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The ability to move fast and accurately track moving objects is fundamentally constrained
by the biophysics of neurons and dynamics of the muscles involved. Yet, the correspond-
ing tradeoffs between these factors and tracking motor commands have not been rigorously
quantified. We use feedback control principles to quantify performance limitations of the
sensorimotor control system (SCS) to track fast periodic movements. We show that (i) linear
models of the SCS fail to predict known undesirable phenomena, including skipped cycles,
overshoot and undershoot, produced when tracking signals in the ‘“fast regime”, while non-
linear pulsatile control models can predict such undesirable phenomena, and (ii) tools from
nonlinear control theory allow us to characterize fundamental limitations in this fast regime.
Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper
bound on frequencies that the SCS model can reliably track before producing such undesir-
able phenomena as a function of the neurons’ biophysical constraints and muscle dynamics.

The performance limitations derived here have important implications in sensorimotor con-
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trol. For example, if primary motor cortex is compromised due to disease or damage, the
theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory
forces using an assistive neuroprosthetic device to restore motor performance, and more im-
portantly fast and agile movements. Just 10w one should compensate can be informed by our

SCS model and the theory developed here.

1 Introduction

Tracking fast unpredictable movements is a valuable skill, applicable in many situations. In the
animal kingdom, the context includes the action of a predator chasing its prey that is running
and dodging at high speeds, for example, a cheetah chasing a gazelle. The sensorimotor control
system (SCS) is responsible for such actions and its performance clearly depends on the relaying
capabilities of neurons and the dynamics of muscles involved. Despite these obvious factors that
set the limits on how fast an animal can track a moving object, tracking performance of the SCS
and its dependence on neural relaying and muscle dynamics has not been explicitly quantified.
This study aims to rigorously quantify the performance tradeoffs between accurately tracking fast
moving objects, in particular periodic inputs, and the relaying capabilities of neurons subject to

their biophysical constraints. The tradeoffs are also described as a function of muscle dynamics.

Tracking periodic signals is in itself an experimental paradigm that has been explored in
many visuo-motor and memory tasks 2. It has been shown in experimental settings that tracking
faster and faster periodic inputs leads to a regime where subjects skip cycles because they are un-

able to keep up. In ?, monkeys performed an oculomotor task in which they were required to track
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periodic inputs with their eye muscles. Tracking was shown to be accurate at low frequencies, but
as the frequency of the input increased, the monkeys performance deteriorated and they started to
skip cycles (Fig. 1A). In 4, human subjects were asked to make quick periodic downward-upward
motions upon hearing a periodic auditory stimulus. When the frequency of the input increased,
accuracy decreased. More importantly, several undesirable phenomena including overshoot, un-

dershoot, and skipped cycles were observed in the high frequency regime (Fig. 1B).

We hypothesize the existence of a fundamental frequency, w., above which we observe these
undesirable phenomena when tracking sinusoidal inputs. To test our hypothesis, we set out to
(1) construct a mathematical model of the SCS consisting of a feedback interconnection between
the cerebrocerebellar system, alpha motor neurons and the musculoskeletal system, and then (i1)
develop formal methods to prove the existence of and to compute w, as a function of our model

parameters.

Although tracking in motor control has been well studied, with competing mathematical
models to describe the phenomena observed !, the applicability of these models in the regime
of tracking high frequency periodic signals has been overlooked. One possible reason is due to
analytical tractability of experimentally validated models. Linear models of the SCS are simple
to analyze >, but they fail to capture the undesirable tracking phenomena observed experimentally.
For example, if you input a high frequency periodic input into a linear model, the same frequency
appears at the output, but is likely attenuated. There are no skipped cycles or overshoot phenomena

as observed in the SCS.
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Discontinuities appearing in slow movements are a well known feature that have been studied
to elucidate the junction between neuronal activity and the musculoskeletal system °. Specifically,
during slow movements, discontinuities in the finger position have been observed, even when
subjects try hard to follow a smooth trace 7. These discontinuities are not captured with linear
models of the SCS !, also discussed in Section 3. Due to this limitation of linear models, nonlinear
threshold-based pulsatile control of movements was first suggested in 1947 8, and since then has

