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86 ABSTRACT

87 As yet undiscovered rare variants are hypothesized to substantially influence an
88 individual’s risk for common diseases and traits, but sequencing studies aiming to
89 identify such variants have generally been underpowered. In isolated populations that
90 have expanded rapidly after a population bottleneck, deleterious alleles that passed
91  through the bottleneck may be maintained at much higher frequencies than in other
92  populations. In an exome sequencing study of nearly 20,000 cohort participants from
93 northern and eastern Finnish populations that exemplify this phenomenon, most novel
94  trait-associated deleterious variants are seen only in Finland or display frequencies more
95 than 20 times higher than in other European populations. These enriched alleles underlie
96 34 novel associations with 21 disease-related quantitative traits and demonstrate a
97  geographical clustering equivalent to that of Mendelian disease mutations characteristic
98  of the Finnish population. Sequencing studies in populations without this unique history
99  would require hundreds of thousands to millions of participants for comparable power for
100  these variants.

101

102 INTRODUCTION

103  Genotyping studies of common genetic variants (defined here as minor allele frequency
104 [MAF]>1%) have identified tens of thousands of genome-wide significant associations
105  with common diseases and disease-related quantitative traits'. For most traits, however,
106 these associations account for only a modest fraction of trait heritability, and the
107  mechanisms through which associated variants contribute to biological processes remain

108  mostly unknown. These observations have led to the expectation that rare variants
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109 (defined here as MAF<1%) which are not well-tagged by the single-nucleotide
110  polymorphisms (SNPs) on genome-wide genotyping arrays are probably responsible for
111  much of the heritability that remains unexplained®. Additionally, because purifying
112  selection acts to remove deleterious alleles from the population, most variants that exert a
113  sizable effect on complex traits, and that likely offer the best prospect for revealing
114  biological mechanisms, should be particularly rare.

115

116  Rare variants are unevenly distributed between populations and difficult to represent
117  effectively on commercial genotyping arrays, as evidenced by relatively sparse
118 association findings even from large array-based studies of coding variants®®.
119  Discovering rare variant associations will therefore almost certainly require exome or
120  genome sequencing of very large numbers of individuals. However, the sample size
121  required to reliably identify rare-variant associations remains uncertain; most sequencing
122  studies to date have identified few novel associations, and theoretical analyses confirm
123  that they have been underpowered to do so’. These analyses also suggest that power to
124  detect rare variant associations varies enormously between populations that have
125  expanded in isolation from recent bottlenecks compared to those that have not.

126

127  In isolated populations that expand rapidly following a bottleneck, alleles that pass
128  through the bottleneck often rise to a much higher frequency than in other populations®™°.
129  If the bottleneck was recent, even deleterious alleles under negative selection may remain
130 relatively frequent in these populations, resulting in increased power to detect association

131  with disease-related traits. The Finnish population exemplifies this type of history. It
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132  grew from bottlenecks occurring 2,000-4,000 years ago in the founding of the early-
133 settlement regions of southern and western Finland; internal migration in the 15" and 16"
134  centuries to the late-settlement regions of northern and eastern Finland created additional
135  bottlenecks™. The subsequent rapid growth of the Finnish population (to ~5.5 million,
136  larger than any other human isolate) generated sizable geographic sub-isolates in late-
137  settlement regions.

138

139  Geneticists have long noted that the bottlenecks that were so prominent in Finland’s
140  recent history caused 36 Mendelian disorders to be much more common in Finland than
141  in other European countries, while several other disorders are much less common, a
142  phenomenon termed “the Finnish Disease Heritage”. The identification of mutations for
143 35 of these disorders has confirmed that they mostly concentrate in late settlement
144  regions™. Additional studies demonstrated, in these regions, an overall enrichment of
145  deleterious variants more extreme compared to other isolates or to Finland generally**°.
146 We reasoned that this enrichment would enable exome sequencing studies of late-
147  settlement Finland to be better powered than studies in other populations to
148  systematically investigate the impact of low-frequency variants on disease-related
149  quantitative traits. Based on this expectation, we formed such a sample (“FinMetSeq”)
150 from two Finnish population-based cohort studies: FINRISK and METSIM (see
151  Methods).

152

153 Using >1.4 M variants identified and genotyped by successful exome sequencing of

154 19,292 FinMetSeq participants, we conducted single-variant association analysis with 64
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1617 \We identified 43 novel associations with

155  clinically relevant quantitative traits
156  deleterious variants in 25 traits: 19 associations (11 traits) in FinMetSeq and 24
157  associations (20 traits) in a combined analysis of FinMetSeq with an additional 24,776
158  Finns from three cohorts for which imputed array-based genome-wide genotype data
159  were available. Nineteen of the 26 variants underlying these 43 novel associations were
160 unique to Finland or enriched >20-fold in FinMetSeq compared to non-Finnish
161  Europeans (NFE).

162

163  We demonstrate that (1) a well-powered exome sequencing study can identify numerous
164  rare alleles, each of which has a substantial effect on one or more traits in the individuals
165 who carry them, and (2) exome sequencing in a population that has expanded after recent
166  population bottlenecks is an extraordinarily efficient strategy to discover such effects. As
167 most of the novel putatively deleterious trait-associated variants that we identified are
168 unique to or highly enriched in Finland, similarly powered studies of these variants in
169  non-Finnish populations might require hundreds of thousands or even millions of
170  participants. Additionally, the geographical clustering of these enriched alleles, like the
171  Finnish Disease Heritage mutations, demonstrates that the distribution of trait-associated
172  rare alleles may vary significantly between locales within a country.

173

174 RESULTS

175  Genetic variation

176  We attempted to sequence the protein-coding regions of 23,585 genes covering 39 MB of
177  genomic sequence in 20,316 FinMetSeq participants. After extensive quality control, we

178 included in downstream analysis 19,292 individuals sequenced to 47x mean depth
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179  (Methods, Supplementary Table 1). We identified 1,318,781 single nucleotide variants
180  (SNVs) and 92,776 insertion/deletion (indel) variants, with a mean of 20,989 SNVs and
181 604 indel variants per individual. The majority (87.5%) of SNVs identified were rare
182 (MAF<1%); 40.5% were singletons (Table 1). Each participant carried 15 singleton
183  variants on average, 17 rare (MAF<1%) protein truncating variants (PTVS; annotated as
184  stop gain, essential splice site, start loss, or frameshift) alleles, and 171 common
185 (MAF>1%) PTVs (Supplementary Table 2). Frameshift indels accounted for the largest
186  proportion of PTVs (31% of rare, 42% of common), while stop gain variants were the
187  most frequent type of protein truncating SNVs (29% of rare, 20% of common).

188

189  We compared variant allele frequencies in FinMetSeq to those of NFE control exomes
190 from the Genome Aggregation Database (gnomAD v2.1, Extended Data Fig. 1). As in
191  previous smaller-scale comparisons of Finnish and NFE exomes, in FinMetSeq we
192  observe a depletion of the rarest alleles (singletons and doubletons) and a relative excess
193  of more common variants (minor allele count, MAC >5) compared to NFE for all classes
194  of variants. This effect is particularly marked for alleles predicted to be deleterious
195 (Extended Data Fig. 2).

196

197  Single-variant association analyses

198  We tested for association between genetic variants in FinMetSeq and 64 clinically
199 relevant quantitative traits measured in members of both FINRISK and METSIM
200  (Supplementary Table 3). We adjusted lipid and blood pressure traits for lipid lowering

201 and antihypertensive medication use, respectively, adjusted all traits for covariates using
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202  linear regression (Supplementary Table 4), and inverse normalized trait residuals to
203  generate normally distributed traits for genetic association analysis that assumed an
204  additive model (Methods). Based on common variants, 62 of 64 traits exhibited
205  significant heritability (P<0.05; h? range 5.0-52.5%; Fig. 1A, Supplementary Table 5),
206  and there was substantial correlation between traits, phenotypically and genetically (Fig.
207  1B).

208

209  We tested the 64 traits for single-variant associations with the 362,996 to 602,080 genetic
210  variants with MAC >3 among the 3,558 to 19,291 individuals measured for each trait
211  (Supplementary Tables 3 & 4). Association results are available for download and can
212  be explored interactively with PheWeb (http://pheweb.sph.umich.edu/FinMetSeq/) and
213 via the Type 2 Diabetes Knowledge Portal (www.type2diabetesgenetics.org). We
214  identified 1,249 trait-variant associations (P<5x107) at 531 variants (Supplementary
215 Table 6), with 53 of 64 traits associated with at least one variant (Fig. 2A). All 1,249
216  associations remained significant after multiple testing adjustment across the exome and
217  across the 64 traits with a hierarchical procedure setting average FDR at 5% (Methods).
218 Using the hierarchical FDR procedure, we detected an additional 287 trait-variant
219  associations at these 531 variants (Supplementary Table 7). These additional
220  associations reflect the high correlation between a subset of lipid traits, e.g. high-density
221  lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (ApoAl). Given the diversity of
222  traits assessed in these cohorts, these associations may shed additional light on the
223  biology of measures that have been less frequently assayed in large GWAS, such as

224 intermediate density lipoproteins (IDL) and very-low-density lipoprotein (VLDL)


https://doi.org/10.1101/464255
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464255; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

225  particles. Of the 531 associated variants, 59 (11%) were rare (MAF<1%); by annotation,
226 200 (38%) were coding, 108 (20%) missense, and 11 (2%) protein truncating.
227  Furthermore, minor alleles at >10-fold increased frequency in FinMetSeq compared to
228  NFE are substantially more likely to be associated with a trait compared to variants with
229  similar or lower MAF in FinMetSeq compared to NFE (OR=4.92, P=2.6x10": Extended
230 Data Fig. 3).

231

232 We clumped associated variants within 1 Mb and with r>>0.5 into a single locus,
233  irrespective of the associated traits (Methods). After clumping, the 531 associated
234 variants represented 262 distinct loci (597 trait-locus pairs, Supplementary Table 6);
235 158 of the 262 loci (60%) consisted of a single trait-associated variant. As expected, the
236  number of associated loci per trait was positively correlated with trait heritability (r=0.38,
237  P=8.8x10). Height was a noticeable outlier, with relatively few associations considering
238 its high estimated heritability (Fig. 2B).

239

240  The majority of variants and loci (61%) were associated with a single trait; 4% were
241  associated with >10 traits. Overlapping associations (Fig. 2C) strongly reflect the
242  relationships exhibited by both trait and genetic correlations (Fig. 1B). For example,
243  rs113298164, a missense variant in LIPC (p.Thr405Met), is associated with 11 traits,
244 including cholesterols, fatty acids, apolipoproteins, and cholines. Similarly, the estimated
245  genetic correlation of trait pairs is a strong predictor of the probability for a trait pair to
246  share associated loci (Fig. 2D).

247
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248  To determine which of the 1,249 single-variant associations were distinct from known
249  GWAS associations for the same traits, we repeated association analysis for each trait
250  conditional on published associated variants (P<10) for the corresponding trait in the
251 EBI GWAS Catalog (December 2016 release). Of the 1,249 trait-variant associations,
252 478 (at 213 of 531 variants) remained significant (P<5x107) after conditional analysis,
253  representing 126 of the original 262 loci, including at least one conditionally significant
254  locus for each of 48 traits (Supplementary Table 8). The conditionally-associated
255  variants were more often rare (24% vs. 11%), more likely to alter or truncate the resulting
256  protein (31% vs. 22%), and more frequently >10x enriched in FinMetSeq relative to NFE
257  (19% vs. 10%) compared to the full set of associated variants.

