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Han Lu1,2, Júlia V. Gallinaro1 and Stefan Rotter1

1 Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Ger-
many
2 Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg,
France

Corresponding author:
Stefan Rotter
Bernstein Center Freiburg
Hansastraße 9a
79104 Freiburg
Germany
stefan.rotter@bio.uni-freiburg.de

Conflict of interests: The authors declare no competing financial interests.
Code Accessibility: Simulation and analysis code is available upon request.

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/466136doi: bioRxiv preprint 

https://doi.org/10.1101/466136
http://creativecommons.org/licenses/by/4.0/


Abstract

Transcranial direct current stimulation (tDCS) is a variant of non-invasive neu-
romodulation, which promises treatment for brain diseases like major depressive
disorder. In experiments, long-lasting aftereffects were observed, suggesting that
persistent plastic changes are induced. The mechanism underlying the emergence
of lasting aftereffects, however, remains elusive. Here we propose a model, which
assumes that tDCS triggers a homeostatic response of the network involving growth
and decay of synapses. The cortical tissue exposed to tDCS is conceived as a
recurrent network of excitatory and inhibitory neurons, with synapses subject to
homeostatically regulated structural plasticity. We systematically tested various
aspects of stimulation, including electrode size and montage, as well as stimulation
intensity and duration. Our results suggest that transcranial stimulation perturbs
the homeostatic equilibrium and leads to a pronounced growth response of the net-
work. The stimulated population eventually eliminates excitatory synapses with the
unstimulated population, and new synapses among stimulated neurons are grown
to form a cell assembly. Strong focal stimulation tends to enhance the connectivity
within new cell assemblies, and repetitive stimulation with well-chosen duty cycles
can increase the impact of stimulation even further. One long-term goal of our work
is to help optimizing the use of tDCS in clinical applications.

Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tech-
nique, where a weak constant current (1−2 mA) is applied to the brain via large electrodes
attached to the scalp (Edwards et al., 2013). tDCS induces weak electric fields which are
typically not sufficient to trigger action potentials directly, but can polarize the mem-
brane of neurons by fractions of millivolts (Joucla and Yvert, 2009), depending on the
orientation of the electric field vector relative to the somato-dendritic axis of the neuron
(Wiethoff et al., 2014; Gluckman et al., 1996; Radman et al., 2009). This membrane
potential deflection can influence spike timing and firing rates of neurons which are part
of an active network (Bikson et al., 2006; Vöröslakos et al., 2018). Similar to other meth-
ods of neuromodulation, tDCS is claimed to have a potential for alleviating symptoms of
certain brain diseases, such as major depressive disorder (Nitsche et al., 2009; Loo et al.,
2012) or chronic pain (Garcia-Larrea, 2016; Ngernyam et al., 2015).

Although there is a record of promising applications of tDCS, both positive and neg-
ative outcomes have been reported in the literature (Horvath et al., 2015). Typical issues
are due to insufficient sensitivity of measurements, or large inter-subject and intra-subject
variability (Wiethoff et al., 2014). Positive evidence includes immediate changes of neural
activity caused by tDCS, observed both in humans and in rodents. Positron emission
tomography (PET) in humans revealed that tDCS can influence the activity of neurons
in different brain regions (Lang et al., 2005), but the most affected region varies with
electrode montage (Kuo et al., 2013), skull thickness (Opitz et al., 2015), individual ge-
ometry of cortex (Opitz et al., 2015), preexisting lesions (Minjoli et al., 2017), and other
aspects. Systematic transcutaneous current stimulation experiments in rats (Vöröslakos
et al., 2018) could establish quantitative relations between the externally applied current,
the induced electric field, the associated membrane potential deflection, and the resulting
firing rate change.
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In addition to the instant impact on activity during stimulation, a sustained modula-
tion of neural activity was also observed in humans after stimulation was turned off. Last-
ing aftereffects of tDCS, measured as motor evoked potentials (MEP) triggered by tran-
scranial magnetic stimulation (TMS), were first reported by Nitsche and Paulus (2000),
and later confirmed in motor cortex (Nitsche and Paulus, 2001) and somatosensory cor-
tex (Matsunaga et al., 2004). Animal studies suggested that the elevated activity and
excitability is not due to reverberating networks (Gartside, 1968a). Rather, changes in
synaptic protein synthesis (Gartside, 1968b) point towards increased synaptic plasticity.
In turn, blocking either brain-derived neurotrophic factor (BDNF) (Fritsch et al., 2010),
NMDA receptors (Nitsche et al., 2003) or calcium channels (Monte-Silva et al., 2013)
leads to a reduction of the stimulation-induced increments of the field potential in mice,
or MEP in humans. Recent evidence suggests that multiple forms of plasticity are in fact
contributing to tDCS aftereffects. Monte-Silva et al. (2013) observed that fast facilita-
tion, or early-LTP (e-LTP), was induced after a single tDCS session (13 min) and lasted
for at least 2 h post stimulation. In contrast, 26 min stimulation resulted in a reduced
MEP amplitude. More interestingly, repetitive tDCS with 20 min pauses interspersed
(13 − 20 − 13 min) resulted in late facilitation, or late-LTP (l-LTP). An elevated MEP
was observed one day after the second stimulation, but not immediately after it. Func-
tional LTP-like plastic changes of existing synapses were observed in DCS (Ranieri et al.,
2012). Given the time scales of l-LTP, structural plasticity involving network remodeling
also seems to play a role for the aftereffects. Structural changes at a slower time scale,
however, can easily be underestimated due to difficulties measuring synapse turnover and
changes in neuronal morphology in vivo. In summary, it is likely that both Hebbian
and homeostatic, as well as functional and structural forms of plasticity underlie tDCS
aftereffects.

