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Abstract
Motivation: Gene regulatory networks (GRNs) of the same organism can be different
under different conditions, although the overall network structure may be similar. Under-
standing the difference in GRNs under different conditions is important to understand
condition-specific gene regulation. When gene expression and other relevant data under
two different conditions are available, they can be used by an existing network inference
algorithm to estimate two GRNs separately, and then to identify the difference between
the two GRNs. However, such an approach does not exploit the similarity in two GRNs,
and may sacrifice inference accuracy.
Results: In this paper, we model GRNs with the structural equation model (SEM) that
can integrate gene expression and genetic perturbation data, and develop an algorithm
named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and
then to identify difference of the two GRNs. Computer simulations demonstrate that
the FSSEM algorithm outperforms the approach that estimates two GRNs separately.
Analysis of a gene expression and SNP dataset of lung cancer and normal lung tissues
with FSSEM inferred a GRN largely agree with the known lung GRN reported in the
literature, and it identified a differential GRN, whose genes with largest degrees were
reported to be implicated in lung cancer. The FSSEM algorithm provides a valuable
tool for joint inference of two GRNs and identification of the differential GRN under two
conditions.
Availability: The software package for the FSSEM algorithm is available at
https://github.com/Ivis4ml/FSSEM.git
Contact: x.cai@miami.edu
Keywords
Gene network; Differential network; Structural equation model

Introduction
A gene regulatory networks (GRN) consists of a set of genes that interact with each other to govern
their expression and molecular functions. For example, transcription factors (TFs) can bind to
promoter regions of their target genes and regulate the expression of target genes (Harbison et al.,
2004). Gene-gene interactions can change under different environments, in different tissue types
or disease states, and during development and speciation (Ideker and Krogan, 2012). Therefore,
GRNs undergo substantial rewiring depending on specific molecular context in which they operate
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(Califano, 2011). Identification of condition-specific GRNs is critical to unravel the molecular
mechanism of various tissue or disease-specific biological processes (Sonawane et al., 2017).

Although a number of computational methods have been developed to infer GRNs from gene
expression and other relevant data, they are mainly concerned with the static structure of gene
networks under a certain condition. Several methods aim to infer GRNs using only gene expression
data; they include the approaches that construct relevance network based on a similarity measure,
such as correlation or mutual information (Butte and Kohane, 1999; Faith et al., 2007; Margolin
et al., 2006), Gaussian Graphical Model (GGM) (Friedman et al., 2008), Bayesian networks
(Statnikov and Aliferis, 2010), and linear regression model (Haury et al., 2012). Several other
methods infer GRNs by integrating genetic perturbations with gene expression data; these methods
include approaches using Bayesian networks incorporating expression quantitative trait loci (eQTLs)
(Zhu et al., 2007), likelihood-based causal models (Neto et al., 2008), and structural equation models
(SEMs) (Cai et al., 2013; Liu et al., 2008; Logsdon and Mezey, 2010).

While it is possible to apply these methods to identify GRNs under different conditions sep-
arately, such an approach is apparently not optimal to identify the difference in GRNs, because
it does not exploit the similarity in two GRNs. Several methods have been proposed to use the
gene expression data of different conditions to jointly estimate GRNs under different conditions.
Particularly, GRNs under multiple conditions are modeled with multiple GGMs, and these GGMs
are inferred jointly from gene expression data (Danaher et al., 2014). When a gene is mutated, its
regulatory effect on all its target gene may changed. Taking into account such effects, a node-based
approach to joint inference of multiple GGMs were developed in (Mohan et al., 2014). GGMs
exploit the sample covariance of the gene expression levels, but they cannot integrate genetic pertur-
bations with gene expression data. Moreover, it has been demonstrated that genetic perturbation
along with gene expression data can determine directed edges in GRNs (Logsdon and Mezey, 2010),
but GGMs can only identify undirected edges.

In this paper, we employ SEMs to model GRNs as described in (Cai et al., 2013; Liu et al.,
2008; Logsdon and Mezey, 2010). This enables us to integrate genetic perturbation data with gene
expression data. Taking into account the sparsity in GRNs, we have developed a sparse-aware
maximum likelihood (SML) method (Cai et al., 2013) to infer a single GRN based on SEM. Here,
taking into account not only the sparsity in GRNs but also the sparsity in the differences between
GRNs under two different conditions, we develop an algorithm, named fused sparse SEM (FSSEM),
to infer two GRNs from different conditions jointly, and then to identify difference in two GRNs.
Computer simulations demonstrate the superior performance of our novel approach relative to the
existing one that infers GRNs under two conditions separately.

Methods
1.1 GRN model
Suppose that expression levels of n genes under two different conditions are measured using e.g.
micro-array or RNA-Seq technique. Let y(k)i = [y(k)i1 ,y(k)i2 , ...,y(k)in ]T denote expression level of n
genes in individual i under condition k, where k = 1,2 and i = 1,2, ...,nk, with nk being the number
of individuals where gene expression levels are measured under condition k. Supposed that a set
of perturbations of these genes have also been measured. These perturbations can be due to e.g.,
eQTLs or gene copy number variants (CNVs). In this paper, we will consider only eQTLs. As in
(Cai et al., 2013; Logsdon and Mezey, 2010), we assume that each gene in the GRN of interest
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has at least one cis-eQTL, so that the structure of underlying GRN is uniquely identifiable. Let
x(k)i = [x(k)i1 ,x(k)i2 , ...,x(k)iq ]T denote the genotypes of q cis-eQTLs in individual i under condition k,
where k = 1,2 and i = 1,2, ...,nk. Since the expression level of a particular gene may be regulated
by other genes and is affected by its eQTLs, we employ the following SEM to model the expression
of n genes

y(k)i = B(k)y(k)i +F(k)x(k)i +µ
(k)
i + ε

(k)
i , (1)

where i= 1, ...,nk, k = 1,2, n×n matrix B(k) defines the unknown network structure under condition
k, n×q matrix F(k) captures the effect of cis-eQTLs on gene expression levels under condition k,
n×1 vector µ(k) accounts for the model bias in SEM, and n×1 vector ε(k) denotes the residual
error, which is modeled as a Gaussian vector with zero mean and variance σ2. It is assumed that no
self-loops are presented per gene in GRN, which implies that the diagonal entries of B(k) are zero,
and it is also assumed that q cis-eQTLs have been identified using an existing eQTL method, but
their regulatory effects are unknown, thus, F(k) has q nonzero entries with known locations.

