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54 Abstract

55

56 Background

57  Mosquitoes are colonized by a large but mostly uncharacterized natural virome of
58 RNAviruses. Anopheles mosquitoes are efficient vectors of human malaria, and the
59  composition and distribution of the natural RNA virome may influence the biology
60 and immunity of Anopheles malaria vector populations.

61

62  Results

63  Anopheles vectors of human malaria were sampled in forest village sites in Senegal
64 and Cambodia, including Anopheles funestus, Anopheles gambiae group sp., and
65  Anopheles coustani in Senegal, and Anopheles hyrcanus group sp. Anopheles
66  maculatus group sp., and Anopheles dirus in Cambodia. Small and long RNA
67 sequences were depleted of mosquito host and de novo assembled to yield non-
68 redundant contigs longer than 500 nucleotides. Analysis of the assemblies by
69  sequence similarity to known virus families yielded 125 novel virus sequences, 39
70  from Senegal Anopheles and 86 from Cambodia. Important monophyletic virus
71 clades in the Bunyavirales and Mononegavirales orders are found in these
72 Anopheles from Africa and Asia. Small RNA size and abundance profiles were used
73  to cluster non-host RNA assemblies that were unclassified by sequence similarity.
74 39 unclassified non-redundant contigs >500 nucleotides strongly matched a
75  pattern of classic RNAi processing of viral replication intermediates, and 1566
76  unclassified contigs strongly matched a pattern consistent with piRNAs. Analysis

77  of piRNA expression in Anopheles coluzzii after infection with O'nyong nyong virus
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78  (family Togaviridae) suggests that virus infection can specifically alter abundance
79  of some piRNAs.

80

81 Conclusions

82 RNA viruses ubiquitously colonize Anopheles vectors of human malaria
83  worldwide. Atleast some members of the mosquito virome are monophyletic with
84  other arthropod viruses. However, high levels of collinearity and similarity of
85  Anopheles viruses at the peptide level is not necessarily matched by similarity at
86  the nucleotide level, indicating that Anopheles from Africa and Asia are colonized
87 by closely related but clearly diverged virome members. The interplay between
88 small RNA pathways and the virome may represent an important part of the
89 homeostatic mechanism maintaining virome members in a commensal or
90 nonpathogenic state, and host-virome interactions could influence variation in

91 malaria vector competence.
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92 Introduction

93  Anopheles mosquitoes are the only vectors of human malaria, which Kkills at least
94 400,000 persons and causes 200 million cases per year, with the greatest impact
95  concentrated in sub-Saharan Africa and South-East Asia [1]. In addition to malaria,
96  Anopheles mosquitoes also transmit the alphavirus O'nyong nyong (ONNV, family
97  Togaviridae), which is the only arbovirus known to employ Anopheles mosquitoes
98  asthe primary vector [2, 3].
99
100  Anopheles mosquitoes harbor a diverse natural virome of RNA viruses [4-7]. A
101  recent survey found evidence of at least 51 viruses naturally associated with
102  Anopheles [2]. The Anopheles virome is composed mainly of insect specific viruses
103 (ISVs) that multiply only in insects, but also includes relatives of arboviruses that
104  canreplicate in both insects and vertebrate cells.
105
106  Culicine mosquitoes in the genera Aedes and Culex transmit multiple arboviruses
107  such as dengue (DENV, family Flaviviridae) Zika (ZIKV, family Flaviviridae),
108  chikungunya (CHIKV, family Togaviridae) and others, but do not transmit human
109 malaria. This apparent division of labor between culicine and Anopheles
110  mosquitoes for transmission of arboviruses and Plasmodium, respectively, has led
111  to a relative lack of study about Anopheles viruses. Anopheles viruses have been
112  discovered by isolation from cultured cells exposed to mosquito extract, serology,
113  specific amplification and sequencing, and more recently, deep sequencing and de
114 novo assembly [2]. Although this work has increased the number of ISVs
115 discovered in Anopheles, it appears that there are many still unknown.

116
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117 Here, we assembled small and long RNA sequences from wild Anopheles
118 mosquitoes captured in forest ecologies in central and northern Cambodia and
119  eastern Senegal. The sites are considered disease emergence zones, with high
120 levels of fevers and encephalopathies of unknown origin. Sequence contig
121 evidence of a number of novel RNA viruses and variants was detected, and
122  potentially many unclassified viruses.

123

124 It is likely that persistent exposure to ISVs, rather than the relatively infrequent
125  exposure to arboviruses such as ONNV, has been the main evolutionary pressure
126  shaping Anopheles antiviral immunity. Anopheles resistance mechanisms against
127  arbovirus infection may be quite efficient, based on their lack of virus
128  transmission despite highly anthropophilic feeding behavior, including on viremic
129  hosts. Nevertheless, ONNV transmission is the exception that indicates arbovirus
130 transmission by Anopheles is possible, so it is a biological puzzle that transmission
131  is apparently restricted to just one virus. Identifying the complement of natural
132  viruses inhabiting the Anopheles niche will help clarify the biology underlying the
133  apparent inefficiency of arbovirus transmission by Anopheles, and may suggest
134  new tools to raise the barrier to arbovirus transmission by the more efficient

135 Aedes and Culex vectors.
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136 Results

137 Mosquito species estimation

138 Metagenomic sequencing of long and small fractions of RNA was carried out for
139  four biological replicates pools of mosquitoes from Ratanakiri and Kampong
140  Chnang provinces in central and northern Cambodia near the border with Laos,
141  and four replicate pools from Kedougou in eastern Senegal near the border with
142  the Republic of Guinea (Conakry). Mosquito species composition of sample pools
143  was estimated using sequences of transcripts from the mitochondrial cytochrome
144  c oxidase subunit 1 (COI) gene, which were compared with Anopheles sequences
145  from the Barcode of Life COI-5P database (Figure 1, Additional File 1: Table S1).
146 In the Senegal samples, the most frequent mosquito species were Anopheles
147  rufipes, Anopheles funestus, Anopheles gambiae group sp., and Anopheles coustani,
148  which are all human malaria vectors, including the recently incriminated An.
149  rufipes [8]. In the Cambodia samples, the most frequent species were Anopheles
150  hyrcanus group sp., Anopheles maculatus group sp., Anopheles karwari, Anopheles
151  jeyporeisis, Anopheles aconitus and Anopheles dirus. All are considered human
152  malaria vectors [9-12]. Elevated rates of human blood-feeding by a mosquito
153  speciesis aprerequisite for malaria vectorial capacity [13], and therefore the main
154  Anopheles species sampled for virome discovery in this study display consistently
155  high levels of human contact in nature.

156

157  Virus discovery by de novo RNAseq assembly and classification by sequence
158  similarity

159  Small and long RNA reads were de novo assembled after removal of mosquito

160  sequences. Non-redundant contigs longer than 500 nucleotides from assemblies

8
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161  of both countries, Cambodia and Senegal, were used to search the GenBank
162  protein sequence database using BLASTX with an e-value threshold of 1e-10. This
163  allowed identification of 125 novel assembled virus sequences, 39 from the
164  Senegal samples (virus ID suffix “Dak”, Table 1), and 86 from the Cambodia
165 samples (virus ID suffix “Camb”, Table 2), possibly pointing to higher viral
166  diversity in mosquitoes from Cambodia. Some of the 125 virus sequences showed
167 remote similarity by BLASTX to 24 reference viruses in GenBank that include
168  ssRNA-negative strand viruses of the families Orthomyxoviridae, Rhabdoviridae
169 and Bunyaviridae, ssSRNA positive-strand viruses of the families Virgaviridae,
170  Flaviviridae and Bromoviridae, dsRNA viruses of the family Reoviridae and
171  multiple unclassified viruses of both ssRNA and dsRNA types (Table 3). Most of
172  these remote similarities were with viruses characterized in a recent virus survey
173  of 70 different arthropod species collected in China [14], which emphasizes the
174 importance of high throughput surveys of arthropod virosphere in the
175  identification of viruses associated with different arthropod species.

176

177  In order to place these 125 novel virus assemblies in an evolutionary context,
178 phylogenetic trees were constructed from conserved regions of the RNA-
179  dependent RNA polymerase gene annotated in the 125 virus sequences, along
180  with related virus sequences from GenBank. This allowed the placement of 44 of
181 the 125 assembled viruses in phylogenetic trees, revealing clusters of highly
182  related viruses in the analyzed wild Anopheles. Notable examples include five
183  novel virus assemblies from Cambodian Anopheles placed near Wuhan Mosquito
184  Virus 1 in a monophyletic group of the Phasmavirus clade (Bunyavirales) (Figure

185  2). Also, within the order Mononegavirales, 14 novel Anopheles virus assemblies

9
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186 (7 from Cambodia and 7 from Senegal) formed a monophyletic group thatincludes
187  Xincheng Mosquito Virus and Shungao Fly Virus. Finally, 10 novel virus assemblies
188 (9 from Cambodia, 1 from Senegal) formed a monophyletic group that includes
189 Beaumont Virus and a rhabdovirus from Culex tritaeniorhynchus within the
190 Dimarhabdovirus clade (Figure 3A). TBLASTX comparisons of virus sequences in
191 these groups with the closest reference viruses in the phylogenetic trees showed
192  high levels of collinearity and similarity at protein level that was not matched by
193  comparable levels of similarity at the nucleotide level, indicating that populations
194  of closely related but diverged viruses colonize Anopheles from widely separated
195  geographic locations (Figure 3B).

