QTL regions to identify putative haplotypes
552 associated with resistance in FN-2-9-04. In 2015 (Table 1), 400 and 162 *F*₂ plants plus
553 parents were phenotyped for avirulent *M. incognita* root-galling under field infestation
554 at CVARS and KARE, respectively. At both sites (Fig. 10), all *F*₂ plants were resistant
555 with no obvious segregation for root-galling response between plants, indicating that
556 FN-2-9-04 carries a resistance locus allelic to or equivalent to the *Rk* gene found in

Fig. 10. Distribution of root-galling response in the *F*₂ population CB46 x FN-2-9-04 under field infestation by avirulent *M. incognita* (A): Coachella Valley Agricultural Research Station and (B): Kearney Agricultural Research and Extension Center, respectively.

557 CB46. The average root-gall indexes for CB46 and FN-2-9-04 were 0.7 and 0.2,
558 respectively.

559 To validate the allelic relationship between resistance determinants conferring
560 resistance to RKN in CB46 and FN-2-9-04, F₂ population subsets of CB46 x FN-2-9-
561 04 were also phenotyped for resistance to *M. javanica* RG and EM, since these
562 parents exhibited significant differences in *M. javanica* RG and EM production
563 responses (Fig. 4). Using 197 and 172 F₂ lines for RG and EM phenotyping,
564 respectively (Table 1), segregation occurred for *M. javanica* RG and EM in these F₂
565 populations as shown in Figs. 5A and 5C.

566 Analysis of similarity between FN-2-09-04, CB46 and CB46-Null within the Vu04
567 genomic region associated with avirulent *M. incognita* RG resistance (Table 2; Fig.
568 1A) revealed a putative haplotype associated with the resistance (Supplementary file
569 S4). The location of the *Rk* locus on Vu04 identified in CB46 (Huynh *et al.* 2016)
570 overlapped with the resistance region on the same chromosome in FN-2-9-04 within
571 2.9 cM of the CB46-Null x FN-2-9-04 F₂ population and within 1.59 cM on the cowpea
572 consensus genetic map (Muñoz-Amatriaín *et al.* 2017), corresponding to
573 approximately 1 Mb on the cowpea pseudomolecules. Within this region, based on
574 SNP marker haplotypes, FN-2-9-04 is 39% identical to CB46 and completely different
575 from CB46-Null (identity = 0%) which is 60% identical to CB46.

576 Conversely, in the region on Vu01 where an additional resistance QTL was detected
577 in FN-2-09-04 (Table 2; Figs. 1B, 2A, 2B), this resistant parent shares no SNP
578 haplotype similarity with either CB46 or CB46-Null (identity = 0%), whereas CB46 and
579 CB46-Null are 100% identical.

580

581

582 **DISCUSSION**

583 Characterization of the resistance to avirulent *M. incognita* and aggressive *M. javanica*
584 present in cowpea accession FN-2-9-04 from Mozambique revealed that the
585 resistance is determined by two major QTLs which were mapped on chromosomes
586 Vu01 (old LG4) and Vu04 (old LG11) in the CB46-Null x FN-2-9-04 populations and
587 on Vu01 in the CB46 x FN-2-9-04 population.
588 The QTL mapped on Vu04 overlaps with the previously mapped genomic region which
589 harbors the *Rk* resistance locus (Huynh *et al.* 2016), suggesting that the *Rk* locus is
590 also present in FN-2-9-04. In our previous RKN resistance QTL mapping of *QRk-vu4.1*
591 (old *QRk-vu11.1*) (Huynh *et al.* 2016), this region associated with the *Rk* resistance
592 spanned about 8.35 cM compared to 2.9 cM in this study. This difference in mapping
593 resolution is attributed in part to the current availability of the high-density SNP
594 genotyping platform and high-density cowpea consensus genetic map (Muñoz-
595 Amatriaín *et al.* 2017). If the genomic region harboring the *Rk* locus is a multi-allelic or
596 multi-gene locus, the overlap between *QRk-vu4.1* and the QTL mapped in this study
597 on Vu04 indicates that the resistance alleles are within 2.9 cM interval of the CB46-
598 Null x FN-2-9-04 population corresponding to approximately 1 Mb on the cowpea
599 pseudomolecules. This locus provides effective resistance against avirulent *M.*
600 *incognita* populations. The resistance to avirulent *M. incognita* present on Vu01 in FN-
601 2-9-04 is confined to 0.1 Mb of the cowpea pseudomolecules, and its relative low
602 contribution to the total phenotypic variation in root-galling response (33%) compared
603 to the resistance in Vu04 (73.3%) supports that the resistance in Vu04 is the main
604 resistance for this nematode although both are required in the FN-2-9-04 background
605 for fully effective resistance. The estimated values of contribution of each resistance
606 QTL to the total phenotypic variance (Vu01 + Vu04; 33% + 73.3%) give a reliable

607 indication of activity of each resistance QTL to the observed root-galling phenotypic
608 response, with the excess in estimation attributed to error.