Quantitative models of network remodeling have previously been described in the
literature. Butz et al. (2014) first introduced the term homeostatic structural plasticity
with reference to previously published versions of the theory (Butz et al., 2009; Butz and
van Ooyen, 2013; Van Ooyen, 2011), which was based on ample experimental evidence that
structural plasticity (Trachtenberg et al., 2002; Oray et al., 2004; Holtmaat and Svoboda,
2009; Pfeiffer et al., 2018) as well as homeostatic regulation of activity (Turrigiano and
Nelson, 2004; Lee et al., 2013; Keck et al., 2013) are constantly taking place in many brain
areas. This homeostatic structural plasticity model was able to provide explanations for
cortical reorganization after stroke (Butz et al., 2009) and lesion (Butz-Ostendorf and van
Ooyen, 2017), and for the formation of certain global network features during development
(Butz et al., 2014; Gallinaro and Rotter, 2018). In this model, changing the number of
synaptic contacts between two neurons leads to an apparent facilitation or depression
of this specific connection, and the model may therefore also account for some cases
of functional plasticity. Based on these previous insights it seemed natural to explore
the contribution of homeostatic structural plasticity to the long-lasting aftereffects of
transcranial brain stimulation.

In the present work, we hypothesize that employing proper stimulation protocols and
adequate current strengths, tDCS is potent enough to polarize single neurons in a network
(Vöröslakos et al., 2018). Based on this assumption, we assess the effect of such membrane
potential deflections on neuronal firing rates. In a neural network model with homeostatic
structural plasticity, we then systematically explore the influence of various stimulation
parameters known from tDCS practice, such as electrode size and montage, stimulation
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strength and repetitive stimulation protocols. Our results suggest that tDCS can indeed
induce substantial network remodeling and cell assembly formation, and focused strong
and/or repetitive stimulation with well-chosen duty cycles can effectively boost the con-
nectivity of the cell assemblies formed. The enhanced cell assembly might contribute to
the empirical finding of profound plastic responses and enhanced therapeutic effects ob-
served in current tDCS applications with a high-definition montage (Kuo et al., 2013) and
repetitive stimulation (Monte-Silva et al., 2013). Our analysis also provides explanations
for some of the negative results in tDCS practice.

Methods

Neuron model

All large-scale simulations of plastic neuronal networks of this study were performed with
the NEST simulator (Linssen et al., 2018). Most were simulated with NEST 2.14, while
NEST 2.16 with MPI-based parallel computation was used in the long repetitive protocol
to achieve long simulation times. The linear, current-based leaky integrate-and-fire (LIF)
neuron model was used throughout. The dynamic behavior of this point neuron model is
described by the ordinary differential equation

τm
d

dt
Vi(t) = −Vi(t) + τm

∑
j

JijSj(t− d) + ∆V (t), (1)

where τm is the membrane time constant. The variable Vi(t) is the membrane potential of
neuron i, with a resting value at 0 mV. ∆V (t) represents a polarization of the membrane
imposed by an external electric field. The spike train generated by neuron i is denoted by
Si(t) =

∑
k δ(t− tki ), where tki represent the individual spike times, and d is the synaptic

transmission delay. The entries of the matrix Jij denote the amplitude of the postsynaptic
potential that is induced in neuron i upon the arrival of a spike from neuron j. In our
model, all excitatory synapses have the amplitude JE = 0.1 mV, whereas all inhibitory
synapses have an amplitude of JI = −0.8 mV. When the membrane potential Vi(t) reaches
the firing threshold, Vth, an action potential is generated and the membrane potential is
reset to Vreset = 10 mV. All parameters are once more listed in Table 1.

Model of transcranial DC stimulation

The electric field (EF) induced by tDCS can directly affect the membrane potential of
neurons. Following Vöröslakos et al. (2018), we assumed that a strong enough EF will
cause a small but significant membrane potential depolarization or hyperpolarization on
some neurons in the network. The effective membrane potential deflection is determined
by the orientation of the electric field vector relative to the somato-dendritic axis of
the neuron (Wiethoff et al., 2014; Gluckman et al., 1996; Radman et al., 2009). When
the electric field is properly aligned with the axis (apical dendrite closer to anode than
soma), the somatic membrane potential is depolarized and the neuronal firing rate is
increased. In contrast, if the electric field is perpendicular to the axis, it cannot influence
the activity of this particular neuron. As a consequence, cells with extended and non-
isotropic morphology, such as pyramidal neurons, should generally be more influenced
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by tDCS than the more compact inhibitory interneurons, which is also confirmed by
Vöröslakos et al. (2018). Therefore, we assume only excitatory neurons to be sensitive
to tDCS due to their spatial extent and non-isotropic morphology. We then asked the
question, whether such a polarization could also cause significant changes in firing rate
and, as a consequence, trigger structural plasticity and network remodeling. As our
model neurons are actually point neurons with no spatial extent, we simply imposed an
equivalent membrane potential bias ∆V on the soma of the neuron (Kayyali and Durand,
1991; Gluckman et al., 1996), see Figure 1A. This membrane potential bias also reflects
the angle θ between the EF vector and somato-dendritic axis of the neuron with a factor
cos(θ), see Figure 1B. The smallest magnitude of a membrane potential deflection reported
in tDCS experiments to trigger physiological effects was in the range of 0.1 mV (Jackson
et al., 2016; Vöröslakos et al., 2018).

Relative strength of background activity and tDCS

The effect of tDCS on a neuron with ongoing activity was assessed with single neuron
simulations. The background input impinging onto the neuron was approximated by
a spike train with Poisson statistics and rate νext = 18.1 kHz, coupled to the neuron
with synapses of strength Jext = 0.1 mV. Given the parameters of our neuron model, this
ongoing background activity leads to a fluctuating sub-threshold membrane potential with
a mean value µ = νextτmJext = 18.1 mV (Brunel, 2000). Different values of membrane
polarization caused by tDCS (from 0.1 mV to 1.2 mV) were considered in our study, as
described above. The firing rate of each condition was estimated from simulations of 100 s
duration.