been in active exploration in the feedback setting +7--14,

Here, we construct an biophysically-based, analytically tractable nonlinear model of the SCS
that reproduces several characteristics of neuronal and motor outputs in response to periodic inputs
in both the slow and fast regimes observed in humans and primates both in health and in disease.
A high level view of the model is shown in Fig. 2, while a more detailed model considered in this
paper is shown in Figure 3. The critical part of our SCS model that must remain biophysically-
based and nonlinear is how alpha motor neurons encode signals from the cerebrocerebellar system

in the form of spike events.

Using our SCS model, we derive conditions for which tracking a sinusoidal input produces
undesirable phenomena as a function of the parameters of the closed-loop system. Specifically, we
show that for a fixed musculoskeletal system M, cerebrocerebellar dynamics K, and a group of
motor neurons with spiking thresholds ¢ (for activation of agonist/antagonist pair of muscles), the
oscillatory input (periodic back-and-forth movement) with frequency w may generate undesired

skipped cycles if w > w.(M, K, q).
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Fig. 2. Monkey periodic tracking of square waves at
frequencies between 0-3 and 1-0 ¢/s.

Figure 1: Undesirable phenomena as seen in experiments performed in a) 3 and b) * . In both
cases, fairly accurate tracking is seen in relatively low frequency reference signals (i.e. w < w,),
whereas undesirable phenomena such as skipped cycles (blue circles), overshoot (orange circle)

and undershoot (red circles) are seen in high frequency signals for w > w, for some w..

The results derived here make a scientific contribution in advancing our understanding of
how movement speeds may be limited given the processing of the driving signal through neurons,
although neuronal spiking may confer additional advantages such as energy efficiency '°. The char-
acterization of w, for sinusoidal movements provides a theoretical basis for further investigation
for more general classes of movements. By providing a concrete dependance on the parameters of
the system, our analysis can also guide the design of therapies for movement disorders caused by

a compromise in K, g or M.
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Figure 2: Closed loop model of the Sensorimotor Control System (SCS). The input, 7(t), goes

through a linear model of the cerebrocerebellar system K, that in turn generates a control signal,

u(t), from a group of alpha motor-neurons. These motor neurons then actuate a linear model

of the musculoskeletal system M that generates the motor output z(t), which is fed back to the

cerebrocerebellar system.

2 Model of Sensorimotor Control System

A schematic for the SCS model is shown in Fig. 2, and a more detailed model that we consider is

shown in Fig. 3. It is an internconnected feedback system, as suggested by previous models for

sensorimotor control '%-21-2* 'We assume that the SCS input is the intended voluntary movement or

reference signal, r(t), that exists in some part of the brain (e.g. in parietal regions). The reference

input is processed by brain structures including the sensorimotor, premotor and motor cortices,

and ultimately the neurons in premotor and motor areas send spike train signals to muscles via

the spinal cord. Appropriate muscles are innervated to generate a movement, z(¢), as the system

attempts to follow or “track” r(¢). The generated movement (output of SCS) is then fed back,

via proprioceptive and visual feedback, represented by a feedback gain F', to be processed by
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Figure 3: Proposed closed-loop model for movement generation. A. Details of cerebrocerebellar
dynamics, adapted from 618, B. Details of the IAF Model . C. Details of the musculoskeletal
system, adapted from 2°. D. A closed-loop model of the agonist / antagonist muscles acting around

a single joint.

structures including the cerebellum and sensorimotor cortex. There are other structures involved

in the generation of movements such as the basal ganglia and motor thalamus not explicitly shown.

We break down our SCS model into two general components: neural dynamics and the mus-
culoskeletal system, as in Fig. 2. The neural dynamics consists of a) cerebrocerebellar processing
of the error between intended and actual movement and b) alpha motor neuron encoding of cortical

motor commands. Below, we describe each model component.
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Neural Dynamics We take a systems approach to model neural dynamics. Specifically, we use
a previously validated model of cerebrocerebellar processing '® that describes how motor cortical
areas integrate with cerebellar processing of errors between intended and actual kinematics. This
model characterizes firing rate activity of populations of cerebellar and cortical neurons during
movement, and produces an analog signal that is then sent to an integrate-and-fire (IAF) model

describing the spiking responses of groups of alpha motor neurons.