609 The resistance to *M. javanica* in FN-2-9-04 consistently mapped to Vu01 using root-
610 galling and egg-mass production phenotypic data from F_2 and $F_{2:3}$ populations
611 phenotyped under distinct environmental conditions (greenhouse, growth chamber
612 and field). The QTL associated with resistance to *M. javanica* egg-mass production
613 was collocated with the QTL controlling root-galling response, and based on the
614 physical positions, on the cowpea pseudomolecules, of the mapped resistance QTLs,
615 the resistance to *M. javanica* root-galling and egg-mass production are confined within
616 6.2 Mb. The resistance QTL on Vu01 is distinct from the *Rk* locus (*QRk-vu4.1*, Huynh
617 *et al.* 2016) which was mapped on Vu04, also it is distinct from the recently mapped
618 RKN resistance locus on Vu11 (Old LG9) which also confers resistance to *M. javanica*
619 (Santos *et al.* 2018). Therefore, it represents a novel RKN resistance QTL in cowpea
620 designated here as *QRk-vu1.1*.

621 The response of four F_1 populations to root-galling and egg-mass production relative
622 to the resistant parent, and the skewed segregation of these nematode-induced
623 phenotypes in the F_2 and $F_{2:3}$ populations indicated that these responses are under
624 control by major genes with partial dominance effects, as also indicated by the
625 estimated degrees of dominance (D/A). Resistance to RKN under control by major
626 genes with partial dominance effect has been reported in several studies (Ali *et al.*
627 2014; Huynh *et al.* 2016).

628 Analysis of segregation for resistance against *M. javanica* and avirulent *M. incognita*
629 through marker-trait association better fit a 13:3 ratio expected for a genetic control
630 under a single dominant gene plus a recessive gene on both Vu01 and Vu04, also
631 suggesting that the major genes controlling resistance are putatively aided by

632 minor/recessive genes, and collectively in a dominant-recessive interaction to confer
633 substantially stronger, broad-based resistance than that conferred by the *Rk* gene
634 alone. A similar genetic phenomenon of major gene and minor/recessive gene
635 interaction was described in cowpea cultivar CB27, where gene *Rk* acts together with
636 a recessive gene to enhance and broaden root-knot nematode resistance (Ehlers *et*
637 *al.* 2000). The data also fit a 3:1 ratio expected for a single major gene, and the better
638 fit to the 13:3 of the SNP haplotypes could represent genetic distortion within each
639 locus. However, using the Castle-Wright (1921) algorithm for gene enumeration, the
640 estimates also supported that two genes on Vu01 and two genes on Vu04, may be
641 responsible for the resistance against *M. javanica* and avirulent *M. incognita*,
642 respectively, but the estimates of genes involved in resistance against avirulent *M.*
643 *incognita* on Vu01 did not support the observed segregation for resistance. The extent
644 of genetic distortion in these regions or multi-allelic effects require further study.

645 Analysis of candidate genes within QTL regions harboring resistance to root-knot
646 nematode revealed several classes of *R* genes known to be associated with plant
647 disease resistance (Ellis and Jones 2003; Takken and Tameling 2009; Gururania *et*
648 *al.* 2012); for example, genes encoding for LRR resistance proteins, LRR
649 transmembrane protein kinase, TIR-NBS-LRR resistance proteins, hypersensitive-like
650 lesion inducing protein, and NB-ARC domains-containing disease resistance proteins.
651 The composition and arrangement of these classes of candidate *R* genes identified on
652 QTL regions housed on chromosomes Vu04 and Vu01 were substantially distinct; this
653 phenomenon may explain the specificity and the structure of resistance to root-knot
654 nematode reported in this study. The resistance QTL on Vu04 was specific to *M.*
655 *incognita* although effective resistance to this nematode was guaranteed by additive
656 effect of the resistance QTL on Vu01, which was specific to *M. javanica*. In both QTL

657 regions, the candidate *R* genes were arranged in tandem. The candidate *R* genes
658 identified in the QTL on Vu04 matched those reported by Santos *et al.* (2018), further
659 supporting that the *Rk* resistance locus is also present in cowpea accession FN-2-9-
660 04. How many of these identified candidate *R* genes are directly involved in
661 determining the RKN resistance phenotypes requires further investigation. The current
662 lack of a functional analysis system in cowpea hampers the determination of which
663 genes are directly involved in the resistance reported here. Therefore, further analysis
664 and testing of function of candidate genes within QTLs associated with resistance to
665 root-knot nematode is a pertinent research goal.

