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2 
 

Abstract 22 

Background 23 

Iberian primitive breeds exhibit a remarkable phenotypic diversity over a very limited geographical 24 

space. While genomic data are accumulating for most commercial cattle, it is still lacking for these 25 

primitive breeds. Whole genome data is key to understand the consequences of historic breed 26 

formation and the putative role of earlier admixture events in the observed diversity patterns. 27 

Results 28 

We sequenced 48 genomes belonging to eight Iberian native breeds and found that the individual 29 

breeds are genetically very distinct with FST values ranging from 4 to 16% and have levels of nucleotide 30 

diversity similar or larger than those of their European counterparts, namely Jersey and Holstein. All 31 

eight breeds display significant gene flow or admixture from African taurine cattle and include mtDNA 32 

and Y‐chromosome haplotypes from multiple origins. Furthermore, we detected a very low 33 

differentiation of chromosome X relative to autosomes within all analyzed taurine breeds, potentially 34 

reflecting male‐biased gene flow.   35 

Conclusions 36 

Our results show that an overall complex history of admixture resulted in unexpectedly high levels of 37 

genomic diversity for breeds with seemingly limited geographic ranges that are distantly located from 38 

the main domestication center for taurine cattle in the Near East. This is likely to result from a 39 

combination of trading traditions and breeding practices in Mediterranean countries. We also found 40 

that the levels of differentiation of autosomes vs sex chromosomes across all studied taurine and 41 

indicine breeds are likely to have been affected by widespread breeding practices associated with male‐42 

biased gene flow. 43 

 44 
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Background 49 

The biological resources of the Mediterranean sub‐region of the Palaearctic include a diversity of 50 

domesticated animals [1] comprising 53 officially recognized local breeds of taurine cattle (Bos taurus) in 51 

the Iberian Peninsula alone (Table S1). Taurine cattle are thought to have been domesticated by 52 

Neolithic farmers from B. primigenius populations in the Fertile Crescent around 10,000 years [2], and 53 

have since diversified into more than 1,000 breeds [3]. Cattle genomes have been shaped not only by 54 

human‐driven selection, but also by genetic bottlenecks associated with migrations from the origin of 55 

domestication, adaptation to different agro‐ecological areas and a more strict division of animal 56 

populations into breeds led by Europeans since the 18th century [3]. Furthermore, multiple events of 57 

introgression have been proposed to have influenced European cattle breeds: i) ancestral hybridization 58 

with European populations of B. primigenius [4–9] (extinct in Europe since the 17th century [9]); ii) 59 

introgression from African taurine cattle [10]; iii) introgression from non‐taurine sources such as indicine 60 

breeds (Bos indicus, the humped cattle type resulting from a separate domestication event in the Indus 61 

valley [11]) [10,12]. Such wide‐spread gene‐flow resulted in complex patterns of admixture and the 62 

difficulty in sometimes establishing whether a breed represents the taurine populations that were 63 

originally associated with a specific geographic region [10] and could explain the high levels of genetic 64 

diversity relative to other domesticated species [12].   65 

Currently, there are two broad groups of cattle breeds, those under intensive management with strong 66 

specialization in dairy or meat phenotypes (such as the commercial transboundary Holstein, Charolais, 67 

Limousine, and more recently Angus), and the so‐called “primitive” breeds, traditional cattle with a low 68 

dependence from external inputs that make use of naturally available food resources.  Iberian native 69 

cattle are found in diverse agro‐ecological systems including coastal, mountain, and lowland arid 70 

environments (Fig. 1A). Inheritable traits of these cattle have been modified at different times by the 71 
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various cultures that inhabited this territory, and breeds are often defined based on morphological traits 72 

such as coat color, as well as horn size and body shape. 73 

Recently, the Food and Agriculture Organization (FAO) has warned that about 67% of the Iberian cattle 74 

breeds are at risk as many of these have less than 1,000 breeding females and/or less than 20 breeding 75 

males [3], which reinforces the need for a continued conservation strategy. The complex origin of the 76 

Iberian primitive breeds is reflected in their high diversity in Y‐chromosome haplotypes, including the 77 

major taurine Y1 and Y2 haplogroups [13,14] and unique patrilines [15], as well as distinct maternal 78 

lineages, i.e. common European T3‐matrilines along with more distinct Q‐haplotypes [14,16,17], and a 79 

strong influence of T1‐lineages of African origin [18]. This higher diversity relative to their European 80 

counterparts is quite notable, given the geographic distance of this territory from the presumed Near‐81 

