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Abstract 
Vector-borne disease control relies on efficient vector surveillance, mostly carried out using traps 

whose number and locations are often determined by expert opinion rather than a rigorous 

quantitative sampling design. In this work we first propose a framework for ecological sampling 

design which in its preliminary stages can take into account environmental conditions obtained from 

open data (i.e. remote sensing and meteorological stations).  These environmental data are used to 

delimit the area into ecologically homogenous strata.  By employing a model-based sampling design, 

the traps are deployed among the strata using a mixture of random and grid locations which allows 

balancing predictions and fitting accuracies. Sample sizes and the effect of ecological strata on 

sample sizes are estimated from previous sampling campaigns. Notably, we found that a 

configuration of 30 locations with 4 households each (120 traps) will have a similar accuracy in the 

estimates of mosquito abundance as 300 random samples. In addition, we show that random 

sampling independently from ecological strata, produces biased estimates of the mosquito 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/465963doi: bioRxiv preprint 

mailto:l.sedda@lancaster.ac.uk
https://doi.org/10.1101/465963
http://creativecommons.org/licenses/by-nc-nd/4.0/


abundance. Finally, we propose standardizing reporting of sampling designs to allow transparency 

and repetition / re-use in subsequent sampling campaigns.  

 

Keywords 
Mosquito sampling, stratification, lattice sampling design, model-based geostatistics, Sub-Saharan 

Africa. 

 

Introduction 
Sampling design is a crucial step in any survey as it affects the quality of data collection and analysis 
(1). Sampling strategies should therefore be designed to maximise the effectiveness of the study, 
using any relevant preliminary and background data available (2). Furthermore, because published 
sampling strategies frequently inspire designs for future studies, both the design details and 
justification should be rigorously reported. Despite improvement in recent years, both the use of 
available informative data and the rigour with which sampling designs are reported continue to fall 
short of what could be achieved (3). Specifically, the amount of environmental data available from 
open-data platforms is often acknowledged but rarely exploited to support sampling design, while 
the necessary information for study repeatability, comparability or usability are often inadequately 
reported. Such data can support representativeness in investigations of population dynamics, 
epidemiological processes, and biological studies. Here we use an example from malaria vector 
surveillance to design a sampling strategy for collecting mosquitoes for whole genome sequencing 
based monitoring and evaluation.  Genomic technologies are radically transforming our 
understanding of vector-borne disease transmission dynamics (4) due to the capacity to unveil 
complex interaction between human, pathogen, vector and environment. Whole genome 
sequencing projects have revealed novel genetic loci associated with increased susceptibility to 
malaria in the human host (5, 6) and made major contributions to our understanding of how anti-
malarial and insecticide resistance evolves (6).  However, the impact of environment on genotype 
distributions is much more poorly understood, reflecting at least in part the use of insufficiently 
ecologically-informed sampling strategies. Much of the sampling conducted in vector surveillance 
studies is opportunistic and lacks a rigorous sampling framework. Often, ecological and 
entomological sampling designs rely solely on resource availability rather than aiming to maximize 
representativeness and precision of the variable of interest, e.g. collectors target locations where 
disease vectors are known to be abundant. 

Designing a field sampling strategy requires three decisions: what is the variable of interest (formally 
the estimator, e.g. vector density), the sampling approach (e.g. model-based or not, in other words, 
whether we apply a model to choose the sampling location or just use pre-existing knowledge) and 
sampling location distribution (e.g. the number and spatial / temporal distribution of sampling 
points). These decisions constitute the sampling strategy trinity (7) in which each element strictly 
depends on the other two.  Sampling strategies are further complicated by deterministic (e.g. due to 
age, environment, socio-economic, etc) and stochastic (spatio-temporal autocorrelation) factors.  
Our literature search in Web of Science on spatial sampling of mosquitoes (search terms: mosquito 
or anopheles AND sampling AND spatial, in title/keywords/abstract) shows that while all studies 
provide a general description of the sampling design, only a limited number of papers (i.e. (8-11)) 
give a detailed description of the rationale, decisions and calculations related to the “Where, When, 
How and How many” samples to collect (see for example the reviews from (12) and (13)).  In other 
literature, partial justification of the sampling design is provided. For example, (14-22) used previous 
surveillance information and remote sensing data to identify potential mosquito habitat types (or, in 
statistical terms, “strata”). However, the method used or assumptions made to choose the within-
strata location and number of traps were not described, perhaps because these were entirely guided 
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by practical considerations (i.e. (23)).  Conversely, descriptions of sampling over time are often 
provided in detail, with explicit information on the frequency and length of the sampling campaign. 

The picture that emerges from the literature is that using habitat stratification to inform sampling is 
a common procedure in vector biology, but often based on subjective or qualitative decisions. 
However, stratification has a fundamental role in describing and reducing the error in estimates of 
mosquito variation, which in turn influences surveillance success, assessment of epidemiological risk 
and genetic diversity (24).  Quantitative stratification is usually performed by identifying a set of 
(independent) environmental variables that can be used to define strata within which the property 
or properties under study (i.e. insecticide resistance) is/are relatively homogeneous (13). Unless the 
spatial or spatiotemporal process (i.e. the spatial or spatiotemporal autocorrelation of the property 
under study) is tested and found negligible (25), these approaches often incorrectly assume 
independence between samples in space and time (26) (an unrealistic assumption for most of the 
ecological processes).  Spatial and spatiotemporal heterogeneity can be accounted for in sampling 
design by adopting a geostatistical model-based sampling design (8, 27). 

Ecological stratification of sampling designs is now facilitated by web-based open data providers, 
allowing rapid access to large amounts of information on climate and land-use, which are commonly 
associated with biogeographic patterns of human and animal health and species distribution (28).  
This availability of open data (largely remote sensing) for almost every global location, combined 
with appropriate spatiotemporal algorithms (15), make quantitative ecological stratification more 
accessible as a preliminary step to any sampling programme.  Nevertheless “very few studies 
propose, at an early phase of research work, objective sampling strategies that are consistent with 
both study goals and constraints” (13). 