666 Estimates of heritability of resistance in FN-2-9-04 to avirulent *M. incognita* and
667 aggressive *M. javanica* in the *F*₂ generation using greenhouse phenotypic data were
668 lower than those estimated in the *F*_{2:3} generation using phenotypic data from field
669 experiments. This can be accounted for by the segregation in both populations and
670 because greenhouse phenotyping is less variable compared to field testing. The
671 estimates of narrow-sense heritability of resistance to root-galling induced by both
672 RKN species were in the range 0.23 – 0.71, indicating that the resistance in FN-2-9-
673 04 can be transferred successfully into elite cowpea cultivars to broaden the genetic
674 base of root-knot resistance which currently relies on the *Rk* gene. The resistance
675 response to *M. javanica* reproduction had lower heritability estimates (H^2 = 0.25 and
676 0.34; h^2 = 0.17 and 0.24) compared to those for *M. javanica* induced root-galling (H^2
677 = 0.47 - 0.95; h^2 = 0.33 - 0.71), which could be due to egg-mass production data being
678 generally more variable compared to root-galling data. High correlation between root-
679 galling and nematode reproduction responses, and the co-location of resistance QTLs
680 associated with both phenotypes suggests that both traits may be governed by the
681 same genes determining resistance. Similarly, significant correlation between root-

682 galling and reproduction phenotypes in cowpea recombinant inbred populations was
683 reported by Huynh *et al* (2016) for the *Rk* locus on Vu04. In contrast, in lima bean
684 (*Phaseolus lunatus* L.) the responses to root-galling and nematode reproduction were
685 reported to be under control by independent genetic factors (Roberts *et al.* 2008).
686 Since genetic factors explained 38.1 and 60.3 % of the association between root-
687 galling and egg-mass production in this study, these data suggest that although the
688 genomic regions governing both traits are co-located, these traits may be under
689 distinct regulatory mechanisms, or that the resistance to both traits may reside within
690 a multi-allelic locus or tandemly arranged loci.
691 The heritability of resistance to avirulent *M. incognita* root-galling comprised two
692 components, one on Vu01 ($H^2 = 0.33$; $h^2 = 0.23$.) and the other on Vu04 ($H^2 = 0.73$; h^2
693 = 0.49) indicating that the major locus for this resistance in FN-2-9-04 is housed on
694 Vu04, and it is aided by the additional locus on Vu01 with low resistance heritability.
695 Also, the differential activity between the resistance loci on Vu01 and Vu04 points to
696 specificity of resistance to avirulent *M. incognita* and *M. javanica*. Huynh *et al* (2016)
697 reported that, although the QTL harboring the *Rk* locus had a significant effect on
698 controlling both avirulent *M. incognita* and *M. javanica*, its resistance activity was lower
699 against *M. javanica*. Marker-trait association analysis in the current study indicated
700 that resistances on both Vu01 and Vu04 are required for effective resistance under
701 avirulent *M. incognita* infestation.
702 The allelism test between CB46 and FN-2-9-04 revealed a lack of resistance
703 segregation in the CB46 x FN-2-9-04 F₂ population under avirulent *M. incognita*
704 infestation, indicating that both parents carry the same major gene *Rk* locus previously
705 mapped by Huynh *et al* (2016) on Vu04 (old LG11) of the cowpea consensus genetic
706 map (Munoz-Amatriain *et al.* 2017), also supporting that the resistance mapped in this

707 study on Vu04 corresponds to the *Rk* locus. *Rk* was the first identified RKN resistance
708 locus in cowpea, and it has been bred into many commercial cowpea cultivars (Fery
709 and Dukes 1980; Helms *et al.* 1991; Ehlers *et al.* 2009). In contrast, the segregation
710 found in F₂ population CB46 x FN-2-9-04 for *M. javanica* root-galling and reproduction
711 responses, and the mapping of resistance QTLs for root-galling and egg-mass
712 production confirmed that the heightened and broad-based resistance response in FN-
713 2-9-04 relative to CB46 is conferred by novel resistance determinants located on
714 Vu01.