Network model

Although there is a variety of EF distributions induced by different tDCS montages, we as-
sume that neurons in the area most affected by stimulation are equally affected by tDCS
(Jackson et al., 2016). This most affected area is modeled as an inhibition-dominated
recurrent network (Brunel, 2000), comprising 10 000 excitatory and 2 500 inhibitory neu-
rons. All connections involving inhibitory neurons were taken to be static. Excitatory
and inhibitory synapses had fixed synaptic weights of JE = 0.1 mV and JI = −0.8 mV,
respectively. All these connections were randomly established, with 10% connection prob-
ability. In contrast, excitatory-to-excitatory (E-E) connections were subject to a growth
rule called homeostatic structural plasticity (Gallinaro and Rotter, 2018; Butz and van
Ooyen, 2013; Diaz-Pier et al., 2016). The network had initially no E-E connections what-
soever, and they were grown according to the specified rule during a growth period of
750 s for all simulations in the paper. Each neuron in the network received Poissonian
external input at a rate of rext = 30 kHz. For the parameters chosen here, the network
automatically entered an asynchronous-irregular state (Brunel, 2000). In all figures and
simulations, transcranial DC stimulation was only applied after the end of the growth
period. All network parameters are once more listed in Table 2.

Homeostatic structural plasticity

Connections between excitatory neurons underwent continuous remodeling, governed by
rate-based homeostatic structural plasticity, as implemented in NEST (Diaz-Pier et al.,
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2016). Excitatory synapses were formed by combining a pre-synaptic element (bouton)
and a post-synaptic element (spine). New synapses can form only if free synaptic ele-
ments are available. Pairs of neurons can form multiple synapses between them, and each
individual functional synapse has the same weight JE = 0.1 mV. It has been observed in
experiments that neurite growth is governed by the concentration of intracellular calcium.
It has been hypothesized that there is a set-point of the calcium concentration, which the
neuron strives to reach and stabilize (Ramakers et al., 2001; Mattson and Kater, 1987).
As a consequence, in the model of structural plasticity we use in our work, growth and
deletion of synaptic elements are linked to the time-dependent intracellular calcium con-
centration C(t) = [Ca2+] of the neuron in question. In fact, this variable has been shown
to be a good indicator of the neuron’s firing rate (Grewe et al., 2010). Whenever the
neuron emits a spike, the intracellular calcium concentration experiences an increase by
the amount βCa through calcium influx. Between spikes, the calcium concentration decays
exponentially with time constant τCa,

d

dt
C(t) = − 1

τCa

C(t) + βCaS(t). (2)

The synaptic growth rule is as follows. When the firing rate (or calcium concentration)
falls below its set-point, the neuron will grow new synaptic elements and form functional
synapses to compensate for the lack of excitatory input. In contrast, if the firing rate
rises above the set-point, existing synapses are broken up and synaptic elements are
removed. The respective counter-parts are added to the pool of free synaptic elements.
We adopted a linear growth rule applying to both presynaptic and postsynaptic elements
alike (Gallinaro and Rotter, 2018)

d

dt
z(t) = ν

[
1 − 1

ε
C(t)

]
, (3)

where z(t) is the total number of (presynaptic or postsynaptic) elements a neuron has
available, ν is the growth rate, and ε is the target level of calcium concentration. In any
given moment, free synaptic elements are randomly combined with matching free synaptic
elements of other neurons, forming new functional synapses. All the parameters defining
the structural plasticity rule are listed in Table 3.

Protocols of transcranial DC stimulation

As suggested by current tDCS practice, many factors are essential to the outcome of
a stimulation. For example, the traditional montage of two large sponge electrodes of
size 5 cm × 7 cm induces a diffusive and weak EF. In contrast, high-definition montage
using a small anodal electrode surrounded by several small cathodal electrodes induces a
focal and relatively strong EF for the same stimulation current (Edwards et al., 2013).
High-definition montage induces higher current densities, affects smaller populations, and
possibly opposite field polarity at the edge of the cathodes. This method also exhibits
better performance in tDCS practice, as compared to conventional montage (Kuo et al.,
2013). To test these factors in our model we employed three different scenarios and
systematically changed the size of the stimulated focus and the intensity of the stimulation
in all of them. A summary of the parameters used in the different stimulation protocols
described in this section can be found in Table 4.
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Uni-group

The first protocol we considered was a simplified scenario, in which only a subgroup of
excitatory neurons in a large network was polarized by tDCS according to the above
described protocol, while the remaining neurons were not affected and received only base-
line external input. The focality of the stimulation is quantified by the percentage of
excitatory neurons stimulated fG1. The more focused a stimulation is, the smaller is the
subgroup of neurons affected by tDCS. The intensity of stimulation, on the other hand,
is quantified by the amount of polarization. A stronger EF would lead to stronger mem-
brane polarization of the soma of the model neurons. After a certain stimulation time
tstim, tDCS is turned off and the network is allowed to relax for a period of trelax. Table 4
shows the values of fG1 and ∆V , as well as tstim and trelax, used for the different figures.

Bi-group

Neurons in biological brains may not be uniformly polarized by stimulation. This is
reflected in the bi-group scenario, in which a subgroup of neurons containing a fraction
fG1 of all excitatory neurons is polarized by ∆V1 (similarly to the uni-group scenario),
while the remaining excitatory neurons fG2 are stimulated with the same magnitude, but
opposite polarity ∆V2. Similarly to the uni-group scenario, after a certain stimulation
time tstim, tDCS is turned off and the network is simulated for a relaxation period trelax.
The effect of stimulation on connectivity IG was calculated as described below.