Eastern center of domestication [4,13,14,19,20]. This renders Iberian cattle a great example for 82 

investigating the genomic impact of the intricate processes of cattle diversification both regarding the 83 

last 200 years of specific breed formation and the putative earlier admixture events.  84 

To uncover genome‐wide patterns of diversity associated with the formation of primitive cattle breeds, 85 

we sequenced the genomes of 48 individuals belonging to eight breeds of native Iberian cattle (Fig. 1A). 86 

Their breed denominations have been shown to agree with population structure inferred from 87 

microsatellites [16,19–21]. Noteworthy, no clear structure is recovered when using genotypes 88 

determined with the Illumina Bovine High‐Density 777k SNP BeadChip in the context of European cattle 89 

[4], likely a result of ascertainment bias as Iberian breeds were not included in the discovery panel of the 90 

genotyping assay. This reinforces the need for full genome data to accurately determine genetic 91 

diversity and measure population differentiation [22].  92 

We confirm that there is a clear genetic distinction between Iberian cattle breeds. In addition, we 93 

demonstrate that breed management and associated demographic processes had profound effects on 94 
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genomic diversity and resulted in unusual patterns of genetic differentiation for autosomes vs sex 95 

chromosomes. We further describe genome‐wide diversity and introgression in Iberian breeds in 96 

relation to 60 previously published taurine (B. taurus) and zebu (B. indicus) cattle genomes from Europe, 97 

Africa and Asia, and sequence data from one European aurochs (B. primigenius). We confirm that gene 98 

flow has occurred between African taurine and Iberian breeds. Overall, we show how whole‐genome 99 

data are important for uncovering specific patterns related to recent events in breed formation and 100 

management, and provide the ground for future studies on the singularity of locally adapted European 101 

cattle breeds. 102 

   103 
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Results and Discussion 104 

The 48 Iberian cattle genomes and the previously published shotgun resequencing data from 60 105 

additional individuals including taurine and indicine cattle (Additional file 1: Table S3) were mapped with 106 

BWA mem to three reference genomes: genome version UMD_3.1.1 (bosTau8) [23], genome version 107 

Btau_4.6.1 (bosTau7; contains an assembled Y‐chromosome) [23] and to the outgroup wild yak (B. 108 

mutus) [24]. Details on the quality‐based read trimming and filtering steps are included in the Methods 109 

section. Sequencing error rates for all 48 samples are below 0.2% (Additional file 1: Figure S1).  110 

 111 

Signatures of breeding in the population structure and genetic differentiation of Iberian cattle 112 

breeds  113 

Population structure and individual ancestry were investigated with NGSadmix, which does not require 114 

definition of the exact genotypes thus is adequate for low‐depth sequencing data [25]. Setting the 115 

number of expected clusters to eight (the number of breeds) resulted in the assignment of each 116 

individual to the source breed (Fig. 1B) while assuring convergence of the method. This level of genetic 117 

homogeneity within Iberian cattle populations is also observed in the results of the principal 118 

components analyses (Fig. 1C). The first two PCs explain 10% and 9% of the total variation and show the 119 

high differentiation of Mirandesa and Brava.  Mirandesa in fact appears as an independent cluster when 120 

the number of ancestral K populations is set to two (Fig. 1B), and Brava individuals become a separate 121 

cluster when K = 4 (Additional file 1: Figure S2). Both observations are expected to result from genetic 122 

drift due to drastic demographic changes: in the 1970s, Mirandesa was raised in a vast area of the 123 

Portuguese territory with over 200,000 animals [26] and since has suffered a significant reduction in 124 

population size with less than 6,000 breeding females registered in the herdbook in 2017 125 

(http://www.fao.org/dad‐is/browse‐by‐country‐and‐species/en/); Brava has historically been 126 

reproductively isolated from other breeds living in semi‐feral conditions for the main purpose of its use 127 
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in bullfights [26]. PCs 3 and 4 separate Alentejana and Preta from the remaining Portuguese native 128 

breeds, whereas Maronesa, Barrosã and Mertolenga are separated by PCs 5 and 6 (Additional file 1: 129 

Figure S3).  130 

Recent crossbreeding involving Arouquesa cattle is revealed in it being the last to form a discrete 131 

cluster, showing contributions from the other populations until K = 7 (Fig. 1B and Additional file 1: Figure 132 