The concept of relaying capabilities of neurons can be thought of as the density of the result-
ing spike trains that directly drive muscle activity: the higher the density of the spikes, the more

information is flowing from the neural system to the musculoskeletal system.

Cerebrocerebellar Dynamics

A basic cerebrocerebellar system diagram is given in Fig. 3A 618, We characterize the cerebro-
cerebellar SCS component as a dynamical feedback control system (/) that compares the intended
movement with actual movement. Much available behavioral and neurophysiological data on hu-
man and animal cerebellar motor control relates to stabilization of posture and accurate control
of movements rather than explicit control of contact force or joint torques. Importantly, though,
because of the uniformity of its circuitry, intra-cerebellar mechanisms are almost certainly com-
mon to both position and force control systems, especially for fast movements. This motivates our
choice of modeling the cerebrocerebellar system, K, as belonging to a class of linear time invariant

systems including proportional (f,), integral (K;) and derivative (K;) (PID) controllers as in 18,
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More specifically,
Kc chl(s)
K = L|—+—— 1
(S) ! ( S + 3+[2 ( )
a
chl(S) = Qp + ?I + agqs (2)

Although the cerebellar dynamics here are modeled as PID, other linear time invariant (LTT)
models have been used in the past to characterize cerebellum operation 2°; the results derived in

this paper do not depend on the exact characterization for the cerebrocerebellar dynamics.

Alpha Motor Neuron Dynamics

Alpha motor neurons are driven by the output of the cerebrocerebellar system and their activity
directly drives muscles. Consequently, we maintain the spiking or pulsatile nature of alpha motor
neuron control of muscles by modeling them with IAF models, which have been used to model

motor neurons in both experimental and computational studies 227,

For each joint in our muscle model described in 2, we characterize an “effective agonist
group of motor units” and an “effective antagonist group of motor units”. More specifically, we
assume that each group of motor units generates spikes in an IAF fashion (see Fig. 3 B). The

membrane voltage of each of these groups of neurons is described as the following.

t
v(t) = / e(t) + vreset 3)
0

When v(t) > ¢, a weighted positive spike, ¢d(t), is produced. If v(t) < —¢, a weighted negative
—qd(t), is produced. In both cases, the membrane potential v(¢) is reset to v;.s;-The collection of

9
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positive spikes u(t) = >, .- qd(t — t},) is the spike train generated collectively by neurons in the
effective agonist group of motor units, and the collection of negative spikes (represented as positive
action potentials in brain) uy(t) = — >, > qo(t — t}) is the spike train generated collectively by
neurons in the effective antagonist group of motor units. The weight of the spike is chosen to
be the same as the integral, following the Henneman’s size principle ?®. In general, if we have
more than one neuron innervating the muscle, the innervation amplitude should be proportional to
the activation threshold in keeping with the Henneman’s size principle. An increase in ‘relaying
capability’ follows an increase in the density of the spike trains, i.e. a decrease in the spiking

threshold q.

Musculoskeletal Dynamics We use a single joint model of the musculoskeletal system as in 2°

(Fig. 3C), though our methods easily extend to multiple joint systems. The transfer function of

this model from the neural activity (u) to the limb output (2) is the following.

K,
1,82+ B,,s + K,,

M(s) = 0)

As shown in Fig. 3C, K, corresponds to the net stiffness of all muscles acting around the joint,
as determined by the level of agonist/antagonist coactivation, B,, is the net viscosity, and [, is
the inertia. This model is taken from the class of “equilibrium-point models” for motor control 2.
Under this class of models, the mechanical properties of muscles and the myotactic reflexes gen-
erate equilibrium positions for the limb. If the limb is displaced from rest position, the spring-like
properties of the muscles generate the appropriate restoring torques to return the limb to rest (equi-
librium). These models are in reasonable agreement with experimental data, yet are simple enough
to analyze. More information about the musculoskeletal model is provided in the Supplementary

10
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Information.