Tri-group

We designed yet another protocol, the tri-group scenario, to study the interaction of
two actively stimulated subgroups with an unstimulated background. Two subgroups of
excitatory neurons of the same size fG1 and fG2 are stimulated with the same magnitude,
but different polarity ∆V1 and ∆V2. The remaining excitatory neurons in the network
fG3 remain unstimulated. The resulting effect of stimulation on connectivity is measured
as described below.

Repetitive patterns

To examine the effects of repetitive on-off stimulation, a certain fraction fG1 of the exci-
tatory neurons was stimulated in multiple cycles with the uni-group protocol. Each cycle
corresponds to a stimulation period of length t1 followed by a pause of length t2. The
number of cycles nc in each scenario was arranged to achieve a total DC stimulation time
of nct1 = 6 000 s.

Repetitive alternating stimulation is similar to the repetitive on-off protocol based on
the uni-group scenario. The difference is that, instead of pausing, neurons are stimulated
with opposite polarity and same magnitude. In table 4 we compiled a summary of all
parameters for the stimulation protocols considered in our study.
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Measurements and calculations

Firing rate

The firing rate of a neuron was calculated from its spike count, in a 5 s activity record-
ing, unless stated otherwise. The mean firing rate of a population was taken to be the
arithmetic mean of firing rates across neurons in the group.

Synaptic connectivity

Let (Aij) be the n × n connectivity matrix of a network with n neurons. Its columns
correspond to the axons, its rows correspond to the dendrites of the neurons involved.
The specific entry Aij of this matrix represents the total number of synapses from the
presynaptic neuron j to the postsynaptic neuron i. The mean connectivity of this network
is then given by Γ(t) = 1

n2

∑
ij Aij, where t is the observing time point.

Time integral of the connectivity

When comparing the effects of different stimulation scenarios, one cannot simply consider
the connectivity of the cell assembly at the end of simulation, because connectivity typ-
ically decays with certain time constants. We used the integrated connectivity change
as a robust measure for the accumulated outcome of a stimulation. To account for the
integrals, we first fit the connectivity change during the relaxation phase by a sum of
three exponential decay functions

Γ(t) = A1 exp−t/τ1 +A2exp
−t/τ2 + A3 exp−t/τ3 . (4)

The parameter Ak is the amplitude of a component that decays with time constant τk.
We then computed the total integral of the connectivity by integrating the sum of ex-
ponentials, amounting to IG =

∑
k Akτk. This way we can also account for connectivity

transients that persist for a very long time, extrapolating beyond the duration of our
simulations.

Table 1: Parameters of neuron model

τm tref V0 Vreset Vth

10.0 ms 2.0 ms 0.0 mV 10.0 mV 20.0 mV

Table 2: Parameters for network model

NE NI ΓE−I ΓI−E ΓI−I JE JI rext

10 000 2 500 10% 10% 10% 0.1 mV −0.8 mV 30 kHz

Table 3: Parameters for the structural plasticity model

ε ν τCa βCa

0.008 0.004 s−1 10 s 0.0001

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/466136doi: bioRxiv preprint 

https://doi.org/10.1101/466136
http://creativecommons.org/licenses/by/4.0/


T
a
b
le

4
:

C
on

fi
gu

ra
ti

on
s

of
D

C
st

im
u
la

ti
on

F
ig

u
re

P
ro

to
co

l
f G

1
∆
V
1

[m
V

]
f G

2
∆
V
2

[m
V

]
f G

3
∆
V
3

[m
V

]
G

ro
w

th
[s

]
R

ep
et

it
io

n
t s

ti
m

o
r
t1

[s
]
t r

e
la
x

o
r
t2

[s
]

2B
u

n
i-

gr
ou

p
10

%
0
.1

90
%

0
-

-
75

0
n
o

1
5
0

3
0
0

2D
u

n
i-

gr
ou

p
10

%
0
.1

90
%

0
-

-
75

0
n
o

1
5
0

3
0
0

3A
tr

i-
gr

ou
p

3
0%

0.
1

30
%

−
0.

1
40

%
0

75
0

n
o

1
5
0

3
0
0

3B
b

i-
gr

ou
p

30
%

0
.1

70
%

−
0.

1
-

-
75

0
n

o
1
5
0

3
0
0

4A
b

i-
gr

ou
p

10
%

,
30

%
,

5
0%

,
70

%
−

1.
2,

1
.2

1
1
−
f G

1
−

∆
V
1

-
-

75
0

n
o

1
5
0

5
8
5
0

4B
u

n
i-

gr
ou

p
10

%
,

30
%

,
50

%
,

70
%

−
1.

2,
1
.2

1
−
f G

1
0

-
-

75
0

n
o

1
5
0

5
8
5
0

4C
b

i-
gr

ou
p

1
0%

,
20

%
,

30
%

,
40

%
−

1.
2,

1
.2

f G
1

−
∆
V
1

1
−
f G

1
−
f G

2
0

75
0

n
o

1
5
0

5
8
5
0

4I
al

l
50

%
−

1.
2,

1
.2

50
%

−
∆
V
1

-
-

75
0

n
o

1
5
0

5
8
5
0

5D
re

p
et

it
iv

e
10

%
0
.1

90
%

0
-

-
75

0
ye

s2
m

u
lt

ip
le

3

5E
re

p
et

it
iv

e
10

%
m

u
lt

ip
le

4
90

%
0

-
-

75
0

80
7
5

1
5
0

6-
on

-o
ff

re
p

et
it

iv
e

10
%

0.
1

90
%

0
-

-
75

0
3

1
5
0

1
5
0

6-
al

te
rn

at
in

g1
re

p
et

it
iv

e
10

%
±

0.
05

90
%

0
-

-
75

0
3

1
5
0

1
5
0

6-
al

te
rn

at
in

g2
re

p
et

it
iv

e
10

%
±

0
.1

90
%

0
-

-
75

0
3

1
5
0

1
5
0

1
T

h
e

st
im

u
la

ti
on

in
te

n
si

ti
es

ar
e
−

1.
2,

−
0.