S2). This is consistent with an analysis of microsatellite loci, which showed Arouquesa as having the 133 

lowest mean genotype membership proportions [19]. This breed is mostly raised in a region located 134 

south of the Douro river in the district of Viseu (Fig. 1A), bordering the area of production of Maronesa 135 

and in remote times also of the once abundant Mirandesa cattle. Arouquesa has also historically been 136 

crossbred with the latter to produce the highly valued “vitela de Lafões”, a meat product certified by the 137 

European Union with Protected Geographical Indication, and so admixture is intrinsically linked to its 138 

history. Another breed showing high heterogeneity was Mertolenga (Additional file 1: Figure S2), one of 139 

the most phenotypically diverse Iberian native breeds, with its three distinct coat color phenotypes 140 

mostly raised in separate herds [19].  141 

We assessed the levels of genetic differentiation between breeds by calculating the fixation index (FST). 142 

In general, we observed high levels of differentiation (average 9%), even when admixture has occurred, 143 

which precludes the use of Iberian cattle as a single evolutionary unit. Consistent with their higher 144 

heterogeneity, the breed pair Arouquesa/Mertolenga had a low FST value of 0.06. The highest FST 145 

corresponded to the pairwise comparison of Mirandesa and Alentejana (FST = 0.16) and the lowest FST 146 

values were obtained for Preta vs Mertolenga (FST = 0.04) (Table 1).  147 

 148 
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9 
 

Iberian genetic variation in the context of taurine and zebu cattle diversity  149 

When compared to publicly available genomes [27] (database information in the Materials section) of 150 

taurine (European Holstein, Angus and Jersey, and African N’Dama) and African indicine cattle (Ogaden, 151 

Kenana and Borana), Iberian breeds are clearly assigned by NGSadmix [25] to the European cluster (Fig. 152 

2A) with a slight suggestion of African taurine admixture at K = 3 for autosomal data. As observed 153 

previously [27],  at K = 3 the clusters observed represent European taurine, African taurine and African 154 

indicine ancestries.  155 

All analyzed breeds have a positive Tajima’s D (Additional file 1: Figure S4), indicating a reduction in the 156 

low‐frequency polymorphisms, suggestive of population structure, bias in the choice of genomic 157 

markers or of a recent bottleneck probably associated with breeding practices. As observed previously 158 

[27], the commercial European breeds have lower nucleotide diversity (average number of pairwise 159 

differences) relative to the African breeds (Fig. 2C), potentially a combination of intensive selection and 160 

genetic drift resulting from low effective population sizes in European cattle breeds [27]. The Iberian 161 

breeds analyzed in this study have, overall, similar or higher values of nucleotide diversity compared to 162 

their European counterparts. The lowest values correspond to Mirandesa, Brava and Alentejana, which 163 

had been previously shown to have the lowest heterozygosity in a microsatellite panel [19,20]). 164 

Management and demographic histories may explain the lower genetic diversity observed in these three 165 

breeds. As mentioned above, Mirandesa has recently (since the 1970s) suffered a drastic reduction in 166 

population size, and significant inbreeding was detected in Brava and Alentejana [19].  167 

 168 

We then used the maximum likelihood approach implemented in Treemix [28] to uncover the historical 169 

relationships between the breeds (Fig. 2B). We intersected our whole genome data with the Illumina 170 

BovineHD SNP data of 25 European primitive breeds from [4], which shows that our selection of breeds 171 
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is representative of the Iberian breed context (Fig. 2B). When allowing for one migration event, we 172 

observe gene flow from African taurine to the base of the Iberian clade (Fig. 2B) which had been 173 

previously suggested to have occurred [14,17,18]. 174 

 175 

Iberian cattle show a clear signature of admixture from African cattle and high diversity in 176 

mitochondrial DNA and Y chromosome haplotypes  177 

We explicitly test for differential African cattle introgression into Iberian breeds, using the D‐statistics 178 

[29,30]. We can confirm that there is a significant excess of shared derived alleles in varying amounts 179 

between Iberian breeds and the African taurine N’Dama when compared to a panel of European taurine 180 

breeds (Fig. 3). This was observed both for southern Iberian Brava that had the largest African (N’Dama) 181 

influence, but also in breeds from the north of Portugal such as Barrosã. These results are further 182 

corroborated by the occurrence of ~17% of T1‐matrilines in the Iberian cattle analyzed here (Fig. 4). The 183 