715 Flanking markers associated with the mapped genomic regions on Vu01 and Vu04
716 can be used to assist the introgression of the resistance into elite cowpea cultivars. In
717 particular, the novel resistance detected on Vu01 confers the most effective *M.*
718 *javanica* resistance known to date in cowpea. The resistance on Vu01 appears to be
719 more specifically effective against aggressive *M. javanica*, while both the Vu01 and
720 Vu04 QTLs have activity against avirulent *M. incognita*, but with the QTL on Vu04
721 playing the major role in resistance. This was also demonstrated by QTL pyramiding
722 of resistance on Vu01 and Vu04. Thus, both resistance QTLs on Vu01 and Vu04 are
723 responsible for the strong and broad-based resistance observed in FN-2-9-04, which
724 is more effective than the narrow-based resistance provided by the *Rk* gene alone.
725 The mechanism of resistance displayed by this novel broad-based resistance is yet to
726 be determined.

727 The genetic linkage maps of the F₂ populations CB46-Null x FN-2-9-04 and CB46 x
728 FN-2-9-04 are additional valuable genetic resources, especially because they are the
729 first cowpea linkage maps constructed using a genotype from the cowpea gene-pool
730 II from southeastern Africa (Huynh *et al.* 2013), and because 9.2% of the 17209 SNP
731 markers on the CB46-Null x FN-2-9-04 map were unique to this population and were

732 not mapped on the most recent version of the cowpea consensus genetic map
733 (Munoz-Amatriain *et al.* 2017).

734

735 **LITERATURE CITED**

736 Ali, A., W. C. Matthews, P. F. Cavagnaro, M. Iorizzo, P. A. Roberts, P. W. Simon, 2014
737 Inheritance and mapping of *Mj-2*, a new source of root-knot nematode
738 (*Meloidogyne javanica*) resistance in carrot. *Journal of Heredity* 105 (2): 288–291.

739 Amosu, J. O., J. D. Franckowiak, 1974 Inheritance of resistance to root-knot nematode
740 in cowpea. *Plant Disease Reporter* 58 (4): 361-363.

741 Bird, A. F., B. R. Loveys, 1975 The incorporation of photosynthates by *Meloidogyne*
742 *javanica*. *Journal of Nematology* 7 (2): 111-113.

743 Bridge, J., and S. L. J. Page, 1980. Estimation of root-knot nematode infestation levels
744 on roots using a rating chart. *Tropical Pest Management* 26 (3): 296-298.

745 Castagnone-Sereno, P, 2002 Genetic variability in parthenogenetic root-knot
746 nematodes, *Meloidogyne* spp. and their ability to overcome plant resistance
747 genes. *Nematology* 4 (5): 605-608.

748 Castle, W. E, 1921 An improved method for estimating the number of genetic factors
749 concerned in cases of blending inheritance. *Science* 54:223.

750 Ehlers, J., A. Hall, 1997 Cowpea. *Field Crop Research*. 53: 187-204

751 Ehlers, J. D., A. E. Hall, P. N. Patel, P. A. Roberts, W. C. Matthews, 2000a Registration
752 of 'California Blackeye 27' cowpea. *Crop Science* 40:854-855.

753 Ehlers, J. D., W. C. Matthews, A. E. Hall, P. A. Roberts, 2000b Inheritance of a Broad-
754 Based Form of Root-Knot Nematode Resistance in Cowpea. *Crop Science* 40:
755 611-618.

756 Ehlers, J. D., W. C. Matthews, A. E. Hall, P.A. Roberts, 2002 Breeding and evaluation
757 of cowpeas with high levels of broad-based resistance to root-knot nematodes. In
758 Fatokum, C., S. Tarawali, B. Singh, P. Kormawa, M. Tamo, editors. Challenges
759 and opportunities for enhancing sustainable cowpea production. Proceedings for
760 the World cowpea conference III held at the International Institute of Tropical
761 Agriculture (IITA); 2000, Sept 4-8. Ibadan, Nigeria.

762 Ehlers, J. D., B. L. Sanden, C. Frate, A. E. Hall, P. A. Roberts, 2009 Registration of
763 'California Blackeye 50' Cowpea. Journal of Plant Registrations 3: 236–240.