3 Results

In this section, we first demonstrate how our closed-loop SCS model qualitatively reproduces fun-
damental properties of alpha motor neuron activity and musculoskeletal responses during move-
ment generation. We also show the qualitative reproduction of responses to several types of refer-
ence signals observed in both healthy subjects and cerebellar patients. We then show that a linear
SCS model would not suffice to reproduce the phenomenon of skipped cycles for higher frequen-
cies. Finally, we derive the fundamental frequency, w. as a function of model parameters, and

describe its sensitivity to SCS model parameters.

SCS Model Reproduces Observed Phenomena in Health and in Disease he SCS model in-
troduced in Section 2 reproduces observed phenomena by the SCS, as shown in Fig. 4. Fig. 4a
illustrates how motor neurons may produce plateau potentials, resulting in self-sustained firing,
providing a mechanism for translating short-lasting synaptic inputs into long-lasting motor output.
This self-sustained oscillatory behavior is a key property observed in more complex models of neu-
ral behavior *2. Fig. 4b shows how during voluntary contraction of a muscle group, agonist and an-
tagonist muscles can both be active with a specific activation pattern (agonist first, then antagonist,
and then agonist again at a lower level). This concurrent activation of agonist and antagonist mus-
cles is referred to commonly as a triphasic pattern of muscle contraction during rapid limb move-

ment and is captured by our model. The model reproduces spiking patterns during slow periodic

11
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Figure 4: Model reproduces known experimental properties of alpha motor neuron activity. In all
these subparts, experimental data from literature is to the left, and simulations using our model
is to the right. Note that these are qualitative reproductions. a) self-sustained oscillations *. b)

t 3°. ¢) The match between

triphasic pattern of muscle contraction during rapid limb movemen
spiking patterns for periodic movements in 3! (Left), and our simulation results (Right), all for low

movement speeds, 1.e. w < w.. The grey bar at the bottom of each plot represents 0.5 seconds.
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movements, as shown in Fig. 4c, in fact also capturing the discontinuities during slow movements.

Model Reproduction
Qutput z(t

The SCS model also reproduces move-

Agonist spikes u,(t)

ment responses to some elemental reference in-
Antagonist spikes u,(t)

puts in both health and cerebellar disease. Fig-

ures S5a and 5b compare model responses to

step and pulse inputs to responses of human

100 msec

b)

. '7”“("‘" —/\%O—A— subjects to the same input types in health 3
Healthy Cerebellar Healthy\ Cerebellar

Dysmetria

/ Dysmetria
33,34

and in cerebellar dysfunction . The posi-

tion signals between model and experimental

dat litativel tch 1I. W del
Figure 5: Model reproduces responses to elemen- i quatitafively fmalch vety we © mode

tal signals in health and during cerebellar dis- cerebellar degeneration by decreasing the gain

f th 11 1(Ky, K, K;
ease. a) Step Movement. Data for healthy in- parameters of the cerebellar model (K4, K, K

dl,)b 1l asi ing th 1
dividuals and for patients with cerebellar disease and I) by 60% as well as increasing the muscle

tiff; K,, by4ti to simulate the typical
33 b) Short Pulse. Data for healthy individuals SUTNESS Am DY 2 HMES, 1o stmulate the typica

. . . compensation strategy displayed by patients 7.
and for patients with cerebellar disease **. Note P gy displayec by p

oL . Cerebellar patients are known to display dys-
that these are qualitative reproductions. P ply &
metria, specifically hypermetria (or significant

overshoot), as well as oscillatory activity past the end of the movement. We see this effect in the

model simulations in Figs. 5a,b.

