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Abstract

Habitat fragmentation related to human activities modifies the distribution and the demographic
trajectory of a species, often leading to genetic erosion and increased extinction risks. Understanding
the impact of fragmentation on different species that co-exist in the same area becomes extremely
important. Here we estimated the impact produced by different natural and anthropic landscape
features on gene flow patterns in two sympatric species sampled in the same locations. Our main goal
was to identify shared and private factors in the comparison among species. 199 bank voles and 194
wood mice were collected in 15 woodlands in a fragmented landscape, and genotyped at 8 and 7
microsatellites, respectively. Genetic variation and structure were analysed with standard approaches.
Effective migration surfaces, isolation by resistance analysis, and regression with randomization were
used to study isolation by distance and to estimate the relative importance of land cover elements on
gene flow. Genetic structure was similarly affected by isolation by distance in these species, but the
isolation-by-resistance analysis suggests that i) the wood mouse has constrained patterns of dispersal
across woodland patches and facilitated connectivity in cultivated areas; ii) the bank vole connectivity
is hindered by urban areas, while permeability is facilitated by the presence of woodlands, and
cultivated terrains. Habitat loss and fragmentation can therefore influence genetic structure of small
sympatric mammal species in different ways, and predicting the genetic consequences of these events

using only one species may be misleading.
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Anthropogenic landscape


https://doi.org/10.1101/464057
http://creativecommons.org/licenses/by-nd/4.0/

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

bioRxiv preprint doi: https://doi.org/10.1101/464057; this version posted November 7, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Introduction

Habitat loss and fragmentation have negative impacts on populations, and are considered as one of
the main causes of biodiversity loss and therefore a major issue in conservation biology=. In
particular, anthropogenic habitat fragmentation has modified the distribution and population sizes in
many different organisms*®, with local and/or global reduction of genetic diversity and
connectivity®’. Monitoring the genetic consequences of human activities that increase habitat
fragmentation is therefore important to develop appropriate conservation and management
strategies®.

The major consequence of habitat loss and fragmentation is to create discontinuities (i.e.
patchiness) in the distribution of critical resources (e.g. food, cover, water) or in environmental
conditions (e.g. microclimate)®. Such discontinuities reduce connectivity among populations®,
threatening their long-term viability due to genetic (e.g., reduced evolutionary potential and
inbreeding depression) and demographic factors (e.g. demographic stochasticity)'. Habitat
fragmentation may also have different short term consequences in different species, for example by
reducing the suitable habitats or increasing the predation success, but these effects poorly predict
long-term responses*?. Gene flow among subpopulations is necessary to alleviate the adverse genetic
consequences of population fragmentation, reducing genetic drift and maintaining local genetic
variation®3. From a conservation perspective, inferring the functional connectivity of populations
across landscapes becomes crucial®'. Identifying the areas where gene flow is either facilitated or
prevented, and the landscape factors responsible for that, is a high priority*>,

One interesting opportunity to investigate the causes and the genetic consequences of
fragmentation is represented by sympatric species with partially overlapped ecological niches’°.
Different species, in fact, may respond very differently to the same landscape matrix?*23. They may
also react differently to the fragmentation of their previously continuous habitat, and these differences
may be reflected in the geographic distribution of their genetic variation. In this work, we investigate

the effects of habitat fragmentation present in agricultural landscape in Central Italy on the genetic
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structure of two sympatric rodent species, the wood mouse (Apodemus sylvaticus) and the bank vole
(Myodes glareolus).

The wood mouse is a generalist species known to inhabit a wide range of habitats including
forests, hedgerows and agricultural fields?*%. In contrast, the bank vole is a “forest specialist”, i.e. it
iIs more strictly associated with forest habitats, from mature stands to recently coppiced
woodlands?’?8, In general, specialist species tend to be more affected than generalist species by
habitat fragmentation, both because highly dispersed resources are more difficult to reach by the
former®-3L, pbut also because of competitive exclusion of the specialists by the generalists®2.
Accordingly, the specialist bank vole seems to prefer sites with high connectivity®?3, and the
generalist wood mouse can also be found in highly fragmented habitats, being able for example to
move across cultivated fields*>**. We currently do not known whether these differences directly
correspond to a stronger genetic structure in the bank vole compared to the wood mouse, and if (and
how) different natural or anthropogenic habitat features have different relative impacts on gene flow.
Our study aims at investigating these questions following three steps: (1) initially, neutral genetic
markers will be used to estimate the genetic diversity and the population structure separately in each
species; (2) patterns of gene flow and the geographic location of genetic barriers will be then analysed
in the two species and compared; (3) finally, species-specific landscape features with the largest

influence on the genetic variation pattern will be identified.