In this work we propose a framework for optimising the sampling design of the spatial distribution of 
mosquito populations using open data, which we hope will be relevant to a wide range of ecological, 
disease monitoring and genomic studies. The open data are used to ecologically-characterise the 
area(s) under study and inform the location of each trap or in general collection point. The sample 
size is calculated based on previous mosquito surveys and sample locations are defined to balance 
prediction and parameterization, i.e. the accuracy in predictions and the goodness of model fitting. 
The effect of ecological strata on sampling size is estimated from a previous malaria control 
surveillance campaign. Finally, we discuss the necessity and benefits of a standardization of the 
sampling design procedures and reports to make them repeatable and reusable. 

 

Materials 

GAARDian project 
The sampling design described in this work has been developed within the UK-MRC-funded 

GAARDian project (https://www.anophelesgenomics.org/gaardian).  The main objective of this 

project is to investigate the spatial and temporal scale of variation in mosquito genomes to improve 

our understanding of the processes underlying the spread of insecticide resistance. Insecticide 

resistance is a major threat to the sustained control of malaria, as 260 million averted clinical cases 

of malaria have been due to the use of insecticides that target the mosquito vector (29). 
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Study area 
 

 

Figure 1. Location of the GAARDian sampling sites, shown on a land cover background (GlobeLand30 
land covers). Map was made using ArcMap 10.4 (http://desktop.arcgis.com/en/arcmap/). Source 
administrative limits: http://www.maplibrary.org/library/index.htm.  
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Six sites were chosen based on suspected use of insecticide or presence of insecticide resistance (Fig. 

1) (see below description for each site). Around each site, an operable area was determined as the 

largest area where traps can be deployed and routinely checked by two operators, within a 60 x 

60km square centred on the site. 

 

Migori 

Migori, is located in western Kenya, about 50km from Lake Victoria and with elevation ranging from 

1200m to 1500m above sea level. The average annual temperature is 21°C, average relative 

humidity is 65% with average annual rainfall of 1,000 -1,800mm. The area experiences long rains 

from April to June and short rains from September to October. The land is mainly used for cultivation 

and grazing. There are some studies on malaria burden from the area (30, 31), but none on 

mosquito abundance or insecticide resistance even if indoor residual spraying is taking place (see 

methods). 

Aboude 

This area is located between Aboude and Agboville villages, in Southern Côte d’Ivoire. Aboude is 
located in the evergreen forest zone with altitude between 30 and 100 m above sea level. The 
climate is divided into four seasons: a long rainy season (April-July), a short dry season (August-
September), a short rainy season (October-November) and a long dry season (December to March). 
Average temperature is around 27°C and average rainfall of 120mm. Relative humidity ranges from 
70 to 85%. The hydrographic network of the region is very diversified and characterized by the 
presence of the Bandama and the N'zi Rivers with several streams. The primary activity of the rural 
population is agriculture with mainly cocoa, rubber, vegetable and irrigated rice fields with large use 
of pesticides. Malaria transmission occurs during the rainy seasons, between April and November 
(32) but insecticide resistance has not been documented to date.  

Grand Popo 

The study site in Benin is in the southwestern coastal part of the country. Elevation ranges from 0m 

to 70m above sea level. The average temperature is 28.9°C, average relative humidity is 76% with 

average annual rainfall of 190mm. The rainy season is characterized by abundant rains during April 

to July, and a lower amount of rain from September to October. The area is mostly urban and 

cultivated, and use of pesticide is common. Studies have been published on malaria incidence and 

bednet use (33-35), however there are no studies on mosquito species distribution or insecticide 

resistance.  

Obuasi 

Obuasi is located in the southern part of the Ashanti region of Ghana about 64 km south-west of the 

regional capital Kumasi. The area has an undulating terrain with most of the hills rising above 500 

meters above sea level and vegetation characteristic of the moist semi-deciduous forest type. The 

climate is semi-equatorial and characterised by two rainy seasons. The first season starts from 

March and ends in July and the second from September to November. The mean annual rainfall 

ranges between 125mm and 175 mm, while the mean average annual temperature is 25.5 °C and 

relative humidity 75% – 80% in the wet season.  Agricultural activities in the area include crop 

farming, livestock rearing, tree planting and fish farming. Mining and quarry forms the second 

largest industrial activity in the municipality and creates potential mosquito breeding sites all year 

round. Resistance to multiple insecticides in Obuasi has been documented in Anopheles gambiae 

and An. funestus mosquitoes (36-38). 
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Malindi 

The study site contains the large town of Malindi with approximately 210,000 inhabitants.  The 

climate is tropical, with a  cooler season from June to September, with daytime temperatures 

around 27-28 °C, and a hotter and humid season from November to April, with daytime 

temperatures above 30 °C. Relative humidity ranges between 80-85%. Malindi is comprised of 

commercial and residential areas, agricultural and undeveloped areas, and hotels and stores along 

the coast. Tourism, retail, fishing, and trading are the major economic activities.  This area is within 

Kenya’s endemic malaria zone with all-year risk of malaria transmission (39).  The major malaria 

control intervention in Malindi is the use of pyrethroid treated bednets. Studies to detect insecticide 

resistance show suspected Anopheles resistance to pyrethroids (40, 41). 

Muleba 

Muleba is in the Kagera region of northwest Tanzania on the western shore of Lake Victoria. The 
district lies at 1100-1600m above sea level. There are two rainy seasons: “long rains” in March – 
June (average monthly rainfall 300 mm) and “short rains” in October-December (average monthly 
rainfall 160 mm). Average annual temperature is 21°C (with minimum- maximum range of 15°C-
28°C) and average relative humidity of 66%. The area is mainly rural and is used for agriculture.  
Malaria transmission occurs throughout the year and peaks after the rainy seasons. The 
predominant malaria vectors are Anopheles gambiae s.s. and An. arabiensis, in which pyrethroid 
resistance has been detected (42). 
 