13


https://doi.org/10.1101/464230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464230; this version posted November 17, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Linear Time Invariant SCS Model does not display skipped cycles The presence of skipped
cycles is perhaps the most important feature observed while tracking fast sinusoidal inputs, and
this phenomena (a) cannot be modeled using linear time invariant (LTI) systems, and (b) cannot be
remedied in open loop using a linear system at the output of the movement. If all the components
of the feedback system are linear, the steady-state output only contains the frequency present in
the input signal, albeit with an amplitude and phase that depends on the gains of the individual
systems. Specifically, we consider r(t) = Rsin(2nwt + ¢), and we denote the closed loop system
from r to z as H. If the closed loop contains K, M and F' LTI as above, and does not contain the

IAF nonlinearity, H = Using principles in linear dynamical systems, we can show that

MK
1+MKF*

for any LTI H, the steady state response of the system can be written as the following .
2(t) = R|H (jw)| sin(2rwt + ¢ + ZH (jw)) 3)

Note that z(¢) is confined to oscillate at the input frequency w, and thus an LTI model cannot

produce either discontinuities in the movement or skipped cycles.

Moreover, the IAF nonlinearity acts in such a way as to not transmit information if the
amplitude of the integral of the signal y falls between —q and ¢. This inherently ties together
the amplitude of the integral of y and the frequency of the desired movement 7, and leads to the
conditions derived in the next section for the feedback system to reliably transmit the periodic
signal. Moreover, the nonlinearity in the IAF is a thresholding and reset nonlinearity, which can

be approximated by an identity function below the limiting frequency of w, *’.

14
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Figure 6: A graphical illustration of positive spike times {¢} }1cz, negative spike times {t} }cz,

and spike period maxyez (6} + 07)).

Spiking SCS Model Enables Analytical Derivation of w. In the SCS model as in Fig. 3, we see
in Fig. 7 that our SCS model is able to maintain good tracking performance to a sinusoidal input
until the input frequency is larger than the fundamental frequency w.. After this input frequency,
the model displays undesirable phenomena seen in experimental data, including (i) undershoot, (i)
overshoot, and (ii1) skipped cycles. Both undershoot and overshoot are phenomena accompanying
fast movements in general, i.e., tolerating lower accuracy while reaching for a target, and then cor-
recting the movement when close to the target. In a repetitive movement, however, the movement
is not corrected for the duration of several cycles, as seen in Fig. 1b. Here, we derive a fundamen-
tal frequency, w., for which skipped cycles are generated when tracking a sinusoidal input whose
frequency is higher than w.. More importantly, we compute how w,. depends on our SCS model pa-

rameters. Intuitively, we know that skipped cycles are observed as the density of spikes decreases.

15
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In order to track the sinusoidal input, the alpha motor neurons must generate a series of positive
spikes to track the increasing part of the sinusoidal reference input, which are then followed by a
series of negative spikes to track the decreasing part of the sinusoidal reference input. To avoid
skipped cycles, we need the ‘spike period’, i.e. the maximum length of time between the sequence
of positive spikes to the sequence of negative spikes and back, to be less than of equal to the period
of the sinusoidal input . To calculate the dependence of the presence of skipped cycles on system
parameters, we build a switching map from one spike to the next, and analytically determine the
switching times. We can then determine whether the spike period is more than the period of the

driving oscillation for some initial conditions of the system.

Briefly, let the positive and negative spike times be defined as {¢!};cz and {t!};cz respec-
tively. Let {6} } <z be defined as the time between the first positive spike in a sequence of positive

spikes and the first subsequent negative spike, and similarly for {6} };cz. See Fig. 6.

Conjecture: Let r(t) = Rsin(2nwt + ¢), and the closed loop system as in Fig. 3D. For any
given parameter values, there exists a cutoff frequency, w,, such that for all w > w,, there exist

initial conditions which lead to skipped cycles.

We first define Ay and ¢ as z at the time of switching and the switching time, respectively.
The system can be entirely described by the state A, and time of switching ;. The switching map
IT given a sequence of ¢'s, i.e. {4q, £q, ...} for the state and spike times is as below.

Op_; Ak I, Ak+1 NP Ak+2

LLEN (6)

iy Trt1 Trt2
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The equations for calculating II;, i.e. calculating A, and ¢, as a function of Ay and t;, for a

simple SCS model are provided in Section 6, and are easily extendable to higher order models.