196

197  Quantification of novel virus sequences in mosquito sample pools

198 In order to evaluate the prevalence of novel virus sequences across the analyzed
199  mosquito samples, host-filtered small and long RNA reads were mapped over the
200 125 novel virus sequences identified by de novo sequence assembly. Based on
201 long RNAseq reads, the abundance profiles of the 125 virus assemblies display a
202  non-overlapping distribution across different sample pools, and virus sequences
203  can be localized to particular sample pools from the abundance profiles (Figure 4,
204  left panel). This probably indicates a patchy prevalence and abundance of the
205  different viruses among individual mosquitoes, such that an individual mosquito
206  highly infected with a given virus could potentially generate a strong signal for the
207  virus in the sample pool. The sample pools from Cambodia share a higher fraction
208  of common viruses, while there is less overlap in virus abundance distribution
209  across sample pools from Senegal. The representation of virus distribution based

210 on small RNA sequence reads displayed profiles broadly similar to the long RNA-

10
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211  Dbased abundance distribution (Figure 4, right panel). This observation may be
212  consistent with the expectation that small RNA representation is a signature of
213  virus double-stranded RNA (dsRNA) processing by the mosquito RNA
214  interference (RNAi) machinery [15], and therefore was specifically examined next.
215

216  Small RNA size profiling

217  The processing of virus sequences by small RNA pathways of the insect host
218 generates diagnostic patterns of small RNA read sizes from different viruses. In
219 order to evaluate this phenomenon in the 125 novel virus assemblies
220  characterized by sequence similarity in the analyzed sample pools, small RNA
221 reads that mapped to each virus assembly were extracted, and their size
222  distributions were normalized with a z-score transformation. This allowed
223  comparison of the z-score profiles among virus assemblies by pairwise correlation
224  analysis and hierarchical clustering. The relationship between the small RNA
225  profiles of the different viruses could then be visualized as a heat map. The results
226  of this analysis revealed the presence of four major groups of virus sequences
227 based on small RNA size profiles (Figure 5). Cluster 1 consists of 7 virus
228 assemblies generating small RNAs predominantly in the size range of 23-29 nt
229 mapping over the positive, and to a lesser extent negative, strand. Cluster 2
230 includes 7 viruses, all from Senegal, and displays a similar size profile as viruses
231  of Cluster 1 with reads in the 23-29 nt size range, but also with a higher frequency
232 of 21 ntreads mapping over the positive and negative strands, emblematic of virus
233  cleavage through the mosquito host RNAi pathway. Cluster 3 includes 15 viruses
234  that exhibit the classic pattern of viruses processed by the host RNAi pathway,

235  with predominantly reads of 21 nt in length mapping over virus positive and

11
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236  negative strands (Additional File 2: Figure S1). Finally, Cluster 4 includes 59
237  viruses with small RNA size profiles dominated by reads of 23-29 nt mapping
238 predominantly over the negative strand of virus sequences. Because of the strong
239  strand bias of small RNAs observed, this pattern could correspond to degradation
240 products of virus RNAs, although alternatively, there appears to be size
241  enrichment in the 27-28 nt size peaks characteristic of PIWI-interacting RNAs
242  (piRNAs).

243

244  Viral origin of unclassified transcripts by small RNA size profiling

245 A major drawback of sequence similarity-based identification of novel viruses in
246  denovo sequence assemblies is the dependence of detection upon existing records
247  of close relatives in public databases. It was proposed that the small RNA size
248  profiles of arthropod-derived viruses detected by sequence similarity could be
249 used as signature to recruit unclassified contigs from de novo sequence
250 assemblies of potential viral origin [15]. We implemented this strategy in order to
251 identify additional sequences of putative viral origin in the set of 2114 contigs
252  with at least 100 small RNA sequence reads left unclassified by sequence
253  similarity searching.

254

255  Ofthese unclassified contigs, a likely viral origin is supported for 4 and 35 contigs
256  that display strong association by small RNA profile with Cluster 2 and Cluster 3,
257  respectively (Spearman correlation>0.9, Additional File 3: Figure S2). These
258  clusters display small RNA size profiles mapping to both genome strands, and
259  characteristic of classic RNAi processing of viral dsRNA replication intermediates.

260 Thus, in addition to the 125 novel virus assemblies classified by sequence

12


https://doi.org/10.1101/464719
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464719; this version posted November 7, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

261  similarity to known viruses, 39 unclassified novel Anopheles virus assemblies
262  were identified, without sequence similarity to identified viruses but meeting the
263  quality criteria of non-redundant assemblies longer than 500 nucleotides. Further
264  work will be necessary to characterize the biology of these unclassified novel virus
265  assemblies.

266

267  Of the other assemblies unclassified by sequence similarity, 1566 showed strong
268  associations between their small RNA size profiles and the small RNA size profiles
269  of virus contigs detected by sequence similarity (Spearman correlation>0.9).
270  Among these, the majority were associated with Cluster 4 virus assemblies (1219
271 unclassified contigs) and to less extent with Cluster 1 (309 unclassified contigs).
272  Both clusters were characterized by a strong bias towards reads from a single
273  strand (positive for Cluster 1 and negative for Cluster 4).

274

275  Toevaluate how specific these latter profiles of 1219 and 309 contigs are for virus-
276  related sequences, we designed a reconstruction control experiment using the
277  same small RNA size profiling and clustering analysis as above, but instead using
278 669 RNA contigs known to map to the mosquito reference assembly, thus strictly
279  of host origin. As above, contigs with at least 100 small RNA sequence reads were
280  used. 561 of these mosquito contigs could be grouped with small RNA size profiles
281  of virus contigs (Spearman correlation>0.9), most of them (98.21%) with Cluster
282 4 (78.6%) and Cluster 1 (19.6%) profiles.

283

284 However, many somatic piRNAs map to only one strand in Drosophila and other

285 arthropods [16, 17]. Notably, many virus-related piRNAs in Aedes, which are

13
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286  largely ISV-derived, mainly map only to the virus strand antisense to the viral ORF
287  [18]. In An. coluzzii, about half of expressed piRNAs display a strong or exclusive
288 strand bias, which is a greater proportion of unidirectional piRNAs than
289  Drosophila [19]. Until the current study, Anopheles piRNAs have not previously
290 Dbeen examined for relatedness to ISVs. Overall, these results are probably most
291 consistent with an interpretation that RNA profile Cluster 1 and Cluster 4 detect
292  strand-biased piRNAs derived from the natural ISV virome of wild Anopheles. On
293 thatinterpretation, the above host-sequence control contigs that share the Cluster
294 1 and Cluster 4 RNA profiles are most likely also piRNAs, but instead derived from
295  endogenous host templates. Previous results showed that most An. coluzzii
296 piRNAs target long-terminal repeat retrotransposons and DNA transposable
297  elements [19]. Our current results add wild ISVs as a likely source of template for
298  Anopheles piRNA production, and indicate that further work is warranted in the
299  interpretation of small RNA profiles for discovery of unclassified viruses. Our
300 results also suggest the possibility that piRNAs may be involved in Anopheles
301 response to viruses, a phenomenon found for only Aedes among a wide range of
302 arthropods, but Anopheles were not yet tested [17].

303

304 O’nyong nyong alphavirus infection influences expression of piRNAs in
305 Anopheles coluzzii

306 piRNAs are endogenous small noncoding RNAs of about 24-30 nt that ensure
307 genome stability by protecting it from invasive transposable elements such as
308 retrotransposons and repetitive or selfish sequences [17]. In addition, in Aedes
309 mosquito cells, piRNAs can probably mediate responses to arboviruses or ISVs

310 [17, 18, 20, 21]. Anopheles mosquitoes express piRNAs from genomic piRNA

14
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311  clusters [19, 22], but piRNA involvement in response or protection to virus
312  infection in Anopheles has not been reported to our knowledge. To examine the
313  potential that Anopheles piRNAs could be involved in response to viruses, we
314 challenged An. coluzzii mosquitoes with the alphavirus, ONNV by feeding an
315 infectious bloodmeal, and sequenced small RNAs expressed during the primary
316 infection at 3 d post-bloodmeal. Mosquitoes fed a normal bloodmeal were used as
317  the control condition.

318

319  Analysis of the small RNA expression data using Cuffdiff and DESeq2 detected 86
320 potential significantly differentially expressed transcripts between ONNV infected
321 mosquitoes and normal bloodmeal controls (Additional File 4: Table S2). Filtering
322  for appropriate length of contiguous expressed region for piRNA <40 nt, and high
323 abundance of expression in ONNV and control samples taken together, yielded
324  two annotated piRNA candidates. The candidates were both downregulated after
325 ONNV infection as compared to uninfected controls (p=5e-5, q=6.7e-3, locus
326  XLOC_012931, coordinates UNKN:19043685-19043716; and p=9.5e-4, q=0.046,

327  locus XLOC_012762, coordinates UNKN:13088289-13088321; Figure 7).