1.2 Joint Inference of two GRNs
Let Y(k) = [y(k)1 , ...,y(k)nk ], X(k) = [x(k)1 , ...,x(k)nk ] and E(k) = [ε

(k)
1 , ...,ε

(k)
nk ], where k = 1,2, and assume

that n1 +n2 observations are independent. Then, the negative log-likelihood function of the data
can be written as

L(B,F,µ,σ2) = − log
2

∏
k=1

nk

∏
i=1

P(y(k)i |x
(k)
i ,µ

(k)
i ,B(k),F(k))

=−
2

∑
k=1

nk

2
log |I−B(k)|2+ (n1 +n2)n

2
log(2πσ

2)+
1

2σ2

2

∑
k=1

∣∣∣∣∣∣(I−B(k))Y(k)−F(k)X(k)−µ
(k)
∣∣∣∣∣∣2

F
,

(2)

where B = [B(1),B(2)], F = [F(1),F(2)], µ = [µ(1),µ(2)], and ‖ . ‖F stands for the Frobenius norm.
Our goal is to estimate B(1) and B(2) in (2). It is not difficult to show that minimizing (2) with
respect to µ yields µ̂

(k) = (I−B(k))Ỹ(k)−F(k)X̃(k), where Ỹ(k) = Y(k)− 1/nk ∑
nk
i=1 y(k)i 1, X̃(k) =

X(k)−1/nk ∑
nk
i=1 x(k)i 1, and 1 is a vector with all its entries equal to 1.

Since a gene is regulated by a small number of other genes (Gardner et al., 2003; Tegner et al.,
2003; Thieffry et al., 1998), GRNs are sparse, meaning that most entries of B(1) and B(2) are
zeroes. Moreover, it is reasonable to expect that changes in a GRN under two different conditions is
relatively small. Therefore, most entries of B(2)−B(1) are zeroes. Let σ̂2 be an estimate of σ2 that
will be specified later, replacing µ(k) and σ2 in (2) with µ̂

(k) and σ̂2 respectively, and taking into
account the sparsity in B(1) and B(2), and the sparsity in B(2)−B(1), we can estimate B and F by
minimizing the following penalized negative log-likelihood function

J(B,F) =−
2

∑
k=1

nk log |I−B(k)|

+
1

2σ̂2

2

∑
k=1
‖ (I−B(k))Ỹ(k)−F(k)X̃(k) ‖2

F

+λ

2

∑
k=1
‖ B(k) ‖1,w(k) +ρ ‖ B(2)−B(1) ‖1,r,

(3)
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where B(k)
ii = 0, ∀i = 1, ...,n, k = 1,2, ‖ B(k) ‖1,w(k)= ∑i ∑ j w(k)

i j |B
(k)
i j | is the weighted `1-norm,

‖ B(2)−B(1) ‖1,r is also a weighted `1-norm with similar definition, λ and ρ are two nonnegative
parameters. Weights w(k)

i j and ri j in the penalty terms are introduced to improve estimation accuracy
and robustness in line with the adaptive lasso (Zou, 2006) and the adaptive generalized fused lasso
(Viallon et al., 2016), and they are selected as 1/|B̂(k)

i j | and 1/|B̂(2)
i j − B̂(1)

i j |, respectively, where B̂(1)

and B̂(2) are preliminary estimates of B(1) and B(2) obtained from the following ridge regression:

{B̂, F̂}= argmin
{B,F}

{
2

∑
k=1

1
2

∣∣∣∣∣∣(I−B(k))Ỹ(k)−F(k)X̃(k)
∣∣∣∣∣∣2

F
+ τ

∣∣∣∣∣∣B(k)
∣∣∣∣∣∣2

F

}
s.t. B(k)

ii = 0, ∀i = 1, ...,n,k = 1,2,

(4)

where B̂ = [B̂(1), B̂(2)], F̂ = [F̂(1), F̂(2)], and the estimate of σ2, σ̂2 in (3), is given by

σ̂
2 =

∑
2
k=1 ‖ (I− B̂(k))Ỹ(k)− F̂(k)X̃(k) ‖2

F
(n1 +n2)n

. (5)

Based on (3), we next develop a proximal alternative linearize minimization algorithm to infer B(1)

and B(2).

1.3 Ridge regression
In the first stage, we solve the ridge regression problem (4) to find initial values of B, F, weights
w(k), k = 1,2, and r for the FSSEM algorithm to minimize (3). Let B(k)

i ,F(k)
i and Y(k)

i be the i-th
row of B(k),F(k) and Y(k), respectively. Define B(k)

i,−i as the 1× (n−1) vector obtained by removing

the i-th entry from B(k)
i . Let Sq(i) be the set of indices of non-zero entries in the F(k)

i , F(k)
i,Sq(i)

be the

vector that contains the nonzero entries of F(k)
i , X̃Sq(i) be the matrix formed by taking rows of X̃

whose indices are in Sq(i), and Ỹ−i be the matrix formed by removing ith row of Ỹ.
Then, the ridge regression problem (4) can be decomposed into n separate problems:

argmin
Bi,−i,Fi,Sq(i)

{
2

∑
k=1

1
2

∣∣∣∣∣∣Ỹ(k)
i −B(k)

i,−iỸ
(k)
−i −F(k)

i,Sq(i)
X̃(k)

Sq(i)

∣∣∣∣∣∣2
F
+ τ

∣∣∣∣∣∣B(k)
i,−i

∣∣∣∣∣∣2
F

}
, i = 1, ...,n. (6)

Minimizing the objective function in (6) with respect to (w.r.t.) F(k)
i,Sq(i)

yields the following closed-
form solution

F̂(k)
i,Sq(i)

= (Ỹ(k)
i − B̂(k)

i,−iỸ
(k)
−i )X̃

(k)T
Sq(i)