In general, this system can have multiple positive spikes in

Q
~

a row and multiple negative spikes in a row. We define 6} and 6}

w
o

c

recursively as the following (see also Fig. 6).

N

Fundamental
frequency w

0.1 0.2 0.3 0.4 (9{) = t? — tzf (7)
IAF threshold q

b) n : n
CJAVAVAVAVAVARRREE Bl 1 ¥ ®
k—1
2(!) Op = min [ — (D 00, +07, + 0+ )

JEZ Py

wo [ -
sl 0 O = min (4 — | 20 O+ (10)

=1

c)
r(t) W\NVV\MNVW\M\A Note that for the spike train to be periodic with at least frequency
Z‘”WW w, maxg (0} + 07) > 1. If the condition maxy (0} + 6;) > L is

G I not met, we have skipped cycles at the output z. Thus, we can find

the dependence of maxy (6} + 60}) on ¢ for a given system with
a given sinusoidal reference signal r, as detailed in Section 6. In
Figure 7: a) w. for R = 1, this Section, we also numerically show the conjecture for specific
K =1, F = 1, for varying parameter values.
qg- byg = 0.1, w = 1. ¢

Fig. 7 shows w, as a function of ¢ given a specific M, F’
g=0.1,w=3.18.

and K. As expected, as the spiking density increases (q decreases), more information about the

cerebrocerebellar output is transmitted to the muscles, and we see that the tracking performance
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increases (w, increases).

In Fig. 8, we plot the explicit dependence of the fundamental frequency on the different

system parameters.

a) F b) Ken
5 I 12

7 I 7 L

6 4 6l {10
30 5 3 o 5 8
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Figure 8: Dependence of the fundamental frequency w. on system parameters, with & = 1, and
K, F, M as in Fig. 3. a) Varying the feedback gain F'. b) Varying the muscle stiffness Kj;. ¢)
Varying the cerebellar proportional gain K. d) Varying the cerebellar derivative gain /{y. Unless

varied, parameters are as in Table 1.
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We observe that as the feedback gain, F', or as the bandwidth of the musculoskeletal system
M increases, we have a larger w, for all values of q. Moreover, as the cerebellar proportional gain
(/,) increases, w,. increases, but not significantly. However, as the cerebellar derivative gain (K,)
increases, w,. increases drastically, showing the large degree of sensitivity to K ;. The derivative
action is hypothesized to take place in the dentate neurons of the cerebellum !7, which are known
to be important for rapidly implementing a desired action **%°. This feature is corroborated in Fig.

&d.

4 Discussion

Humans can make flexible and fairly fast movements, however damage to various parts of the cen-
tral nervous system can limit motor performance. Whether damage is caused by stroke, multiple
sclerosis, amyotrophic lateral sclerosis, or spinal cord injury, weakness (paresis) occurs routinely
after injury to the primary motor cortex (M1) or its output to the spinal cord *°. This weakness
is known to be associated with reduced voluntary recruitment of motor units in the spinal cord,
both in terms of the number of motor units recruited and the firing rates they achieve #'=*°. Given
that weakness translates to deficient production of muscular forces that are used to accelerate the
limbs, we expect weakness to limit fast movements, with progressively more reduction of neural
activity being associated with a deceleration of voluntary movements “°. However, to the best of
our knowledge, this is the first time that a tradeoff between relaying ability of neurons and motor
tracking accuracy have been quantified. Although a “speed-accuracy” tradeoff, otherwise known

as Fitts’ Law “°, has long been investigated for the dependence of target error on the speed of
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reaching to a stationary target, these tradeoffs do not address the tracking of a moving target, and

the neural underpinnings have also not been conclusively determined °.