Materials and Methods
Study area and sample method

The study was conducted in a fragmented landscape (<20% of residual woodland cover) located in
central Italy (coordinates: 42°30°50”, 12°4°40”; elevation: 350 m; Fig. 1). Woodland patches,
consisting of mixed deciduous forest dominated by downy and turkey oaks (Quercus pubescens and

Quercus cerris, respectively), were embedded in an agricultural matrix (mainly wheat fields) crossed
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by a network of hedgerows providing structural connectivity to habitat patches. The S2 highway and
the railway bisect the study area, potentially acting as barriers to wildlife movements®. Finally, urban
areas are present and represent approximately 5% of the total area. Twelve trapping sessions were
conducted over a 2-year period, with trapping taking place every other month from April 2011 to
February 2013. During each session, grids were trapped for three consecutive nights. Total sample
size was 199 for the bank voles and 194 for the wood mice, and samples sizes in each of 15 different
woodland patches is reported in Table 1. All the procedures of trapping and manipulation of animals
took place in compliance with the European Council Directive 92/43EEC (Italian law D.Lgs 157/92
and LR 3/1994) and with the European Council Directive 86/609/EEC (ltalian law D.Lgs 116/92).
The capture and handling of species listed in the EU Habitat Directive was covered by permit number

PNM 0024822 granted to A. M. by the Ministry of Environment, Rome, Italy.
Genotyping

Genomic DNA was extracted from the mouse ear lobe samples using the NucleoSpin® Tissue
(Macherey-Nagel, Diiren, Germany) according to the manufacturer’s protocol or using the Chelex-
based DNA extraction method¢. Eight microsatellite loci were used for the bank vole: Cg13BS8,
Cg6A1, Cg3F12, Cgl3H9, Cg2E2, Cg3E10, Cg2A4 and Cg3A8%’. Seven microsatellite loci,
described for members of the genus Apodemus, were used for the wood mouse: As-7, Asll, As-12,
As-20, As-34, GTTD9A and MsAf-8%840, A two-step PCR with the following conditions was carried
out: initial denaturation at 95°C for 15 minutes, followed by 30 cycles at 95°C for 30 seconds, 56°C
for 45 seconds and 72°C for 45 seconds, followed by eight cycles at 95°C for 30 seconds, 53°C for
45 seconds and 72°C for 45 seconds, and a final elongation at 72°C for 30 minutes. The forward
primers were 5 labelled with one of the following fluorescent labels: FAM, VIC, NED and PET.
Fragments were analysed on an ABI13130 capillary analyser (Applied Biosystems, Life Technologies
Corporation). Fragment data were analysed using Peak Scanner Software (Applied Biosystems, Life

Technologies Corporation).
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Genetic diversity

Descriptive statistics of nuclear genetic diversity were estimated separately for each population
(woodland patch) in each species. The mean number of alleles, and the observed and expected
heterozygosities, were estimated using Genalex 6.4, and the same program was used to test for
deviation from Hardy—Weinberg equilibrium. Allelic richness (AR) was calculated using the
rarefaction procedure in the Fstat 2.9.3.2 software*?. Arlequin 3.5.2.2*% was used to test for linkage
disequilibrium between each pair of loci for each sampling population following a likelihood-ratio
statistic, whose null distribution was obtained by a permutation procedure. We applied sequential
Bonferroni corrections to account for multiple comparisons**. Micro-Checker 2.2.3%* was used to
check for null alleles and scoring errors. FREENA®® was used to compare uncorrected and corrected
Fst values to test for the impact of null alleles, when present. Genetic differentiation measured as Fst
values*’ was estimated for each pair of sampling population with Arlequin. Statistical significance of
the Fst values was tested using 10,000 permutations, and P values were multiplied by the total number

of comparison following the conservative Bonferroni approach for multiple testing.
Genetic structure

Two Bayesian clustering methods were used to identify the number of genetic groups without
(STRUCTURE v2.3.4)* and with (TESS v2.3.1)*° spatially explicit data. For the STRUCTURE
analysis, a burn-in length of 50,000 iterations and a run length of 100,000 iterations were used in an
admixture model with correlated allele frequencies among populations testing each K value between
1 and 15. Each K value was run 10 times. The optimal K value was determined using the AK method>°
by means of STRUCTURE Harvester®®. To visualize STRUCTURE results, STRUCTURE Harvester
was used as well. CLUMPP®? was then applied to average the multiple runs given by STRUCTURE
and to verify correct label switching. To display the results, the output from CLUMPP was visualized
with DISTRUCT?®3, The CAR admixture model was used in TESS, with simple Euclidean geographic

distances. We run 50,000 MCMC iterations with 20,000 burn-in for 12 times for each K value (2—
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15). We used deviance information criterion (DIC) values and stabilization of the Q-matrix of
posterior probabilities to define the ideal number of clusters (i.e. K max) for the data (Ortego et al.