258

259  Gene-based association analyses

260  To identify genes associated with the 64 traits, we performed aggregate tests of protein
261  coding variants, grouping variants using three different masks. Mask 1 comprised PTVs
262  of any frequency; Masks 2 and 3 also included missense variants with MAF<0.1% or
263  0.5% predicted to be deleterious by five algorithms (Methods). We identified 54 gene-
264  based associations with P<3.88x10® (adjusting for testing a maximum of 12,890 genes
265  containing at least two qualifying variants) and with multi-trait FDR<0.05, analogous to
266  the threshold used for single-variant association testing (Methods). Fifteen of these
267  associations required >2 variants to achieve significance (i.e. the association was not
268  driven by a single strongly associated variant; Supplementary Table 9). Extremely rare
269 (MAC<3) PTVs drove the association of eight traits with APOB (Extended Data Fig. 4).

270  We found a novel association between two very rare stop gain variants in SECTM1 and

10
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271  HDL2 cholesterol (P=7.2x10", Extended Data Fig. 5). SECTM1 encodes an interferon-
272  induced transmembrane protein that is negatively regulated by bacterial
273  lipopolysaccharide (LPS)®. The association could reflect the role of HDL particles in
274  binding and neutralizing LPS in infections and sepsis™.

275

276  Replication and follow-up of single-variant associations in three additional Finnish
277  cohorts: Identification of novel coding, deleterious variant associations

278  We attempted to replicate the 478 single-variant associations from FinMetSeq
279  (unconditional and conditional P<5x10™") and to follow-up the 2,120 suggestive but sub-
280 threshold associations from FinMetSeq (unconditional 5x10'<P<5x107°, conditional
281 P<5x10™) in 24,776 participants from three Finnish cohort studies for which varying
282  subsets of the 64 FinMetSeq traits were available: FINRISK*?! participants not
283  sequenced in FinMetSeq (n=18,215), the Northern Finland Birth Cohort 19662
284  (n=5,139), and the Helsinki Birth Cohort® (n=1,412). For each of the three cohorts, we
285 carried out genotype imputation using the Finnish-specific SISu v2 reference panel

286  (http://www.sisuproject.fi), which is comprised of 5,380 haplotypes from whole-genome

287  based sequencing and 10,184 haplotypes from whole-exome based sequencing in coding
288  regions, and then used the same single-variant association analysis strategy employed in
289  FinMetSeq. We then carried out meta-analysis of the three imputation-based studies to
290  test for replication of associated FinMetSeq variants (“replication analysis”) and four-
291  study meta-analysis with FinMetSeq to follow-up suggestive associations (“‘combined
292  analysis”; Methods).

293
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294  We obtained data for 448 of the 478 significant variant-trait associations (191 of the 213
295  requested variants). Of the 448 associations for which we had replication data, 439
296  (98.0%) had the same direction of effect in replication analysis as in FinMetSeq; 392 of
297  the 448 replicated at P<0.05 (87.5%; Supplementary Table 10). We also obtained data
298  to follow up 1,417 of the 2,120 sub-threshold associations (1,014 of the 1,554 requested
299  variants); >60% of the variants that we could not follow up were very rare in FinMetSeq
300 and were not present in the SISu reference panel. Of the 1,417 sub-threshold trait-variant
301 associations, 431 reached P<5x10” in the combined analysis (Supplementary Table
302 11).

303

304  Among the significant results from FinMetSeq or combined analysis, 43 associations
305  were with 26 predicted deleterious variants that conditional analysis and literature review
306  suggest are novel (Table 2). Nineteen such associations, at 15 deleterious coding
307 variants, were significant in FinMetSeq (Table 2; Supplementary Table 10). Twelve of
308 these associations replicated (P<0.05) in the replication analysis and remained significant
309 in the combined analysis; for the other seven associations we either did not have
310 replication data (six associations) or did not replicate but had very low power (<5%) in
311  the replication analysis (one association). Four of the 15 variants were PTVs; 11 were
312  missense variants predicted to be deleterious by at least one of five prediction algorithms.
313  Another 24 associations, with 16 variants (two PTVs and 14 missense variants predicted
314 to be deleterious), only reached significance in the combined analysis (Table 2;
315 Supplementary Table 11). Five variants with significant associations in FinMetSeq

316  alone were associated with additional traits in combined analysis (Table 2).

12
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317

318  Of the 43 associations shown in Table 2, 34 were with 19 variants either seen only in
319  Finland or enriched by >20-fold in FinMetSeq compared to NFE (13 of 15 variants in
320 FinMetSeq and 11 of 16 variants in combined analysis with five variants overlapping).
321 Identifying associations for these 19 variants would have required much larger samples in
322  NFE populations than in FinMetSeq (Fig. 3A & B). We provide brief summaries relating
323  each of these highly enriched associations to known biology and prior genetic evidence
324 relating to the respective genes in Supplementary Information. We highlight a few of
325  the most striking findings, below.

326

327  Anthropometric traits. As a group these are among the most extensively investigated
328  quantitative traits, with thousands of common variant associations reported, most of very
329  small effect?*®®. We identified several rare, large effect variants for these traits, including
330 a predicted damaging missense variant (rs200373343, p.Arg94Cys) in THBS4 45X more
331 frequent in FinMetSeq than in NFE and associated in the combined analysis with a mean
332  decrease in body weight of 5.9 kg (Table 2). THBS4 encodes thrombospondin 4, a
333  matricellular protein found in blood vessel walls and highly expressed in heart and
334  adipose tissue’®. THBS4 is involved in local signaling in the developing and adult nervous
335  system, and may function in regulating vascular inflammation®®. Coding variants in
336 THBS4 and other thrombospondin genes have been implicated in increased risk for heart
337  disease® ™,

338
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339  We identified a predicted damaging missense variant (rs2273607, p.Val104Met) in DLK1
340 thatis 177X more frequent in FinMetSeq than in NFE and is associated in the combined
341 analysis with a mean decrease in height of 1.3 cm (Table 2). DLK1 encodes Delta-Like
342  Notch Ligand 1, an epidermal growth factor that interacts with fibronectin and inhibits
343  adipocyte differentiation. Uniparental disomy of DLK1 causes Temple Syndrome and
344  Kagami-Ogata Syndrome, characterized by pre- and postnatal growth restriction,
345  hypotonia, joint laxity, motor delay, and early onset of puberty***. Paternally-inherited
346  common variants near DLK1 have been associated with child and adolescent obesity,
347 type 1 diabetes, age at menarche, and central precocious puberty in girls®°.
348  Homozygous null mutations in the mouse ortholog DIk-1 lead to embryos with reduced
349  size, skeletal length, and lean mass*, while in Darwin’s finches, SNVs at this locus have
350 astrong effect on beak size*".

351

352 HDL-C. Two novel variants with large effects on HDL-C in FinMetSeq are absent in
353 NFE. The predicted deleterious missense variant rs750623950 (p.Argll2Trp) in
354  CD300LG is associated in FinMetSeq with a mean increase in HDL-C of 0.95 mmol/I,
355  and also associated with HDL2-C and ApoAl (Table 2). CD300LG encodes a type | cell
356  surface glycoprotein. A missense variant in ABCA1 (rs765246726, p.Cys2107Arg) is
357 associated in FinMetSeq with a mean reduction in HDL-C of 0.64 mmol/l (Table 2).
358  Fifteen more variants (including ten which are absent in NFE) contributed to a strong
359  ABCAL gene-based association signal (P=2.2x10™*; Supplementary Table 9, Extended
360 Data Fig. 6). ABCA1 encodes the cholesterol efflux regulatory protein, which regulates

361 cholesterol and phospholipid metabolism. Individuals who are homozygotes or
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362 compound heterozygotes for any of several ABCA1 mutations produce very little HDL-C
363  and experience the manifestations of severe hypercholesterolemia.

364

365  Amino Acids. A stop gain variant (rs780671030, p.Arg722X) in ALDH1L1 is associated
366 in FinMetSeq with a mean reduction in serum glycine levels of 0.03 mmol/I but is not
367 observed in NFE (Table 2); this effect may increase risk for several cardiometabolic
368  disorders®**®, ALDH1L1 encodes 10-formyltetrahydrofolate dehydrogenase, which
369  competes with the enzyme serine hydroxymethyltransferase to alter the ratio of serine to
370  glycine in the cytosol. Although rs780671030 was the strongest associated variant, gene-
371  based association tests suggest that additional PTVs and missense variants in ALDH1L1
372  also alter glycine levels (P=1.4x10"°, Extended Data Fig. 7, Supplementary Table 9).
373

374  Ketone bodies. A predicted damaging missense variant (rs201013770, p.Phe517Ser) in
375  ACSS1 is associated in the combined analysis with mean increased serum acetate level of
376  0.005 mmol/l but is not observed in NFE (Table 2). ACSS1 encodes an acyl-coenzyme A
377  synthetase and plays a role in the conversion of acetate to acetyl-CoA. In rodents,
378 increased acetate levels lead to obesity, insulin resistance, and metabolic syndrome,
379  mediated by activation of the parasympathetic nervous system*.

380

381  Associated variants and disease endpoints

382  Newly available GWAS data from the FinnGen project* enabled us to test the hypothesis
383 that deleterious variants responsible for our novel quantitative trait associations (Table 2)

384  could also contribute to disease endpoints related to these traits. FinnGen has particularly
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385 rich data on such endpoints as the samples are largely drawn from Finnish hospital
386  biobanks. In total, we examined 22 disease endpoint phenotypes for all 25 available
387 variants in Table 2. Three variants were associated with disease endpoints in FinnGen at
388 a Bonferroni-corrected threshold of P<0.05/(22x25)=9.0x10° (Supplementary Table
389 12).

390

391 A predicted damaging missense variant (17:39135270:A/G; p.Ser32Pro) in KRT40 which
392 is not observed in NFE and associated in FinMetSeq with a mean elevation in HDL-C of
393 1.07 mmol/l (Table 2), is associated in FinnGen with increased risk for pancreatitis.
394  While this is the first disease association reported for this gene, the type | keratin family,
395  of which KRT40 is a member, is believed to play an important role in regulating exocrine
396  pancreas homoeostasis*®. A 29 bp deletion on chromosome 1 causes a frameshift in
397 FAMI151A which is 6.7X more frequent in FinMetSeq than NFE and associated in
398 FinMetSeq with both decreased total cholesterol in IDL and decreased IDL particle
399 concentration (Table 2), is associated in FinnGen with decreased risk of myocardial
400 infarction. The interpretation of this association is complicated by the fact that the variant
401 is also present in an overlapping transcript (ACOT11), a gene that plays a role in fatty
402  acid metabolism and lies <1 MB from a well-known cardioprotective variant in PCSK9.
403  Finally, a predicted damaging missense variant (rs77273740; p.Arge5Trp) in DBH that is
404  23.8X more frequent in FinMetSeq than in NFE and is associated with a mean decrease
405  of 1 mmHg in diastolic blood pressure in our combined analysis (Table 2), is associated

406 in FinnGen with decreased risk for hypertension. Distinct loci in this gene have
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407  previously been shown with mean arterial pressure and this variant was included in a
408  gene-based association with mean arterial pressure®®.