Our modeling framework provides us with an explicit dependence of the emergence of un-
desirable phenomena (skipped cycles) as a function of ¢, the parameter that directly dictates the
density of spikes (neural computing), the musculoskeletal system M, and cerebrocerebellar dy-
namics K. Specifically, we show that for a fixed musculoskeletal system M, cerebrocerebellar
dynamics K, and a pair of motor neurons with thresholds ¢ (for activation of agonist/antagonist
pair of muscles), the oscillation input (periodic back-and-forth movement) with frequency w may
generate undesired skipped cycles if w is ‘too large’ and/or the density of spikes (related to q) is
‘too small’. Such undesirable phenomena are consistent with symptoms observed in patients with
movement disorders, and finger tracking experiments wherein subjects are trained to follow a trace
back and forth quickly. Here, we address the fundamental frequency past which a sinusoidal pe-
riodic movement is no longer well tracked. Notably, this fundamental frequency may serve as a
guide for movements at all frequencies, and may point towards the bandwidth of the SCS model

being limited to a similar value as w.. We plan to address this in future work.

The formulation in this paper also guantifies the increase in maximum speed gained due
to the system parameters. This can help us compensate in limbs by providing either electrical
stimulation directly to the muscles, or using an exoskeletal device that can provide extra assistence
to the limb. An example of these ideas is presented in Fig. 9. Here, the block for neural activity

contains the cerebrocerebellar model as well as the IAF block with the threshold parameter ¢ as
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earlier. Let w,. as a function of ¢ for the normal regime be given by the blue curve in Fig. 9B, and
let the neural activity be compromised such that ¢ increases (this could correspond to a damage
directly in the alpha motor neurons or the spinal cord). Decreased neural activation or sparser
spikes is seen as a key symptom of general motor impairment, and we are directly modeling that
effect as a decrease in the threshold to spike (recall that this is a systems-level model of neural
computing, as detailed in Section 2)). In order to restore functioning, we can add a compensator
as in Fig. 9A, which measures the output of the musculoskeletal system, and in turn stimulates
the musculoskeletal system in feedback (here, C' = 10 and thus M,,., = H%). If we can
further drive the output of the musculoskeletal system up by the same amount, i.e. 2., = 10z,
then we can drive up the operating curve for w, to the red curve shown in Fig. 9B. This suggests
that it in theory one can compensate for damage to the neural system using reinforcements, for
example via neuroprosthetics at the musculoskeletal end. While this is shown in an ad-hoc manner
here, the framework in this paper allows us to quantitatively design compensators, C', given SCS
parameters, i.e. I, ¢, I, F', and M to meet specific control objectives. Specifically, one can design

a compensator C' with the following objective.
C = argmaxq(w.(R, q, K, M, F, ()), (11)

were w, can be calculated as a function of ¢ and the rest of the SCS parameters as formulated

above.

A critical component in our SCS model that captures undesirable tracking phenomena in
the fast regime is the pulsatile control implemented by alpha motor neurons. Pulsatile constrol
of movement has provided us with insights in the ‘slow’ regime, but has rarely been analyzed for
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Figure 9: Design of a compensator to restore functioning of the SCS in the presence of a compro-

mised neural system; more details in the text.

limitations in tracking fast movements.

Our SCS model can reproduce experimentally known properties of motor neurons and re-
sponses to step, pulse and sinusoidal signals. However, other threshold-based pulsatile models
for neural control can be readily used in the theoretical framework developed here. Furthermore,
multi-joint muscle models can easily be handled by our framework as adding joints simply adds di-
mensionality to M. Our framework can also be augmented to allow incorporation of transmission
delays incurred by the spinal cord. Small delays can be approximated by first order linear systems
(Pade approximations as in *®) while larger delays in feedback interconnections can be modeled as
structured uncertainty. Finally, this model allows for robustness to modeling errors while building

compensators, using standard methods as detailed in 47,

5 Correspondence

Correspondence and requests for materials should be addressed to S.S. (email: ss5513 @columbia.edu).