Environmental data 
We used open data information from several sources to stratify the ecological variations of each 

study site. These data include land cover, climate and topography. 

GlobeLand30 (http://www.globallandcover.com/GLC30Download/index.aspx) is a global land cover 

map of 30m resolution produced by the National Geomatics Center of China and containing 10 land 

cover classes (full description of classes in (43)).  The images used for GlobeLand30 classification are 

multispectral images, including the TM5 and ETM + of America Land Resources Satellite (Landsat) 

and the multispectral images of China Environmental Disaster Alleviation Satellite (HJ-1).  

GlobeLand30 raster adopts WGS84 coordinate system, UTM projection, 6-degree zoning and the 

reference ellipsoid is WGS 84 ellipsoid. 

The moderate-resolution imaging spectroradiometer (MODIS) satellite products are provided in 

monthly time-series at 0.05 degree (~5km) resolution from observations by the MODIS sensor on 

Terra (AM) for the period February 2000 to December 2013 inclusive and available at 

(https://ora.ox.ac.uk/objects/uuid:896bf37f-a56b-4bc0-9595-8c9201161973) (44). The following 

MODIS products were used: 

• MODIS Enhanced Vegetation Index (EVI) from the MOD13C2 product comprises monthly, 
global EVI. This resource provides consistent spatial and temporal comparisons of vegetation 
canopy greenness, a composite property of leaf area, quantity of chlorophyll and canopy 
structure. EVI improves sensitivity over dense vegetation conditions or heterogeneous 
landscapes when compared to Normalized Difference Vegetation Index (NDVI). 

• MODIS Air Temperature (Temp) from the MOD07_L2 Atmospheric Profile product comprises 
monthly, global temperature at the closest level to the earth’s surface. 

• MODIS Evapotranspiration (ET) from the MOD16 Global Evapotranspiration product is 
calculated monthly as the ratio of Actual to Potential Evapotranspiration (AET/PET).  
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Precipitation was obtained from WorldClim Version 2 as average annual precipitation from 1970 to 

2000 at 30 arcseconds (1 km2 ca.) (http://worldclim.org/version2) (45). Finally, elevation was 

obtained from the NASA Shuttle Radar Topographic Mission (SRTM) 90m Digital Elevation Database 

v4.1.  The SRTM 90m DEM’s have a resolution of 90m at the equator. The DEM is available in 

geographic coordinate system – WGS84 datum 

(https://drive.google.com/drive/folders/0B_J08t5spvd8VWJPbTB3anNHamc).  

Land cover, precipitation and elevation were re-projected at 5km, the same spatial resolution of the 

MODIS products, using a nearest-neighbour method for the categorical variable (land cover) and the 

bilinear interpolation method for continuous variables (precipitation and elevation) (46). 

 

Methods 
We have adapted the sampling framework proposed by Wang et al. (7) to include the identification 

of ecological strata:  

i) Sample size optimization. 
ii) Stratification (ecological delineation). 

iii) Spatial allocation of the sampling households. For the present study the malaria vector 

species we are targeting, within the An. gambiae species complex, are usually highly 
anthropophilic and commonly found in houses.  

Description of each step is given below. 

 

Sampling size optimization. 
For one of the collection areas (Migori, Kenya, location 4 in Fig. 1), additional data were available 

from entomological surveillance carried out from December 2015 to September 2017 as part of 

indoor residual spraying (IRS) (Abong’o et al unpublished; http://www.africairs.net/about-airs/), 

which we will refer to as AIRS data hereafter.  Following the methodology of the GAARDian project, 

collections are made using attractant light traps, which by placement near sleeping space, sample 

female mosquitoes that are actively seeking a blood meal. Light trap collections can be an accurate 

proxy of transmission risk (47). We used this preliminary information about mosquito abundance to 

estimate the optimal sample size (in terms of mosquito distribution) to be used in all sites. 

From the AIRS data, we first estimated the spatial covariance function (via maximum likelihood 

estimation, (48)) that was used to simulate a Log Gaussian Cox process (LGCP) (49) mimicking the 

mosquito distribution process found in Migori.  This can be translated in lay words as a process 

(mosquito catches) that is environmentally driven but producing values of catches that can be 

considered independent (i.e. catch on one occasion does not predict subsequent catches in the same 

or nearby locations). 

The Gaussian random field is of the form (50): 

𝑦(𝑙) = 𝜇(𝑙) + 𝑍(𝑙) + 𝜀        [1] 

where l is the location, µ is the mean, Z is the gaussian process with Matern correlation function, and 

ε is the error term (noise or nugget). 

The Matern correlation function has the general form: 
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𝑍(𝑙) =
1

2ℎ−1𝛤(ℎ)
(
2𝑙√ℎ

𝑟
)
ℎ

𝐾ℎ (
2𝑙√ℎ

𝑟
)      [2] 

where Kh(·) is the modified Bessel function of order h and r is the spatial range (51). Both h and r 

must be positive and different from 0. 

Finally the Poisson LGCP can be written as (52): 

𝑌(𝑙)𝑃(𝜆(𝑙))         [3] 

𝜆(𝑙) = 𝑒𝑥𝑝⁡(𝑦(𝑙))        [4] 

where Y is the mosquito density point process and λ is the conditional mean. 

From the LGCP we predicted the estimated variance in the parameters of the spatial covariance 

function and the prediction error for a set of sample sizes (15, 30, 75, 150, 200 and 300) assumed 

randomly allocated in the area of Migori. 