409

410 Replication outside of Finland: UK Biobank

411  To begin to assess the generalizability outside of Finland of the novel associations that
412  we detected, we attempted to replicate associations from our combined Finnish analyses
413 in the UK Biobank (UKBB), a European sample that is approximately ten-fold larger.
414 Across eight anthropometric and blood pressure traits for which UKBB data are publicly
415 available, our Finnish combined analysis had identified 31 trait-variant associations
416  reaching P<5x107. More than a quarter of these variants (8 of 31) were not present in the
417  UKBB database. Of the remaining 23 associations, 20 were to variants that were common
418 in FinMetSeq (MAF> 1%) and had a comparable frequency in UKBB; 15 (75%) of these
419  variants showed association in UKBB at P<0.05/23=2.2x10" (Bonferroni correction for
420 23 tests). Of the three rare variants in this analysis, all of which were enriched at >10x
421  frequency in FinMetSeq compared to UKBB, none showed association in UKBB
422  (Supplementary Table 13). Even after adjusting for winner’s curse*’ and with a sample
423  size of 340,000-360,000, we had <50% power to detect all three of these associations in
424  UKBB (Supplementary Table 13). This comparison supports the argument that
425  extremely large samples will be needed in most other populations to achieve the power
426  for rare variant association studies that we have observed in Finland.

427

428  Geographical clustering of associated variants
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429  Given the concentration within sub-regions of northern and eastern Finland of most
430  Finnish Disease Heritage mutations®®, we hypothesized that the distribution of rare trait-
431 associated variants discovered through FinMetSeq might also display geographical
432  clustering. In support of this hypothesis, principal component analysis revealed broad-
433  scale population structure within the late-settlement region among 14,874 unrelated
434 FinMetSeq participants whose parental birthplaces are known (Extended Data Fig. 8).
435 Consistent with our hypothesis, parental birthplaces were significantly more
436  geographically clustered for carriers of PTVs and missense alleles than for carriers of
437  synonymous alleles, even after adjusting for MAC (Supplementary Tables 14A, 14B).
438

439 To enable finer scale analysis of the distribution of variants within late-settlement
440 Finland, we delineated geographically distinct population clusters using patterns of
441  haplotype sharing among 2,644 unrelated individuals with both parents known to be born
442  in the same municipality (Methods, Extended Data Fig. 9). Taking the cluster that is
443  most genetically similar to early-settlement Finland as a reference, we compared variant
444 counts for different functional classes and frequencies between this reference cluster and
445  cach of the other 12 clusters that contained >100 individuals (Fig. 4, Supplementary
446  Tables 15, 16). In the two clusters that represent the most heavily bottlenecked late-
447  settlement regions (Lapland and Northern Ostrobothnia), we observed a marked deficit of
448  singletons and significant enrichment of variants at intermediate frequency compared to
449  other clusters. This pattern is most significant for missense variants, which are present in
450 the exome in large numbers; PTVs show consistently greater enrichment, but with less

451  statistical significance likely due to very small counts (Fig. 4). Two clusters in which we
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452  observed marked enrichment of singletons, Surrendered Karelia and South Ostrobothnia,
453  showed the highest levels of genetic diversity across the frequency spectrum, likely
454 reflecting relatively recent gene flow into these regions from neighboring countries
455  (Russia and Sweden, respectively, Fig. 4).

456

457  We observed particularly strong geographical clustering among variants >10X enriched
458 in FinMetSeq compared to NFE (Fig. 5A, Extended Data Fig. 10, Supplementary
459  Table 17). We further characterized geographical clustering for FinMetSeq-enriched
460 trait-associated variants, by comparing the mean distances between birthplaces for
461  parents of minor allele carriers to those of non-carriers (Supplementary Table 18). Most
462  such variants were highly localized. For example, for variant rs780671030 in ALDH1L1,
463  which may be unique to Finns, the mean distance between parental birthplaces is 135 km
464  for carriers and 250 km for non-carriers (P<1.0x10”, Fig. 5B). In contrast, few of the
465 variants that displayed sub-threshold association in FinMetSeq but that showed
466  significant associations in the combined analysis were significantly geographically
467  clustered within Finland (Supplementary Table 18).

468

469  Finally, we compared the geographic clustering of FinMetSeg-enriched trait-associated
470 variants to that of 35 Finnish Disease Heritage mutations carried by >3 FinMetSeq
471  individuals with known parental birthplaces. FinMetSeq carriers of monogenic Finnish
472  Disease Heritage mutations and FinMetSeq carriers of trait-associated variants identified
473 in FinMetSeq displayed a comparable degree of geographic clustering. This clustering

474  was dramatically greater than that observed for the non-carriers of both sets of variants
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475  (Fig. 5C), suggesting that rare variants associated with complex traits may be much more
476  unevenly distributed geographically than has been appreciated to date.

477

478 DISCUSSION

479  We have demonstrated that a well-powered exome sequencing study of deeply
480 phenotyped individuals can identify numerous rare variants associated with medically
481 relevant quantitative traits. The variants that we identified may provide a useful starting
482  point for studies aimed at uncovering biological mechanisms or fostering clinical
483  translation. For example, further investigation of the p.Arg722X variant in ALDH1L1
484  associated with reduced serum glycine could help elucidate the role of this gene in
485 astrocyte function, a topic of growing interest in neurobiology. Glycine is a key
486 inhibitory neurotransmitter localized to astrocytes®®, while the mouse ortholog, Aldh1l1,
487 is the primary marker for astrocytes in experimental research, since it is strongly
488  expressed in astrocytes, but not in neurons™.

489

490  The substantial power of this study for discovering rare variant associations derives from
491 the occurrence, in the recently expanded and heavily bottlenecked populations of
492  northern and eastern Finland, of a large pool of deleterious variants that appear unique to
493  Finland or at frequencies orders of magnitude greater than in NFE. This observation
494  motivates a strategy for scaling up the discovery of rare variant associations by
495  prioritizing the sequencing of populations beyond Finland that have expanded in isolation
496 from recent bottlenecks. Examples of other such populations include those of

497  Ashkenazim®, Iceland®, Quebec®®, highland regions of Latin America®, and
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498  geographically isolated regions of larger European countries such as Sardinia®® and
499  Crete™. In each of these populations, genetic drift has almost certainly caused a different
500 set of alleles to pass through the corresponding population-specific bottlenecks, enriching
501 some variants while depleting others. The numerous rare-variant associations that could
502  be identified by sequencing available, phenotyped samples across multiple population
503 isolates could rapidly increase our understanding of the genetic architecture of complex
504  traits. One caveat is that the extended LD blocks that are typical in such populations may
505 make it difficult to identify the causative variant from among multiple deleterious
506  variants within an association region®®.

507

508 Recent studies have suggested a continuity between the genetic architectures of complex
509 traits and disorders classically considered monogenic®’*®. Our results offer strong support
510  for this continuity, not only in identifying numerous deleterious variants with large
511 effects on quantitative traits, but in demonstrating that such variants show geographical
512  clustering comparable to that of the mutations responsible for the Finnish Disease
513  Heritage.

514

515  The use of a Finland-specific genotype reference panel®

to impute FinMetSeq variants
516 into array-genotyped samples from three other Finnish cohorts enabled us to identify
517  many additional novel associations. This result suggests that using sequence data from a
518  subset of individuals in each population to impute variants in array-genotyped samples

519 from the same population is a cost-effective strategy for detecting rare-variant

520 associations. However, the clustering in FinMetSeq of deleterious trait-associated
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521 variants within limited geographical regions and our inability to follow-up >700 sub-
522  threshold associations from FinMetSeq for which the associated variants were not present
523 in the Finnish imputation reference panel, emphasize the importance of extensively
524 representing regional subpopulations when designing such reference panels, to account
525  for fine-scale population structure.

526

527  To fully realize the value of large-scale sequencing studies in population isolates, it will
528  be necessary to increase the richness of phenotypes available in sequenced cohorts from
529 these populations. For example, we associated <100 of the >24,000 deleterious, highly
530 enriched variants identified in FinMetSeq with one of the 64 cardiometabolic-related
531 quantitative traits studied here. In Finland, the national health care system and the
532  population’s willingness to participate in biomedical research mean that extensive
533  medical records and population registries are available for mining additional phenotype
534  data, and create an opportunity for callback by genotype for further phenotyping and
535  collection of biological samples®®. Notably, the associations we identified to disease
536  endpoints in FinnGen give a hint of the discoveries that will be possible when that
537 database reaches its full size of 500,000 participants. The insights gained from such
538 efforts will accelerate the implementation of precision health, informing projects in

539  larger, more heterogeneous populations which are still at an early stage®.
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Table 1. Sequence variants identified using whole-exome sequencing of 19,292
FinMetSeq participants. Percentages are the percent of all variants in the given category
to either have MAF <1% or to be singleton variants.

Variant type All variants MAF<1% Singleton variants
SNV 1,318,781 87.5% 40.5%
Insertion/Deletion 92,776 87.0% 43.1%
Predicted LoF 33,156 96.4% 55.0%
Non-synonymous 353,228 92.2% 46.4%
Variant Annotation All variants MAF<1% Singleton variants
Splice Acceptor 3,180 95.4% 50.8%
Splice Donor 3,795 96.2% 53.3%
Stop Gain 11,382 97.3% 54.3%
Frameshift 12,845 96.6% 58.2%
Stop Loss 621 88.1% 48.1%
Initiator Codon/Start Loss 1,333 93.6% 49.1%
Inframe Insertion 1,673 90.3% 44.5%
Inframe Deletion 4,936 92.9% 46.8%
Missense 353,228 92.3% 46.4%
Splice Region 40,248 87.1% 41.2%
Incomplete Terminal Codon 16 81.3% 50.0%
Stop Retained 217 86.2% 42.4%
Synonymous 180,104 85.7% 40.0%
Coding Sequence 78 88.5% 41.0%
Mature miRNA 239 92.9% 48.5%
5 UTR 35,572 87.8% 38.2%
3'UTR 66,539 86.2% 38.6%
Non-coding Exonic 82,126 85.8% 37.8%
Intronic 601,362 85.1% 37.4%
Upstream 8,820 86.5% 38.3%
Downstream 3,050 84.6% 38.3%
Intergenic 193 85.5% 31.1%

Variant annotation refers to the "most deleterious™ annotation for a given variant across
all Ensembl (v88) transcripts, following the order defined by VEP
(https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html).
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Table 2. Associations with predicted deleterious variants that conditional analysis and literature review suggest are novel. These associations
reach exome-wide significance in FinMetSeq alone or in a combined analysis of FinMetSeq with three replication cohorts.