(X̃(k)
Sq(i)

X̃(k)T
Sq(i)

)−1. (7)

Substituting F̂(k)
i,Sq(i)

into (6) and minimizing w.r.t. B̂(k)
i,−i gives B̂(k)

i,−i = Ỹ(k)
i P(k)

i Ỹ(k)T
−i (Ỹ(k)

−i P(k)
i Ỹ(k)T

−i +

τI)−1, which in turn results in F̂(k)
i,Sq(i)

= Ỹ(k)
i Γ

(k)
i X̃(k)T

Sq(i)
(X̃(k)

Sq(i)
X̃(k)T

Sq(i)
)−1, where Γ

(k)
i = I−P(k)

i Ỹ(k)T
−i (Ỹ(k)

−i

P(k)
i Ỹ(k)T

−i +τI)−1Ỹ(k)
−i and P(k)

i = I− X̃(k)T
Sq(i)

(X̃(k)
Sq(i)

X̃(k)T
Sq(i)

)−1X̃(k)
Sq(i)

. After B̂(k) and F̂(k) are estimated,

the estimate of σ̂2 is given by (5). The hyper-parameter τ in ridge regression (4) or (6) is selected
by 5-fold cross-validation.
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1.4 FSSEM algorithm
In this section, we will develop the FSSEM algorithm to minimize the objective function J(B,F)
in (3) with the initial values of B(k) and F(k) given in (7). The objective function is non-convex
due to the log-determinant term, and non-smooth due to the `1 norm terms. Recently, the proximal
alternating linearized minimization (PALM) method (Bolte et al., 2014) was developed to solve a
broad classes of non-convex and non-smooth minimization problems. We next apply the PALM
approach to develop the FSSEM algorithm.

Without loss of generality, we define the proximal operator associated with a proper and lower
semi-continuous function h(x) :Rd→ (−∞,+∞] as proxh

α(v)= argminu∈Rd

{
h(u)+α/2‖u− v‖2

}
,

where α > 0 and v ∈ Rd are given. We also define the fused lasso signal approximator (Friedman
et al., 2007; Hoefling, 2010) on x = [x1,x2] as the following proximal operator:

proxp(x)
α (zk) =arg min

x∈Rd

{
α

2

2

∑
k=1
‖ xk− zk ‖2

+λ

2

∑
k=1
‖ xk ‖1 +ρ ‖ x2− x1 ‖1

}
.

(8)

The solution (x1(λ ),x2(λ )) of (8) at λ = 0 can be found as

(x1(0),x2(0)) =


(z1−ρ/α,z2 +ρ/α) if z1− z2 > 2ρ/α

(z1 +ρ/α,z2−ρ/α) if z1− z2 <−2ρ/α

( z1+z2
2 , z1+z2

2 ) if |z1− z2| ≤ 2ρ/α

. (9)

Defining soft-thresholding function S(β ,λ ) as

S(β ,λ ) =


β −λ if β > λ

β +λ if β <−λ

0 if |β | ≤ λ

, (10)

the solution of (8) at λ > 0 is given in terms of the soft-thresholding operator as follows (Friedman
et al., 2007):

prox f (x)
α (zk) =

(
S(x1(0),λ/α),S(x2(0),λ/α)

)
. (11)

Minimizing (3) w.r.t. F(k) yields F̂(k)
i,Sq(i)

in (7). Substituting F̂(k)
i,Sq(i)

in (7) into (3) gives

J(B) = H(B)+
Ng

∑
i=1

fi(Bi,−i), (12)

where

H(B) =−
2

∑
k=1

nk

2
log |I−B(k)|2

+
1

2σ̂2

Ng

∑
i=1

2

∑
k=1
‖ Ỹ(k)

i P(k)
i −B(k)

i,−iỸ
(k)
−i P(k)

i ‖
2
2,

(13)
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and

fi(Bi,−i) =λ (‖ B(1)
i,−i ‖1,w(1) + ‖ B(2)

i,−i ‖1,w(2))

+ρ ‖ B(1)
i,−i−B(2)

i,−i ‖1,r .
(14)

Using the inertial version of the PALM approach (Pock and Sabach, 2016), the FSSEM algorithm
efficiently minimizes the non-convex non-smooth function J(B) with the block coordinate descent
(BCD) method in an iterative fashion. More specifically, in each cycle of the iteration, J(B) is
minimized successively w.r.t. [B(1)

i,−i,B
(2)
i,−i], while [B(1)

j,− j,B
(2)
j,− j], j = 1, ...,n, j 6= i are fixed.

Let us consider updating the ith block of variables Bi,−i = [B(1)
i,−i,B

(2)
i,−i] in the (t+1)th cycle. Let

B[t] = [B(1)[t],B(2)[t]] be the estimate of B in the tth cycle. Define B̃i,−i = Bi,−i[t1]+αt(Bi,−i[t1]−
Bi,−i[t1−1]), where t1 = t +1, ∀i < j, t1 = t, ∀i > j, and αt is a constant in the interval [0,1]. We
obtain Bi,−i from the FLSA proximal operator (11) as follows:

Bi,−i = prox fi(.)
γi

(
B̃i,−i−

1
γi

∇Bi,−iH(B̃)
)
, (15)

where 1/γi is the step-size for the i-th block that will be given later, and ∇Bi,−iH(B̃) is the partial
derivative of H(B) w.r.t. Bi,−i at B̃.

Since Bi,−i = [B(1)
i,−i,B

(2)
i,−i], we have ∇Bi,−iH(B) = [∇

B(1)
i,−i

H(B),∇
B(2)

i,−i
H(B)]. The determinant

of I−B(k) can be expressed as c(k)ii −B(k)
i,−ic

(k)
i , where c(k)ii is the (i, i) co-factor of I−B(k), and the

jth entry of the (n−1)×1 column vector c(k)i is the co-factor of I−B(k) corresponding to the jth
entry of B(k)

i,−i. Defining B(k)
−i = {B

(k)
j,− j, j = 1, ...,n, j 6= i}, we can write ∇

B(k)
i,−i

H(B), k = 1,2, with

B(k)
−i fixed, as follows

∇
B(k)

i,−i
H(B) =

nkc(k)Ti

c(k)ii −B(k)
i,−ic

(k)
i

+
1

σ2

(
B(k)

i,−iỸ
(k)
−i P(k)

i Ỹ(k)T
−i − Ỹ(k)

i P(k)
i Ỹ(k)T

−i

)
. (16)

In Supplementary Text S, we prove that given B(k)
−i , ∇

B(k)
i,−i

H(B),k = 1,2 are Lipschitz continuous.