Iberian Peninsula and the Maghreb regions share natural zoo‐geographical affinities, and there were 184 

complex biogeographic and historic faunal and human relationships during much of the early Holocene, 185 

which could explain these patterns of genomic admixture. We did not find evidence of indicine 186 

introgression in Iberian cattle, but given that the indicine cattle in our sample has taurine introgression 187 

(confirmed by the presence of T1 taurine mitochondrial haplotypes in all the indicine samples of Fig. 4) it 188 

is likely that these are not adequate for performing this test. 189 

Contrary to previous results [4], we did not find evidence for aurochs introgression into Iberian cattle 190 

(Additional file 1: Figure S5) when using sequence data from a 6,750 year‐old British aurochs [5]. Given 191 

the probable complex population structure of ancient wild cattle in Europe [5,9,31], this result does not 192 

preclude that local aurochs introgression occurred, but data from pre‐domestic Iberian specimens is 193 

required for further testing of this hypothesis. 194 
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Because Y‐chromosomal variation is geographically structured, with Y1 and Y2 lineages being 195 

predominant in northern and central European taurine cattle, respectively, Y‐specific markers are useful 196 

to investigate crossbreeding [13]. While the Y3 lineage is specific of indicine cattle [14]. In addition, the 197 

effective population size of the cattle Y‐chromosome is strongly reduced by the reproductive success of 198 

popular sires. The paternal diversity of Iberian cattle (Additional file 1: Figure S6 and Table S2) appears 199 

to have its origins in the dispersal of a heterogeneous male population since the Neolithic along the 200 

Mediterranean route, rather than in the recent admixture of transboundary commercial cattle which are 201 

generally fixed for a single patriline (e.g. Holstein‐Friesian). Isolation and less intensive selection 202 

probably also contributed to preservation of much of the original diversity in this region. Interestingly, 203 

Jersey bulls shared a distinct patriline with African cattle (one Ogaden individual; Additional file 1: Figure 204 

S6). Previous analyses of Y‐chromosome polymorphisms showed that Jersey is fixed for a specific 205 

haplotype that is intermediate between Y1 and Y2 haplogroups  [14], this may‐well represent an African 206 

Y‐lineage but more comprehensive data from African bulls are needed.  207 

 208 

The impact of breeding practices on chromosomal variation and general patterns of 209 

diversification 210 

FST values between Iberian breeds and other taurine cattle ranged from 12% to 33%, partially 211 

overlapping the divergence values observed for comparisons within Iberian breeds (Table 1). Mirandesa, 212 

the most divergent within the Iberian breeds, has the highest FST values relative to all other breeds (Fig. 213 

5A). The taurine breed with the overall highest FST relative to the Iberian was the Jersey cattle which 214 

may be explained by the insular isolated status of this breed [32], although we must note that this might 215 

not be a representative sample of the breed. 216 

The lower effective population size in chromosome X relative to the autosomes should lead to stronger 217 

impact of the bottleneck (or population structure) caused by breeding practices, observed in an overall 218 

higher Tajima’s (Additional file 1: Figure S4). In this scenario, genetic drift would be expected to result in 219 
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higher FST values for chromosome X (lower effective population size [33]) relative to autosomes, , which 220 

is what we observe when we compare taurine and indicine cattle (Fig. 5B). However, comparisons within 221 

taurine and within indicine show a much higher FST for autosomes than for chromosome X (Fig. 5B; 222 

Additional file 1: Figure S7). This is in agreement with extensive male‐biased gene flow within taurine 223 

and within indicine – since males have a single copy of chromosome X, introgression will be more 224 

efficient on the autosomes. It is “known” that female populations are more likely to be geographically 225 

constrained and human‐driven crossbreeding may have been carried out mainly using males [34]. This 226 

could also explain the difference in ancestry assignments for autosomes and chromosome X (Fig. 6), 227 

with signatures of previously described indicine admixture in the African taurine autosomes, but not 228 

observed in chromosome X.   229 

 230 

Conclusion 231 

We release for the first time genomic information on highly diverse peripheral local Iberian cattle, which 232 

corroborates these breeds are genetically very distinct in the context of European and African taurine 233 

cattle variation. The complex demographic processes underlying the formation of these breeds had 234 