Chr:Pos Anno: FMS NFE MAF Ratio . FMS RepI: or Repl_. or Mean in carriers
(GRCh37) Gene Prediction” MAF  MAF# (95% ClI) Trait FMSP  geta CO”Q,EL”Ed Coggt'ged non-carriers |
] ] Total Chol. in IDL 5.4x10%  -0.187 2.1x10%Y -0.191 .84| .87 mmol/l
1:55076137 FAMISIA FSPTV 099 0147 6.7 (56-7.8) IDL Particle Conc. 8.9x10*  -0.172 1.9x10™ -0.185 .130.134 umol/l
] oot eGFR* 1.7x10°  -0.093 4.8x10% -0.107 88.689.9 SI
2:120848049 EPBALLS MS:T;B:B;N:D 085 044 19(09-3) Creatinine* 25x10° 0.091 2.5x10%2 0.098 81.62 | 80.64 umol/l
3:125831672 ALDH1L1 SG:PTV .0026 0 © Glycine 1.8x10°  -0.873 4.5x10* -0.827 .24 | .27 mmol/I
4:13612630 BOD1L1 MS:D;D;D;N;D .0001 0 o WHR adj. BMI 47x107  -2.501 NA NA .88 .93
5:79336091 THBS4 MS:D;D;D;D;D .0045 .0001 45 (41.9-48.1) Weight* 6.7x107  -0.377 3.2x107 -0.252 74.680.5 kg
5:140181423 PCDHA3 FS:PTV .0001 NA NA WHR adj. BMI 2.7x107 2.559 NA NA 1.141.93
9:107548661 ABCAL MS:D;D;D;D;D  .00023 0 o Serum HDL Chol. 48x10%°  -2.046 NA NA .80 | 1.44 mmol/|
9:136501728 DBH MS:D;D;P;N;N .05 .0021 23.8 (22.4-25) Diastolic BP* 15x10°  -0.115 2.8x10%2 -0.11 83.1|84.1 mmHg
Serum HDL Chol. 1.4x107 0.425 6.7x107 0.435 1.59 | 1.44 mmol/l
11:47282929 NR1H3 MS:D;P;P;D;D 0042 .00003 140 (132.8-147.2) HDL2 Chol.* 3.2x10° 0.473 1.3x10°® 0.458 1.07 .92 mmol/l
VLDL Chol.* 4.0x10°  -0.469 3.1x107 -0.412 .75].91 mmol/l
11:116692293 APOA4 MS:T;D;P;N;N .0096 012 0.8 (-0.4-2) Serum HDL Chol.* 2.2x10° 0.225 1.5x107 0.196 1.51]1.44 mmol/|
11:117352857 DSCAML1 MS:T;B;B;.;.D 016 .0002 80 (77.8-82.2) VLDL Chol. 4.1x10° 0.299 2.0x10° 0.162 1.01].90 mmol/l
14:101198426 DLK1 MS:T;B;B;N;D 023 00013 177 (174.3-179.6) Height* 2.7x10°  -0.149 1.2x10%° -0.163 170.7 | 172.0 cm
] o Serum HDL Chol. 1.1x10%° 0771 3.8x10° 0.793 1.77 | 1.44 mmol/|
16:55862682 CES1 MS:D;D;D;D;D .0018  .00003 60 (52.8-67.2) Serum ApoAL* 19010 0.668 40610° 0718 1.65] 1.47 gl
] ] Serum ApoAl 2.6x10° 0.834 1.8x10* 1.034 1.70|1.47 g/l
16:56996009 CETP SD:PTV 001700003 56.7(49.4-63.9) Serum HDL Chol. 1.1x10™  0.946 8.8x10% 1.217 1.84 | 1.44 mmol/|
] o Serum HDL Chol. 1.6x107  -0.295 7.2x10%° -0.373 1.33] 1.44 mmol/|
16:68013570 DPEP3 MS:T;B;B;N;D 0099  .00044 225 (20.8-24.2) Serum ApoAL* 52:10°  -0.204 4.0x107 0.253 1.40| 1.47 gl
16:68732169 CDH3 MS:D;D;D;D;D .0044 .00064 6.9 (5.2-8.5) Pyruvate* 3.7x10° 0.417 6.6x101° 0.471 .08 | .07 mmol/I
17:6599157 SLC13A5 MS:D;D;D;D;D  .00091 0 © Citrate 1.3x10° 1.294 9.5x10%2 1.309 .14 .11 mmol/I
17:7129898 DVL2 MS:D;D;D;D;D .02 .02 1(-0.2-2.1) Valine* 42x10°  -0.239 5.7x10° -0.232 .210.217 mmol/l
17:39135270 KRT40 MS:D;P;P;N;D .00013 0 © Serum HDL Chol. 3.2x10° 2.416 NA NA 2.51 | 1.44 mmol/l
Total MUFA 4.4x107 0.275 3.5x10* 0.067 3.88 | 3.62 mmol/l
) R Glycerol* 5.8x10° 0.218 4.1x107 0.183 .092 |.088 mmol/l
17:41062979 G6PC MST;PiPD:D 025 0 * Plasma CRP* 1.6x10° 0.175 4.0x10° 0.185 2.47]2.17 mg/l
Triglycerides* 1.0x10°° 0.23 1.3x107 0.197 1.60 | 1.46 mmol/Il
Serum HDL Chol. 4.8x10™ 2,061 4.9x10° 0.801 2.39 | 1.44 mmol/l
17:41926216 CD300LG MS:T;D;P;N;N .00034 0 © HDL2 Chol. 1.3x107 2.154 NA NA 1.88.92 mmol/l
Serum ApoAl 8.1x10° 1.694 NA NA 2.04|1.47 g/l
HDL2 Chol.* 1.2x10° 0.579 5.6x10%° 0.624 1.13].92 mmol/l
18:47091686 LIPG SAPTV 0025 0 o Phosphocholines* 3.1x10°  0.624 1.1x10°® 0578 2.44| 2.20 mmol/l
Phosphoglycerides* 9.0x10® 0.594 1.1x107 0.538 2.50]2.25 mmol/Il
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Serum ApoB 5.8x10°  -0.282 1.5x10° -0.199 .96]1.02 g/l
A comoms  Amanre AL Total Chol. in IDL* 1.1x10°  -0.289  6.9x10% -0.319 .81 .87 mmol/l
19:10683762 APIM2 MS:D;D:D:D:D 015 00009 167 (162.7-170.7) IDL Particle Conc.* 21x10®  -0.281  85x10™ -0.318 1125 .133 umol/l
Remnant Chol.* 8.0x10°  -0.268 2.7x10*%2 -0.301 1.65 | 1.77 mmol/I
19:11350904 ANGPTLS SG:PTV .0025 0 © HDL2 Chol.* 3.4x10° 0.564 1.1x10° 0.574 1.06 | .92 mmol/l
19:49318380 HSD17B14 MS:D;D;D;D;D .046 .05 0.9 (-0.2-2) Valine* 3.4x10°  -0.152 2.1x107 -0.144 212|217 mmol/l
20:24994201 ACSS1 MS:D;D;D;D;D .0026 0 © Acetate* 1.3x10° 0.626 2.1x10%2 0.631 .046 | .041 mmol/l

AAnnotations are from VEP: FS=Frameshift; SG=Stop Gain; SD=Splice Donor; SA=Splice Acceptor; MS=Missense. All but MS are PTV. Predictions for missense variants are
presented for five different prediction algorithms, each separated by semi-colon: SIFT (D=Damaging; T=Tolerated); PolyPhen2 - human diversity (D=Probably Damaging;
P=Possibly Damaging; B=Benign); PolyPhen2 - hum variation (D=Probably Damaging; P=Possibly Damaging; B=Benign); Mutation Taster (A=Automatic Disease Causing;
D=Disease Causing; N=Polymorphism; P=Automatic Polymorphism); and LRT (D=Deleterious; N=Neutral; U=Unknown).

# Non-Finnish European (NFE) MAF are taken from exomes of gnomAD v2.1 control individuals that were not from Estonia or Sweden. A variant with frequency 0 indicates that the

variant was present in some subset of gnomAD, but was not found in NFE controls. NA indicates the variant was not present in gnomAD.

Minor Allele Frequency Ratio (MAF Ratio) is MAF in FinMetSeq/MAF in gnomAD NFE.

*Indicates an association only reaching significance in meta-analysis combining FinMetSeq and the three replication cohorts. If unlabeled, the association was significant in

FinMetSeq alone.
** Replication P-values <0.05 are highlighted in bold.
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METHODS
761 METSIM and FINRISK studies: designs, phenotypes, and sequenced participants

762 METSIM is a single-site study comprised of 10,197 men randomly selected from the
763  population register of Kuopio, Eastern Finland, aged 45 to 73 years at initial examination
764  from 2005 to 2010*"%% The goal of METSIM is to investigate genetic and non-genetic
765  factors associated with Type 2 Diabetes (T2D), cardiovascular disease (CVD), insulin
766  resistance, and related traits. The METSIM study protocol includes collection of data on
767  CVD history and risk factors, measurements of height, weight, waist, hip, blood pressure,
768 and collection of a blood sample for laboratory measurements and DNA extraction.
769  Diagnoses of myocardial infarction®, stroke®, and peripheral vascular disease were
770  verified based on medical records at baseline. We attempted exome sequencing of all
771  METSIM study participants.

772

773  FINRISK is a series of health examination surveys carried out by the National Institute
774 for Health and Welfare (formerly National Public Health Institute) of Finland every five
775  years beginning in 1972%°. The surveys are based on random population samples from
776  five (six in 2002) geographical regions of Finland. Participants were selected by 10-year
777  age group, sex, and study area. Survey sample sizes have varied from 7,000 to 13,000
778 individuals and participation rates from 60% to 90%. The age-range was 25 to 64 years
779  until 1992 and 25 to 74 years since 1997. The survey includes a self-administered
780  questionnaire, a standardized clinical examination carried out by specifically trained
781  study nurses, and collection of a blood sample for laboratory measurements and DNA
782  extraction®. For exome sequencing, we chose 10,192 participants from the 1992, 1997,

783 2002, and 2007 FINRISK surveys from northeastern Finland (former provinces of North
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784  Karelia, Oulu, and Lapland). This selection was based on the hypothesis that the rapid
785  growth in isolation of the populations of this region from severe bottlenecks in the 16M-
786 17" centuries might have resulted in deleterious variants rising to a much higher
787  frequency than in other populations.

788

789 METSIM participants fasted for more than 10 hours prior to blood draw. FINRISK
790 participants were instructed to fast for four hours before the scheduled examination and
791 to avoid heavy meals earlier in the day; duration of fasting was recorded. Laboratory
792  measurements in METSIM included an oral glucose tolerance test with samples at 0, 30,
793 and 120 minutes (only fasting measurements in known diabetics) for glucose, insulin,
794  proinsulin, and free fatty acids, as well as fasting laboratory measurements including
795 lipids, lipoproteins, apolipoproteins, adiponectin, and hs-CRP. Most of these
796  measurements were carried out in FINRISK non-fasting samples; two-hour oral glucose
797  tolerance tests with glucose and insulin measured at 0 and 120 minutes were carried out
798 in subsets of FINRISK 1992, 2002 and 2007 participants. Both studies include proton
799 NMR metabolomics measurements of lipoprotein subclasses, their lipid concentrations
800 and composition, apolipoprotein A-1 and B, multiple cholesterol and triglyceride
801  measures, albumin, various fatty acids, and numerous low-molecular-weight metabolites,
802 including amino acids, glycolysis related measures and ketone bodies®”.

803

804 METSIM and FINRISK participants are followed up regularly via record linkage using
805 the Finnish health registries, allowing for near complete follow-up of multiple disease

806  diagnoses; participants may also be called back in person for additional studies.

33


https://doi.org/10.1101/464255
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464255; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

807  Participants in both studies provided informed consent, and all study protocols were
808 approved by the Ethics Committees at the participating institutions (FINRISK cohorts
809 1992 & 1997: National Public Health Institute of Finland; FINRISK 2002, 2007, & 2012:
810 Ethical Review Board of the Hospital District of Helsinki and Uusimaa; METSIM:
811  Research Ethics Committee, Hospital District of Northern Savo IRB #1).