15
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328 Discussion

329 The current study contributes to a growing body of work defining the deep
330 diversity of the invertebrate virosphere [14, 23, 24]. Because mosquitoes transmit
331 viral infections of humans and animals, there is particular interest in discovery of
332  ISVs comprising the mosquito virome [6, 25-27]. Here, we sampled Anopheles
333  mosquitoes from two zones of forest exploitation in Africa and Asia, considered
334 disease emergence zones with likely zoonotic exposure of the human and
335 domestic animal populations. Using assembly quality criteria of non-redundant
336  contigs at least 500 nt in length, we identified 125 novel RNA virus assemblies by
337  sequence similarity to known virus families, and an additional 39 high-confidence
338 virus assemblies that were unclassified by sequence similarity, but display
339  characteristic products of RNAi processing of replication intermediates. Finally,
340 1566 unclassified contigs possessed comparable assembly quality, and lacked a
341 strong RNAi processing signature, but displayed a signature consistent with
342  piRNA origin. This latter group will require additional work to filter bona fide
343  virus-derived piRNA sequences, which have been previously reported in Aedes
344  mosquitoes [17, 18, 20, 21], from other potential sources of piRNAs such as
345  retrotransposons and DNA transposable elements, as well as possible physical
346  degradation.

347

348 Nevertheless, taken together at least 164 novel and non-redundant virus
349  assemblies, and possibly many more, were identified in wild Anopheles
350 mosquitoes in the current report. Small and long RNAs were sequenced from pools
351 of 5-10 mosquitoes. Pooled sample analysis obscures the distribution and

352 abundance of viruses among individuals in the population. Individual mosquito

16
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353  analysis will likely become a research focus as sequencing costs drop. However,
354 some insight about virus distribution can be gained from comparison of sample
355 pools collected from the same site, for example Senegal or Cambodia. The
356 abundance heat map shown in Figure 5 indicates that virus diversity is high in the
357 population, and evenness is relatively low among sample pools from the same site.
358 This suggests that the number of viruses per individual is probably also low, with
359 a patchy distribution among individuals. This expectation is consistent with a
360 small number of individual mosquitoes with RNAs deep sequenced and de novo
361 assembled in our laboratory, which identifies <5 distinct viruses per individual.
362

363 The dynamics of the virome may thus be different from the bacterial microbiome,
364 in which tens of taxa are typically present per individual, and microbial diversity
365 is thought to lead to homeostasis or resilience of the microbiota as an ecosystem
366  within the host [28, 29]. By comparison, very little is known about the function of
367 the mosquito virome within the host. At least three important topics are worth
368 exploring. First, unlike the bacterial microbiota, the stability and resilience over
369 time of the viral assemblage in an individual mosquito is unknown. Members of
370  the virome could persist in individual host populations over time in commensal
371  form, or the uneven and patchy viral distribution observed among sample pools
372  could be a consequence of successive waves of epidemic infection peaks and
373  valleys passing through local populations. The commensal or epidemic models
374 could have distinct biological implications for the potential influence of the
375 virome, including on host immunity and competence for transmission of
376  pathogens.

377
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378 Second, the individual and population-level effect of ISV carriage on vector
379  competence for pathogen transmission is a key question. In the current study, the
380 predominant host species sampled are Anopheles vectors of human malaria, and
381 inAfrica, some of these species are also vectors of ONNV. ISVs have not been tested
382  for influence on Plasmodium or ONNV infection in Anopheles, to our knowledge.
383 ISVs could affect host immunity and malaria susceptibility, or even cause
384 temporary vector population reduction during a putative ISV epidemic. A similar
385 concept may apply to ISV interactions with the mosquito host for arbovirus
386 transmission [26]. We identified relatives of Phasi Charoen-like virus (PCLV) in
387  Anopheles from Senegal and Cambodia. PCLV relatives also infect Aedes, where
388  they were observed to reduce the replication of ZIKV and DENV arboviruses [30].
389 Palm Creek virus, an insect specific flavivirus, causes reduced replication of the
390 West Nile virus and Murray Valley encephalitis arboviruses in Aedes cells [31]. In
391 any case, ISV co-infection of mosquito vectors with Plasmodium and/or
392  arboviruses in nature is highly probable as a general case, because all Anopheles
393 sample pools in the current work were ISV-positive, so more research is
394  warranted.

395

396  Third, characterization of the arthropod virome may shed light on the evolution
397  of mosquito antiviral immune mechanisms, as well as the evolution of pathogenic
398 arboviruses. ISV replication is restricted to insect cells, but the potential of most
399  mosquito-associated viruses for transmission to humans or other vertebrates is
400 currently unknown, because few studies of host range and transmission have been
401 done. Some viruses may have a host range restricted to only Anopheles. For

402  example, Anopheles cypovirus and Anopheles C virus replicate and are
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403 maintained by vertical transmission in An. coluzzii, but were not able to infect Ae.
404  aegypti in exposure experiments [4]. Both of these viruses were able to replicate
405 in Anopheles stephensi after exposure, but Anopheles C virus was not stably
406 maintained and disappeared after several generations. Thus, these two viruses
407 may be Anopheles-specific, and possibly restricted only to certain Anopheles
408  species.

409

410 It is likely that the main evolutionary pressure shaping mosquito antiviral
411 mechanisms in general is their persistent exposure in nature to members of the
412  natural virome, rather than the probably less frequent exposure to vertebrate-
413  pathogenic arboviruses. Maintenance of bacterial microbiome commensals in the
414 non-pathogenic commensal state requires active policing by basal host immunity
415  [32]. By analogy, the maintenance of persistent ISVs as non-pathogenic may also
416 result from a dialog with host immunity. Presumably, the same antiviral
417 mechanisms used in basal maintenance of ISVs are also deployed against
418 arboviruses when encountered, which are often in the same families as members
419  of the insect virome [2]. Knowledge of the mechanisms that allow Anopheles to
420  carry a natural RNA virome, but apparently reject arboviruses, may provide new
421  toolstoraise the barrier to arbovirus transmission by the more efficient Aedes and
422  Culex vectors.

423

424  In addition to the canonical immune signaling pathways, piRNAs can be involved
425 in antiviral protection, although this research is just beginning [18, 33]. One
426  function of genomic piRNA clusters appears to be storage of a molecular archive

427  of genomic threats such as transposable elements, linked to an effector
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428 mechanism to inactivate them. This is analogous to bacterial molecular memory
429  mediated by the CRISPR/Cas system. We identified two candidate piRNAs that are
430 downregulated upon ONNV infection in An. coluzzii. Involvement of piRNAs during
431 viral infection has not been previously demonstrated in Anopheles. piRNA
432  monitoring of the virome may be part of the normal basal management of ISVs,
433  which could potentially be pathogenic if not controlled, but more work is required
434  to draw these connections.

435

436  The current report shows that the Anopheles virome is complex and diverse, and
437  canbe influenced by the geography of mosquito species. This is exemplified by the
438 fact that some viruses are restricted to Senegalese Anopheles and others to
439  Anopheles from Cambodia (Table3). Similar results were seen in Ae. aegypti, where
440 five ISVs were specific to the Australian host population, while six others were
441  found only in the Thai host population [34]. Differences in the Anopheles virome
44?2  across geography could be explained by climate, environmental conditions,
443  breeding sites, and mosquito bloodmeal sources, among other factors. The
444  presence in this study of such a large number of novel and unclassified virus
445  assemblies highlights the fact that the malaria vector virome is understudied. The
446  same observation has been made during metagenomics surveys in Drosophila,
447  Aedes and Culex [24, 35, 36] among other arthropods, indicating that the vast

448  majority of insect viruses are not yet discovered.
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449 Methods

450 Sample collections

451 Mosquitoes were collected in Cambodia in Kres village, Ratanakiri province
452  (sample pools Cam5-02 and Cam10-02) and Cheav Rov village, Kampong Chnang
453  province (sample pools Cam5-01 and Cam10-01). The majority of inhabitants are
454  engaged in forest-related activities (agriculture, logging and hunting) and may
455  spend the night in forest plots during the harvest period. Vegetation varies from
456  evergreen forest to scattered forest, and the dry season typically runs from
457  November to May and the rainy season from June to October. In Senegal, sampling
458  sites were located in the department of Kedougou in southeastern Senegal.
459  Kedougou lies in a transition zone between dry tropical forest and the savanna
460  Dbelt, and includes the richest and most diverse fauna of Senegal. Recent arbovirus
461  outbreaksinclude Chikungunyain 2009-2010, Yellow Fever in 2011, Zika in 2010,
462  and Dengue in 2008-2009.

463

464  Permission to collect mosquitoes was obtained by Institut Pasteur Cambodia from
465 authorities of Ratanakiri and Kampong Chnang, and by Institut Pasteur Dakar
466  from authorities of Kedougou. Wild mosquitoes visually identified as Anopheles
467  spp. at the collection site (non-Anopheles were not retained) were immediately
468 transferred into RNAlater stabilization reagent kept at 4°C, and then returned to
469  thelaboratory and stored at -80°C until RNA extraction.

470

471  RNA extraction, library construction, and sequencing

472  Total RNA was extracted from four pools of mosquitoes from each of Senegal and

473  Cambodia (Senegal sample pools: 5 mosquitoes, Dak5-03, Dak5-04, 10
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474  mosquitoes, Dak10-03, Dak10-04; Cambodia sample pools: 5 mosquitoes, Cam5-
475 01, Cam5-02, 10 mosquitoes, Cam10-01, Cam10-02) using the Nucleospin RNA kit
476  (Macherey-Nagel) following the supplied protocol. Library preparation and
477  sequencing steps were performed by Fasteris (Plan-les-Ouates, Switzerland,
478  www.fasteris.com). Long RNA libraries from the eight mosquito pools were made
479  from total RNA depleted of ribosomal RNA by treatment with RiboZero (Illumina,
480  San Diego, CA). Libraries were multiplexed and sequenced on a single lane of the
481 Illumina HiSeq 2500 platform (Illumina, San Diego, CA) by the paired-ends
482  method (2x125 bp), generating on average 36 million high-quality read pairs per
483  library. Small RNA libraries with insert size 18-30 nt were generated from the
484  same eight mosquito pools as above, multiplexed and sequenced in duplicate (two
485  technical replicates per pool) in two lanes of the I[llumina HiSeq2500 platform
486  (Illumina, San Diego, CA) by the single-end method (1x50 bp) generating on
487  average 34 million reads of high-quality small RNA reads per library.