2015).
Visualizing deviation from Isolation by Distance

Genetic diversity between populations often exhibit patterns consistent with Isolation by Distance
(IBD), where populations far apart in the geographic space receive less gene flow than neighbouring
ones. Given the ubiquity of this phenomenon®®*" it is interesting to see locations where this does not
hold true, as they might represent barriers or zones of high contact. Global deviation from Isolation
by Distance can be identified, for example, studying the decrease of similarity or autocorrelation with
geographic distance. However, specific deviations in some areas, but not in others, cannot be easily
investigated and visualized by standard methods. One recent answer to this problem comes from the
use of Estimated Effective Migration Surfaces (EEMs)*®. EEMS employs individual based migration
rates in order to visualize zones with higher or lower migration with respect to the overall rate. These
areas represent locations in which the pattern of gene flow predicted by IBD is facilitated or hindered.
The region under study was first divided in a grid of demes and the individuals were assigned to the
deme closest to their sampling location. The matrix of effective migration rates was then computed
by EEMS based on the stepping-stone model®® and on resistance distances®. We used the EEMS
script ~ for  microsatellites  analysis  runems_sats  available  from  Github  at
https://github.com/dipetkov/eems to construct EEMS surfaces for the bank vole and the wood mouse.
Considering that the number of demes simulated during the grid construction phase can influence the
scale of the deviation from the overall migration rate, we averaged three runs with 50, 100, 200, 300
and 400 demes to produce the final EEMS surface. Each single run consisted in 200,000 burn in steps
followed by 1,000,000 MCMC iterations sampled every 10,000 steps. We plotted the averaged EEMS

and checked for MCMC convergence using the rEEMSplots package in R v 3.2.2.

Isolation by resistance
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Understanding the effect of environmental components on the genetic makeup of natural populations
is the goal of landscape genetics, which integrates population genetics, landscape ecology and spatial
statistics®*®3. One of the techniques more commonly used in landscape genetics to identify
discontinuities in gene flow and determine the relative resistance to movement imposed by different
landscape elements is IBR, Isolation by Resistance®. IBR offers a conceptual model in which
landscape resistance is the analogue of electrical resistance, and the movements of individuals and
flow of genes are analogues of electrical current®. It greatly extends the ability to model multiple
complementary paths of connectivity, while being sufficiently computationally efficient to allow its
use over large landscapes at relatively fine resolution®, In order to analyse the effect of specific
landscape components on gene flow, we tested for the presence of IBR. We first constructed a raster
grid encompassing all our study area reclassifying the land cover based on features that were a priori
most likely to affect gene flow in both the bank vole and the wood mouse: woodland, urban areas,
cultivated terrain and hedges (Fig. 1). We also included in our raster grid the major roads intersecting
our study area from OpenStreetMap (OpenStreetMap contributors, 2015) and the railways tracks from

the DIVA-GIS database at http://www.diva-gis.org/gdatahttp://www.diva-gis.org/gdata.

In order to determine the relative importance of land cover elements in hindering or facilitating
gene flow, we modified this grid under two different set of scenarios. The first set (resistance set) was
aimed at determining the resistance caused by a specific land cover feature with respect to the others.
We assigned a varying maximum resistance (REmax) to a target component, keeping the other
landscape features to a uniform minimum resistance (REmin = 1). The second set of grids (permeability
set) was built to establish the possible role of a specific landscape feature in facilitating the connection
between different populations. We assigned a minimum resistance value to a target landscape
component and a varying REmax to all remaining feature. For both set of grids we employed eight
maximum resistance values (REmax = 5, 10, 50, 100, 500, 1000, 5000 and 10000) obtaining a total of
96 different surfaces. We computed pairwise resistance distances between populations for both the

bank vole and the wood mouse using the different sets of grids. Distances were obtained considering
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the eight-neighbour cell connection scheme in CIRCUITSCAPE 4.0°7 with the sampled woodland
patches as focal regions. We also computed an lIsolation by Distance scenario considering a
homogeneous resistance surface (all RE = 1)>*%, We then compared the resistance and the Fst
matrices using multiple matrix regression with randomization (MMRR)®. For each landscape
variable, the most supported model was identified as the one corresponding to the highest supported
R? value. In case of plateau, we preferred the model corresponding to the onset of the plateau®®.
Statistical significance of the coefficients was determined using 9999 permutations with the MMRR
function®. Finally, for each species, we created a cumulative resistance surface assigning to every
land cover variable the ratio of resistance with respect to REmax obtained considering both set of
models. We compared the output of CIRCUITSCAPE for these two cumulative grids with the Fst
matrix using MMRR and, to disentangle the effect of landscape features on genetic diversity from
simple IBD, we computed a partial mantel test using the function mantel.partial from the package

vegan version 2.4-27°. All statistical analyses were conducted in R v.3.2.2 (R Core Team 2016).