812

813  Selection of traits, harmonization, exclusions, covariate adjustment, and
814  transformation

815  Of the 257 quantitative metabolic and cardiovascular traits measured in both METSIM
816 and FINRISK, we selected 64 traits for association analysis in the current study based on
817  clinical relevance for cardiovascular and metabolic health (Supplementary Tables 3, 4).

818

819  Exclusions

820  We excluded 126 individuals, 92 with type 1 diabetes and 34 women who were pregnant
821 at the time of phenotyping, from all analyses, and 3,088 individuals with T2D from
822  analyses of glycemic traits. For traits influenced by food consumption (amino acids, fatty
823 acids, LDL cholesterol, total triglycerides, and glycemic traits), we excluded individuals
824  not fasting for at least 8 hours after their last meal. A complete list of exclusions can be
825  found in Supplementary Table 4.

826

827  Trait adjustments

828  For individuals on antihypertensive medication at the time of testing, we added 15 and 10

829  mmHg to the measured values of systolic and diastolic blood pressures, respectively®® .
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830 For individuals on lipid regulating medications, we multiplied the measured total
831 cholesterol by 1.25 ™. For FINRISK participants, we calculated LDL cholesterol (LDL-
832  C) levels using the Friedewald equation (LDL-C = adjusted total cholesterol - HDL-C -
833  (triglycerides/2.2)) and excluded individuals with elevated triglycerides (>2.5mmol/l);
834 LDL-C was measured directly in METSIM participants and for participants on lipid
835  regulating medication, values were divided by 0.7 2. All trait adjustments are listed in
836  Supplementary Table 4.

837

838  Trait transformations and adjustment for covariates

839  We prepared quantitative traits for association analysis separately for METSIM and
840 FINRISK participants by linear regression on trait-specific covariates; skewed variables
841 were log transformed prior to linear regression analysis. Both before and after log
842  transformation, we examined all variables for normality and for outliers. Log
843  transformation was adequate in all cases to approximate normality for initial covariate
844  adjustment. Qutliers, of which there were no more than 5 individuals with values >5SD
845  for any trait prior to adjustment and inverse normalization, were not removed. Covariates
846  for these regression analyses always included covariates age and age” for METSIM and
847  sex, age, age?, and cohort year for FINRISK. Trait transformations and trait-specific
848  covariates are listed in Supplementary Table 4. Several traits were adjusted for sex
849  hormone treatment, which included women on contraceptives or hormone replacement
850 therapy. We transformed residuals from these initial regression analyses to normality
851  using inverse normal scores.

852
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853  Exome sequencing

854  We carried out exome sequencing in two phases.

855

856 Phase 1 We quantified the 10,379 Phase 1 DNA samples with the Quant-iT PicoGreen
857 dsDNA reagent on a Varioskan Microplate Reader (ThermoFisher Scientific) and
858 randomly parsed samples with adequate DNA (>250ng) into cohort specific files. We
859 then re-arrayed samples using the BioMicroLab XL20 (USA Scientific) to ensure equal
860 numbers of METSIM and FINRISK samples on each 96-well plate, alternating samples
861  between studies in consecutive positions within and across plates, to reduce opportunities
862  for between-study batch effects.

863

864  We constructed dual indexed libraries using 100-250ng of genomic DNA and the KAPA
865 HTP Library Kit (KAPA Biosystems) on the SciClone NGS instrument (Perkin Elmer).
866  The target insert size was 250 bp. We then pooled twelve libraries prior to hybridization
867  with the SeqCap EZ HGSC VCRome (Roche) reagent that targets 45.1 Mb (23,585 genes
868 and 189,028 non-overlapping exons) of the human genome. Each library pool contained
869  samples from both cohorts and was comprised of 300-400 ng of each individual library
870  for a total library input of 3.6-4.8 pg into the initial hybridization. We estimated the
871  concentration of each captured library pool by gPCR (Kapa Biosystems) to produce
872  appropriate cluster counts for the HiSeq2000 platform (lllumina). We then generated
873  2x100bp paired-end sequence data yielding ~6 Gb per sample to achieve a coverage
874  depth of >20x for >70% of targeted bases for every sample.

875
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876  Phase 2 We quantified, prepared, pooled, and captured the 9,937 Phase 2 samples just as
877 in Phase 1. Here we generated 2x125 bp paired-end sequencing reads on the HiSeq2500
878 1T to again achieve a coverage depth of >20x for >70% of targeted bases for every
879  sample.

880

881 Contamination detection, sequence alignment, sample QC, and variant calling

882 We aligned sequence reads to human genome reference build 37 using bwa-mem
883  (v0.7.7), marked duplicates with picard MarkDuplicates (v1.113;
884  http://broadinstitute.github.io/picard), and realigned indels with the GATK™
885 IndelRealigner (v2.4). We used BamuUtil clipOverlap (v1.0.11;
886  http://genome.sph.umich.edu/wiki/BamuUtil:_clipOverlap) to mark overlapping bases
887  from paired reads resulting from short insert fragments.

888

889  For each sample, we required >70% of target bases sequenced at >20x depth, and SNV
890 genotype array concordance >90% if SNV array data were available. We used
891  verifyBamID™* (v1.1.1) to detect and exclude samples with estimated contamination
892  >3%. Where available, we also used existing genotype data with verifyBamID to detect
893  and exclude sample swaps. Of 20,316 samples attempted, 13 failed sequencing, 35 were
894  sample swaps, 760 either had low genotype concordance, sex mismatch, or estimated
895  contamination >3%, and four had discrepancies between reported and genotype-estimated
896 relationships (Supplementary Table 1).

897
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898  We called SNVs and short indels using the recommended best practices for cohort-level
899 calling with GATK" (v3.3). For each individual, we called bases and identified variant
900 sites for all targeted exome bases and 500 bp of sequence up and downstream of each
901 target region using HaplotypeCaller, resulting in calling substantial numbers of non-
902 exonic variants. We merged these calls in batches of 200 individuals using
903 CombineGVCFs and recalled genotypes for all individuals at all variable sites with
904  GenotypeGVCFs.

905

906  After merging genotypes for the 19,378 samples that passed preliminary QC checks, we
907 filtered SNVs and indels separately using the recommended best practices for Variant
908 Quality Score Recalibration (VQSR). We used the set of true positive variants provided
909 in the GATK resource bundle (v2.5; build37) for training the VQSR model after
910 restricting to sites in targeted exome regions. After assessment with VQSR, we retained
911  variants for which we identified >99% of true positive sites used in the training model
912  (i.e. truth sensitivity) for both SNVs and indels.

913

914  Following initial variant filtering, we decomposed multi-allelic variants into bi-allelic
915  variants, left-aligned indels, and dropped redundant variants using vt’ (version 0.5). We
916 filtered variants with >2% missing calls and/or Hardy-Weinberg p-value<10®. We
917  applied an additional filter removing variants with an overall allele balance (AB; alternate
918 AC/sum of total AC) <30% in genotyped samples. We then excluded 86 individuals with
919  >2% missing variant calls yielding a final analysis set of 19,292 individuals.

920
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921  Array genotypes, genotype imputation, and integrated exome+imputation panel

922  METSIM participants were previously genotyped with the lllumina OmniExpress array;
923  genotyping and quality control are described elsewhere’®. FINRISK participants were
924  previously genotyped in several batches on different arrays®. We lacked genotype array
925 data for 1,488 participants (57 METSIM, 1,431 FINRISK). From the available genotype
926  array data, we generated three datasets: 1) a merged array-based genotype call set of all
927  variants present in >90% of array-genotyped individuals across both cohorts; 2) a merged
928 Haplotype Reference Consortium (HRC) v1.1 imputed data set of the array-based
929  genotypes; 3) an integrated data set containing genotyped and imputed array-based
930 variants and exome sequence variants (HRC+exome). Where there was overlap between
931 the sequence and imputed genotypes, we kept the sequence-based genotypes. We
932  excluded the 1,488 individuals with no array data from the HRC+exome panel.

933

934  We prepared array genotypes for imputation using the Imputation Preparation and
935 Checking tool (http://www.well.ox.ac.uk/~wrayner/tools/HRC-1000G-check-
936  bim.v4.2.5.zip) and used the Michigan Imputation Server’”’
937  (www.imputationserver.sph.umich.edu) to impute genotypes using the HRC (v1.1)
938 reference panel’®. METSIM samples were imputed in a single batch. FINRISK samples
939  were imputed in batches based on the genotyping array and/or center where genotypes
940  were generated.

941

942  Annotation
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943  We annotated the final set of variants passing QC using Ensembl’s variant effect
944  predictor (VEP v76)" and Combined Annotation-Dependent Depletion® (CADD v1.2).
945 We employed five in silico algorithms implemented in dbNSFP v2.4

946  (https://sites.google.com/site/jpopgen/dbNSFP) to predict the functional impact of

947  missense variants: PolyPhen2 HumDiv and HumVar®!, LRT®?, MutationTaster®®, and
948  SIFT™.

949

950  Association testing

951  Single variants

952  We carried out single-variant association tests for transformed trait residuals with
953  genotype dosages for variants with MAC>3 assuming an additive genetic model. We
954  used the EMMAX® linear mixed model approach, as implemented in EPACTS (v3.3.0;
955  http://genome.sph.umich.edu/wiki/EPACTS), to account for relatedness between
956 individuals. We used genotypes for sequenced variants with MAF>1% to construct the
957  genetic relationship matrix (GRM).

958

959  Conditioning on associated variants from prior GWAS

960 To differentiate association signals identified in this study from known association
961 signals, for each trait we performed exome-wide association analysis conditioning on
962  variants previously associated (P<107) with that trait. We compiled a list of known
963  variants for each trait from the EBI GWAS catalog
964  (https://www.ebi.ac.uk/gwas/downloads; December 4, 2016 version), from recent papers,

965 and from manuscripts in preparation of which we were aware’®*®, The keywords from
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966 the GWAS catalog we used to assign known variants to each of our traits are listed in
967  Supplementary Table 19. We also manually curated the associations from Inouye et
968 al.® and Kettunen et al.®® to attribute “blood metabolite” associations to the specific
969  associated metabolites.

970

971  Using the combined HRC+exome panel (see above), we pruned each trait-specific list of
972  associated variants (“GWAS variants”) based on linkage disequilibrium (LD) (r*>0.95).
973  Twenty-three GWAS variants were not present in the HRC+exome panel. For 17 of these
974 23 variants, we identified a proxy (r>>0.80) variant instead; we excluded the remaining
975  six variants from conditional analysis. The list of variants included in conditional analysis
976  for each trait is included in Supplementary Table 20. We extracted genotypes for
977  variants used in conditional analysis from the integrated HRC+exome panel and
978  converted dosages to alternate allele counts by rounding to the nearest integer (0, 1, or 2).
979  We imputed missing genotypes for the 1,488 individuals without array data using the
980 mean genotype dosage for purposes of conditional analysis.

981

982  For conditional analysis for each trait, we ran association analysis using the same linear
983 mixed model approach as in unconditional analysis but including the complete set of
984  pruned GWAS variants as covariates in the association test. Following conditional
985  association, we further determined novelty based on absence of the variant from OMIM
986  descriptions, ClinVar, and extensive literature searches.