8,
−

0
.4

,
0
.4

,
0
.8

,
1
.2

m
V

2
T

h
e

re
p

et
it

io
n

ro
u

n
d

(n
)

w
er

e
m

at
ch

ed
w

it
h
n
∗
t 1

=
60

00
s

3
T

h
e

co
m

b
in

at
io

n
s

u
se

d
ar

e
(7

5,
75

),
(7

5,
15

0)
,

(1
5
0,

75
),

(1
50
,1

50
),

(1
50
,3

00
),

(3
00
,1

50
)

s

4
T

h
e

st
im

u
la

ti
on

in
te

n
si

ti
es

ar
e

0
.0

2,
0
.0

4,
0
.0

6,
0
.0

8,
0
.1

,
0
.2

,
0
.3

,
0
.4

,
0
.5

m
V

A
ll

re
su

lt
s

in
th

is
st

u
d

y
ex

ce
p

t
F

ig
u

re
4I

an
d

F
ig

u
re

5E
ar

e
av

er
ag

es
fr

om
30

in
d

ep
en

d
en

t
si

m
u

la
ti

on
s.

9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/466136doi: bioRxiv preprint 

https://doi.org/10.1101/466136
http://creativecommons.org/licenses/by/4.0/


Results

Immediate firing rate modulation by transcranial DC stimulation

We assume that the direct current applied to the brain during transcranial stimulation
induces small deflections of the somatic membrane potential of neurons (Vöröslakos et al.,
2018) and study the consequences of this deflection on neuronal firing rates. A polariza-
tion of the membrane ∆Vm in the range between −1.2 mV and 1.2 mV, which is not strong
enough to elicit spikes in a neuron at rest, can nevertheless induce appreciable firing rate
changes in a neuron with ongoing activity. Figure 1B and C shows how the firing rate of a
model neuron driven by background input is modulated by both the strength of the depo-
larization and the angle θ between the electric field (EF) and the somato-dendritic axis.
Even for a polarization as weak as ±0.1 mV, which is about the weakest depolarization
known to cause observable physiological effects in tDCS experiments (Vöröslakos et al.,
2018), the firing rate change was found to be larger than ±10% (Figure 1B, light gray
curve). This suggests very clearly that tDCS can have an appreciable impact on neuronal
activity, even if the stimulation intensity is apparently sub-threshold. As neuronal spiking
can affect synaptic connectivity via activity-dependent plasticity, this raises the question
whether transcranial stimulation can trigger plastic effects as well. To find an answer to
this question, we set up a plastic network representing the tissue most affected by tDCS
(Figure 1E-G) and study the effect of stimulation.

Network remodeling triggered by transcranial DC stimulation

Different electrode montages are used in tDCS (Figure 1D), and they are thought to trigger
different electric field distributions in the whole brain. We only modeled the most affected
region stimulated by the peak current intensity. To explore the homeostatic response of
the network, and the plastic processes associated with it, we first considered a simplified
setting. In the uni-group scenario, only a subset of excitatory neurons in a larger network
is stimulated (blue region in Figure 1E and Figure 2A). As shown in Figure 1F, tDCS
disrupts the homeostatic equilibrium of the stimulated neurons by increasing their firing
rate, initially leading to a deletion of synapses between stimulated neurons (see Methods
for details of the structural plasticity model). When the stimulation has ceased, the firing
rate of stimulated neurons drops due to a lack of recurrent input (Figure 2B), and the
homeostatic process now triggers the formation of new synapses, predominantly among
the stimulated neurons (Figure 2C). Figure 2F illustrates the process of cell assembly
formation, similarly to what has been described previously by Gallinaro and Rotter (2018).
Before and after the stimulation, assuming equilibrium in both cases, each neuron receives
the same external input and fires at its target-rate (here, 8 Hz). Thus, the total number of
input synapses from excitatory neurons will not have changed through stimulation. What
has changed, however, is the source of input synapses: Before stimulation, input comes
from both groups of neurons—to be stimulated (blue) and background (empty)—without
any bias. During stimulation, however, synapses are broken up, and when stimulation is
turned off, the stimulated neurons have more free synaptic elements to offer. Background
neurons, which are only indirectly affected by stimulation and deviate less from their
target rate, can only offer few synaptic elements to form new connections. Since the
formation of new synapses is based on the availability of free elements, this leads to a bias
for connections to be formed among stimulated neurons.
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Figure 1: Modeling the effect of tDCS on cortical networks. A It is assumed that
transcranial stimulation leads to a weak polarization of the neuron’s membrane potential
(left). For a point neuron, this is achieved by injecting a current of suitable strength into
its soma (right). B Firing rate modulation with the angle θ for 3 different values of ∆Vm
(dotted lines on C). C Firing rate of a neuron the ongoing activity of which is modulated
by tDCS, for different values of θ and membrane polarization ∆Vm. The contour lines
correspond to 7 Hz, 8 Hz, and 9 Hz in white, orange, and maron. D Electrode montages
used in tDCS. E The region of interest subject to tDCS is modeled as a recurrent network
of excitatory and inhibitory neurons. F Excitatory-to-excitatory synapses require the
combination of a bouton (empty triangle) and a spine (red dot). The growth rate of both
types of synaptic elements depends linearly on firing rate. G The network is grown from
scratch before each tDCS stimulation experiment.
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A similar process happens for hyperpolarizing DC (Figures 2D and E). In this case,
however, the connectivity among stimulated neurons increases during tDCS due to hy-
perpolarization and a resulting drop in firing rate. In summary, any perturbation to the
equilibrium of the network firing rate dynamics, no matter whether it is depolarizing or
hyperpolarizing, will trigger an increased synaptic turnover and network remodeling by
deleting between-group synapses and forming new synapses within the stimulated group
to form a cell assembly.