488

489  Pre-processing of long and small RNA libraries

490  Cutadapt 1.13 [37] was used for quality filtering and adaptor trimming of reads
491  from long and small RNA libraries. Low-quality 3’ ends of long RNA reads were
492  trimmed by fixing a phred quality score of 15, and reads smaller than 50 bp after
493  quality filtering and adaptor trimming were removed. In the case of small RNA
494  libraries, reads shorter than 15 bp after quality filtering and adaptor trimming
495  were removed.

496

497  In order to filter sequences originating in the mosquito host, sequences passing

498  the above quality filter step were mapped against a custom database consisting of
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499 24 Anopheles genomes available in Vectorbase in February 2016 [38]. Bowtie 1.2.0
500 [39] was used to map small RNA libraries with two mismatches allowed, whereas
501 the BWA-MEM algorithm from BWA-0.7.12 [40] with default parameters was used
502 to map long RNA libraries. Sequence reads that did not map against Anopheles
503 genomes, herein referred to as non-host processed reads, were retained and used
504  for de novo assembly and subsequent binning of virus transcripts.

505

506 Estimation of Anopheles species composition of mosquito sample pools

507  Quality-filtered long RNA read pairs were mapped with SortMeRNA [41] against a
508 custom database of Anopheles sequences of the mitochondrial cytochrome c
509 oxidase subunit 1 gene (COI-5P database) extracted from the Barcode of Life
510 database [42]. 98% identity and 98% alignment coverage thresholds were fixed
511 for the operational taxonomic unit (OTU) calling step of SortMeRNA. OTU counts
512  were collapsed at species level and relative abundances of Anopheles species with
513 at least 100 reads and 1% frequency in the sample pool were represented as
514  piecharts using the ggplots2 R package.

515

516 De novo sequence assembly and identification of virus contigs by sequence
517 similarity

518 Processed reads from each country (Cambodia and Senegal) were combined and
519 de novo assembled using different strategies for long and small RNA libraries.
520 Small RNA reads were assembled using the Velvet/Oases pipeline [43] using a
521 range of k-mer values from 13 to 35. Long RNA reads were assembled using both
522  the Velvet/Oases pipeline with a range of k-mer values from 11 to 67 and Trinity
523  [44].
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524

525  Contigs produced by parallel assembly of Cambodia and Senegal processed reads
526  were filtered in order to remove trans-self chimeric sequences using custom shell
527  scripts, and the resulting contigs were merged with cd-hit-est [45] (95%
528 nucleotide identity over 90% alignment length) in order to generate a final set of
529 non-redundant contig sequences. Non-redundant contigs longer than 500
530 nucleotides were compared against the GenBank protein sequence reference
531 database using BLASTX [46] with an e-value threshold of 1e-10, and the results
532  were imported into MEGANG in order to classify contigs taxonomically using the
533 LCA algorithm [47]. Contigs of viral origin were further manually curated by
534  comparing their sequence with that of the closest virus reference genomes by
535 using Artemis Comparison Tool [48].

536

537  Structural and functional annotation of virus assemblies

538 Assembled contigs of viral origin were annotated as follows: ORFs were predicted
539  with MetaGeneMark [49], and functionally annotated using Prokka [50] with Virus
540 kingdom as primary core reference database for initial BLASTP searches and
541 including also as reference Hidden Markov Models (HMMS) of virus protein
542  families defined in vFam database [51]. Also, protein sequences of predicted ORFs
543  were processed with the Blast2GO pipeline [52], that generates functional
544  annotation of proteins from BLASTP results against the virus subdivision of
545 GenBank as well as Gene Ontology annotations from top BLASTP results.
546  Prediction of InterPro signatures over viral proteins was also carried out with the
547  InterProScan tool integrated in Blast2GO. The results of the different strategies of

548  structural and functional annotation were integrated and manually curated with
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549  Artemis [53].

550

551 Prediction of unclassified contigs of viral origin by small RNA size profiling
552  In order to recruit contigs of potential viral origin from the pool of unclassified
553  transcripts, we use the approach of Aguiar and collaborators [15]. This approach
554  uses the size profiles of small RNA reads that maps over positive and negative
555 strands of viruses detected by sequence similarity as a signature to identify
556 unclassified transcripts by sequence similarity of potential viral origin. For this
557  purpose, processed small RNA reads were re-mapped over virus contigs and
558 unclassified contigs by sequence similarity using bowtie 1.2.0 [39] allowing at
559 most one mismatch. From the mapped small RNA reads over each contig, the small
560 RNA size profiles were defined as the frequency of each small RNA read of size
561 from 15 to 35 nucleotides that map over the positive and negative strand of the
562 reference sequence. To compute these small RNA size profiles, reads mapped over
563 positive and negative strands of each reference sequence were extracted with
564  Samtools [54], and the size of small RNA reads were computed with the Infoseq
565 program of the EMBOSS package [55]. Custom shell scripts were used to parse
566 Infoseq output to a matrix representing the frequency of reads of different sizes
567  and polarity across virus/unclassified contigs. This matrix was further processed
568 in R (version 3.3.2). In order to normalize the small RNA size profiles, a z-score
569 transformation is applied over the read frequencies of each contig
570  (virus/unclassified). The similarity between small RNA size profiles of virus and
571 unclassified contigs is computed as the Pearson correlation coefficient of the
572  corresponding z-score profiles, and the relationship between small RNA size

573  profiles of virus/unclassified contigs was defined from this similarity values using

25


https://doi.org/10.1101/464719
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464719; this version posted November 7, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

574  UPGMA as linkage criterion with the R package Phangorn [56]. These relationships
575 were visualized as heatmaps of the z-score profiles in R with gplots package
576  (version 3.0.1) using the UPGMA dendrogram as the clustering pattern of
577  virus/unclassified sequences. Unclassified contigs with a Pearson correlation
578  coefficient of at least 0.9 with virus contigs and coming from the same mosquito
579  sample pool were regrouped into clusters.

580

581 Phylogenetic analyses

582  In order to place the new virus sequences characterized in the present study into
583 an evolutionary context, the peptide sequences of RNA dependent RNA
584 polymerase ORFs detected in the annotation step were aligned with the
585 corresponding homologs in reference positive-sense and negative-sense single-
586  strand RNA viruses (ssRNA) and double strand RNA viruses (dsRNA) using MAFFT
587  v7.055b with the E-INS-i algorithm [57]. Independent alignments were generated
588 for all ssRNA and dsRNA viruses and for different virus families (Bunya-
589  Arenavirus, Monenegavirus, Orthomyxovivirus, Flavivirus, Reovirus). The
590 resulting alignments were trimmed with TrimAI [58] in order to remove highly
591 variable positions, keeping the most conserved domains for phylogenetic
592  reconstruction. Phylogenetic trees were reconstructed by maximum likelihood
593  with RAXxML [59] with the WAG+GAMMA model of amino acid substitution and
594 100 bootstrap replicates. Phylogenetic trees were visualized with the R package
595  Ape [60].

596

597 ONNV infection and candidate piRNA gene regulation
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598 Infection of An. coluzzii with ONNV, library preparations, and sequencing were
599  described [61]. Briefly, small RNA sequence reads from 2 pools of 12 mosquitoes
600 each fed an ONNV-infected bloodmeal (unfed mosquitoes removed), and 2 control
601 pools of 12 mosquitoes each fed an uninfected normal bloodmeal were mapped to
602 the An. gambiae PEST AgamP4 genome assembly using STAR version 2.5 with
603  default parameters [62]. The resulting SAM files were analyzed using
604 featureCounts [63] with default parameters to count mapped small RNAs
605 overlapping with previously annotated An. coluzzii piRNA genes in 187 genomic
606  piRNA clusters, in the file, GOL21-bonafide-piRNAs-24-29nt.fastq, from [19].
607 featureCounts considers a small RNA sequence read as overlapping a piRNA
608 featureif atleast one base of the small RNA read overlaps the piRNA feature. Small
609 RNA sequence reads are not counted if they overlap more than one piRNA feature.
610 piRNAs in An. coluzzii are annotated by George et al. [19] as novel genes (denoted
611 XLOC loci) as well as piRNAs produced from loci within existing genes of the An.
612  gambiae PEST reference (AGAP loci). The Cuffdiff function in Cufflinks version
613  2.2.1 and DESeq2 version 1.20.0 were used to count and test for significant
614  differential expression levels between ONNV infected and control uninfected
615 samples, yielding 86 piRNA features that were potentially differentially
616 represented in the small RNA sequences between the ONNV and control treatment
617 conditions (Additional File 4: Table S2). The 86 candidates were filtered for a)
618 length of the contiguous region expressed in small RNA less than 40 nt, and b) in
619 the upper 10% of small RNA sequence read depth in all sequence samples

620 combined.
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875 Figure Legends

876  Figure 1. Taxonomic profile of Anopheles sample pools. Relative abundances
877  of Anopheles species were computed from mapping of long-RNA reads over
878  mitochondrial cytochrome C oxidase subunit I gene sequences (COI-5P) from
879  Barcode of Life Database. Taxa represented by >100 sequence reads and 1%
880 frequency in the sample pool were plotted in pie charts. White wedges represent
881 the proportion of sequence matches present at less than 1% frequency. All data
882  are presented in tabular form in Additional File: Table S1.