987

988  Defining loci
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989  The set of >1.4M variants tested for association includes variants in LD. To identify the
990 number of distinct associations for each trait, we performed LD clumping using Swiss

991  (https://github.com/welchr/swiss). We selected the subset of variants with (1)

992  unconditional P<5x10” or (2) both unconditional and conditional P<5x107 for at least
993 one trait. For each variant in this subset, we provided Swiss with the minimum
994  unconditional p-value across all traits. The clumping procedure starts with the variant
995  with the smallest p-value (index variant), and merges into one locus all variants within £1
996  Mb that have r>>0.5 with the index variant. The procedure is repeated iteratively until no
997  variants remain. Trait associations with variants in the same locus are considered to
998 represent the same signal and trait associations with variants in different loci to be
999  distinct signals.

1000

1001  Calculating effects and variance explained of individual variants

1002  For novel variants highlighted in Table 2 we evaluated the effect of each variant on the

1003 trait values. We did this by calculating the mean trait value in carriers and non-carriers,

1004  assuming no homozygous carriers. Differences noted are the difference in the two means.

1005

1006  Given that the effect estimates from our association tests are standardized, we calculated

1007  variance explained for a given variant with the equation 2f (1-f)3%, where f is the minor

1008 allele frequency and § is the estimated effect size. The variance explained is included in

1009  Supplementary Table 8.

1010

1011  Gene-based testing
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1012  We carried out gene-based association tests using the mixed model implementation of
1013 SKAT-0%, which tests for the optimal mixture of burden and dispersion-style multi-
1014  marker tests while adjusting for relatedness between individuals using the same GRM
1015 calculated for the single-variant tests. EMMAX and the mixed model version of SKAT-O
1016  (mmskat) are implemented in EPACTS.

1017

1018 We implemented gene-based tests using three different, but nested, sets of variants
1019  (variant “masks”):

1020 (1) PTVs at any allele frequency with VEP annotations: frameshift_variant,
1021 initiator_codon_variant,  splice_acceptor_variant, splice_donor_variant, stop_lost,
1022  stop_gained;

1023  (2) PTVs included in (1) plus missense variants with MAF<0.1% scored as “damaging”
1024  or “deleterious” by all five functional prediction algorithms;

1025 (3) PTVs included in (1) plus missense variants with MAF<0.5% scored as “damaging”
1026  or “deleterious” by all five functional prediction algorithms.

1027

1028  For each trait and mask, we only tested genes with at least two qualifying variants. Each
1029 mask contained a different number of genes with at least two qualifying variants: up to
1030 7,996, 12,795, and 12,890 for the three masks, respectively. The exact number of genes
1031  tested varied by trait due to sample size. We first used a Bonferroni-corrected exome-
1032  wide threshold for 12,890 genes, which corresponds to a threshold of P<3.88x10%.

1033  Analogous to single-variant association, we passed genes meeting this association
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1034  threshold forward for additional consideration with hierarchical FDR correction as
1035  described below.

1036

1037  Hierarchical FDR correction for testing multiple traits and variants

1038 In controlling for multiple testing our goal was to make sure that, by looking across 64
1039 traits, we did not increase the proportion of falsely discovered variants. To accomplish
1040 this, we adopted a FDR controlling procedure described in Peterson et al.®*, which uses a
1041  hierarchical strategy to increase power while controlling type | error (Supplementary
1042  Methods). This procedure has two stages. Stage 1 identifies the set of R variants that are
1043  associated with at least one trait, controlling genome-wide FDR across all variants at
1044  0.05. Stage 2 identifies all the traits that are associated with the discovered variants in a
1045  manner that guarantees an average FDR<0.05.

1046

1047 In Stage 1 we restricted ourselves to the R=531 variants that have an unconditional
1048  association P<5x10” with at least one trait. For these, we calculated a p-value for the
1049  hypothesis of no association between the variant and any of the 64 traits using Simes’
1050  rule®, a combination rule that is robust to dependence between phenotypes. To account
1051  for the fact that we did an initial selection of these R variants from the total number of
1052  variants tested (T), we passed the Simes p-values to a Benjamini-Hochberg (BH)
1053  procedure that controls FDR at target level 0.05xR/T, a modification®® which guarantees
1054  that the FDR in the set of S variants discovered to be associated with at least one trait is
1055  less than 0.05.

1056
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1057 In stage 2, to determine which traits are associated with the set of the S selected variants
1058 we apply the Benjamini and Bogomolov® procedure. This procedure applies a
1059  multiplicity correction variant by variant, passing the 64 trait association p-values from
1060 each of the S selected variants and all 64 traits to a BH procedure that controls FDR at
1061 target level 0.05xS/T.

1062

1063  We applied this hierarchical correction to two different sets of results: the set of single-
1064  variant unconditional results and the set of gene-based test results. The gene-based tests
1065  used a threshold of P<3.88x10°® to identify the R nominally significant genes in the first
1066  stage of the hierarchical procedure.

1067

1068  Genotype validation

1069 We validated exome sequence-based genotype calls using Sanger sequencing for
1070  METSIM carriers of 13 trait-associated very rare variants with MAF<0.1% in seven
1071  genes. All but one of 108 (99.1%) non-reference genotypes validated were concordant.
1072

1073  Association replication in additional Finnish cohorts

1074  We performed replication analysis of significant single-variant associations (P<5x107)
1075 and follow-up analysis of suggestive single-variant associations (P<5x10®) in up to
1076 24,776 individuals from three GWAS cohort studies: Northern Finland Birth Cohort 1966
1077  (NFBC1966), the Helsinki Birth Cohort Study (HBCS), and FINRISK study participants
1078  not included in the exome sequencing portion of FinMetSeq.

1079
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1080 A detailed description of the NFBC1966 study has been published previously and

1081 additional information is available at: http://www.oulu.fi/nfbc/node/18091 2. The data

1082  wused here, including clinical measurements and blood samples for genetic and NMR
1083  metabolite analyses, were collected at the 31-year follow-up in 1997. NFBC1966 samples
1084  (n=5,139) were genotyped on the Illumina 370k array.

1085

1086  The HBCS includes participants born in Helsinki from 1934-1944 and has been described

1087  elsewhere?®; a basic description is available at https:/thl.fi/fi/web/thlfi-en/research-and-

1088  expertwork/projects-and-programmes/helsinki-birth-cohort-study-hbcs-idefix. HBCS

1089  samples (n=1,412) were genotyped on the Illumina 610k array.

1090

1091 The FINRISK cohort was described in detail above, and participants (replication
1092 n=18,125) were genotyped in several batches on the Illumina 610k, CoreExome, or
1093  OmniExpress arrays*>.

1094

1095 For each replication cohort, prior to phasing we performed genotype quality control
1096  batch-wise using standard quality thresholds for both sample-wise and variant-wise
1097  filtering: call rate>95%, HWE>10°, MAF>5%. We pre-phased array genotypes with
1098  Eagle®™ (v2.3) and imputed genotypes genome-wide with IMPUTE®® (v2.3.1) using the
1099  SISu v2 reference panel consisting of 2,690 sequenced Finnish genomes and 5,092

1100  sequenced Finnish exomes. Following imputation, we assessed imputation quality by

1101  confirming sex, comparing sample allele frequencies with reference population estimates,
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1102  and examining imputation quality (INFO score) distributions. We excluded any variant
1103  with INFO<0.7 within a given batch from all replication/follow-up analyses.

1104

1105 For each of the three cohorts, we matched, harmonized, covariate adjusted, and
1106  transformed available phenotypes as described above for FinMetSeq. We used the same
1107  covariates as for FINRISK. For each cohort, we ran single-variant association using the
1108 EMMAX linear mixed model implemented in EPACTS after generating kinship matrices
1109  from LD-pruned (command: plink --indep-pairwise 50 5 0.2) directly genotyped variants
1110  with MAF>5%.

1111

1112  Association to disease endpoints in FinnGen

1113  From a list of >1,100 disease endpoints available for analysis in the FinnGen project, we
1114  selected 22 we considered most likely to be related to the quantitative traits analyzed in
1115  FinMetSeq. As described in detail in Tabassum et al.*, variant associations with disease
1116  endpoints in FinnGen biobank participants were tested using SPAtest R package and
1117  adjusting for age, sex, and first 10 PCs in up to ~97,000 individuals.

1118

1119  Association replication in UK Biobank

1120  For the eight traits analyzed in FinMetSeq that were also available in the current UKBB
1121  release (height, weight, BMI, hip circumference, waist circumference, fat percentage,
1122 systolic blood pressure, and diastolic blood pressure), we extracted trait-variant
1123  association statistics for variants reaching P<5x10 in the FinMetSeq combined analysis

1124  from the analysis of unrelated white British individuals generated by the Neale lab
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1125  (http://www.nealelab.is/uk-biobank). Seven of the eight traits had at least one associated

1126  variant and 23 of the total of 31 variants were available in UKBB. A comparison of
1127  association results is in Supplementary Table 13.

1128

1129  Population genetic analyses

1130  Identifying unrelated individuals

1131  To identify a set of nearly independent common autosomal SNVs, we removed SNVs
1132 with MAF<5% and pruned the remaining SNVs in windows of 50 SNVs, in steps of 5
1133 SNVs, such that no pair of SNVs had r*>0.2. We used the resulting 26,036 SNVs to
1134  estimate pairwise relationships among the 19,292 exome-sequenced individuals using
1135  KING®". We then removed one individual from each of the 4,418 pairs inferred by KING
1136 to have a relationship of 3rd degree or closer, resulting in a set of 14,874 (nearly)
1137  unrelated individuals for population genetic analyses.

1138

1139  Identifying sub-population clusters in FinMetSeq

1140  We first combined exome sequence variants and a genome-wide set of 220,798 SNVs
1141 from GWAS arrays to provide a genome-wide backbone to aid in phasing and computing
1142  haplotype sharing. After removing variants with MAC<3, variants in known regions of
1143 long range LD® and variants with HWE<10", we phased the remaining 764,696 variants
1144  using SHAPEIT® (version 2, r837). To assess the substructure in our dataset while
1145  minimizing the effect of mixing due to recent population mobility, we focused on the
1146 2,644 unrelated individuals born by 1955 whose parents were both born in the same

1147  municipality (irrespective of the birth location of the individual).
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1148

1149  We identified sub-populations of the 2,644 individuals using ChromoPainter (version 2)
1150 and fineSTRUCTURE' (version 2.0.8). We first used ChromoPainter to generate a
1151  pairwise co-ancestry matrix, which represents each individual’s DNA as a count of
1152  haplotype blocks copied from every other individual in the dataset. Following previous
1153 practices™®, for computational efficiency, we estimated and fixed the switch and global
1154  emission rates as input for ChromoPainter on a subset of the data; cluster inference is
1155  known to be robust to up to 10-fold deviations of the estimated switch and emission
1156  rates'®. For further computational speedup, we generated an initial clustering by

1157  applying a normal mixture model clustering*®

(mclust package in R, version 5.1) to the
1158 top ten principal components of the coancestry matrix and used this initial cluster
1159  solution as seed to the fineSTRUCTURE analysis. We conducted 1 million Markov chain
1160 Monte Carlo (MCMC) iterations retaining one sample for every 1,000 iterations after
1161  discarding 3 million iterations as burn-in. After MCMC, we used fineSTRUCTURE to
1162  perform post-hoc refinement of cluster membership; we started with the MCMC sample
1163  with the highest posterior probability and reassigned membership, taking into account the
1164  cluster membership at each of the recorded MCMC samples'®.