The effect of montage, focality, and intensity of transcranial DC
stimulation

Stimulation is able to induce cell assembly formation in the uni-group scenario, as illus-
trated in Figure 2. However, neurons affected by tDCS might not be uniformly depolarized
or hyperpolarized. Parameters like stimulation montage, focality or intensity certainly in-
fluence the degree to which each neuron in the stimulated population is affected, and
to what extent its membrane potential is depolarized or hyperpolarized. Therefore, we
investigated two alternative stimulation scenarios that capture some of the complexities
of neuron polarization in real tissue: tri-group stimulation (Figure 3A) and bi-group stim-
ulation (Figure 3B), the details of which are described in the Methods section. Similarly
to the simplest scenario illustrated in Figure 2, the stimulated neurons again form a cell
assembly (Figure 3E and F) also under more general conditions.

We performed a systematic study covering different degrees of stimulation focality and
intensity and compared the effects in all three scenarios: the bi-group (Figure 4A), uni-
group (Figure 4B), and tri-group (Figure 4C). Higher stimulus intensity is implemented
as a stronger membrane polarization, which results from a higher tDCS current density.
Focality, quantified as the percentage of neurons in the network affected by membrane
polarization, describes how focused stimulation is. More focused stimulation should have
a polarizing effect on a smaller percentage of neurons. In each scenario, the connectivity in
a newly formed cell assembly increases with absolute stimulation intensity and decreases
with the size of the stimulated population (Figure 4D-F). We conclude that strong and
focused stimulation (like high-definition stimulation) leads to stronger effects on the con-
nectivity of the cell assembly. We further compared the effects of bi-group, uni-group
and tri-group scenarios and found that the montage can greatly influence the outcome.
When the polarization is very strong (above 0.8 mV) and focused, the effect IG1 is much
stronger in the uni-group scenario as compared to the bi-group (Figure 4G) and tri-group
(Figure 4H) scenario. But if the stimulus is weak, its effect in the bi-group scenario is
larger than in the uni-group scenario. Therefore, using opposite polarities for stimulation
could slightly boost cell assembly formation, provided the stimulus is weak. However, for
strong and/or focused stimulation, uni-group stimulation leads to more pronounced cell
assemblies.

The application of hyperpolarizing DC to all neurons in the background population
can either amplify or attenuate the effect of the actual depolarizing stimulus. Two as-
pects might contribute to this phenomenon. Stimulating the background with reversed
polarity increases the discrepancy of the stimulated group compared to the background
(from ∆Vm to 2∆Vm), but it may reduce the firing due to an activation of inhibitory
neurons in the network. To disentangle the situation, we fixed the sizes of both the stim-
ulated and the unstimulated group at 50% and then systematically changed the stimulus
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Figure 2: tDCS triggers the formation of cell assemblies. A A subgroup comprising 10%
of all excitatory neurons in a larger network is stimulated by tDCS. B Average firing rate
of directly stimulated (blue) and unstimulated (gray) excitatory neurons before, during
and after applying a depolarizing stimulus. C Average connectivity among stimulated
neurons (blue), among unstimulated neurons (dark gray), and between neurons belonging
to different groups (light gray) upon depolarizing stimulation. D-E Similar to B-C, but
for a hyperpolarizing stimulus. Shaded areas on B-E indicate the stimulation period.
F Illustration explaining the process of structural plasticity that happened after a de-
polarizing tDCS. The stimulation triggers the removal of inter-population synapses, and
accelerates the growth of synapses among stimulated neurons, leading to the formation
of cell assemblies.

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2019. ; https://doi.org/10.1101/466136doi: bioRxiv preprint 

https://doi.org/10.1101/466136
http://creativecommons.org/licenses/by/4.0/


strength for both G1 and G2 in the range between −1.2 mV and 1.2 mV. The effect on
G1 connectivity for different polarizations of G1 and G2 is displayed in Figure 4I. The
values along the diagonal are very small, as there is no cell assembly formation when both
groups experience the same stimulation. When the difference in stimulation of the two
populations is large irrespective of its sign, the impact on G1 connectivity is also large
(upper left and bottom right corners). We then checked, whether the relative difference
between the polarization of G1 and G2 is sufficient to predict the stimulation outcome.
The white squares in Figure 4I indicate simulations, in which the difference between G1
and G2 polarization is the same (0.8 mV), but the actual connectivities for individual
groups are different. The strongest effect was achieved when the polarization of one of
the two groups is 0 mV, which corresponds to the uni-group scenario. This supports the
idea that network effects might influence the interaction between two groups, and that
uni-group stimulation can achieve better outcomes than alterantive scenarios, provided
stimulation is very strong.