883

884  Figure 2. Phylogenetic tree of reference and novel virus assemblies from the
885  Bunyaviridae family. Novel viruses characterized from Cambodia and Senegal
886  Anopheles sample pools (red labels) are placed within the Phasmavirus clade and
887  inabasal position of the Phebovirus-Tenuivirus clade.

888

889  Figure 3. Phylogenetic tree of reference and novel virus assemblies from the
890 Mononegavirales order. A) Novel virus assemblies characterized from Cambodia
891 and Senegal Anopheles sample pools (red labels) are predominantly placed within
892  the Dimarhabdovirus clade and as close relative of the Nyamivirus clade. B) In this
893 latter group close to Nyamivirus, the novel virus assemblies identified are close
894 relatives of Xincheng mosquito virus, sharing a high degree of genome collinearity
895 based on TBLASTX comparisons of novel and reference Xinxeng mosquito
896  reference sequences.

897

898 Figure 4. Viral abundance profiles across mosquito sample pools based on

899 small and long RNA sequence mapping. Heatmap oflog2-transformed reads per
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900 kilobase per million reads (RPKM) abundance values of novel virus assemblies
901 identified from Cambodia and Senegal pools based on long and small RNA
902  sequence libraries. Broadly similar viral abundance profiles are observed for
903 different pools based on small and long RNA sequence data. Representation of
904  particular viruses is uneven among pools, possibly indicating inter-individual
905 mosquito differences for virus carriage.

906

907  Figure 5. Small RNA size profiles of novel virus assemblies from Cambodia
908 and Senegal sample pools. Hierarchical clustering of novel virus assemblies
909 based on Pearson correlation of z-score transformed small RNA size profiles (the
910 frequency of small RNA reads of size 15 to 35 nucleotides that maps over the
911  positive and negative strand of the reference sequence). Four main clusters were
912  defined based on these small RNA size profiles, among which the classical siRNA
913 size profile (21 nt reads mapping over positive and negative strand) is
914 represented in the Cluster 3.

915

916
917 Supporting information

918 Additional File 1: Table S1. Anopheles mosquito taxa represented in the
919  collections from Senegal and Cambodia, as detected by comparison to
920 Anopheles sequences from the Barcode of Life COI-5P database. Data
921  corresponds to pie charts of Anopheles taxa by country and sample pool depicted
922  in Figure 1.

923

924  Additional File 2: Figure S1. Small RNA size profiles (A) and coverage profiles
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925  (B) of 15 novel virus assemblies with classic RNAi processing pattern. Virus
926  assemblies shown are in Figure 5, Cluster 3, and are classified by sequence
927  similarity to known virus assemblies. Red vertical bars represent reads mapped
928  over the positive strand of reference viral sequence, and blue bars represent reads
929 mapped over the negative strand.

930

931 Additional File 3: Figure S2. Small RNA size profiles of contigs left
932 unclassified by sequence similarity grouping. Unclassified contigs that display
933  strong association by small RNA profile with Figure 5, Cluster 2 and Cluster 3. Red
934  barsrepresent reads mapped over the positive strand of reference viral sequence,
935  and blue bars represent reads mapped over the negative strand.

936

937 Additional File 4: Table S2. Anopheles coluzzii piRNAs potentially
938 differentially represented in the small RNA sequences between the ONNV

939 and control treatment conditions.
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940
941

Table 1. Summary of virus assemblies, Senegal Anopheles sample pools.

NCBI classification reference

Reference virus virus Closest relative Assembled sequence Length
. . . . gi| 766989332 |gb|AJT39580.1]| proline-
DsRNA tal I \Y ; dSRNA ;
s \{lrus (lenV|ror.1men alsample |ru'ses, s viruses; alanine-rich protein [dsRNA virus PrAlaRichProt_EnvVirDak 1345
clone mill.culi_contig84 environmental samples. .
environmental sample]
Vi ; dSRNA vi ;
o Iruses; dsn PA viruses; 81226423326 ref| YP_002790886.1
Homalodisca vitripennis reovirus Reoviridae; Sedoreovirinae; . : . .
X . major core protein [Homalodisca CP_HVreovirusDak 5674
segment S3 Phytoreovirus; unclassified L . .
. vitripennis reovirus]
Phytoreovirus
Daeseonedone virus 1 strain gi|959121745|ref| YP_009182191.1|
gdong Viruses; unclassified viruses. putative RNA-dependent RNA RdRP_DaeseondongVirDak 2530
A12.2708/ROK/2012 )
polymerase [Daeseongdong virus 1].
Ixodes scapularis associated virus 2 . e . gil 66913.2782|gb|.AII0181.2‘1| HP1.1_IxodesVirDak 2820
isolate Al partial zenome Viruses; unclassified viruses. hypothetical protein, partial [Ixodes
P & scapularis associated virus 2] HP1.2_IxodesVirDak 2561
Viruses: environmental gi|545716017|gb|AGW51759.1| RNA-
Uncultured virus isolate acc_7.4 sam Ie:s dependent RNA polymerase-like protein ~ RdRP_UncVirlDak 1488
pies. [uncultured virus]
Viruses: environmental gi|545716010|gh | AGW51755.1| RNA-
Uncultured virus isolate acc_1.3 <am Ie; dependent RNA polymerase-like RdRP_UncVir2Dak 2011
pies. protein, partial [uncultured virus]
Viruses; ssRNA viruses; ssRNA ; NuclCap1.1_ADTphlebovirusDak 1105
. . A ] ) gi|734669629|gb|AJA31764.1| pl.1_ADTp
American dog tick phlebovirus isolate  negative-strand viruses; . ’ . .
FI3 B iridae: Phlebovirus: nucleocapsid, partial [American dog tick
unyav!r! ag; Fhle (?VII’US, phlebovirus] NuclCap1.2_ADTphlebovirusDak 1148
unclassified Phlebovirus.
Viruses; ssRNA viruses; sSRNA
Culex tritaeniorhynchus rhabdovirus negatlve—str.and viruses; gi| 7008956?40| releP._OOQ(.)94323.1|
RNA. complete genome., strain:TY Mononegavirales; large protein [Culex tritaeniorhynchus LP_CulexRhabdovDak 1526
’ P 8 ’ ' Rhabdoviridae; unclassified rhabdovirus]
Rhabdoviridae.
NuclCap1.1_PCLVDak 1187
Viruses; ssRNA viruses; sSRNA
. . . negative-strand viruses; gi| 664682120|gb|AIF71032.1| NuclCapl.2_PCLVDak 1104
Phasi Charoen-like virus B iridae: |assified | id IPhasi Ch like vi
unyaviridae; unclassifie nucleocapsid [Phasi Charoen-like virus] NuclCap1.3_PCLVDak 1125
Bunyaviridae.
NuclCap1.4_PCLVDak 1144
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gi|870898373 | gb| AKP18600.1

glycoprotein [Phasi Charoen-like virus] GP_PCLVDak 3887
gi|664682116|gb|AIF71030.1| RNA-
dependent RNA polymerase [Phasi RdRP_PCLVDak 6711
Charoen-like virus]
Viruses; ssRNA viruses; ssRNA Nuclprot1.1_WBvirDak 1973
Wellfleet Bay virus isolate 10-280-G  Ncgativesstrand viruses; gi| 727361119 ref| YP_009110683.1|
segment 4 Orthomyxoviridae; nucleoprotein [Wellfleet Bay virus]
g Quaranjavirus; unclassified P v Nuclprot1.2_WBvirDak 3252
Quaranjavirus.
Viruses; ssRNA viruses; sSRNA
Wuhan Mosquito Virus 9 strain JX1- negative-strand viruses; gi| 752455731 |gb|AJG39214.1| ORF1 .
13 unclassified ssRNA negative- [Wuhan Mosquito Virus 9] ORF1_WuhanvirDak 1574
strand viruses.
- ) Viruses; sSRNA viruses; SSRNA ;) 752455880 | gb | AIG39296.1
Wuhan Mosquito Virus 1 strain WT3- negative-strand viruses; K .
. . glycoprotein precursor [Wuhan GP_WuhanlvirDak 3547
15 unclassified ssRNA negative- . )
. Mosquito Virus 1].
strand viruses.
iruses; iruses; RdRP1.1_WSVDak 998
:]/";”:Ef/e S:E':: dV:/ri‘r‘js:'s_SSRNA gi| 752455826 | gb| AJG39269.1| RNA- -
Wubhan Spider Virus strain SYZZ-2 & . » dependent RNA polymerase [Wuhan RdRP1.2_WSVDak 2083
unclassified ssRNA negative- . .
. Spider Virus]
strand viruses. RdRP1.3_WSVDak 1070
gi| 752455743 |gb|AJG39224.1| ORF1 . )
[Xincheng Mosquito Virus] ORF1_XinchengVirDak 947
gl!752455744|gb.|AJG.39225‘1| ORF2 ORF2_XinchengVirDak 1726
[Xincheng Mosquito Virus]
gi|752455745|gb|AJG39226.1 | . )
glycoprotein [Xincheng Mosquito Virus] GP_XinchengVirDak 5993
Viruses; ssRNA viruses; ssRNA RdRPl‘l_XinchengVirDak 11707
Xincheng Mosquito Virus strain XC1-6 negatlv.ejstrand viruses; RdRP1.2_XinchengVirDak 11722
unclassified ssRNA negative-
strand viruses. RdRP1.3_XinchengVirDak 11710
gi| 752455746 |gh | AJG39227.1| RNA-
dependent RNA polymerase [Xincheng RdRP1.4_XinchengVirDak 11694
Mosquito Virus] - -
RdRP1.5_XinchengVirDak 11728
RdRP1.6_XinchengVirDak 11716
RdRP1.7_XinchengVirDak 6128