Specifically, we can write ∇
B(k)

i,−i
H(B) as ∇

B(k)
i,−i

H(B(k)
i,−i,B

(k)
−i ), which satisfies:

‖ ∇
B(k)

i,−i
H(x,B(k)

−i )−∇
B(k)

i,−i
H(y,B(k)

−i )≤ Li(B
(k)
−i ) ‖ x− y ‖, (17)

where the Lipschitz constant Li(B
(k)
−i ) is derived in the Supplementary Text S, and is given by

Li(B
(k)
−i ) =nk ‖ c(k)i ‖

2
2

/
min
B(k)

i,−i

(det(I−B(k)))2 +λmax(Ỹ
(k)
−i P(k)

i Ỹ(k)T
−i )

/
σ

2. (18)

Here λmax(Ỹ
(k)
−i P(k)

i Ỹ(k)T
−i ) is the maximum eigenvalue of Ỹ(k)

−i P(k)
i Ỹ(k)T

−i , and the value of min
B(k)

i,−i
det(I−

B(k))2 can be computed by solving the optimization problem as shown in (S12) in Supplementary
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Algorithm 1 Fused Sparse SEM (FSSEM)
Select τ∗ in (4) via cross-validation
Solve (4) with τ∗ to obtain (B̂, F̂), and compute σ̂2 from (5).
Set w(k)

i j = 1/|B̂(k)
i j |, ri j = 1/|B̂(2)

i j − B̂(1)
i j |.

Initialize B[0] = B̃ = B̂.
for t in 1,2, ... do

Select αt ∈ [0,1]
for i in 1, ...,n do

Compute Li(B̃−i) from (18), set γi = Li(B̃−i)

Update B(k)
i,−i , k = 1,2, with (15)

Set B̃i,−i = Bi,−i[t]+αt(Bi,−i[t]−Bi,−i[t−1])
end for
Update F(k)

i with (7) and σ̂2 with (5)
if convergence then

Break
end if

end for
Return {B̂(k), F̂(k) , k = 1,2}

Text S. Let Li(B−i) = max{Li(B
(k)
−i ),k = 1,2}. Then, the step size is chosen to be 1/γi = 1/Li(B̃−i).

The FSSEM algorithm is summarized in Algorithm 1. The convergence criterion is defined as

{ 2

∑
k=1

∣∣∣∣∣∣B(k)[t +1]−B(k)[t]
∣∣∣∣∣∣2

F

/ 2

∑
k=1

∣∣∣∣∣∣B(k)[t]
∣∣∣∣∣∣2

F

+
2

∑
k=1

∣∣∣∣∣∣F(k)[t +1]−F(k)[t]
∣∣∣∣∣∣2

F

/ 2

∑
k=1

∣∣∣∣∣∣F(k)[t]
∣∣∣∣∣∣2

F

}
< εv

|J(B[t +1])− J(B[t])|
/
|J(B[t])|< εo,

(19)

where εv > 0 and εo > 0 are pre-specified small constants. Since the objective function is not convex,
it is not guaranteed that the FSSEM algorithm converges to the global minimization. However, we
prove in Supplementary Text S that the FSSEM algorithm always converges to a stationary point
of the objective function. Note that if we drop the fused lasso term ρ ‖ B(1)−B(2) ‖1,r in (3), then
minimizing J(B,F) is equivalent to estimating two network matrices B(1) and B(2) separately. The
BCD approach used in FSSEM can also be employed to solve this problem, because the proximal
operator in (15) can be easily solved in terms of the soft-thresholding function S(β ,λ ) defined in
(10). This BCD approach is much more efficient than the SML algorithm in (Cai et al., 2013),
which employs the element-wise coordinate ascent approach. Parameters λ and ρ in (3) can be
determined with cross-validation (CV). In Supplementary Text S, we derive the expression for the
maximum values of λ and ρ and describe the CV process.

Results
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2.1 Computer simulations
In this section, we conduct simulation studies to compare the performance of the FSSEM algorithm
with that of the SML algorithm (Cai et al., 2013). FSSEM estimates network matrices B(1) and B(2)

jointly, while SML estimates B(1) and B(2) separately. Other algorithm such as AL-based (Logsdon
and Mezey, 2010) and QDG (Neto et al., 2008) algorithms are available to estimate B(1) and B(2)

separately. However, as shown in (Cai et al., 2013), SML algorithm outperforms AL-based and
QDG algorithms. Therefore, only SML is considered in performance comparison.

Following the setup of (Cai et al., 2013), both directed acyclic networks (DAG) and directed
cyclic networks (DCG) are simulated in our experiments. Specifically, the adjacency matrix A(1) of
a DAG or DCG of 10 or 30 gene nodes with expected number of edges per gene d = 3 is generated
for the GRN under condition 1. Another adjacency matrix A(2) was generated by randomly change
10% entries of A(1), and the probabilities of changes of entries from 0 to 1 and from 1 to 0 are
equal. A network matrix B(1) was generated from A(1) as follow. For any entry A(1)

i j = 1, B(1)
i j is

generated from a random variable uniformly distributed over interval [0.5,1] or [−1,−0.5]; for all
A(1)

i j = 0, we set B(1)
i j = 0. The second network matrix B(2) was generated from A(2) and B(1) as

follow. For all A(2)
i j = 0, we set B(2)

i j = 0; for all A(2)
i j = A(1)

i j , we set B(2)
i j = B(1)

i j ; and for all A(1)
i j = 0

but A(2)
i j = 1, we generate B(2)

i j from a random variable uniformly distributed over interval [0.5,1]
or [−1,−0.5]. The genotypes of eQTLs were simulated from an F2 cross. Values 1 and 3 were
assigned to two homozygous genotypes, respectively, and value 2 to the heterozygous genotype.
Then, X(1) and X(2) were generated from ternary random variables taking on values {1,2,3} with
corresponding probabilities {0.25,0.5,0.25}. The number of eQTLs per gene ne was chosen to be
either 1 or 3, and effect sizes of all eQTLs were set to 1 in F(1) and F(2). Error terms E(1) and E(2)

were independently sampled from Gaussian random variables with zero mean and variable σ2; µ(1)

and µ(2) were set to zero vectors; and the sample sizes n1 and n2 vary from 100 to 1,000. Finally,
Y(k) was calculated as Y(k) = (I−B(k))−1(F(k)X(k)+E(k)), where k = 1,2.