profound effects on genomic diversity and resulted in unusual patterns of genetic differentiation for 235 

autosomes vs. sex chromosomes. Also, Iberian cattle retain much of the original paternal and maternal 236 

diversity, which appears to derive from the dispersal of a heterogeneous population since the Neolithic 237 

along the Mediterranean route with strong influences from North African taurine cattle, rather than 238 

from recent admixture with transboundary commercial cattle. This may have significant impact on the 239 

resilience of Iberian cattle to foreseen environmental changes. Not only these breeds produce high‐240 

quality certified meat products under local extensive conditions, as they can provide the source for 241 

genetic material to improve breeds with depleted genetic diversity, i.e. transboundary commercial 242 
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cattle.  Our results indicate that genetic differentiation measured using chromosome X might be more 243 

representative of the native populations of domesticated cattle, and that comparisons between breeds 244 

using autosomal data might be misleading without an appropriate demographic model. We also show 245 

how whole‐genome data are important for uncovering specific patterns related to recent demographic 246 

events in breed formation and management, and provide the ground for future studies on the 247 

singularity of locally adapted European cattle. 248 

 249 

 250 

Materials & Methods 251 

1. Materials 252 

Information regarding the breeds and the type of genetic data used to investigate genome diversity and 253 

genetic relationships is summarized in supplementary Additional file 1: Table S1. We selected a total of 254 

48 animals representative of Iberian cattle, namely from the Portuguese breeds Alentejana, Arouquesa, 255 

Barrosã, Brava de Lide, Maronesa, Mertolenga, Mirandesa and Preta (Fig. 1). The 6 animals of each 256 

breed included in our study were nonrelated back to the second generation, originated from several 257 

herds, and portray the genetic diversity observed for autosomal microsatellite loci, mitochondrial DNA 258 

and Y‐chromosome sequences [14,19]. Sampling was done as described in [19], briefly 9 ml of whole‐259 

blood were collected from each animal by qualified veterinarians during their routine practice in the 260 

framework of official health control programs. Additionally, we used previously generated publicly 261 

available genomic data to make population genomics inferences in the context of worldwide cattle: i) 262 

shotgun resequencing data of four indigenous African breeds: N’Dama (Bos taurus), Ogaden (Bos 263 

indicus), Boran (Bos indicus) and Kenana (Bos indicus) [27] (Bioproject ID: PRJNA312138); ii) shotgun 264 

resequencing data of three transboundary commercial breeds: Holstein, Jersey, and Angus (Bioproject 265 
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IDs: PRJNA210521, PRJNA318089 and PRJNA318087, respectively); iii) genotyping Illumina BovineHD 266 

SNP data (777,692 SNPs; http://dx.doi.org/10.5061/dryad.f2d1q) of 25 European breeds represented by 267 

at least 3 individuals: English Longhorn (England), White Park (England), Galloway (Scotland), Highland 268 

(Scotland), Kerry Cattle (Ireland), Heck (Germany), Brown Swiss (Switzerland), Fleckvieh (Switzerland), 269 

Dutch Belted (The Netherlands), Dutch Friesian (The Netherlands), Groningen Whiteheaded (The 270 

Netherlands), Meuse‐Rhine‐Yssel  (The Netherlands), Busha (Balkan region), Romanian grey (Romania), 271 

Boskarin (Check Republic and Hungary), Chianina (Italy), Maremmana (Italy), Maltese (Malta), Cachena 272 

(Portugal), Berrenda en Colorado (Spain), Berrenda en negro, (Spain), Cardena (Spain), Lidia (Spain), 273 

Limia (Spain), Pajuna (Spain), Sayaguesa (Spain). We also included data of an aurochs (England; 274 

Bioproject ID: PRJNA294709) to test for admixture with domesticated cattle. Furthermore, 149 full 275 

mitochondrial genomes from NCBI’s PopSets 157778019 [7], 306977267 [35], 355330537 [18], and 276 

946518556 [36] were used together with the mitochondrial consensus sequences obtained from our 277 

shotgun data (details below). 278 

2. Laboratory procedures 279 

Genomic DNA was extracted using a modified salting‐out precipitation method (Gentra Puregene Blood 280 

Kit, Qiagen) according to the manufacturer’s recommendations. We prepared equimolar DNA 281 

concentrations for all animals before library construction using nanodrop™ and Qubit measurements. 282 