40



https://doi.org/10.1101/464719
http://creativecommons.org/licenses/by-nc-nd/4.0/

942

943

Viruses; ssRNA viruses; ssSRNA

- . gi| 752455830 gb| AJG39271.1| RNA- RdRP1.1_XinzhouVirDak 7527
. . . negative-strand viruses; )
Xinzhou Mosquito Virus strain XC3-5 lassified sSRNA . dependent RNA polymerase [Xinzhou
unclassiied sSRNA negative- Mosquito Virus]. RdRP1.2_XinzhouVirDak 7524
strand viruses.
Viruses; ssRNA viruses; sSRNA
Sunn-hemp mosaic virus p05|t|vetstrar.1q viruses, no DNA  gi|12643499|sp| P8?202.2 | RDRP_SHMV RARP_SHMVDak 1216
stage; Virgaviridae; RecName: Full=Replicase large subunit]
Tobamovirus.
gi|307933351|dbj|BAJ21511.1| RNA-
Omono River virus Viruses; dsRNA viruses dependent RNA polymerase [Omono RdARP_OmonoVirDak 613
River virus]
Viruses; ssRNA viruses; sSRNA
Jurona virus negatlve—strfmd viruses; gi|701219310| releP._009094377‘1| RRP_JuronaVirDak 318
Mononegavirales; polymerase [Jurona virus]
Rhabdoviridae; Vesiculovirus.
Viruses; ssRNA viruses; ssSRNA
negative-strand viruses; gi| 550631504 |gb| AGX86091.1| RNA-
Beaumont virus strain 6 Mononegavirales; dependent RNA polymerase, partial RdRP_BeaumontVirDak 805

Rhabdoviridae; unclassified
Rhabdoviridae.

[Beaumont virus]
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944
945

Table 2. Summary of virus assemblies, Cambodia Anopheles sample pools.

Reference virus NCBI classification reference virus Closest relative Assembled sequence Lengt
h
uncultured virus Viruses; environmental samples. RNA-dependent RNA polymerase-like protein, partial vcambTR48403_c0_gl_i2 857
[uncultured virus] (KF298266.1) -
RdRP1.2_UncVir2Camb 797
RdRP1.3_UncVir2Camb 2177
RdRP1.4_UncVir2Camb 2574
RdRP1.5_UncVir2Camb 2722
Culex tritaeniorhynchus Viruses; ssRNA viruses; ssRNA negative-strand viruses; Mononegavirales; gi| 700895639 | ref| YP_009094322.1| glycoprotein GP_CulexRhabdovCamb 2866
rhabdovirus RNA, Rhabdoviridae; unclassified Rhabdoviridae. [Culex tritaeniorhynchus rhabdovirus]
complete genome;
NC_025384 gi| 700895640 | ref| YP_009094323.1]| large protein LP1.1_CulexRhabdovCam 755
[Culex tritaeniorhynchus rhabdovirus] b
LP1.2_CulexRhabdovCam 1454
b
Phasi Charoen-like virus Viruses; ssRNA viruses; ssRNA negative-strand viruses; Bunyaviridae; unclassified gi| 870898373 |gb|AKP18600.1| glycoprotein [Phasi GP1.1_PCLVCamb 642
Bunyaviridae Charoen-like virus]
GP1.2_PCLVCamb 933
gi|870898376|gb|AKP18601.1| Nucleocapsid [Phasi NuclCapl1.1_PCLVCamb 1104
Charoen-like virus]
NuclCap1.2_PCLVCamb 533
NuclCap1.3_PCLVCamb 535
NuclCap1.4_PCLVCamb 2157
Bivens Arm virus isolate Viruses; ssRNA viruses; ssRNA negative-strand viruses; Mononegavirales; gi| 751997168 |gb|AJG05818.1| nucleoprotein N [Bivens ~ NProt_BivArmsVirCamb 516
UF 10 Rhabdoviridae; Tibrovirus Arm virus]
Jurona virus Viruses; ssRNA viruses; ssRNA negative-strand viruses; Mononegavirales; gi|701219310|ref| YP_009094377.1| polymerase RdRP_JuronaVirCamb 1329
Rhabdoviridae; Vesiculovirus. [Jurona virus] >gnl|... 176 2e-43
Puerto Almendras virus Viruses; ssRNA viruses; ssRNA negative-strand viruses; Mononegavirales; gi|701219331|ref| YP_009094394.1| L protein [Puerto Lprot1l.1_PAvirCamb 1869
isolate LO-39 Rhabdoviridae; unclassified Rhabdoviridae. Almendras vir... 213 2e-54 -
Lprot1.2_PAvirCamb5 3895
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gi| 701219327 |ref| YP_009094389.1| N protein [Puerto Nprot_PAvirCamb 4449
Almendras virus]
Beaumont virus strain 6 Viruses; ssRNA viruses; ssRNA negative-strand viruses; Mononegavirales; gi| 550631504 |gb|AGX86091.1| RNA-dependent RNA RdRP1.1_BeaumontVirCa 586
Rhabdoviridae; unclassified Rhabdoviridae. polymerase, partial [Beaumont virus] mb
RdRP1.2_BeaumontVirCa 633
mb
RdRP1.3_BeaumontVirCa 594
mb
RdRP1.4_BeaumontVirCa 1359
mb
RdRP1.5_BeaumontVirCa 1606
mb
RdRP1.6_BeaumontVirCa 1141
mb
RdRP1.7_BeaumontVirCa 1667
mb
Wellfleet Bay virus Viruses; ssRNA viruses; ssRNA negative-strand viruses; Orthomyxoviridae; gi|727361119|ref| YP_009110683.1| nucleoprotein Nuclprotl.1_WBvirCamb 1011
isolate 10-280-G Quaranjavirus; unclassified Quaranjavirus. [Wellfleet Bay virus] -
segment 4 Nuclprot1.2_WBvirCamb 1139
Nuclprot1.3_WBvirCamb 2942
Xinzhou Mosquito Virus Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified ssRNA negative-  gi|752455830|gb|AJG39271.1| RNA-dependent RNA RdRP_XinzhouVirCamb 8129
strain XC3-5 strand viruses. polymerase [Xinzhou Mosquito Virus]
Wuhan Mosquito Virus 1 Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified ssRNA negative-  gi| 752455822 |gb|AJG39267.1| RNA-dependent RNA RdRP1.1_Wuhan1lvirCam 3576
strain WT3-15 strand viruses. polymerase [Wuhan Mosquito Virus 1] b
RdRP1.2_Wuhan1lvirCam 2929
b
RARP1.3_WuhanlvirCa 3943
mb
RdARP1.4 WuhanlvirCa 686
mb
RdRP1.5_Wuhan1lvirCa 518
mb
RdRP1.6_WuhanlvirCam 6431
b
RdRP1.7_Wuhan1lvirCam 6435
b
GP1.1_WuhanlvirCamb 523
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gi|752455880|gb|AJG39296.1| glycoprotein precursor GP1.2_WuhanlvirCamb 1127
[Wuhan Mosquito Virus 1]

GP1.3_WuhanlvirCamb 1282

GP1.4_WuhanlvirCamb 2434

GP1.5_WuhanlvirCamb 2231

GP1.6_WuhanlvirCamb 2205

GP1.7_WuhanlvirCamb 2219

gi| 752455945 |gb|AJG39330.1]| nucleopasid protein NuclCap1.1_Wuhan1virC 645
[Wuhan Mosquito Virus 1] amb
NuclCap1.2_Wuhan1virC 735
amb
NuclCap1.3_Wuhan1virC 629
amb
NuclCap1.4_Wuhan1virC 546
amb
NuclCap1.5_Wuhan1virC 549
amb
NuclCap1.6_Wuhan1virC 1209
amb
NuclCap1.7_Wuhan1virC 1259
amb
NuclCap1.8_Wuhan1virC 1015
amb
NuclCap1.9_Wuhan1virC 3081
amb
NuclCap1.10_Wuhan1lvir 1473
Camb
NuclCap1.11_Wuhanlvir 1791
Camb
NuclCap1.12_Wuhanlvir 2147
Camb
Wuhan Mosquito Virus 9 Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified ssRNA negative-  gi| 752455734 |gb|AJG39217.1| glycoprotein [Wuhan GP1.1_Wuhan9virCamb 658
strain JX1-13 strand viruses. Mosquito Virus 9]
GP1.2_Wuhan9virCamb 924