This will allow the allocation of the (limited) resources to obtain the sample size that will produce 

the desired prediction error (which should be lower than the expected average number of 

mosquitoes caught) and variance in the spatial covariance parameters (if this is an objective of the 

sampling design). 

 

Stratification (ecological delineation) 
In many areas of physical, engineering, life and social sciences, inferential and predictive 

classification are prevalent tools to discriminate between classes and to interpret the differences. 

Examples range from identification of ecological niches to brain and bone anomalies. While the 

growing amount of open access information enables discrimination among a large number of 

ecological classes, many traditional algorithms fail for these data because of decreased classification 

performance (leading to overfitting) and mathematical/practical limitations (53). One method is to 

describe ecological strata in terms of transformed environmental variation (i.e. factorial analyses) 

(13), but the results can be difficult to interpret. By contrast, discriminant analysis (DA) requires less 

computational time and resources because no parameter tuning is required (54). Discriminant 

analysis (55) is a common multivariate statistical approach for data classification (for example, in 

2016, 3,107 scientific articles were published on the use or improvement of discriminant analysis – 

search terms used in Web of Science: discriminant analysis, in title/keywords/abstract).  

The simplest forms of DA are linear (LDA) and quadratic (QDA). Linear Discriminant Analysis can be 

seen as a regression line whose orientation divides a high-dimensional space, reducing the 

dimensionality while keeping each class separate from the other classes. In practice, the optimal 

orientation is the one that minimizes the within-class variance and maximizes the between-class 

variance (56). The main assumption of LDA is that all the classes have a common variance-covariance 

matrix, i.e. the relationships between classes and explanatory variables are independent from class 

membership, while the differences between classes are dependent only on the mean. 

When the variance-covariance matrices are not homogeneous for two or more classes, linear 

discriminant analysis cannot be applied. Instead the QDA can be employed. The QDA discriminant 

function is: 
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𝑓𝑖
𝑄
=

−1

2
𝑙𝑜𝑔|𝛴𝑖| −

1

2
((𝑋 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑋 − 𝜇𝑖)) + 𝑙𝑜𝑔(𝑝𝑖)     [5] 

 

where X is the matrix of variables, µ the vector containing the mean of each variable and Σ is the 

variance-covariance matrix, and pi the “prior” probability of each point to belong to the class i. i is 

the subscript for class i, with i = 1, …, N where N is the total number of classes.  

f is calculated based on a training dataset (class memberships are known). The larger the f value, the 

higher the probability that the point belongs to that group.  For a training dataset, the pi can be 

calculated in several ways, usually by “equal priors” method: each class has a prior probability equal 

to 1/N. In this analysis, and in order to take into account the spatial proximity of the classes, a local 

frequency prior method was used. It estimates the class pi prior probability as the relative frequency 

of i labels in the neighbourhood. Similarly, predicting a label for a new point means looking at the 

local proportion of each class (as classified from the training dataset) around the new point. 

Once f is maximised with the training dataset, new data points can be classified by calculating f for 

the new point and for each class (equivalent to calculating the position of a point with respect to all 

available class centroids), and assigning to it the class index at which corresponds the maximum f. 

QDA algorithm for optimising the number of classes and classification. 

The QDA has been embedded into an algorithm that determines the optimal number of ecological 

classes and their geographic delimitation for each area. 

The algorithm steps are the follows: 

i. Define the initial number of classes, N0. The initial choice has been N0 = the number of land 
cover classes in the area. This decision is made on the assumption that mosquito distribution 
is significantly predicted by land use and land cover. The co-variates are all the 
environmental variables described above. 
Splitting algorithm 

ii. QDA is applied to N0 classes in the first iteration, otherwise to Nj. 
iii. The class with lowest probability is then split into two sub-classes of similar size based on 

the criterion of minimum intra-class variance. At the iteration, j, the number of classes is Nj = 
Nj-1+1. 

iv. Repeat ii and iii until Nj is equal to a maximum number of classes, here fixed to subjectively 
to 8. 
Merging algorithm 

v. Set j=1 
vi. Starting from N0, merge the two classes with the largest probability that members belong to 

both classes. At the iteration, j, the number of classes is Nj = Nj-1-1. 
vii. Apply QDA to Nj classes 

viii. Repeat vi and vii until Nj is equal to a minimum number of classes, here fixed to 2. 
Selection of the optimal number of classes 

ix. The optimal number, N*,of classes is selected based on the Wilk’s criterion (57). The largest 
reduction in the Wilk’s criterion between two consecutive classes (equivalent to a sharp 
decline below the trend in the graph plotting Wilk’s Lambda on the y-axes and number of 
classes in the x-classes) indicates the optimal number of classes. 
Classification 

x. In the final step, all the points are classified in one of the N* classes. Uncertainty is 
measured as the probability that a point belongs to any of the other classes. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/465963doi: bioRxiv preprint 

https://doi.org/10.1101/465963
http://creativecommons.org/licenses/by-nc-nd/4.0/


The Wilks’ criterion is based on the following general equation: 

T = W + B         [6] 

where T is the total sums of squares and products matrix, W is the total sums of squares and 

products within groups and B is the total sums of squares and products between groups. The Wilks’ 

criterion or Wilks’ Lambda (L) is the ratio of the determinants of W and T:  

𝐿 =
|𝐖|

|𝐓|
          [7] 

therefore, minimizing L is equivalent to minimising |W|. 

The analysis was carried taking all the environmental variables at their original spatial resolution, 

and providing the output (classification) at 30m resolution (the same as the land cover resolution). 

 

Spatial allocation of the sample households 
Locations of the sampling points, in each sampling site (Figure 1), follow a “lattice plus close-pairs” 

design (58) which combines regular lattice (efficient for predictions) and random points as close 

pairs (efficient for parameter estimation) (59).  