Following DNA fragmentation by sonication using a program specific for 550 bp inserts 283 

(https://www.diagenode.com/en/p/bioruptor‐pico‐sonication‐device), genomic libraries were prepared 284 

using the TruSeq DNA PCR‐free Library Preparation Kit (Illumina, San Diego, CA) according to the 285 

manufacturer’s protocols. Whole‐genome paired‐end resequencing data was obtained by pooling 16 286 

samples in each lane and using an Illumina HiSeq1500 instrument with 2x100 bp reads. 287 

 288 
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3. Sequencing data pre‐processing 289 

The 48 samples were sequenced to between 1.4X and 2.3X depth of coverage (Additional file 1: Table 290 

S3). Methods appropriate for low coverage NGS data [25,37–39] were used throughout the analyses and 291 

applied to all samples. Raw Illumina reads were first processed with Trimmomatic [40] for removal of 292 

adapter sequences and trimming bases with quality <20 and discarded reads with length <80. Mapping 293 

to cattle genome versions UMD_3.1.1 (bosTau8) [23] and Btau_4.6.1 (bosTau7; contains an assembled 294 

Y‐chromosome) [23], and to the outgroup wild yak (Bos mutus; Bioproject ID: PRJNA74739) [24] was 295 

done with BWA mem. Reads showing a mapping hit were further filtered for mapping quality >25. PCR 296 

duplicates were removed with Picard MarkDuplicates (http://picard.sourceforge.net) and local 297 

realignment around indels was done with GATK [41]. 298 

4. Sequencing error rates 299 

Sequencing error rates were determined in ANGSD [37] using a method that relies on an outgroup and a 300 

high quality genome to estimate the expected number of derived alleles (similar to a method described 301 

by Reich et al [42]).  Briefly, if we observe a higher number of derived alleles in an individual we assume 302 

that this excess is due to errors. If the high‐quality genome is error free, we will obtain an estimate of 303 

the true error rate. If there are errors in the high‐quality genome, then the estimated error rate can 304 

roughly be understood as the excess error rate relative to the error rate of the high‐quality genome. 305 

5. Population structure 306 

NGSadmix version 32 [25] was used to detect population structure with autosomal data from samples 307 

for which shotgun resequencing data was available. NGSadmix infers population structure from 308 

genotype likelihoods (that contain all relevant information on the uncertainty of the underlying 309 

genotype [43]).  NGSadmix was run for K equal to 2, 3, 4, 5 and 6 for sites present in a minimum of 10% 310 

of the individuals: a total of 951,213 SNP sites for the 48 Iberian samples (Fig. 1B); 129,829 SNP sites for 311 
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the data set including all 128 animals (Fig. 2A); 628,774 for SNP sites for the data set including the 94 312 

female individuals (Fig. 6). The program was run with different seed values until convergence was 313 

reached. 314 

A principal component analysis using the same SNP set for the Iberian breeds was done with PCAngsd 315 

[38] which estimates the covariance matrix for low depth NGS data in an iterative procedure based on 316 

genotype likelihoods. Genotype likelihoods for all individuals were generated with ANGSD [37] (options ‐317 

GL 1 ‐doGlf 2 ‐minQ 20 ‐minMapQ 30). 318 

6. Phylogenetic analyses 319 

Treemix [28] was used to infer the admixture graphs (Fig. 2B) using allele counts for 512,358 SNP 320 

positions included in the Illumina BovineHD SNP that can be unambiguously assigned to autosomal 321 

positions in the cattle reference genome version UMD_3.1.1 [23] using [44]. For shotgun resequencing 322 

data, allele counts were obtained from allele frequencies calculated in ANGDS [37] for positions covered 323 

in at least 3 individuals.  Treemix was run using the global option and standard errors were estimated in 324 

blocks with 500 SNPs in each. Even though we do not call genotypes on the shotgun data, the individual 325 

breeds where correctly assigned to expected branches in the North/Central European and Iberian clades 326 

(Fig. 2B), confirming the robustness of our methodological approach. 327 

The software RAxML [45] version 8.1.7 with 100 rapid bootstrap replicates was used to estimate the 328 

phylogenetic trees under the GTR+GAMMA model of sequence evolution for complete mitochondrial 329 

sequences from [7,18,35,36] together with consensus sequences from the shotgun resequencing data 330 

analyzed in this study obtained by choosing the most common base per position (‐doFasta 2 in ANGSD 331 