For each configuration of the two GRNs, 30 replicates of the GRN were simulated. For each
replicate, SML and FSSEM were used to infer network matrices B(1) and B(2). Hyper parameter of
SML and FSSEM algorithms were determined with 5-fold CV. Power of detection (PD) and false
discovery rate (FDR) for detecting network edges were calculated from B(1) and B(2) estimated from
the data of each of 30 network replicates. The differential network was defined as ∆B = B(2)−B(1),
and PD and FDR for the differential network were calculated accordingly.

The results for DAGs with n = 30, ne = 3 and σ2 = 0.25 are depicted in Figure 1, and results of
DAGs under other settings are given in Figures S1 and S2 in Supplementary Text S. First, let us
look at the PD and FDR of B(1) and B(2) in the left panel of Figure 1. FSSEM offers almost the
same PD as SML, but slightly lower FDR when σ2 = 0.25. As shown in Figures S1 and S2, when
σ2 = 0.01, FSSEM and SML have almost same PD and FDR, and increasing ne from 1 to 3 slightly
reduced FDR for both FSSEM and SML. Overall, FSSEM and SML have similar performance for
the estimates of B(1) and B(2). Next, let us look at the PD and FDR of B(2)−B(1) in the right panel
of Figure 1. FSSEM exhibits almost the same PD as SML, but it offers much smaller FDR than
SML. Specially, the FDR of FSSEM is < 0.2, but the FDR of SML > 0.8. Similar trends are seen
in Figure S1 and S2 for all network settings considered. Again, increasing the number of eQTL ne
from 1 to 3 slightly reduces the FDR. For the GRNs of n = 30 genes, there are 2(n2−n) = 1740
unknown entries in B(1) and B(2) to be estimated, and there are 2nne unknown entries in F(1) and
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Figure 1. Performance of FSSEM and SML for the DAG with n = 30 genes and ne = 3 eQTLs
per gene. The number of samples n1 = n2 varies from 100 to 1,000 and noise variance σ2 = 0.25.
PD and FDR were obtained from 30 network replicates.

F(2). Interestingly, the performance of both FSSEM and SML did not change much, when the
sample size n1 +n2 varied from 400 to 4,000.

Simulation results for DCGs with n = 30, ne = 3 and σ2 = 0.25 are depicted in Figure 2, and
results of DCGs under other settings are shown in Figures S3 and S4 in Supplementary Text S. As
shown in the left panel of Figure 2, FSSEM offers slightly better PD and FDR for the estimates of
B(1) and B(2) than SML. The results for ∆B shown in the right panel indicate that FSSEM offers
similar PD comparing with SML, but it exhibits much smaller FDR, as also observed in Figure 1
for DAG networks. Similar trends are also observed for other network settings in Figures S3 and S4.
Clearly, FSSEM outperforms SML consistently in terms of both PD and FDR for both DAG and
DCG networks. For the convenience of comparison, the simulation results of DAG and DCG with
n1 = n2 = 500, ne = 3 and σ2 = 0.25 are summarized in Table 1, which clearly shows that FSSEM
outperforms SML. Particularly, FSSEM offers much lower FDR than SML in estimating ∆B, the
matrix of the differential GRN.
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Figure 2. Performance of FSSEM and SML for the DCG with n = 30 genes and ne = 3
eQTLs per gene. The number of samples n1 = n2 varies from 100 to 1,000 and noise variance
σ2 = 0.25. PD and FDR were obtained from 30 network replicates.

Table 1. Performance of FSSEM and SML algorithms. Expected number of eQTLs per gene is
ne = 3 and noise variance σ2 = 0.25. PD and FDR were obtained from 30 network replicates.

Network n
FSSEM SML

PDB FDRB PD∆B FDR∆B PDB FDRB PD∆B FDR∆B

DAG
10 1.000 0.037 1.000 0.000 1.000 0.054 1.000 0.889
30 1.000 0.032 1.000 0.000 1.000 0.044 1.000 0.911

DCG
10 1.000 0.028 1.000 0.016 0.879 0.082 0.856 0.912
30 1.000 0.004 1.000 0.057 0.962 0.083 0.955 0.920

2.2 Real data analysis
In (Lu et al., 2011), gene expression levels in 42 tumors and their adjacent normal tissues of
non-smoking female patients with lung adenocarcinoma were measured with 54,675 probe sets
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from Affymetrix Human Genome U133 Plus 2.0 Array. The genotypes of single nucleotide
polymorphisms (SNPs) in the same set of tissues were obtained using 906,551 SNP probes from
Affymetrix Genome-Wide Human SNP 6.0 array. We applied FSSEM to this data set to infer GRNs
in lung cancer and normal tissues.

Both gene expression and SNP data in the gene expression omnibus database (GSE33356) were
downloaded. The R package affy (Gautier et al., 2004) was employed to transform raw micro-array
data to normalized gene expression levels. Specifically, the raw gene expression data in the custom
CDF format (Dai et al., 2005) were normalized using the robust multi-array average (RMA) method
(Bolstad et al., 2003; Irizarry et al., 2003a,b). In total, gene expression levels of 18,807 genes
with their Entrez IDs were obtained from 54,675 probe sets. the genotypes of the 906,551 SNP
probes in the 84 tissue samples were transformed to values {0,1,2} using the following mapping:
AA→ 0, AB→ 1 and BB→ 2. The missing genotypes of SNP probes were imputed by randomly
sampling from {0,1,2} using the observed probabilities of genotypes of each SNP. Finally, R
package MatrixEQTL (Shabalin, 2012) was adopted to identify cis-eQTLs of genes. In total, 1,456
genes were found to have at least one cis-eQTLs within 106 base pairs from the open reading frame
(ORF) of the gene at an FDR = 0.01.