For an easier understanding of the sampling design, we refer to the six locations distributed in West 

and East Africa as sampling sites (Fig. 1). Each sampling site will contain M sampling points. Each 

sampling point contains V households. Therefore the total number of households sampled per 

sampling site is M x V. 

For all sites except Migori, the lattice plus close pairs design is realised under two conditions: (i) 70% 

of sampling points are in lattice and 30% are distributed randomly (as usually applied in simulation 

analyses, i.e. (58) and (60)) (Figure 2); (ii) each stratum must contain a number of points proportional 

to the stratum size (61): 

𝑛𝑖 = 𝑀
𝐴𝑖

𝐴𝑇
         [8] 

where ni is the number of points for class i; Ai the area of class i; and AT is the total area. The term 

“close pairs” here is used loosely, since not all the points in the grid will have a close pair, and some 

close pairs may be shared between points. 
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Figure 2. Example of lattice with close pairs design adopted in this work. Black dots, sampling 

locations in regular grid; red dots, sampling locations allocated randomly; and green dots are the 

households identified sufficiently close to the sampling locations (V). Plot was made using R-cran 

3.5.0 (http://r-project.org). 

 

In Migori alone (where a previous sampling campaign, AIRS, took place) an adaptive sampling design 

was trialled in which AIRS sampling served to inform the location of the M sampling points. From the 

LGCP model (see above), we estimated the prediction variances at each grid cell, and attributed the 

M locations to the cells with highest prediction variance (27, 62-64). 

 

Effect of stratification on sample size and improvement of mosquito abundance models 
In order to evaluate the effect of stratification:  

a) on the ratio between the Poisson rate parameter of mosquito counts from a survey (λ1) and the 
Poisson rate parameter of mosquito count from a sub-sample of it (λ2); 

b) and on the goodness of fitting of mosquito abundance models; 

we have considered a mosquito sampling campaign from Uganda.  This data is from 104 health 
subdistricts (HSD) where estimates of An. gambiae and An. funestus densities (as determined by a 
standard collection method) for both male and female mosquitos are available. The sampling design 
was based on a CRT with ten houses selected at random from each HSD, and mosquito collection 
was made every six months for two years (http://www.isrctn.com/ISRCTN17516395) . 

For objective (a) we have employed a Poisson exact text on the null hypothesis that the ratio 
between λ1 (obtained from the entire Uganda mosquito collection data) and λ2 (obtained from a 
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sub-sample of mosquito collections of the Uganda data) is equal to 1, i.e. the two conditional means 
are not different (65). The test is performed by first randomly sampling 2, 3, 4 and 5 mosquito 
collection locations from each strata. For each of these sample sizes the λ2 is calculated and the test 
performed. The process has been repeated 999 times, to randomise the location selection, and 95% 
confidence interval from the all bootstrapping are estimated.  The procedure above was then 
compared with a sampling design that randomly extracts the same amount of locations from the 
entire dataset but independently from the strata to which they belong. 

For objective (b) we fitted the total number of mosquitoes for each species and at each location 
(over the two years of collection) using the ecological strata produced by performing the same 
methodology described in the above section “Stratification”. The model fitting employs a Poisson 
generalized linear model (65) and model comparison against the null model is performed using a 
MANOVA test (18). 

 

Results 

Sample size 
We estimated the parameters associated with the spatial autocorrelation of the AIRS mosquito 
surveillance. The maximum likelihood estimation of the Log-Gaussian Cox Process parameters 
returned: intercept of 21.77, spatial variance (sill – i.e. the amount of variance dependent on 
distance) of 14,478, spatial range of 16 km (i.e. the maximum distance at which variance increases 
with distance) and 0 nugget (variance independent of distance that can be due to measurement 
errors or un-explained factors). Therefore, according to the model, all the variation is considered to 
be spatially-dependent up to a 16km range. The Matern kappa parameter (shape parameter) was 
1.5 (Supplementary Information 1). 
 
In order to estimate the impact of the sample size on model fitting and predictions, we simulated a 
Log Gaussian Cox Process with known covariance function (the Matern in Supplementary 
Information 1). The results are reported in Table 1.  
 
Table 1. Total variance in the parameters of the Gaussian process (intercept, sill, nugget, range) and 
standard errors for the predictions at different sample sizes. 

Sample size Total variance in the parameter of 
the Gaussian process 

Standard error in predictions 

15 8034 194 

30 4726 93 

75 454 44 

150 71 31 

200 14 22 

300 0.86 9 

 
 
With 30 sampling locations, the prediction error and the total variance in the LGCP parameters was 
halved compared to 15 locations, and 20 times less when using 75 locations. The standard error in 
predictions is the maximum number of mosquitoes predicted in excess or in deficiency to the true 
mean.  Therefore with 30 traps it is estimated a maximum error of 93 mosquitoes around the real 
mean and with 200 locations an error of 22 mosquitoes.  
 
In order to improve local estimates, more than one household for each sampling point can be 
employed. Therefore if we take two households for each of the 30 sampling points, the total number 
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of households is 60. The effect of the use of more than one household in model fitting and 
prediction is shown in Table 2. 
 
Table 2. Total variance in the parameters of the Gaussian process (intercept, sill, nugget, range) and 
standard errors for the predictions at different number of households at each sampling point, with 
30 sampling points. 

Number of households at each 
sampling point 

Total variance in the parameter of 
the Gaussian process 

Standard error in 
predictions 

2 5207 71 

3 2073 61 

4 1851 22 

5 701 19 

6 605 19 

7 118 18 

 
 
With four households and 30 sampling points we expect the same prediction error as using 200 
random sampling points distributed across the entire area and each containing a single household 
(comparison of standard errors in Tables 1 and 2) but higher variance in the parameters.  Using 
between five and seven households has little impact on the standard error in the predictions, 
although there is a significant improvement in the model fitting as the number of households 
increases (see total variance column in Table 2). Consequently, the sampling design was chosen with 
30 locations and four households which was considered a good balance in terms of standard errors, 
model fitting and economic feasibility. 