22


https://doi.org/10.1101/464230
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/464230; this version posted November 17, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

6 Appendix

Ay and t; for a simple SCS model We detail A, and ¢, here for a simple SCS model, where
K=1M = SJ%G, and F' = 1, for some a > 0. We first describe the dynamics of z(¢) for any

t between two spikes t; and 5,1, i.e. tp < t < tx,q as the following. Specifically, {t;}rez =

U ({t} ez, {t] iez)-

k
u(t) = > qd(t —t;) (12)
i=0
t
2(t) = e 2(0) —|—/ e~y (r)dr (13)
0
k
= e “2(0) + Z gie~tt) (14)
i=1 .
= e "2(0) +e Z qie™ (15)
i=1
= oA, (16)

Here, A;, = Zle qe™i + Ag, where Ay = 2(0), and we assume that ¢y = 0.

At all times, y(t) = z(t) — r(t), and the value of ¢, = t':““ y(7)dr. Thus, given a sequence

of {q }rez, where g, € {q, —q}, we have the following condition for the dynamics.

tht1 tht1
G = / T(T)dT—/ z(T)dT 17)

12 23
Tt Tt
= / Rsin(2rwt + ¢)dr — Ay, / e Tdr (18)
123 123
R Ak —atgy1 —aty
= 5 (cos(2mwty, + ¢) — cos(2mwiri1 + @) + — (e — e %) (19)
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Figure 10: w(maxy(6; + 07)), for several values of w and g, for two different systems. If this is
greater than 1, the system displays skipped cycles. a) K = 1, M = SJ%I, F =1 b)) K =1,

M = Mg%’ with K,, = 1, I,, = 1, B,, = 1. The systems were solved forward in time

for multiple values of initial conditions z(0) and ¢.

Thus, for the simple model, A, and t;,; are such that:

Apy1 = Ap + Qe (20)
% cos(2mwty1 + @) — %e_“t’““ = —qp+ % cos(2mwty + @) — %e_“tk 21
Numerical Solution for general X and M Due to the transcendental nature for the equations
to find A, and t;, (for example, as in Equations 20 and 21), a numerical solution is required.
This is obtained by forward marching in time using a suitably chosen time step, for each set of

initial conditions z(0) and ¢. We perform the numerical solution for 20 different randomly chosen

values of z(0) and 12 different values of ¢, and take the maximum (maxy, .(0),, (0}, + 6})) of these,
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hereafter written as (maxy (6} +67)) for short. In Fig. 10, we show w max; (67, +6}) as a function of
q for several values of w for two sets of specific system parameters; one for K = 1, M = -1 and

s+1°
F =1, and the second for K = 1, M = — 2= with K, =1, [,, =1, By =1, R =1
and several values of w. We see that for both cases, as we increase ¢, we hit the regime termed the
undesirable regime, namely with skipped cycles, with w(maxy (6}, + 6;)) > 1. Moreover, for any
fixed value for ¢, we see that there exists a frequency w,, such that for w > w,, we can find initial
conditions that lead to skipped cycles. Thus, we show the conjecture for specific systems. More
details for general K and M, as well as approximation methods for determining w,., are discussed
in 7.
Musculoskeletal Dynamics Considerable work has been done on modeling the forward dynamics
of the arm *®. In principle, models can be very complex taking into account multiple muscles *°,

their geometries of origin and insertion #°, effective moment arms *°, activation dynamics 433051,

50,51

nonlinear force-velocity relations , skeletal mass distributions *8, and spindle behavior 2.

As this study requires analytical tractability of the SCS model, we use a simplified model of
the musculoskeletal system of a single joint as in 2. In this model, the muscle acts like a spring for
passive displacements. This formulation is consistent with alpha-gamma coactivation that main-
tains the sensitivity of the muscle model to multiple inputs; deafferented monkey experiments in
which the proprioceptive feedback to the spinal cord is compromised; as well as reflex function of
the limbs. Analysis can also be carried out using Hill-type models for a single muscle >*; however,

various combinations of these Hill-type muscle models would be needed to model a single joint.
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Parameter | K. | K, | K; | Kq | L | I, | Ko | K | I | B | Ky

Value 05/05|01] 1 | 1]02] 1 4 (01| 1 1

Table 1: Table showing the values used for model parameters. The corresponding model

is shown in Fig. 3.
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