764 Ellis, J.G., and Jones, D.A., 2003 Plant Disease Resistance Genes. In: Ezekowitz, R.
765 A. B., and Hoffmann, J. A. (eds) Innate Immunity. Infectious Disease. Humana
766 Press, Totowa, NJ.

767 Falconer, D. S., T. F. C. Mackay, 1996 Introduction to quantitative genetics. 4th edition.
768 UK, Essex: Longman.

769 Fernandez, G. C. J., J. C. Miller Jr, 1985 Estimation of heritability by parent-offspring
770 regression. Theoretical Applied Genetics 70: 650-654.

771 Fery, R. L., and P. D. Dukes, 1980 Inheritance of root-knot resistance in the cowpea
772 (*Vigna unguiculata* (L.) Walp.). Journal of the American Society for Horticulture
773 Science. 105 (5): 671-674.

774 Fery, R. L., P. D. Dukes, and J. A. Thies, 1994 Characterization of new sources of
775 resistance in cowpea to the southern root-knot nematode. Horticultural Science
776 29 (6): 678-679.

777 Gururania, M. A., J. Venkatesh, C. P. Upadhyaya, A. Nookaraju, S. K. Pandey, S. W.
778 Park, 2012 Plant disease resistance genes: current status and future directions.
779 Physiological and Molecular Plant Pathology 78:51–65.

780 Hall, A. E, and C. A. Frate, 1996 Blackeye bean production in California. Division of
781 agriculture and natural resources. California (CA).

782 Helms, D., L. Panella, I. W. Buddenhage, C. L. Tucker, P. L. Gepts, 1991 Registration
783 of California blackeye 46 cowpea. *Crop Science* 31: 1703.

784 Hoagland, D. R., and D. I. Arnon, 1950 The water-culture method for growing plants
785 without soil. California Agricultural Experiment Station Circular 347. University of
786 California, Berkely, CA, USA.

787 Huynh, B. L., W. C. Matthews, J. D. Ehlers, M. R. Lucas, J. R.P. Santos, A. Ndeve, T.
788 J. Close, P. A. Roberts, 2016 A major QTL corresponding to the *Rk* locus for
789 resistance to root-knot nematodes in cowpea (*Vigna unguiculata* L. Walp.).
790 *Theoretical and Applied Genetics* 129: 87–95.

791 Little, T. M., and F. J. Hills, 1978 Agricultural experimentation – design and analysis.
792 California (CA): Wiley.

793 Lonardi, S., T. Zhu, M. Muñoz-Amatriaín, Q. Liang, S. Wanamaker, R. Ounit, H.
794 Alhakami, M. C. Luo, and T. J. Close, 2017 Assembly of Eleven Pseudomolecules
795 Representing the Cowpea Genome Sequence. *Plant and Animal Genome XXV*
796 P0688 https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Vunquiculata_er.

797

798 Luc, M., J. Bridge, and R. A Sikora, 2005 Reflections on Nematology in subtropical
799 and Tropical Agriculture. In Luc, M., j. Bridge, and R. A. Sikora, editors. *Plant*
800 *parasitic nematodes in subtropical and tropical agriculture*. Egham, UK: CABI
801 *Bioscience*. P. 1-10.

802 Lucas, M. R., N-N. Diop, S. Wanamaker, J. D. Ehlers, P. A. Roberts, T. J. Close, 2011
803 Cowpea–soybean synteny clarified through an improved genetic map. *Plant*
804 *Genome* 4:218–225.

805 McClure, M. A, 1977 *Meloidogyne incognita*: A metabolic sink. *Journal of Nematology*
806 9: 68-90.

807 Munoz-Amatriain, M., H. Mirebrahim, P. Xu, S. I. Wanamaker, M. C. Luo *et al.*, 2017
808 Genome resources for climate-resilient cowpea, an essential crop for food
809 security. *The Plant Journal* 89: 1042–1054.

810 National Research Council, 2006 Cowpea. p. 105-116. In *Lost crops of Africa: Vegetables*. Vol II. Washington, DC: The national academies press.

811 Ndeve, A. D., W. C. Matthews, J. R. P. Santos, B. L. Huynh, and P. A. Roberts, 2018
812 Broad-based root-knot nematode resistance identified in cowpea gene-pool two.
813 *Journal of Nematology* (Accepted for publication).

814 Petrillo, M. D., and P. A. Roberts, 2005 Isofemale line analysis of *Meloidogyne*
815 *incognita* virulence to cowpea resistance gene *Rk*. *Journal of Nematology* 37 (4):
816 448–456.