 
 

Ecological classification 
The ecological classification identified two classes for Migori, Obuasi, Muleba and Aboude; three 
classes in Malindi and four in Grand Popo. The Wilk’s criterion, measured as Wilk’s Lambda, for 
Malindi is shown in Figure 3; for other sites, they are provided in supplementary information files. 
The biggest improvement (i.e. largest decrease of the Wilk’s Lambda) is in the change from 2 to 3 
classes (Figure 3). For the other sites, see Supplementary Information 2. 
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Figure 3. Wilk’s Lambda criterion for Malindi. Graph was made using R-cran 3.5.0 (http://r-
project.org). 
 
 
A hierarchical numerical classification of the sites and classes is shown in Figure 4.  This dendrogram 
was obtained from the agglomerative method (classes are aggregated into progressively larger 
groups) group average (66). The latter accounts for the average distances or similarities between all 
the members of the new group and those of the others. 
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Figure 4. Dendrogram of agglomerative hierarchical clustering of the ecological zones. mg, Migori; 
mu, Muleba; ma, Malindi; gp, Grand Popo; ob, Obuasi; and ab, Aboude. For the class number see 
Table 3. Graph was made using R-cran 3.5.0 (http://r-project.org). 
 
 
The heights in Figure 4 represent the dissimilarities between classes, which are very small for some 
intra-location comparisons (Migori, Kenya, mg10 and mg55; Grand Popo, Benin, gp10 and gp35) and 
indeed some inter-country comparisons (ob20 in Obuasi (Ghana) with ab85 in Aboude (Cote 
d’Ivoire)). The classification suggests geographic homogeneity for most of the sites, since locations 
aggregates more than classes. In the four groups ((i) mg10/mg55/mu25/mu60, (ii) 
ma20/ma45/ma75/gp95, (iii) ob20/ab85/ab15/ob65, and (iv) gp10/gp35/gp20), Migori in Kenya and 
Muleba in Tanzania (321km apart) are clustered together, as are Obuasi in Ghana and Aboude in 
Cote d’Ivoire (300km apart); while Malindi (with exception of class 95 in Grand Popo), whose closest 
location is Migori at 666km, and Grand Popo, which is closest to Obuasi at 384km, form their own 
clusters. Both Grand Popo and Malindi are coastal sampling locations, albeit on opposite sides of the 
African continent. 
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Table 3. Classes delineated by ecological classification: description, location and colour used in the 
maps. 

Class Description Colour 

10 Cultivated land. Medium ET mean and variance, EVI mean, 
variance and amplitude, Temp mean, variance and 
amplitude, Precipitation; High ET amplitude and Elevation. 

Mango 

15 Mixture of Cultivated land and Forest. Low ET mean, EVI 
variance and Temp mean. Medium EVI mean, elevation 
and Precipitation. 

Red 

20 Forest. Medium ET mean amplitude and variance, EVI 
mean, variance and amplitude, Temp mean and variance, 
Elevation and Precipitation; High Temp amplitude. 

Dark 
Green 

25 Mixture of Cultivated land, Shrubland and Wetland. Low 
ET mean, EVI variance and Temp mean. Medium Elevation 
and Precipitation. 

Orange 

35 Mixture of Shrubland and Grassland. Low Temp amplitude 
and Precipitation; Medium ET mean and variance, EVI 
mean, variance and amplitude, Temp mean and variance; 
High ET amplitude. 

Light 
green 

45 Mixture of Shrubland, Grassland and Wetland.  Low EVI 
amplitude, Temp variance and Precipitation; Medium ET 
mean and amplitude, EVI mean and variance, Temp mean 
and variance; High Temp mean and ET variance. 

Pink 

55 Mixture of Urban, Forest, Wetland and Grassland. Low 
Temp mean; Medium ET mean, EVI mean and variance, 
and Precipitation; High Elevation. 

Yellow 

60 Wetland. Low ET mean, EVI mean and variance; Medium 
Temp mean and Elevation; High Precipitation. 

Navy 

65 Mixture of Urban, Tundra, Wetland, Water bodies and 
Grassland. Low ET variance and amplitude; Medium 
Elevation; High ET mean, EVI mean, variance and 
amplitude, Temp amplitude and Precipitation. 

Purple 

75 Mixture of Water bodies and Urban. Low ET mean, EVI 
mean and amplitude, Temp variance and Precipitation; 
Medium ET amplitude and EVI variance; High ET variance 
and Temp mean. 

Sky 

85 Mixture of Grassland, Water bodies and Urban. Low ET 
variance and amplitude, and Elevation; Medium Temp 
mean; High ET mean, EVI mean, variance and amplitude, 
Temp variance and Precipitation. 

Brown 

95 Mixture of Wetland, Water bodies and Urban. Low EVI 
mean and amplitude, and Temp amplitude; Medium ET 
mean, EVI variance, Temp variance and Precipitation; High 
ET variance and amplitude, and Temp mean. 

Grey 

*Low, values lower than 25% quartile; Medium, values between 25% and 75% quartiles; High, values 
larger than 75% quartile. 
 
 
Figure 5 shows the ecological classification and its uncertainty for the Malindi area. The same maps 
for the rest of the sites are shown in Supplementary Information 3. 
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Figure 5. Ecological classification and uncertainty for the area of Malindi. Map was made using 
ArcMap 10.4 (http://desktop.arcgis.com/en/arcmap/). Source administrative limits: 
http://www.maplibrary.org/library/index.htm. 
 