1165

1166 In total, we ran five MCMC chains using fineSTRUCTURE, retaining the configuration
1167  with highest posterior probability for further analysis. We confirmed convergence of the
1168  fineSSTRUCTURE MCMOC runs by calculating Geweke’s convergence diagnostic using

1169 the coda package (version 0.18) in R to compare the number of inferred clusters in the

1170  first 10% and last 50% of the MCMC chain, and visual inspections of the general
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1171  consistency of cluster memberships between independent MCMC chains. In total, we
1172  inferred 245 sub-population clusters among the 2,644 individuals.

1173

1174  We inspected the initial clustering solution from fineSSTRUCTURE by examining for
1175 each individual the estimated proportion of their haplotype length derived from each of
1176  the inferred clusters using non-negative least squares'®*'®. This approach showed many
1177  individuals derived a substantial proportion of their haplotype length not from the cluster
1178 initially assigned by fineSTRUCTURE, but instead from a different but related sub-
1179  cluster on the fineSTRUCTURE hierarchical clustering tree, suggesting redundancy in
1180  fineSTRUCTURE-inferred clusters. We therefore combined related clusters by
1181  successively merging pairs of clusters that resulted in the smallest decrease in the
1182  posterior probability of the fineSSTRUCTURE hierarchical clustering tree. At each merge,
1183  we reorganized individuals into merged cluster memberships and re-estimated the
1184  haplotype-sharing profile for each individual. We iteratively merged the hierarchical tree
1185  until >90% of individuals were assigned to the cluster where they also derive the highest
1186  proportion of haplotype sharing, resulting in 16 clusters for the 2,644 reference
1187 individuals, each named based on the most common parental birthplaces of its members
1188  (Supplementary Table 15).

1189

1190  Enrichment of predicted functionally deleterious alleles in Finland

1191  We assessed enrichment of predicted functionally deleterious alleles in Finland by
1192  comparing the 14,874 nearly unrelated (pairwise kinship coefficient <0.0448) FinMetSeq

1193  individuals to the 14,944 NFE control exomes in gnomAD, excluding from the NFE
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1194  individuals from the neighboring countries of Estonia and Sweden in which substantial
1195  numbers of Finns reside. We analyzed sites with base quality score >10, mapping quality
1196  score >20, and coverage equal to or greater than that found in >80% of variable sites
1197  (17.73X in FinMetSeq, 32.27X in gnomAD), resulting in ~38.6 Mbp for comparisons.
1198 We considered only the two most common alleles at each site. We contrasted the
1199  proportional site frequency spectra for FinMetSeq and NFE for five functional variant
1200 categories (PTVs, missense, synonymous, UTR, and intronic variants) after accounting
1201  for sample size differences between datasets by down-sampling both datasets to 18,000
1202  chromosomes.

1203

1204  We also assessed the enrichment of functional alleles within subpopulations of the
1205 FinMetSeq dataset. Of the 16 sub-population clusters identified by fineSTRUCTURE, we
1206  used as the reference population a cluster for which the highest proportion of the parents
1207  of its members were from the southwestern, “early-settlement” part of Finland (NSv3,
1208  Supplementary Table 15). Twelve of the remaining 15 clusters also have >100 members
1209 and were used in subsequent analyses (Supplementary Table 15). We then compared
1210 the ratio of the site frequency spectra to the reference for PTVs, missense, and
1211  synonymous variants, again down-sampling both datasets to 200 haploid chromosomes to
1212 account for sample size differences. For a given comparison, we computed statistical
1213  evidence for enrichment or depletion at a given allele count bin by exact binomial test
1214  against a null of equal number of variants found in both the test and reference cluster.
1215

1216  Geographical clustering of predicted functionally deleterious alleles
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1217  We first generated a distance matrix tabulating the pairwise geographical distance in
1218  kilometers between the birthplaces of all available parents of unrelated sequenced
1219  individuals. For each variant of interest, we computed for the minor allele carriers in
1220  FinMetSeq the mean distance among all parent pairs. For example, for a variant with
1221  three carriers with information for five (of the possible six) parents, we computed the
1222  mean for all (5-choose-2 = 10) distances. We evaluated statistical significance of
1223  geographical clustering by comparing the mean distance to the means for up to
1224 10,000,000 sets of randomly drawn non-carrier individuals matched by cohort status and
1225  number of parents with birthplace information available.

1226

1227  To assess whether PTVs or missense variants may be more geographically clustered than
1228  synonymous variants, we first identified a set of near-independent variants (r>>0.02) with
1229 MAC>3 and MAF<5% among the 14,874 unrelated individuals. This set included 4,312
1230 PTVs, 91,851 missense variants, and 49,842 synonymous variants. For each variant, we
1231  computed the mean pairwise geographical distance in kilometers between the birthplaces
1232  across all pairs of the available parents of carriers of the minor allele and regressed this
1233 mean distance on variant class (PTVs, missense, or synonymous) and MAC, MAC?, and
1234  MAC?® (Supplementary Table 14).

1235

1236  We also assessed whether variants showing stronger enrichment (compared to NFE) are
1237  more likely to be geographically clustered. Starting with the three functional classes of
1238 variants identified above, we further restricted analysis to those variants found in

1239  gnomAD so we could calculate the enrichment in frequency over gnomAD NFE. We
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1240  included 1,540 PTVs, 46,953 missense, and 28,912 synonymous variants in this analysis
1241  after pruning variants for LD with PLINK. As above, we computed the mean pairwise
1242  distances among parents of carriers of the minor allele and regressed mean distance on
1243  the logarithm of enrichment and MAC, MAC?, and MAC? (Supplementary Table 17). In
1244  both analyses, we first assessed a model with the interaction terms but reported only the
1245  model without interactions if the interactions were not significant.

1246

1247  Heritability estimates and genetic correlations

1248  We used genome-wide array genotype data on the 13,326 unrelated individuals for whom
1249  both exome sequence and array data were available to estimate heritability and genetic
1250  correlations for the 64 traits. We constructed a GRM with PLINK'® (v.1.90b,
1251  https://www.cog-genomics.org/plink2) by applying additional filters for MAF>1% and
1252  genotype missingness rate <2% to the set of previously-used genotyped SNVs, leaving
1253 205,149 SNVs for GRM calculation. We used the exact mixed model approach of
1254  biMM™ (v.1.0.0, http://www.helsinki.fi/~mjxpirin/download.html) to estimate the
1255 heritability of our 64 traits and the genetic correlation of the 2,016 trait pairs.
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Figure Legends

Figure 1. Characterization of traits by heritability, Pearson correlation, and genetic correlation. Traits in
both figures are in the same order, clockwise in A, and left to right and top to bottom in B, and following the
trait group color key.

A) Estimated heritability (h,?) for each of the 64 traits included in association analysis. Heritability is based on
~205,000 common variants from GWAS arrays available in 13,342 unrelated individuals. Height has the
highest heritability estimate at 52.5%. Estimates of trait heritability for metabolic measures are somewhat lower
than previous reports (Kettunen, 2012) because estimates are from population-level data as opposed to twin
studies and heritability was estimated from covariate adjusted and inverse normal transformed residuals, rather
than raw trait values. Trait abbreviations are listed in Supplementary Table 3. All traits are significantly
heritable except for 2hr-FFA (Fatty Acid) and His (Amino Acid), see Supplementary Table 5 for estimates, SEs,
and P-values.

B) Heatmap of: 1) absolute Pearson correlations of standardized trait values in upper triangle, and 2) absolute
values of the genetic correlation, pg(X,y), in lower triangle, where pg(x,y) is the estimated genetic correlation of

traits x and y. Values below the diagonal in gray had non-estimable genetic correlations.

Figure 2. Characterization of discovered associations.
A) Number of genomic loci associated with each trait. Each bar is subdivided into common (MAF>1%, dark

blue) and rare (MAF<1%, light blue). Traits are sorted by group as in Figure 1.

B) Relationship between estimated heritability and number of genomic loci detected for each trait. Each trait is
colored by trait group following the trait group color key. Vertical bars indicated +2 standard errors of the

heritability estimate. The gray line shows the linear regression fit, shown to indicate the general trend.

C) Heatmap of shared genomic associations by pairs of traits. For traits x and y, the color in row x and column y
reflects the number of loci associated with both traits divided by the number of loci associated with trait X.

Traits are presented in the same order as in 2A, and the side and top color bars reflect the trait groups.

D) Relationship between estimated genetic correlation and extent of sharing of genetic associations. For each
pair of traits, the extent of locus sharing is defined as the number of loci associated with both traits divided by

the total number of loci associated with either trait. The bar within each box is the median, the box represents
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the inter-quartile range, whiskers extend up to 1.5x the interquartile range, and outliers are presented as
individual points. Analysis using the absolute value of the Pearson correlation of the residual series results in a

very similar pattern.

Figure 3. Allelic enrichment in the Finnish population and its effect on genetic discovery.

A) Relationship between MAF and estimated effect size for associations discovered in FinMetSeq exomes
alone. Each variant reaching significance in FinMetSeq is plotted. Those associations highlighted in Table 2 are
represented with a dark blue point (FinMetSeq MAF) and a corresponding brown point reflecting the NFE MAF
(gnomAD). The purple lines indicate the 80% power curves for significance at 5x107 for sample sizes of
10,000 and 20,000. The right end of the power curve for N=20,000 terminates at MAF = 0.007. Plots show the

dramatic increase in power due to higher relative frequency in Finland.

B) Relationship between MAF and estimated effect size for associations discovered in the combined analysis.

Same plot as in A, highlighting the variants in Table 2 only reaching significance in the combined analysis.

Figure 4. Regional variation in allele frequencies by functional annotation. Enrichment of functional allelic
class in sub-populations (regions) of Northern and Eastern Finland. For each minor allele count bin, we
computed the ratio of number of variants found in each subpopulation to an internal reference subpopulation
(NSv3), after down-sampling the frequency spectra of all populations to 200 chromosomes. Pink cells represent
an enrichment (ratio >1), blue cells represent a depletion (ratio <1). The 12 sub-populations with sample size
>100 are shown. The results are consistent with multiple independent bottlenecks followed by subsequent drift
in Northern and Eastern Finland, particularly for populations in Lapland and Northern Ostrobothnia.
Abbreviations for regions: Kainuu (Kai), Lapland (Lapl, Lap2), Northern Karelia (NKal, NKa2, NKa3, NKa4),
Northern Ostrobothnia (NOsl, NOs2, NOs3, NOs4), Northern Savonia (NSvl, NSv2, NSv3), Southern
Ostrobothnia (SOs), and Surrendered Karelia (SuK). For more detailed information on region definitions see
Supplementary Table 15. Confidence intervals on the enrichment ratios, and their P-values, are presented in

Supplementary Table 16.

Figure 5. Geographical clustering of associated variants.
A) Geographical clustering of PTVs as a function of MAC and frequency enrichment over NFE from gnomAD.
For each PTV (r2§0.02, MAC>3, MAF<0.05) we computed the mean distance between birth places of available
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parents of all carriers of the minor allele. We compared the frequency of the minor allele in FinMetSeq to
gnomAD NFE. Blue and pink colors denote the frequency is lower or higher in FinMetSeq than in gnomAD
NFE, respectively. The size of the point is proportional to the logarithm of the frequency ratio difference. In
general, we observe that variants enriched in FinMetSeq are more geographically clustered.