GP1.3_Wuhan9virCamb 2429

ORF1.1_Wuhan9virCamb 1872
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gi|752455731|gb|AJG39214.1| ORF1 [Wuhan Mosquito  ORF1.2_Wuhan9virCamb 1625
Virus 9] -
ORF1.3_Wuhan9virCamb 1202
Xincheng Mosquito Virus  Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified ssRNA negative-  gi| 752455743 |gb|AJG39224.1| ORF1 [Xincheng ORF1_XinchengVirCamb 1329
strain XC1-6 Mosquito Virus]
gi|752455745|gb|AJG39226.1| glycoprotein [Xincheng GP1.1_XinchengVirCamb 509
Mosquito Virus]
GP1.2_XinchengVirCamb 953
GP1.3_XinchengVirCamb 1635
GP1.4_XinchengVirCamb 1298
GP1.5_XinchengVirCamb 1313
GP1.6_XinchengVirCamb 3076
GP1.7_XinchengVirCamb 1314
GP1.8_XinchengVirCamb 2660
GP1.9_XinchengVirCamb 1757
gi| 752455746 |gb|AJG39227.1| RNA-dependent RNA RdRP1.1_XinchengVirCa 925
polymerase [Xincheng Mosquito Virus] mb
RdRP1.2_XinchengVirCa 904
mb
RdRP1.3_XinchengVirCa 991
mb
RdRP1.4_XinchengVirCa 1065
mb
RdRP1.5_XinchengVirCa 1354
mb
RdRP1.6_XinchengVirCa 2062
mb
RdRP1.7_XinchengVirCa 3974
mb
Nienokoue virus isolate Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae gi| 655454925 | ref| YP_009041466.1| polyprotein PolProt1.1_FlavivirusCam 1008
B51/C1/2004 [Nienokoue virus] b
PolProt1.2_FlavivirusCam 2193
b
PolProt1.3_FlavivirusCam 1010

b
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946
947

PolProt1.4_FlavivirusCam 1061
b 0

Tobacco streak virus
isolate pumpkin segment
RNA1

Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage; Bromoviridae;

llarvirus

gi|254554401|gb|ACT67442.1]| replicase [Tobacco
streak virus]

Replicase_TSvirCamb 1565

Oat golden stripe virus
RNA1

Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage; Virgaviridae;

Furovirus

gi|9635455 | ref| NP_059511.1]| replicase [Oat golden
stripe virus]

Replicase_OatGSvirCamb 1661
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948 Table 3. Similarity of Senegal and Cambodia virus assemblies by BLASTX to

949 24 reference viruses in GenBank. 10 targets are shared, 9 are Senegal-specific,

950

951

and 5 are Cambodia-specific.

Reference virus

Viral taxonomy

Senegal
Libraries

Cambodia
Libraries

Culex tritaeniorhynchus rhabdovirus
RNA, complete genome

Viruses; ssRNA viruses; ssRNA negative-strand viruses;
Mononegavirales; Rhabdoviridae; unclassified Rhabdoviridae.

Phasi Charoen-like virus

Viruses; ssRNA viruses; ssRNA negative-strand viruses; Bunyaviridae;
unclassified Bunyaviridae.

Uncultured virus isolate acc_1.3

Viruses; environmental samples.

Wellfleet Bay virus isolate 10-280-G
segment 4

Viruses; ssRNA viruses; ssRNA negative-strand viruses;
Orthomyxoviridae; Quaranjavirus; unclassified Quaranjavirus.

Wuhan Mosquito Virus 1 strain WT3-
15

Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified
ssRNA negative-strand viruses.

Wuhan Mosquito Virus 9 strain JX1-
13

Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified
ssRNA negative-strand viruses.

Xincheng Mosquito Virus strain XC1-
6

Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified
ssRNA negative-strand viruses.

Xinzhou Mosquito Virus strain XC3-5

Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified
ssRNA negative-strand viruses.

Beaumont virus strain 6

Viruses; ssRNA viruses; ssRNA negative-strand viruses;
Mononegavirales; Rhabdoviridae; unclassified Rhabdoviridae.

Jurona virus

Viruses; ssRNA viruses; ssRNA negative-strand viruses;
Mononegavirales; Rhabdoviridae; Vesiculovirus.

Omono River virus

Viruses; dsRNA viruses

American dog tick phlebovirus isolate
FI3

Viruses; ssRNA viruses; ssSRNA negative-strand viruses; Bunyaviridae;
Phlebovirus; unclassified Phlebovirus.

Daeseongdong virus 1 strain
A12.2708/ROK/2012

Viruses; unclassified viruses.

DsRNA virus environmental sample
clone mill.culi_contig84

Viruses; dsRNA viruses; environmental samples.

Homalodisca vitripennis reovirus
segment S3

Viruses; dsRNA viruses; Reoviridae; Sedoreovirinae; Phytoreovirus;
unclassified Phytoreovirus

Ixodes scapularis associated virus 2
isolate A1, partial genome

Viruses; unclassified viruses.

Sunn-hemp mosaic virus

Viruses; ssRNA viruses; ssSRNA positive-strand viruses, no DNA stage;
Virgaviridae; Tobamovirus.

Uncultured virus isolate acc_7.4

Viruses; environmental samples.

Wouhan Spider Virus strain SYZZ-2

Viruses; ssRNA viruses; ssRNA negative-strand viruses; unclassified
ssRNA negative-strand viruses.

Nienokoue virus isolate B51/CI/2004

Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage;
Flaviviridae

Oat golden stripe virus RNA1

Viruses; ssRNA viruses; ssRNA positive-strand viruses, no DNA stage;
Virgaviridae; Furovirus

Puerto Almendras virus isolate LO-39

Viruses; ssRNA viruses; ssSRNA negative-strand viruses;
Mononegavirales; Rhabdoviridae; unclassified Rhabdoviridae.

Tobacco streak virus isolate pumpkin
segment RNAL

Viruses; ssRNA viruses; ssSRNA positive-strand viruses, no DNA stage;
Bromoviridae; llarvirus

Bivens Arm virus isolate UF 10

Viruses; ssRNA viruses; ssRNA negative-strand viruses;
Mononegavirales; Rhabdoviridae; Tibrovirus
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FIGURE 1
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FIGURE 5
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Additional File 1: Table S1