The effect of repetitive transcranial DC stimulation

Repetitive stimulation was simulated in our model by repeating stimulation of duration t1
in the uni-group scenario (Figure 2) multiple times, with a pause of duration t2 between
successive stimulation periods (Figure 5A and B). The connectivity of the stimulated sub-
population generally increased upon repetition (Figure 5C). Figure 5D summarizes the
outcome of different combinations of t1 and t2. Compared to long uninterrupted DC stim-
ulus (single stimulation cycle with t1 = 6 000 s), repetitive stimulation (total stimulation
time of 6 000 s distributed multiple cycles of shorter duration t1) led to higher final con-
nectivity. We found that repetitive stimulation generally potentiated the effect of tDCS
on cell assembly connectivity. Figure 5E demonstrates that after multiple repetitions,
the connectivity appears to saturate at a level that essentially depends on the imposed
polarization. As a consequence, a single stimulation with weak intensity for very long
time does not necessarily lead to high connectivity, while repetitive stimulation at high
intensity may lead to (much) higher connectivity. In our model we also tried very strong
stimulation, repeated for several rounds. This lead to a very high assembly connectivity
and eventually also to a very high firing rate of the excitatory population. High firing
rates, in turn, induced a strong homeostatic response of the network and fast deletion of
synapses, putting the network in an unfavorable and somewhat pathological state (data
not shown).

Repetitive stimulation can also be performed in cycles of alternating polarities, instead
of a simple on-off protocol. Figure 6 shows the connectivity changes for two stimulation
patterns: on-off, in which periods of depolarizing stimulation are followed by periods of no
stimulation, and alternating, in which periods of depolarization are followed by periods
of hyperpolarization. Simply substituting the off period by stimulation with different
polarity seems to boost cell assembly connectivity (compare light green and dark brown
traces in Figure 6B). However, if the alternating pattern has the same overall amplitude
as the on-off stimulation (compare light brown and green traces in Figure 6B), the effect
on cell assembly connectivity is the same as on the on-off pattern. Figure 6C depicts
the final connectivity after 3 repetitions in 30 independent trials (mean and standard
deviation are indicated in the inset).
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Figure 3: Interactions between sub-populations and cell assembly formation in more
complex stimulation paradigms. A Tri-group scenario: 30% of all neurons in a network
(G1) are depolarized by 0.1 mV, another 30% (G2) are hyperpolarized by −0.1 mV, and
the rest of 40% receives no stimulus. B Bi-group scenario: 30% (G1) are hyperpolarized
by −0.1 mV, and the remaining 70% (G2) are depolarized by 0.1 mV. C,E Group averages
of firing rates in G1 (blue) and in G2 (yellow) before, during and after stimulation. D,F
Group averages of the connectivity within G1 (blue), within G2 (yellow) and between G1
and G2 (gray).
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Figure 4: Comparison of tDCS effects with different electrode montage, as well as
stimulus focality and intensity. A Bi-group stimulation scenario. B Uni-group stimulation
scenario. C Tri-group stimulation scenario. D-F Integrated G1 cell assembly connectivity
(IG1) at different focality and intensity levels for scenario A-C. G,H Difference between
D and E, as well as F and E, respectively. I Integrated G1 cell assembly connectivity
integrals (IG1) for different stimulation intensity levels for a specialized bi-group scenario,
where G1 and G2 comprise half of the excitatory population, respectively. The white
squares correspond to situations, where the difference between stimulation intensities of
both groups amount to 0.8 mV.
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Figure 5: Repetitive stimulation boosts network remodeling. A A subnetwork of exci-
tatory neurons (10%) is stimulated with a train of DC stimuli. Stimulation time is t1,
followed by a pause of duration t2. B,C Average firing rate and connectivity during a
train of stimuli. D For the same total stimulation time (6 000 s), the boosting depends
on the exact repetition protocol. E The peak connectivity reached depends on the stimu-
lation intensity, an asymmetric repetitive protocol (t1 = 75 s, t2 = 150 s) was used for all
simulations here.
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Figure 6: Comparison of three different scenarios for repetitive DC stimulation. A 10%
of excitatory neurons were stimulated, using the same temporal protocol (t1 = 150 s,
t2 = 150 s) in each case, but different amplitudes and polarities were employed, as indi-
cated by the three different curves. B Evolution of average connectivity for the different
stimulation scenarios, color code matches the stimulus curves in panel A. C Histograms
of the connectivity reached after 3 cycles in the different scenarios extracted from 30 in-
dependent depolarizing simulations, mean values and standard deviations are shown in
the inset.
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Discussion

We explored the plastic changes in network structure that can be induced by transcranial
direct current stimulation (tDCS), exploiting the homeostatic response of synaptic growth
and decay. We demonstrated that weak sub-threshold DC stimulation induces changes of
neuronal firing rates and, thus, triggers network remodeling and cell assembly formation.
Depolarized neurons first reduce the number of excitatory input synapses during stim-
ulation, but then create new excitatory synapses predominantly with other stimulated
neurons after stimulation is off. Interestingly, hyperpolarization also causes new synapses
being formed preferentially among stimulated neurons. Stimulation triggers a profound
and sustainable reorganization of network connectivity and leads to the formation of cell
assemblies. With the help of our model, we explored different parameters of tDCS stimu-
lation and found that strong and focused stimulation generally enhances the newly formed
cell assemblies. We also observed that repetitive stimulation with well-chosen duty cycles
can boost the induction of structural changes, and repetitive stimulation with alternating
polarization may induce even higher connectivity changes.

We used network connectivity as a direct readout of stimulation effects, which is
possible in model simulations, but cannot easily be done in experiments. However, the
factors that we found to amplify the overall impact of stimulation are not unheard of
in tDCS practice. Strong and focused stimulation, for example, which results from a
high-definition electrode montage, does indeed lead to a stronger readout (MEP) and
potentiates the therapeutic effects as compared to a conventional montage (Kuo et al.,
2013). While applying the same total current, a high-definition montage induces stronger
electric fields in smaller brain volumes (Edwards et al., 2013). Moreover, a high-definition
montage narrows down the most affected brain region. We also found in our model
that both factors indeed contribute to the induction of higher connectivity. Moreover,
repetitive stimulation can boost connectivity, provided the duty cycles are chosen right.
In fact, it has been demonstrated in experiments Monte-Silva et al. (2013) that two
13 min stimulations interrupted by a 20 min pause yields stronger MEP after-effects than
a single, uninterrupted 26 min stimulation, while a repetition with a 24 hour pause in
between could not accumulate the after-effects at all. In our model, we likewise found
that multiple stimulation episodes with properly chosen pauses can achieve better effects
than a single, uninterrupted stimulation.