Since the number of samples available is 84, which may be too small to be used to reliably
infer the network of 1,456 genes with eQTLs, we selected a subset of the 1,456 genes as follow.
In (Greene et al., 2015), gene interactions in 144 human tissues and cell types were inferred by
integrating a collection of data sets covering thousands of experiments reported in more than 14,000
distinct publications. Each identified interaction between a pair of genes was assigned a confidence
score or posterior probability in the Bayesian data integration process. The tissue-specific gene
networks are all available in the GIANT (http://hb.flatironinstitute.org) database. For each pair of
genes among the 1,456 genes with eQTLs, we searched the GIANT database to see if they interact
with each other in the lung network constructed from the gene expression data. We identified the
following 19 genes that interact with at least one another gene with high confidence (posterior
probability ≥ 0.80): UBA2, CCT7, COX6B1, DBI, DKC1, ETFA, NACA, PSMC4, RPS6, SNRPF,
BRIX1, KARS, ECHS1, ATP5G3, UBE2N, CDC123, VBP1, PSMD10, and BTF3. We extracted
interactions among these 19 genes with posterior probability ≥ 0.80, and refer to this sub-network
as the GIANT reference network. Since the dataset GSE33356 was not used to construct the GIANT
network, we would compare the GRN inferred from the GSE33356 by our FSSEM algorithm with
the GIANT network.

We applied the FSSEM algorithm to the 84 samples of expression levels of the 19 selected
genes and the genotypes of their eQTLs to infer the networks of these genes in lung cancer and
normal tissue. An edge from gene j to gene i was detected if B(k)

i j 6= 0,k = 1,2, where B(1) and
B(2) specify the networks in normal and tumor tissues, respectively. FSSEM yielded a network
matrix B(1) with 93 nonzero entries, or a network with 93 edges, and these edges were regarded
as significant gene interactions in normal tissues. This network referred to as the FSSEM network
was compared with the GIANT reference network. It was found that 76.9% edges in the FSSEM
network B(1) were also in the GIANT network. This shows that the FSSEM network identified from
a small independent samples is in good agreement with the GIANT reference network identified
from a large number of data samples.

We also identified the differential network based on ∆B = B(2)−B(1). Since small changes of
coefficients Bi j may not have much biological effect, we regarded the regulatory effect of gene j and
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Figure 3. The differential regulatory network of 19 genes inferred from gene expression and
eQTL data with the FSSEM algorithm. The size of a node is proportional to its degrees.

i to be different if |B(1)
i j −B(2)

i j |> min{|B(1)
i j |, |B

(2)
i j |}, which ensured that there is at least one-fold

change relative to min{|B(1)
i j |, |B

(2)
i j |}. However, when one of B(k)

i j ,k = 1,2 is zero or near zero, this
criterion still fails to filter out very small changes ∆B. To avoid this issue, we added another criterion.
Specifically, we obtained all nonzero entries of B(k),k = 1,2, and compute the 20 percentile value of
all nonzero |B(k)

i j |,k = 1,2 as η . Then, we defined the second criterion as max{B(k)
i j ,k = 1,2} ≥ η .

We employed the stability selection technique (Meinshausen and Bühlmann, 2010) to identify the
differential network reliably. Specifically, we used 5-fold cross-validation to determine optimal
values of λ and ρ , denoted as λ ∗ and ρ∗, respectively. A set of 21 samples are randomly selected
from 42 cancer samples, and another set of 21 corresponding samples were selected from 42 normal
samples. This data set of 42 samples was used by FSSEM algorithm to infer B(1) and B(2) with
λ = λ ∗ and ρ = ρ∗. The changed edges were identified based on ∆B and the two criteria described
earlier. This process of random sampling and network inference was repeated 100 times, and a
changed edge was declared to be significant, if it was detected more than 80 times.

Stability selection yielded 16 edges that changed significantly. The differential network that is
formed by these 16 edges is shown in Figure 3. Most edges in the differential network are connected
with genes PSMD10, RPS6, BRIX1, VBP1 and SNRPF. As will be discussed in the next section,
these five genes have been reported in a number of experimental results to be implicated in lung and
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other cancers.

Discussion
In this paper, we developed a very efficient algorithm, named FSSEM, for joint inference of two
similar GRNs by integrating genetic perturbations with gene expression data under two different
conditions with the structural equation model. An R package implementing the FSSEM algorithm is
available, which provides a useful tool for inferring GRNs. Computer simulations showed that our
FSSEM offered much better accuracy in identifying changed gene interactions than the approach
that infers two GRNs separately. Particularly, the FDR of gene interactions in the differential GRN
estimated by FSSEM was significantly lower than that resulted from the method estimating two
GRNs separately. This result is expected because FSSEM exploits the similarity in the two GRNs
and penalizes the changes of gene interactions in the inference process.

Analysis of a data set of lung cancer and normal tissues with FSSEM detected most gene
interactions identified in another study that exploited a large number of data sets. Real data analysis
also identified several genes that may be involved in cancer development. Specifically, PSMD10
is aberrantly expressed in various cancers, and its expression level is inverse correlated with the
expression level of miR-605 (Li et al., 2014), which is repoted to be associated with lung cancer
(Yin et al., 2016). RPS6 is a component of the 40S ribosomal subunit; its expression has been shown
to increase significantly in non-small cell lung cancer (NSCLC) (Chen et al., 2015). Additionally,
RPS6 is regulated in multiple signal pathways, such as the Akt2/mTOR/p70S6K signaling pathway
(Yano et al., 2014), that are closely related to the progression of NSCLC (Chen et al., 2015). BRIX1
was identified as a key transcription factor associated with lung squamous cell carcinoma (Zhang
et al., 2017) and was also recognized as a key gene in the gastric cancer network (Kutmon et al.,
2015). SNRPF is a gene related to mRNA splicing pathway, and it was identified as a biomarker of
ovarian cancer (Bengtsson et al., 2007). Recently, it was reported that SNRPF was required for cells
to tolerate oncogenic MYC hyperactivation (Hsu et al., 2015). VBP1 is a gene identified to bind to
the tumor suppressor gene VHL (Tsuchiya et al., 1996), and it was reported that VBP1 repressed
cancer metastasis by enhancing HIF1α degradation induced by pVHL (Kim et al., 2018).
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Supplementary Text S