 

Sample locations 
In Figure 5 the sampling locations for Malindi are shown overlaid on the ecological classes.  These 

locations are obtained from the lattice with close pairs sampling design, with a batch of 4 

households (not shown in the figure) at each sampling point.  In this lattice with close pairs sampling 

design 20 of the 30 locations are deployed in a 4 x 5 regular grid, and the rest allocated randomly as 

described in the methods. This general objective was modified to weight the number of locations by 

ecological classes; thus some of the points in the grid may have been adjusted slightly to be 

contained in the new class, though never by more than half of the grid-cell size. 

In all the sites, each of these 30 locations constitutes a cluster of 4 households as in Figure 2. 

The sampling location in Migori (Supplementary Information 3) followed an adaptive sampling 

design, in which only class 10 was sampled because of the constraint that previous samples (AIRS) 

only targeted this class. The allocation of 30 samples and households in class 10 in Migori were 

based on the prediction variance, i.e. new sampling points are allocated at the centre of 30 pixels 

with largest prediction variance (64) (Figure 6). 
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Figure 6. Adaptive sampling for Migori in class 10. Black dots are the AIRS mosquito surveillance 

locations. The Blue dots are the adaptive locations, which are targeting the cells with largest 

prediction variance (represented with green, yellow or orange colours). Graph was made using R-

cran 3.5.0 (http://r-project.org). 

 

Effect of stratification on sample size and improvement of mosquito abundance models 
For this objective we have used the Uganda dataset (see methods), which contains a large mosquito 

sampling campaign (104 districts, 1040 households) carried out over for 2 years.  The first step was 

to identify the ecological strata for each cluster (of households) location. By applying the same 

stratification method described for the GAARDian project (see methods) we identified 4 ecological 

zones.  

The stratification was first used to evaluate if a sub-sample (up to 20% of the full dataset) of the 

mosquito collections, extracted from each strata, is still representative of the full mosquito 

collection obtained in Uganda.  
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Table 4. 95% Confidence interval (CI) of the rate ratio between λ1 and λ2 (Poisson distribution rate 

parameters from mosquito counts in the full survey and mosquito counts in a sub-sample of 

locations respectively), where λ2 is calculated for each sample size. The sample size refers to each 

strata for a total of 2*4, 3*4, 4*4 and 5*4 locations, where 4 is the number of strata. In the case of 

complete random sampling (last 3 rows), then the 2*4, 3*4, 4*4 and 5*4 are the number of 

locations sampled independently from the strata. 
 

CI 2 3 4 5  
0.025 0.94 0.91 0.86 0.85 

Stratified 0.5 1.05 0.99 0.93 0.9  
0.975 1.16 1.08 1 1.07       

 
0.025 1.11 1.11 1.03 1.04 

Random 0.5 1.25 1.21 1.11 1.07  
0.975 1.4 1.33 1.21 1.12 

 

From Table 4 confidence intervals show that the stratification produces ratios that are not 

significantly different from 1 (i.e. λ1 and λ2 are not significantly different) for any sample size. In 

contrast for random sampling all ratios between the two rate parameters are significantly higher 

than 1 for all the sample sizes. Finally Table 5 shows that stratification improves the model fitting of 

mosquito counts when compared to a null model. 

 

Table 5. ANOVA analyses of Poisson generalised linear models for female (F), male (M) and total 

(F+M) mosquitoes of An gambiae and An. funestus. Residual deviance is in % of the Null deviance.  

Species Sex Residual deviance P value 

An. gambie F 87 2.2 e-16  
M 89 2.2 e-16  
F+M 88 2.2 e-16 

An. funestus F 88 2.2 e-16  
M 93 2.2 e-16  
F+M 89 2.2 e-16 

 

 

Discussion 
Vector-borne disease control and monitoring rely on vector surveillance, mostly carried out using 
trap-based indices and, more recently, remote sensing data (13, 24). Trap-based indices (density, 
population changes, distribution, etc.) are calculated from mosquito catches and require a system of 
traps dispersed in the field in sufficient numbers to represent mosquito population ecology and 
dynamics. Conversely, remote sensing data can be used to define the ecological level of disease risk 
based on mosquito ecological suitability (61, 67). This is a cheaper and quicker option, but may not 
have the spatial and temporal resolution necessary for practical interventions (23, 68-71). In a 
sampling design, trap-based indices and remote sensing analyses must be seen as complementary 
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tools, since remote sensing data contain the information necessary to define location and distance 
between sampling points.   

Sample size, location, estimator and strategy (i.e. model based or not, adaptive or not) are the 
fundamental characteristics of a study design (25), which affect the likely success of describing the 
studied process (e.g. disease or organism distribution and abundance), its stochasticity, and, 
consequently, the accuracy of the estimates.   

Ecologists are now equipped with algorithms, open information (72) and datasets that enable a 
better understanding of the biology and spatial distribution of populations, which allows 
optimization of collection site placement to best describe natural processes.  
Ecological/environmental classification is now possible for every region in the world (68).  Failure to 
exploit these data in ecological and genomic sampling frameworks ignores the spatial variability of 
favourable, unfavourable or neutral habitats, therefore random or transect sampling designs may or 
may not be representative of the ground conditions and characteristics (73). Even a grid design can 
be biased towards larger ecological classes and may miss linear features (i.e. a river passing between 
collection points) (1). The consequence of which could be an over- or under-estimate of the true 
abundance, even when the population phenology is correctly delineated (73). 