[37]). 332 
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7. D‐statistics 333 

To determine the pattern of excess shared derived alleles between taxa, indicative of introgression, we 334 

estimated D‐statistics using the wild yak (Bos mutus) as an outgroup. All samples were mapped to the 335 

yak outgroup genome assembly. The D‐statistic [29,30] is approximated by a Gaussian distribution with 336 

mean zero [39] in the absence of gene flow between the four populations, allowing for hypothesis 337 

testing. We apply an extended version of the D‐statistic [39] which can use multiple individuals per 338 

population sequenced at low coverage and is implemented in ANGSD [37]. It takes observed allele 339 

frequencies for each individual in a population, and then combines them linearly to find an unbiased 340 

estimator of population frequency while minimizing the variance [39]. 341 

8. Assessment of genetic diversity and population differentiation 342 

We used methods based on the site frequency spectrum (SFS) [46,47] to estimate nucleotide diversity, 343 

the neutrality test statistic Tajima’s D (Fig. 2C; Additional file 1: Figure S7) and genome‐wide FST values 344 

(Fig. 5 and Additional file 1: Figure S7). Briefly, after estimating the SFS, posterior sample allele 345 

frequencies are calculated using the global SFS as prior. SFSs estimated separately were used to obtain 346 

joint SFSs for population pairs, which are then used to estimate FST. For all pairwise breed comparisons, 347 

we determined FST using autosomes 1 to 29. For comparisons relating to chromosome X, FST was 348 

determined for the sex chromosome and autosomes using only female individuals. 349 

 350 

   351 
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Figure legends 551 

 552 

Figure 1. A) Geographical distribution of the eight Iberian native breeds. B) Population structure plot 553 

determined by NGSadmix shows consistency with breed denomination; each individual is represented 554 

by a stacked column of the 2, 5 and 8 proportions (other K values in Figure S3). C) Reproductive isolation 555 

of the Mirandesa and Brava breeds relative to the others is clear in the principal component analysis 556 

done with PCAngsd; variance explained by each component is shown in parenthesis (other components 557 

are in Figure S2). 558 

 559 

Figure 2. A) Population structure using 108 individuals at K=3 clearly divides the European taurine (blue), 560 

African taurine (green) and African indicine (pink) ancestries. B) Treemix maximum likelihood tree 561 

depicting the relationships between taurine cattle breeds (grey: Illumina BovineHD SNP data; black: 562 

whole genome data). C) Nucleotide diversity in taurine and indicine breeds (Iberian breed names in 563 

black).  564 

 565 

Figure 3. D‐statistics determined using genome‐wide autosomal data. Negative values indicate an excess 566 

of derived alleles shared by the breeds in H1 (denoted in the y‐axis) and the African N’Dama breed.  567 

 568 

Figure 4. Maximum‐likelihood phylogeny of cattle mitogenomes showing that Iberian breeds can be 569 

assigned to haplogroups Q, and T, including sub‐haplogroup T1 typical of African cattle. 570 

 571 
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Figure 5. A) Autosomal FST between Iberian cattle and taurine/indicine breeds.  B) Range of autosomal 572 

FST values for including European taurine (Holstein, Jersey and the Iberian breeds), African taurine 573 

(N’Dama), and the African indicine breeds Ogaden, Kenana and Borana.  Also shown are the FST values 574 

for sex chromosome X, which is comparatively low within taurine breeds, but shows the expected trend 575 

in comparisons with indicine breeds. 576 

 577 

Figure 6. Population structure at K=2 determined using the females individuals only (Table S2). The 578 

indicine contribution to African taurine (N’Dama) is not observed in sex chromosome X (bottom) 579 

compared to the autosomes (top).   580 

 581 

 582 

 583 
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Table 1. FST values between the eight Iberian breeds. The highest value is shown in bold and the lowest 

in italic. 

  Alentejana  Arouquesa  Barrosã  Brava  Mertolenga  Mirandesa  Maronesa 

Arouquesa  0.10             

Barrosã  0.12  0.06           

Brava  0.13  0.08  0.09         

Mertolenga  0.09  0.06  0.06  0.07       

Mirandesa  0.16  0.08  0.11  0.13  0.11     

Maronesa  0.12  0.06  0.06  0.09  0.06  0.11   

Preta  0.08  0.05  0.06  0.05  0.04  0.09  0.06 
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