Hyper-parameter selection
We use K-fold cross-validation (CV) to determine the value of τ for ridge regression (4) and
values of λ and ρ for FSSEM, where K typically equals to 5 or 10. We search τ over a se-
quence of 50 values increasing from 10−6 to 102 evenly on the logarithm scale, and the optimal
value of τ is chosen to minimize the predication error calculated from the test data. We em-
ploy a grid search strategy to determine the optimal values of λ and ρ . We first determine the
maximum value of λ , namely λmax, then choose a set of k1 values for λ , denoted as sequence
Sλ = {λmax,α1λmax,α

2
1 λmax, ...,α

k1−1
1 λmax}, where 0 < α1 < 1. For each value of λ ∈ Sλ , we find

the maximum value of ρ , namely ρmax(λ ), and then choose a set of k2 values for ρ , denoted as
Sρ(λ ) = {ρmax(λ ),α2ρmax(λ ),α

2
2 ρmax(λ ), ...,α

k2−1
2 ρmax(λ )}, where 0 < α2 < 1. This gives a set

of K = k1k2 pairs of (λ ,ρ), and CV is carried out over this parameter space. The optimal values of
λ and ρ are chosen to minimize the likelihood calculated from the test data.

Next, we derive the maximum values of λ and ρ needed in CV. The value λmax yields B(1) =
B(2) = 0, and can be found from the result in (Cai et al., 2013) as follows:

λmax = max
i, j=1,...,n,k=1,2

|−nk +
1

σ2 (Ỹ(k)Ỹ(k)T −F(k)(λmax)X̃(k)Ỹ(k)T )i j|

w(k)
i j

, (S1)

where F(k)(λmax) can be determined from (7) by setting B̂(k)
i,−i = 0,∀i = 1, ...,n. When ρ = ρmax(λ ),

minimizing J(B,F) in (3) yields B(1) = B(2). Therefore, we let B(1) = B(2) = B, which yields

J(B,F) =− n1 +n2

2
log |I−B|2 + 1

2σ̂2

2

∑
k=1
||(I−B)Ỹ(k)−F(k)X̃(k)||2F

+λ ||B||1,w(1)+w(2)

s.t. Bii =0, ∀i = 1, ...,n.

(S2)

Then, we use the SML algorithm (Cai et al., 2013) or the BCD approach of FSSEM mentioned in
the main text to get B̂ that minimizes J(B,F) in (S2). Using the fact that when ρ = ρmax(λ ), the
sub-gradient of J(B,F) in (3) w.r.t. B̂i, j equals to zero at B̂(1) = B̂(2) = B̂, we obtain

∣∣∣ Nkci j

det(I− B̂)
+

1
σ2 ((I− B̂)Ỹ(k)Ỹ(k)T −F(k)(λ )X̃(k)Ỹ(k)T )i j +λw(k)

i j ∂ |B̂(k)
i, j |
∣∣∣≤ ρmax(λ )ri j (S3)

where ∂ (|β |) is the sub-gradient of |β |, and ∂ (|β |) = 1, if β > 0, ∂ (|β |) = −1, if β < 0, and
∂ (|β |) ∈ [−1,1] if β = 0, and ci j is the (i, j) co-factor of I− B̂. From (S3), we obtain

ρmax(λ ) =

max
i, j,k

∣∣∣ Nkci j

det(I− B̂)
+

1
σ2 ((I− B̂)Ỹ(k)Ỹ(k)T −F(k)(λ )X̃(k)Ỹ(k)T )i j +λw(k)

i j ∂ |B̂(k)
i, j |
∣∣∣/ri j

(S4)
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Convergence analysis
When the objective function in an optimization problem is non-convex and non-smooth, it is possible
that the coordinate descent method fails to converge. We next prove that the FSSEM algorithm
converges to a stationary point, because the objective function satisfies the conditions for the
convergence of the PALM method specified in (Bolte et al., 2014). Specifically, J(B) in (15) has
the following properties:

1. infH(B)>−∞ and inf fi(Bi,−i)>−∞, i = 1, ...n.

2. ∇Bi,−iH(B) , i = 1, ...,n, is gradient Lipschitz continuous with constant Li(B−i) when B ∈
domH = {B : det(I−B(k)) 6= 0,k = 1,2}:

||∇Bi,−iH(x,B−i))−∇Bi,−iH(y,B−i))|| ≤ Li(B−i) ||x− y||,

where B−i = {B(k)
j,− j, j = 1, ...,n, j 6= i,k = 1,2}.

3. H(B) has continuous first and second derivatives when B ∈ domJ = {B : det(I−B(k)) 6=
0,k = 1,2}.

4. J(B) satisfies the Kurdyka-Łojasiewicz(KL) property.

Note that properties 1-3 are identical to the properties in assumption B of (Bolte et al., 2014),
and these 4 properties guarantee that FSSEM algorithm converges to a critical point. First, it is
apparent that H(B)>−∞ and therefore J(B)>−∞, ∀B ∈ domJ. Second, it is not difficult to show
that H(B) is differentiable w.r.t. Bi,−i, i = 1, ...,n and the first-order and second-order derivatives
are continuous in domH. Therefore, property 3 is satisfied.