B) Example of geographical clustering for a trait associated variant. The birth locations of all parents of carriers
(orange) and a matching number of parents of non-carriers (blue) of the minor allele for variant chr3:125831672
(rs780671030, p.Arg722X) in ALDHI1L1 are displayed on a map of Finland. This variant is associated with
serum glycine levels in FinMetSeq and has a frequency of 0 in NFE samples from gnomAD. The parents of
carriers are born on average 135 km apart, the parents of non-carriers on average 250 km apart (P<10” by

permutation).

C) Comparison of geographical clustering between Finnish Disease Heritage (FDH) mutations and trait-
associated variants that are >10x more frequent in FinMetSeq than in NFE. The degree of geographical
clustering (based on parental birthplace) is comparable between carriers of those variants that showed
significant associations in FinMetSeq alone (FMS) and carriers of FDH mutations, and greater than that seen in
carriers of variants that showed significant association only in the combined analysis (FMS+Replication). For
all variants, carriers of the minor allele displayed greater clustering than non-carriers. The bar within each box
is the median, the box represents the inter-quartile range, whiskers extend up to 1.5x the interquartile range, and
outliers are presented as individual points.
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Figure Legends (Extended Data Figures)
Extended Data Fig. 1. Comparison of allele frequencies of variants in FinMetSeq and NFE from
gnomAD. The comparison of allele frequencies shows the excess of variants at higher frequency in Finland as a

result of the multiple bottlenecks experienced in Finnish population history.

Extended Data Fig. 2. Proportional site frequency spectra between FinMetSeq and gnomAD NFE by
variant annotation class. In general, we find a depletion of the variants in the rarest frequency class, as well as
enrichment of variants in the intermediate to common frequency range. The site frequency spectra were down-

sampled to 18,000 chromosomes for each dataset.

Extended Data Fig. 3. Comparison of MAFs for trait-associated variants in FinMetSeq and NFE
gnomAD. Plotted in gray background is a 2-D histogram of variants with non-zero allele frequencies in both
gnomAD and FinMetSeq but no trait associations. Variants significantly associated with at least one trait are
colored and scaled proportionately to the association p-value, with more significant associations having a larger
symbol. Variants >10X enriched in FinMetSeq compared to NFE are pink, those <10X enriched are in blue.

The dashed line is the line of equal frequency. Variants unique to Finns and absent in gnomAD are not plotted.

Extended Data Fig. 4. Gene-based association of extremely rare variants in APOB with serum total
cholesterol. The upper panel shows the distribution of the covariate adjusted and inverse-normal transformed
phenotype. The lower panel displays the association statistics for each variant included in the gene-based test
along with the trait value for minor allele carriers of each variant (orange triangles). SV.P is the P-value from

the analysis of each variant in a single-variant analysis.

Extended Data Fig. 5. Gene-based association of rare variants in SECTM1 with HDL2 cholesterol. The
upper panel shows the distribution of the covariate adjusted and inverse-normal transformed phenotype. The
lower panel displays the association statistics for each variant included in the gene-based test, along with the
trait value for minor allele carriers of each variant (orange triangles). SV.P is the P-value from the analysis of

each variant in a single-variant analysis.

Extended Data Fig. 6. Gene-based association of extremely rare variants in ABCA1 with serum HDL
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cholesterol. The upper panel shows the distribution of the covariate adjusted and inverse-normal transformed
phenotype. The lower panel displays the association statistics for each variant included in the gene-based test,
along with the trait value for minor allele carriers of each variant (orange triangles). SV.P is the P-value from

the analysis of each variant in a single-variant analysis.

Extended Data Fig. 7. Gene-based association of extremely rare variants in ALDH1L1 with glycine levels.
The upper panel shows the distribution of the covariate adjusted and inverse-normal transformed phenotype.
The lower panel displays the association statistics for each variant included in the gene-based test, along with
the trait value for minor allele carriers of each variant (orange triangles). SV.P is the P-value from the analysis

of each variant in a single-variant analysis.

Extended Data Fig. 8. Population structure of the FinMetSeq dataset, by region. Population structure, by
region, from principal components analysis of exome sequencing variant data (MAF > 1%), for 14,874
unrelated individuals whose parental birthplaces were known. Color indicates individuals with both parents
born in the same region; gray indicates individuals with different parental birth regions, or missing information
for one parent. Abbreviations for the regions: Usm, Uusimaa; Swf, Southwest Finland; Stk, Satakunta; Khm,
Kanta-Hame; Prk, Pirkanmaa; Phm, Paijat-Hame; Kyl, Kymenlaakso; SKa, Southern Karelia; Nka, Northern
Karelia; SSv, Southern Savonia; NSv, Northern Savonia; Ctf, Central Finland; SOs, Southern Ostrobothnia;
Osb, Ostrobothnia; COs, Central Ostrobothnia; NOs, Northern Ostrobothnia; Kai, Kainuu; Lap, Lapland; X,
split parental birthplaces. Large solid circles represent the center of each region. A map of Finland with regions

labeled is supplied for reference.

Extended Data Fig. 9. Hierarchical clustering tree produced by fineSSTRUCTURE. We identified 16
subpopulations within the FinMetSeq dataset by applying a haplotype-based clustering algorithm,
fineSSTRUCTURE, on 2,644 unrelated individuals born by 1955 whose parents were both born in the same
municipality (Methods). Each subpopulation is named based on the most common parental birth location among
its members, with the following abbreviations: NKa, North Karelia; NSv, North Savonia; SOs, South
Ostrobothnia; NOs, North Ostrobothnia; Kai, Kainuu; Lap, Lapland; SuK, Surrendered Karelia. A map of
Finland with regions labeled is supplied for reference. If multiple subpopulations share the same location label,
the subpopulation is further distinguished with a numeral. NSv3 is used as an internal reference in enrichment

analysis. See Supplementary Table 15 for more detailed demographic descriptions of each subpopulation.
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Extended Data Fig. 10. Geographical clustering of missense and synonymous variants as a function of
minor allele count and frequency enrichment over gnomAD NFE. This represents the same analysis as
Figure 5A, but for missense and synonymous variants rather than PTVs. Similar to PTVs, missense and
synonymous Vvariants that show greater enrichment in FinMetSeq are more likely to be geographically clustered.
Blue and pink colors denote the frequency is lower or higher in FinMetSeq than in gnomAD NFE, respectively.

The size of the point is proportional to the logarithm of the frequency ratio difference.
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Figure 1. Characterization of traits by heritability, Pearson correlation, and genetic correlation. Traits in both figures are in the same order, clockwise in A, and left to right and top to bottom in B, and following the trait group color key.

A) Estimated heritability (hx2) for each of the 64 traits included in association analysis. Heritability is based on ~205,000 common variants from GWAS arrays available in 13,342 unrelated individuals. Height has the highest heritability estimate at 52.5%. Estimates of trait
heritability for metabolic measures are somewhat lower than previous reports (Ketfunen, 2012) because estimates are from population-level data as opposed to twin studies and heritability was estimated from covariate adjusted and inverse normal transformed residuals, rather
than raw trait values. Trait abbreviations are listed in Supplementary Table 3. All traits are significantly heritable except for 2hr-FFA (Fatty Acid) and His (Amino Acid), see Supplementary Table 5 for estimates, SEs, and P-values.

B) Heatmap of: 1) absolute Pearson correlations of standardized trait values in upper triangle, and 2) absolute values of the genetic correlation, pg(x.y), in lower triangle, where pg(x,y) is the estimated genetic correlation of traits x and y. Values below the diagonal in gray had non-

estimable genetic correlations.
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Figure 3. Allelic enrichment in the Finnish population and its effect on genetic discovery.

A) Relationship between MAF and estimated effect size for associations discovered in FinMetSeq exomes alone. Each variant reaching significance in FinMetSeq is plotted. Those associations highlighted in Table
2 are represented with a dark blue point (FinMetSeq MAF) and a corresponding brown point reflecting the NFE MAF (gnomAD). The purple lines indicate the 80% power curves for significance at 5x10-7 for sample

sizes of 10,000 and 20,000. The right end of the power curve for N=20,000 terminates at MAF = 0.007. Plots show the dramatic increase in power due to higher relative frequency in Finland.

B) Relationship between MAF and estimated effect size for associations discovered in the combined analysis. Same plot as in A, highlighting the variants in Table 2 only reaching significance in the combined analysis.
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Figure 4. Regional variation in allele frequencies by functional annotation. Enrichment of functional allelic class in sub-populations (regions) of Northern and Eastern Finland. For each minor allele count bin, we computed the ratio of number of variants found in each subpopulation to an internal reference subpopulation
(NSv3), after down-sampling the frequency spectra of all populations to 200 chromosomes. Pink cells represent an enrichment (ratio >1), blue cells represent a depletion (ratio <1). The 12 sub-populations with sample size >100 are shown. The results are consistent with multiple independent bottlenecks followed by
subsequent drift in Northern and Eastern Finland, particularly for populations in Lapland and Northern Ostrobothnia. Abbreviations for regions: Kainuu (Kai), Lapland (Lap1, Lap2), Northern Karelia (NKal, NKa2, NKa3, NKa4), Northern Ostrobothnia (NOs1, NOs2, NOs3, NOs4), Northern Savonia (NSv1, NSv2,
NSv3), Southern Ostrobothnia (SOs), and Surrendered Karelia (SuK). For more detailed information on region definitions see Supplementary Table 15. Confidence intervals on the enrichment ratios, and their P-values, are presented in Supplementary Table 16.
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Figure 5. Geographical clustering of associated variants.

A) Geographical clustering of PTVs as a function of MAC and frequency enrichment
over NFE from gnomAD. For each PTV (r2<0.02, MAC=3, MAF<0.05) we computed
the mean distance between birth places of available parents of all carriers of the minor
allele. We compared the frequency of the minor allele in FinMetSeq to gnomAD

NFE. Blue and pink colors denote the frequency is lower or higher in FinMetSeq than
in gnomAD NFE, respectively. The size of the point is proportional to the logarithm
of the frequency ratio difference. In general, we observe that variants enriched in
FinMetSeq are more geographically clustered.

B) Example of geographical clustering for a trait associated variant. The birth
locations of all parents of carriers (orange) and a matching number of parents of non-
carriers (blue) of the minor allele for variant chr3:125831672 (rs780671030,
p.Arg722X) in ALDHILI are displayed on a map of Finland. This variant is associated
with serum glycine levels in FinMetSeq and has a frequency of 0 in NFE samples from
gnomAD. The parents of carriers are born on average 135 km apart, the parents of
non-carriers on average 250 km apart (P<10”7 by permutation).
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C) Comparison of geographical clustering between Finnish Disease Heritage (FDH)
mutations and trait-associated variants that are >10x more frequent in FinMetSeq than
in NFE. The degree of geographical clustering (based on parental birthplace) is
comparable between carriers of those variants that showed significant associations in
FinMetSeq alone (FMS) and carriers of FDH mutations, and greater than that seen in
carriers of variants that showed significant association only in the combined analysis
(FMS+Replication). For all variants, carriers of the minor allele displayed greater
clustering than non-carriers. The bar within each box is the median, the box
represents the inter-quartile range, whiskers extend up to 1.5x the interquartile range,
and outliers are presented as individual points.
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