Other computational approaches have been employed previously to analyze the neuron-
scale mechanisms underlying tDCS or DCS. Most notably, Bikson et al. (2006) has ex-
plored several aspects of this: extracellular potassium concentration, polarization of the
axonal terminal, action potential timing, and inhibitory neurons. Joucla and Yvert (2009)
has provided an estimate of membrane potential changes for large axons exposed to an
electric field, and Aspart et al. (2016) conceived the influence of the electric field on neu-
ronal dendrites as external input to the soma. Another computational approach based on
modern neural imaging methods has shed light on the question how strong the stimula-
tion effects actually are. Spherical head models were first used to estimate the 3D current
flow for any given electrode montage (Miranda et al., 2006). Later, fMRI based modeling
was employed to devise individualized treatment of stroke or depressive patients (Datta
et al., 2009; Ho et al., 2014; Huang et al., 2017). Our present work adopted insight and
parameters from both approaches. In addition, we developed a new and original compu-
tational model to explore the impact of structural plasticity at the level of networks. This
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provides a bridge between the level of single neurons and the level of large-scale networks.
Although our model contributes new explanations for some core observations in tDCS
practice, there are still important issues left that cannot be appropriately addressed with
our highly simplified model lacking relevant features of brain geometry. Also, the exact
rules of growth and the time scales involved in homeostatic structural plasticity remain
to be elucidated in experiments. To treat the influence of tDCS on network dynamics
and structural plasticity of multiple brain regions would require a “network of networks”
approach, which is, however, beyond the scope of our current study.

What are the actual effects of tDCS on network activity and function? Although ro-
bust and sustained effects of tDCS using relatively weak stimulation currents (1–2 mA)
have been demonstrated (Nitsche et al., 2009; Nitsche and Paulus, 2000), Horvath et al.
(2015) pointed to the difficulty reproducing positive results. Recently, Vöröslakos et al.
(2018) have shown that the amount of membrane polarization due to tDCS depends on
the strength of the applied current, and that there should be indeed no effect expected for
very low intensities. Our simulation results suggest, however, that repetition could boost
the impact on connectivity. The peak connectivity reached after sufficiently many rep-
etitions, however, depends on stimulus intensity. Very weak stimulation cannot achieve
high connectivity changes, even if repeated ad infinitum. Strong stimulation within a
safe range could achieve higher connectivity, but too strong stimulation may lead to un-
favorable network dynamics. Our model predicts very clearly that the accumulated effect
achieved by stimulation depends not only on the exact repetition pattern, but also on
stimulation intensity. On the other hand, a quantitative assessment of the aftereffects
is difficult. In our work, the effect of tDCS on the network is quantified by measuring
anatomical connectivity among stimulated and non-stimulated neurons. Such measure-
ment is currently not possible in experiments, neither in vivo nor in vitro. Transcranial
stimulation perturbs neuronal firing rates transiently and leads to the formation of cell
assemblies, which persist after tDCS has been switched off and neuronal activity is back
to baseline. Therefore, considering the homeostatic nature of structural plasticity, it is
actually impossible to measure the effect of tDCS using simple neuronal activity mea-
sures. The question is, what are the effects of altered connectivity on the activity and
the function of neuronal networks, and how can these effects be measured. This is a very
interesting question, and the answer is complicated. Even if newly formed cell assemblies
do not affect spontaneous activity as the firing rate of the neurons may be homeostatically
regulated, they might still influence the evoked responses of neurons. Interestingly, Hor-
vath et al. (2015) reviewed many tDCS studies and found that stimulation has a reliable
effect only on the MEP amplitude, out of many potential biomarkers that were tested.
The debate about the effects of tDCS on network function should, therefore, include the
measures to quantify the outcome of a stimulation.

Another important issue raised by our work is that the total effect of stimulation
might be too weak for detection. The connectivity changes triggered by a single cycle
of polarization at ∆Vm = 0.1mV can only be detected if the full connectome is avail-
able for quantification. While possible in simulations, such a scenario is unrealistic in an
experimental setting. Our simulation results suggest, however, that the outcome should
increase upon repetitive stimulation and, therefore, possibly becomes easier to measure.
The measurement time window of tDCS effects adds another puzzle to this question. The
connectivity of the stimulated plastic network undergoes constant changes. During and
after stimulation, for instance, total connectivity decreases and increases fast, constitut-
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ing the homeostatic response. In contrast, the newly formed cell assembly persists for
much longer periods and decays only with a slower time constant. It is not yet clear,
however, which parameters influence this time constant, and it might be that different
current intensity and electrode size have an impact on it. In fact, Jamil et al. (2017) re-
cently observed in experiments that the current intensity might interact with the duration
of stimulation needed for the homeostatic reversal of plasticity. If the exact stimulation
protocol indeed influences the time scale of the aftereffect, naively comparing tDCS effects
under different stimulation conditions “before” and “after” does not provide sufficient in-
formation regarding its outcome. In view of this, using a measure that takes the dynamics
of the changes triggered by stimulation into account, such as the IG measure introduced
in this work, could quantify the effects of stimulation much more reliably.

In general, one needs to interpret the results and predictions of our work on network
remodeling induced by tDCS with due caution. Our current work, however, could be
a first step toward the goal of understanding and optimizing tDCS performance. More
experiments addressing the impact of tDCS in human and in animal brains are definitely
needed, and the results of our simulation study might indicate some new directions.
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