Third, we prove in the next section that H(Bi,−i,B−i) is gradient Lipschitz continuous with
constant Li(B−i) given in (21). Moreover, based on assumption B(iii) of (Bolte et al., 2014), Li(B−i)
guarantees that proximal steps in the FSSEM algorithm remain well-defined, because we have

inf{Li(B−i)}= infmax{Li(B
(k)
−i ) , k = 1,2} ≥ µi

µi = max{λmax(Ỹ
(k)
−i P(k)

i Ỹ(k)T
−i )/σ

2 , k = 1,2}.
(S5)

Finally, we prove that property 4 holds. The non-smooth functions fi(Bi,−i) in J(B) is the
sparse fused lasso penalty term w.r.t. Bi,−i, and it is semi-algebraic as shown in (Xu and Yin, 2013).
The `2 norm ∑

2
k=1 ||Ỹ

(k)
i P(k)

i −B(k)
i,−iỸ

(k)
−i P(k)

i ||22 is apparently semi-algebraic. We next prove that
−∑

2
k=1

nk
2 logdet |I−B(k)|2 is semi-algebraic too. We can regard nk

2 logdet |I−B(k)|2 , k = 1,2, as a
composite function of B(k) as follows

−nk

2
log |I−B(k)|2 = (g◦F)(B(k))

g(·) =−nk

2
logdet(·)

F(·) = (I−·)T (I−·),

(S6)

Function g(·) is locally convex function (Boyd and Vandenberghe, 2004). Based on the result in
(Xu and Yin, 2013), it is not difficult to show that g(·) satisfies the KL property, and it can be shown
that function F : Rn×n→ Rn×n is continuously differentiable in domJ. As all terms of J(B) are KL
functions, the sum of theses KL functions should satisfy the KL property (Li and Pong, 2017). This
completes the proof that J(B) satisfies properties 1-4.

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2018. ; https://doi.org/10.1101/466623doi: bioRxiv preprint 

https://doi.org/10.1101/466623
http://creativecommons.org/licenses/by-nc-nd/4.0/


19

Derivation of the Lipschitz constant of ∇Bi,−iH(B)
In this section, we derive the Lipschitz constant of ∇Bi,−iH(B) in (16), where we drop index t in
B[t] for notational simplicity. From (16), we obtain the following:∣∣∣∣∣∣∇Bi,−iH(x,B−i)−∇Bi,−iH(y,B−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ −nk(y− x)cicT
i

(cii− xci)(cii− yci)
+

1
σ2 (y− x)Ỹ−iPiỸT

−i

∣∣∣∣∣∣
≤

( nk||ci||22
min
Bi,−i

det(I−B)2 +λmax(Ỹ−iPiỸT
−i)/σ

2
)
||y− x||,

(S7)

where minBi,−i det(I−B) is the minimal value of det(I−B) for a given B−i ∈ domJ, and λmax(Ỹ−iPiỸT
−i)

is the maximum eigenvalue of Ỹ−iPiỸT
−i. The Lipschitz constant of ∇Bi,−iH(B) is then given by

Li(B−i) =
nk||ci||22

min
Bi,−i

det(I−B)2 +λmax(Ỹ−iPiỸT
−i)/σ

2. (S8)

The value of minBi,−i det(I−B)2 can be determined as follows.
Define Θ = I−B, and let θ T

i be the ith row of Θ, and Θ−i be the sub-matrix of Θ that excludes
θ T

i . Then, we have,

det(Θ)2 = det(ΘΘ
T ) = det(Θ−iΘ

T
−i)×θ

T
i (I−Θ

T
−i(Θ−iΘ

T
−i)
−1

Θ−i)θi, (S9)

where Θ−i,−i is the submatrix of Θ excluding the ith row and the ith column. Here we assume
B ∈ domJ, and thus det(ΘΘ

T )> 0. Since Θ−iΘ
T
−i is a submatrix of ΘΘ

T , the Cauchy’s interlacing
theorem (Hwang, 2004) implies det(Θ−iΘ

T
−i)> 0. Therefore, (Θ−iΘ

T
−i)
−1 in (S9) exists.

For notational simplicity, we let bi = BT
i,−i and write (S9) as

det(Θ)2 = det(Θ−iΘ
T
−i)(1+ ||bi||22− (ΘT

−i,i−bT
i Θ

T
−i,−i)(Θ−iΘ

T
−i)
−1(Θ−i,i−Θ−i,−ibi)). (S10)

Minimizing det(Θ)2 in (S10) w.r.t. bi yields

b̂i =−(I−Θ
T
−i,−i(Θ−iΘ

T
−i)
−1

Θ−i,−i)
−1

Θ
T
−i,−i(Θ−iΘ

T
−i)
−1

Θ−i,i. (S11)

Substituting b̂i into (S10) gives the minimum value of det(Θ)2. In practice, to ensure numerical
stability, we modify the b̂i in (S11) as follows,

b̂i =−(I−Θ
T
−i,−i(Θ−iΘ

T
−i)
−1

Θ−i,−i +ζ I)−1
Θ

T
−i,−i(Θ−iΘ

T
−i)
−1

Θ−i,i, (S12)

where ζ is a small positive constant. This modification can be regarded as minimizing (det(Θ))2

in (S11) subject to the constraint ||bi||2 ≤ c, where c is a positive constant. This is a reasonable
assumption because in real GRNs, entries of B(k) are bounded. In our implementation, we chose
ζ = 10−16 and we did not observe any numerical instability in all of our numerical experiments.
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Figure S1. Performance of FSSEM and SML for the DAG with n = 10 genes. The number of
samples n1 = n2 varies from 100 to 1,000 and noise variance σ2 = 0.01,0.25. PD and FDR were
obtained from 30 network replicates.
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Figure S2. Performance of FSSEM and SML for the DAG with n = 30 genes. The number of
samples n1 = n2 varies from 100 to 1,000 and noise variance σ2 = 0.01,0.25. PD and FDR were
obtained from 30 network replicates.
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Figure S3. Performance of FSSEM and SML for the DCG with n = 10 genes. The number of
samples n1 = n2 varies from 100 to 1,000 and noise variance σ2 = 0.01,0.25. PD and FDR were
obtained from 30 network replicates.
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Figure S4. Performance of FSSEM and SML for the DCG with n = 30 genes. The number of
samples n1 = n2 varies from 100 to 1,000 and noise variance σ2 = 0.01,0.25. PD and FDR were
obtained from 30 network replicates.
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