Cam10-01 [Cam10-02 |Cam5-01 _|Cam5-02 _|Dak10-03 |Dak10-04 |Daks-03 _ |Daks-04 _|processid sampleid  bin_uri  sp.name
A. aconitus o 0,287185| 00688732 _0,116965| [ 0| 0,00034265] 2 5 2 2 1-13;,GBANO744-12;GBDP1901-06; 2 ;GBP1: 2 2 2 -06 DQ000258;D BOLD:ACE38: Anopheles aconitus
A albitarsis 0,00035901 [ [ [ [ 0|MBIIA146-12; 171.09,MBIE178.09; 3,GBMINY 2 2 155-12; MBIIA199-12; 2 2:06,CYTC4996-12,CYTC4999-12; 2 ;i 2 ; 2 25_100;5 BOLD:ABZ: heles albitarsis HiAnophel
A annularis o [ of o [ o 0| MAMOS168-12;GBANO742-12;MAMOS173-12;GBDP1874-06;MAMOS174-12 NIBGE MOS-(BOLD:AAR32 Anopheles annularis A;Anophel
A annulipes 0| 0,00536866] 129462] _0,0036595] 0,00010373]_0,0047579] 0,003 2 I0AV033-15 VAITC43098; BOLD:AAB22 Anopheles annulipes
A. arabiensis o [ o [ o _0,119129] o 2 2 5 g g g 2 5 5 2 2 2 5 5 ;GBDP3817-07; , 2 5 5 ;GBDP38 DQA65258;D ;BOLD:AAA3 Anopheles arabiensis
A. baimail [ [ of [ [ [ o o1 BDPS474-08; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 AJB77403;A1877565;A1877 Anopheles baimaii
A. barbirostris o [ of [ o 0| 0,00058087] 7 2 /GBDP17! 5 ;GBDP17078-15,GBDP6777-09;GBOP6773-09; 2 2 : 2 2 2 2 : 2 2 ;GBOP AB362235;At BOLD:AAASG Anopheles barbirostris
A braziliensis [ 0] 0,0004280¢] [ 0] 0,00012603| 0,00070161 _0,0104202]GB0P4: 2 2 10474-12;GBDPA4791-08; 2 770-08,GBAN 2 2 2 2 DQI13857;D ;BOLD:AAAS Anopheles braziliensis
A. campestris 0,00046072 [ o [ o [ o | 12,GBANO037-12;GBDP4 12,GBANO0S2-1 12,GBANO030-1 )-12,GBANO035-12,GBANOO51-12,GBANO750-12,GBDPA 12,GBANO0S0-1 12,GBOPA682-08,GBANO042-12,GBANO029-12;GBANODAE-12,GBANOOAO-12,GBDPAGS1-0 ABA36119,A! BOLD:AAASS Anoples campestris
A. coustani 0,0640974| 0| _0,0369955| [ [ [ o[ __0,297003] 01013-14,GBANO: ;5 ;5 GBAN K BOLD:AAN94
A. crawfordi 0,0145607] [ o [ o [ o 00321671 15,GBANO1106-14;GBANO1895-15;,GBANO1902-15;,GBANO1103-14;GBANO1886-15,GBANO1872. 15,GBANO1894-15,GBANO1887-15;,GBANO1875-15;,GBANO1889-15;GBANO1901-15,GBANO 1 15,GBANO1877-15,GBANO1105-14;GBANO1884-15;G1 AB779184;A1 BOLD:AAI28( Anopheles crawfordi
A culicifacies [ [ o [ [ [ 0,0102791 GBDP17116-15; g 711, -12;LGEN122-14; 1-06;GBDP17113-1! 2 2 71-12; 2 7 2,GBDP17: 7: 3 2,GBDP17111-15; ;DC ;BOLD:AAR3 Anophel
A. darlingi 0] 0,00156377] o [ [ 9| /GBANOB10-12; -12,GBDP2377-06; 2 2 12; -12; -12,GBDP2043-06; 2 2 ;GBDP12019-12; -12,G80P7970.09; 2 2 /GBANO82-12; 002982242 ;BOLDIAAR2 Anopheles darlingi
A dirus o 0,108862] [ o [ 0| _0,00769049) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 AIB77441AK diru
A. dravidicus 0] 0,00308572] o o [ o o|mAMOS1613-13 NIBGE MOS-(BOLD:ABY95¢ Anopheles sp nr dravidicus YML
A fluviatilis [ [ [ 0o _0,0005741] 0] 0,00143259 _0,00114828] 1 3 -13; 1 129 2,6BANO380-12; 2 971-13; 1 1 DQ154158,G ;BOLD:AAAS Anophel
A fragills o [ o [ o [ 0| _0,00539895|GBDP17132-15,GBDP17137- 15 eanpmas 15,G8DP17133-15,GBDP17134-15,GBDP17136-15 KFS64689;KF BOLD:ACV94 Anopheles fragilis
A funestus [ [ [ o 0 o[ 0,400681|GBMIN147 3,GBMIN 2 3,GBMIN ;¢ 14 -13,GBMIN14771-13,GBMIN14776-13; 14 1-13;GBMIN 2 146 3,GBMINL4764-13,G110424643,10 BOLDAAEAD Anopheles funestus;Anopheles
A. gambiae o [ o [ of 9| | 5 5 g 2 ;GBDP3788-07,GBDP3770-07; 5 g ;GBDP3787-07;GBDP37 2 1-07; 7-09; 1-07,GBDP1229-06; DP37 DQ465333;0 ;BOLD:AAA3 Anopheles gambiae
A hyrcanus 0,036451 o _0,0258228] [ [ 0 0| | 2,GBANOS82-1 2,GBANOS88-12,GBMIN1; 2,6BANO593-12; 0-12,GBANOS83-12,GBMINI7609-13,GBANOS76-12,GBDP14482-13,GBANOS91-12,GBDPS; 2,6BANO592-12,GBANO587-12; ; 44H heles hyrcanus
A o [ o 0| 0,00061369) 0| 0,00190577] 0|GBDP10903-12 60259191 Anopheles insulaeflorum
A.Jeyporiensis o[ _0;370471] o 0,2417as| 0,00433541] [ 0| _0,00599828] 64-12;GBANO747-12; 3;GBANO766-12; 2 5 2 2 DQ154159;1C ;BOLD:AACS. Anopheles jeyporiensis
A karwai o _0,103915]_0,211861 _0,1578a1] o [ o 0|GBDP17141-15,GBDP17140-15,GBDP17139-15 KFS64711;KF BOLD:AAES3! Anopheles karwari
A leesoni [ [ [ 0] 0,00032805] [ [ 0|GBDP1224-06 AYA23056  BOLD:AAR32Anopheles leesoni
A lesteri 0,00041884] [ o [ o [ o | 2 2 ;GBDP13491 2 7 5 5 2 3 2 ;GBDPA911-08; 2 -13,GBDPA838-08;GBDPA913-08; 2 7 7 J BOLD:AAAS7 Anopheles lesteri
A letifer [ [ [ [ o [ 0| _0,00351536|GBDP17146-15,GBDP17147-15 KFS64694;KF BOLD:AAABS Anopheles letifer
A longirostris o [ o [ 0[ 0,00027727] o 2 2 5 2 2 1 ; BDP8911-10; 2 : 2 2 2 2 2 : 10,6BDP8912-10; 2 10;GBDPEY GU24 heles longirostris D NWB-2
A maculatus o _o,118328] o[ 0211197 [ _T:‘ o __0,0101583] 2 7 10694-12; 2,GBDP17 71.06,680P1715 2 7148-15 EU256336;K1 ;BOLD:AAC3 Anopheles maculatus
A is [ 0,00032311 [ o[ 0,00748462] o of o 0/GBDP1188-06; 5 2  CULBE160-14/ACMC314-04,GBDPO598-06,CULBE165-14; GBANOESZ 12; eanmn 07,GBANO1870-15;CULBE158-14,GBDP2239-06;CULBE156-14;CULBE163-14;CULBE166-14;GBDP2238-06;GBANO1022-14;CULBE159-14;CULBE161-14,GBDPO596-06;,GBDPOS! AY258190;AF BOLD:AAAS6 Anopheles maculipennis;Anoph
A.melas 0 0| 0| [ 0| _0,0140265 0| 0|GBDP3223-07;GBDP3222-07 DQ792579;D BOLD:AAA34 Anopheles melas
A. minimus 0o _0,0201091] o _0,0137076] [ o 1 2 2 2 13;GBANO378-12; -12,GBANO622-1 13; -1 12,6BDP6193-09; ;GBDP1 2 3 ;GBDP122 13,GBDP4 2 £ GQ259189;E1 BOLD:ACF27( Anopheles minimus;Anopheles |
A nitidus, 0055579 [ [ 0| [ [ S 2 2 1 01912-15,GBANO 2 0191 5 2 762;AtBOLD:AAAS7 Anopheles nitidus,
A nivipes 0, oeo73297 [ [ [ 0 o 12 INS96974 Anopheles nivipes
A. parensis [ o|_0,102774] [ 0| __0,065976|GBMIN14 2 227-06,GBMIN14: ; 43-13,GBMIN 2 331 3,6BMIN14 2 40-13,GBMIN14; ; 14 ;¢ 36-13;,GBMIN 1Q424719;AY BOLD:AAE40 Anopheles parensis
A [ [ o [ o 0,0603555| ; 7-13,GBMIN14622-13; 1 1-13;MAMOS190-12,GBDP10899-12,GBANO692-12;MAMOS184-1 13,GBMIN14551-13;MAMOS185-1 13,GBOPB467-10,GBMIN14548-13,6 AB781776;A¢ BOLD:AAD3O Anopheles peditaeniatus
A 0015521 [ [ [J [ 0| _0,00835528] 2 2 705-09 AM773815;F BOLD:ABZ68: Anopheles pseudopictus
A i of [ o 0[ 0,00109163] [ 0] 0,000916613]GBMIN17591-13;GBMIN17592-13;MAMOS159-12;MAMOS169-12;MAMOS156-12;MAMOS158-12;MAMOS161-12;GBMIN17610-13;,GBMIN17611-13;MAMOS163-1;MAMOS160-12;MAMOS162-12 1X255712;1X: BOLD:ACB27! Anopheles pulcherrimus
A pursati 0, 00146295 0] 0,00109753] [ [ [ [ S 7 ’ /AB826089;A! BOLD:ACQS3 Anopheles pursati
A [ 9| 0 0| 0,0004614¢| 9| 0|GBDP3221-07 DQ792581  BOLD:AAA34 Anopheles quadriannulatus
A.rangeli [ 9| [ [ [ 0] 0,000911577] GBANO468-12,GBANO789-12,GBDP12050-12,GBANOG02-12;GBANO788-12,GBANOAG7-12;GBANOA69-12,GBANO791-12;GBANO787-12;,GBANOAG6-12;GBMINL. -12,GBMINY /GBANO790-12 HMO022392;5; BOLD:AABOS Anopheles rangeli
A sinensis 0, oemAss 0[ 0,00106876] [ o [ o (GBANO1969-15,GBDP13425-13;GBDP13292-13,GBDP17168-15;GBDP13335-13,GBDP13389-13,GBDP17164-15;GBANO1036-14;GBDP17167-15,GBDP13368-13,GBDP13310-13;GBDP13313-13,GBDP13342-13;ACMCO17-04;GBDP17166-15;GBDCU715-13,GBANO1970-15,GBANO9S9-14;GBMINL 2 1 BOLD:AAAS3 Anopheles sinensis
A. rufipes [ 0| o[ 0307121 of 0|GBANO1018-14 KM097029  BOLD:AAN94 Anopheles sp.
A.stephensi o 0,00073589) o o [ o 0|MAMOS053-12;MAMOS910-12;MAMOS165-12;GBDP1679-06;MAMOS122-12;MAMOS1324-12;MAMOS121-12;GBDP5 708-09; 11 12;MADIP281-10;MAMOS123-12;MAMOS1744-13;MAMOS1297-12;MAMOS1227-12;MAMOS070-12,GBDP17170-15;LGEN121-14,GBDP17177-1 NIBGE MOS- BOLD:AACS7 Anopheles stephensi
A. subpictus 0| 0,00048502] 0| [ o 1051090-12;GBANO197" 105992-1 -15;MAMOS1123-12;MAMOS141-12;M NIBGE DIP-0C BOLD:AAD26 Anopheles subpictus;Anopheles
A triannulatus o [ o [ o[ 0,00011827] 0| 0,00235701]GBMIN11395-13,GB0P12058-12,GBMIN1 1381-13;GBDP12060-12;GBMIN11426-13,GBANOA63-12;GBMIN11382-13,GBMIN11399-13,GBMIN11383-13,GBMIN1 1438-13;GBMIN11392-13,GBMIN11393-13,GBMIN11427-13,GBMIN1 1423-13;GBMIN11380-13,GBANG782-12;GBMIN11417-13,GBMIN11378-13,GBMIN11 KC167679,JF BOLD:AAAS7 Anopheles triannulatus
A, vaneedeni 9| o [J o[ 0,00171663] [ o|__0,0524283]GBMIN147 07-13,GBMIN14; 2 3,6BMIN14714-13; 3,GBMIN 2 14 2 147 21-13;GBMIN14710-13; 2 7 14713-13;GBM JQ424763;1Q BOLD:AAE40 Anopheles vaneedeni
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Additional File 2: Figure S1
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