In the illustrative example presented we demonstrate how these approaches may be used to 
develop an a priori sampling strategy to sample malaria vectors for genomic and ecological studies. 
The ecological classification presented for each site returned a maximum uncertainty ranging from 
0.37 to 0.44 depending on the site (Figure 5 for Malindi and Supplementary Information 3 for the 
other sites), which can be interpreted as the probability that a grid node belongs to a different class. 
This level of uncertainty shows that classification identified dominant classes, in other words each 
point was allocated to an ecological class with an absolute minimum probability of at least 0.56. In 
addition, the ecological classification also shows that areas (the 6 sampling sites) with putatively the 
same land cover are still ecologically different when considering the full set of environmental 
variables (temperature, precipitation, elevation, evapo-transpiration and vegetation), and that 
geographical proximity is a dominant factor in ecological clustering (see also (74, 75)) (Figure 4). It is 
therefore not surprising that sites cluster much more strongly within country than within ecotype; 
e.g. forest (class 20, Figure 4) in Malindi (Kenya) is not equivalent to forest in Obuasi (Ghana) or 
Grand Popo (Benin).  Ecological classification, while not often used in modelling mosquito 
populations and communities for medium- and large-scale analyses, represents a complex 
interaction of the environmental and socio-economic conditions (23). 

Another factor that we accounted for during our sampling design is the spatial autocorrelation of 

mosquito catches (model-based sampling design) (12).  The effect of strong autocorrelation can 

reduce the overall statistical power (and the overall biological significance of the study) as it results 

in effectively a lower sample size (because the assumption of independence is violated), 

underestimates of variance, and increases in type I error (10). Geostatistical approaches, such as the 

one applied here (8, 62), can lead to unbiased estimates of population parameters and avoid the 

risks and limitations of random, or haphazard, selection of sampling locations (10).  Given the 

requirements to satisfy both parameterization and predictions (59), the simulated inhibitory design 

adapted from (62) in order to contain clusters of households at each sampling point, has shown that 

with 120 sampling houses for each site distributed across 30 sampling points, we achieve the same 

prediction error (main goal) as from 200 points allocated at random, albeit at the expense of 

parameter accuracy.  However, there were important limitations in the sample size/location 

calculation. Firstly, they are based on limited pre-existing mosquito surveillance data from Migori, 

which may not describe the different spatial scales of the mosquito abundance distribution (24). This 

is a concern due to the large variation in abundance levels observed throughout the period, but that 

can be solved by deploying an adaptive sampling design, i.e. concentrating the new samples where 
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we have the largest uncertainties (our knowledge is poor) in the process of interest (abundance or a 

level of abundance). The advantages are an improvement of the estimates with a lower number of 

samples (76). In addition, we are assuming that the mosquito population dynamics in Migori are 

similar to those in the other sites. The ecological classification has the advantage of correcting for 

local mosquito population dynamics although this is not a full solution.  Ideally, Migori could have 

been used to analyse the effect of the ecological classification on mosquito estimates. 

Unfortunately, the pre-existing surveillance samples are located in the same ecological zone 

(Supplementary Information 3) making it impossible to simulate the effect of the ecological 

classification on the sample size/location optimization (Diggle et al. 2010). For this reason we 

evaluated the effect of stratification on sample size using a different dataset (Uganda). This shows 

that 10 to 20% of mosquito collections randomly selected from strata are representative of the full 

survey. This result shows that stratification can be applied at any stage of the sampling campaign, 

and even if it was not considered at the initial (planning) phase, it can adaptatively inform the 

subsequent sampling phases or collections and optimise the sampling costs (subsequent sub-

sampling of each strata).  

In addition, using the Uganda dataset, we have also shown that the ecological stratification improves 

model fitting, again representing a model feature that can be applied in both pre-analysis and post-

analysis of sampling campaigns. 

 

An element not considered in this analysis but that requires discussion is the temporal frequency 
and length of the sampling campaign. Designs for temporal sampling raise the same challenges as 
spatial designs, along with additional considerations. These include: “is it better to trap six times in 
each of two houses, or twice in each of six houses, or four times in each of three houses? And in the 
latter case, is it necessary that the nights should be at weekly intervals, or would the easier task of 
sampling over four consecutive nights yield a similar amount of information? Should the same ‘fixed’ 
houses be sampled on each occasion, or should a new set be chosen randomly on each occasion?” 
(extracted from (77)).  Answering these questions requires relatively lengthy longitudinal studies and 
a knowledge of Anopheles population dynamics. Fortnightly collections are common in mosquito 
sampling designs (78), and enable cost-effective descriptions of seasonality and variation in 
mosquito abundance (18).  On the other hand, positioning traps during peaks of mosquito 
abundance can significantly overestimate the rate of population increase and the level of abundance 
(73), and only sampling over two or more years may accurately account for cyclical fluctuations in 
vector abundance (77). 

 

Our analysis provides an example of how to fully describe the assumptions, conditions and 
constraints of sampling strategies. We do not expect other researchers to precisely replicate our 
methodology, e.g. the use of 4 houses in 30 sampling locations depends on previous abundance 
analysis but this may change when more information will be available (adaptive sampling), but we 
have shown how open-data sources and ecological information can be implemented in the initial 
steps of sampling design.  Our literature review shows that the specifics of sampling design are  
poorly reported and we therefore suggest that even when sampling is based on expert-opinion 
decisions, a full description of the sampling design should be provided to make the sampling 
repeatable or comparable or usable for subsequent similar studies.  For example, field constraints 
such as presence of the disease or vector or host, vegetation type and density, elevation, field 
hostility, logistic feasibility, potential interference, human proximity, breeding sites, and risk of 
trapping material theft (13, 20, 21, 24), which often are the major influence in the sampling design 
need to be declared and described. In fact, previous sampling campaigns are often used to inform 
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future sampling design, and therefore standardization of sampling designs and protocols are now a 
priority (12). 

In conclusion, big and open data and research outputs could enhance the power of ecological and 
genomic studies (3), facilitating the growth of complex and multidimensional algorithms. In the 
specific field of vector biology and genomics, there is an urgent need to establish standards for 
mosquito sampling design and description in scientific reports. One of the first steps is to facilitate 
training and workshops (11) but also the improvement of publishing standards (i.e. requiring authors 
to fully disclose the sampling design) in order to produce a collection of high quality and usable 
sampling designs along with their results. 
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