817 Petrillo, M. D., W. C. Matthews, and P. A. Roberts, 2006 Dynamics of *Meloidogyne*
818 *incognita* Virulence to Resistance Genes *Rk* and *Rk2* in Cowpea. *Journal of*
819 *Nematology* 38 (1): 90–96.

820 Roberts, P. A., 1992 Current status of the availability, development, and use of host
821 plant resistance to nematodes. *Journal of Nematology* 24 (2): 213-227.

822 Roberts, P. A., C. A. Frate, W. C. Matthews, and P. P. Osterli, 1995 Interaction of
823 virulent *Meloidogyne incognita* and Fusarium wilt on resistant cowpea genotypes.
824 *Phytopathology* 85(10):1289-1295.

825 Roberts, P. A., W. C. Matthews, and J. D. Ehlers, 1996 New resistance to virulent root-
826 knot nematodes linked to the *Rk* locus of cowpea. *Crop Science* 36: 889-894.

827 Roberts, P. A., J. D. Ehlers, A. E. Hall, and W. C. Matthews, 1997 Characterization of
828 new resistance to root-knot nematodes in cowpea. In *Advances in cowpea*

830 research. Singh, B. B., D. R. Mohan Raj, K. E. Dashiell, L. E. N. Jackai, editors.,
831 Ibadan, Nigeria: IITA, JIRCAS. p. 207–214.

832 Roberts, P. A., W. C. Matthews, and J. D. Ehlers, 2005 Root-knot nematode resistant
833 cowpea cover crops in tomato production systems. *Agronomy Journal* 97: 1626-
834 1635.

835 Roberts, P. A., W. C. Matthews, J. D. Ehlers, and D. Helms, 2008 Genetic
836 determinants of differential resistance to root-knot nematode reproduction and
837 galling in lima bean. *Crop Science* 48: 553-561.

838 Roberts, P. A., B. L. Huynh, W. C. Matthews, and C. A. Frate, 2013 In University of
839 California Dry Bean Research, Progress Report. California Dry Bean Advisory
840 Board, Dinuba, California (CA).

841 Santos, J. R. P., A. D. Ndeve, B. L. Huynh, W. C. Matthews, and P. A. Roberts, 2018.
842 QTL mapping and transcriptome analysis of cowpea reveal candidate genes for
843 root-knot nematode resistance. *PLoS ONE* 13(1):1-22.

844 Sasser, J. N., 1980 Root-Knot Nematodes: a global menace to crop production. *Plant
845 Disease* 64 (1): 36-41.

846 SAS University edition 3.2.2. [https://www.sas.com/en_us/software/university-
847 edition.html](https://www.sas.com/en_us/software/university-edition.html)

848 Sikora, R. A., N. Greco, and J. F. V. Silva, 2005 Nematode Parasites of Food
849 Legumes. In Luc, M., J. Bridge, and R. A. Sikora, editors. *Plant parasitic
850 nematodes in subtropical and tropical agriculture*. Egham, UK: CABI Bioscience.
851 P. 259-318.

852 Singh, D. B., and P. P. Reddy, 1986 Inheritance of resistance to root-knot nematode
853 in cowpea. *Indian Journal of Nematology* 16 (2): 284-285.

854 Swanson, T. A., and S. D. Van Gundy, 1984 Cowpea resistance to root-knot caused
855 by *Meloidogyne incognita* and *M. javanica*. *Plant Disease* 68: 961-964.

856 Takken, F. L., and W. I. Tameling, 2009 To nibble at plant resistance proteins. *Science*
857 324, 744–746 (2009).

858 Thomason, I. J., and H. E. McKinney, 1960 Reaction of cowpeas, *Vigna sinensis* to
859 root-knot nematodes, *Meloidogyne* spp. *Plant Disease Reporter* 44 (1): 51.
860 (Abstract).

861 Taylor, A. L., and J. N. Sasser, 1978 Biology, identification and control of root-knot
862 nematodes (Meloidogyne species), Raleigh, North Carolina (NC): North Carolina
863 State University and USAID.

864 Williamson, V. M., and R. S. Hussey, 1996 Nematode pathogenesis and resistance in
865 plants. *Plant Cell* 8: 1735–45.

866 Wu, Y., P. Bhat, T. J. Close, and S. Lonardi, 2015 MSTmap. University of California
867 Riverside. <http://www.mstmap.org/>

868 Xu, S., 2013 Mapping quantitative trait loci by controlling polygenic background effects.
869 *Genetics* 195 (4): 1209-22.

870

871