Results
Genetic diversity

All loci were polymorphic in both species. The average expected heterozygosities were very similar
in the two different sets of markers typed in the two species (0.74 in the bank vole and 0.72 in the
wood mouse), and the number of alleles varied between 2 and 16 in the wood mouse and between 3
and 11 in the bank vole markers, respectively. All the genetic variation statistics are reported in Table
1. No systematic deviation from linkage equilibrium was observed between loci for any population
in both species, and none of the tests was significant after Bonferroni correction. Some loci showed
evidence of the presence of null alleles, but only in some populations. We analysed the effect of these
alleles by comparing matrices of pairwise Fst values computed from the complete data set with values

corrected for null alleles as estimated by FreeNA. Multilocus global Fst values had identical values
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when calculated with and without correcting for null alleles in both species (wood mouse: Fst = 0.03;
bank vole: Fst = 0.08), with identical or very similar confidence intervals in the two analyses (0.01-
0.05 in wood mouse, with and without correction, 0.07—0.09 and 0.06—0.08 in bank vole, with and
without correction, respectively). Multilocus pairwise Fst values with and without correction were
also highly correlated (wood mouse: r = 0.99; p = 0.001; bank vole: r = 0.99; p = 0.001; Mantel test).
We decided therefore to use the complete data set for all downstream analyses. Pairwise Fst values
in the wood mouse were significant after sequential Bonferroni correction only in 7 out of 105
comparisons, all involving the PRV population (with Fst values never larger than 0.08). On the
contrary, the bank vole shows a much larger geographic structure. Approximately half of the Fst
values were significant, with the highest divergence values observed in comparisons including PRV,

and, as reported above, the average Fst was much higher than that estimated in the wood mouse.

Genetic structure

The most likely partition implied three genetic groups (K=3) in both species. Here we present
individual assignment plots for K equal to 2, 3 and 4 (Fig. 2A-B) to better visualize different aspects
of the genetic structure, and we also report the geographic distribution of the most supported number
of K in both species (Fig 2C). In the wood mouse (Fig. 2A), the isolation of PRV already suggested
by the pairwise Fst matrix was supported at different values of K. With the most supported K=3, or
with K=4, a large fraction of individuals and populations (with the exception of PRV) showed a mixed
ancestry. In the bank vole (Fig. 2B), populations appeared more internally homogeneous, with three
distinct genetic groups prevailing in the northern areas (ALB, BRN, FDT, FRR and GST), in the
western areas (API, IUG, MCD, PRV and YAH), and in a single eastern population (CRC),
respectively, and the other populations having a more mixed and less geographically localized genetic

composition.

Visualizing deviation from IBD

10
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The spatial visualization of the geographic areas with higher or lower gene flow compared to IBD
expectations is similar in the two species (Fig. 3). The main pattern consists of a central area of
reduced gene flow, cantered around PRV, extended only in the bank vole towards the southern and
the eastern borders of the region. These branches of reduced migration clearly produce the higher
genetic structure observed in the bank vole when compared to the wood mouse, with the latter having

a much higher connectivity in most of the areas we considered.
Isolation by resistance

Both the wood mouse and the bank vole populations presented significant patterns of isolation by
distance (Supplementary Tables 1-2). However, we also found higher association between pairwise
Fst and resistance distance in models including land cover features (Fig 4, Supplementary Tables 1-
2). In the wood mouse, the first set of distances (resistance) reached the highest value of R? when
woodland patches presented moderate resistance values (RE =100) with respect to the surrounding
environmental feature, while the second set (permeability) highlighted the role of cultivated areas
(1/100 of REmax) and of the areas comprising and surrounding major roads (1/500 of REmax) in
facilitating connectivity between different populations. In the bank vole, the resistance scenarios
providing the best fit were those implying the highest resistance (RE = 500) for urban areas, whereas
woodland and cultivated terrain presented less resistance to gene flow with respect to surrounding
land cover (1/500 and 1/100 of REmax respectively). Contrary to the one for the wood mouse (Tab. 3),
the cumulative resistance scenario for the bank vole also remained significant once we factored out

IBD with partial Mantel tests (r = 0.489; p = 0.0384; Mantel test).

Discussion

Our main goal was to investigate the relationship between human-related changes in habitat amount

and configuration (i.e., habitat structure), habitat use and genetic structure. We applied the identical

11
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sampling scheme within the same fragmented area to two rodent species, the wood mouse and the
bank vole. Our major results (see Table 4 for a summary) are that the generalist wood mouse has a
population structure much more genetically connected than the forest-specialized bank vole, and
cultivated areas facilitate gene flow in both species. Gene flow favoured by cultivated areas likely
increases the genetic exchanges in the wood mouse even above the level expected in natural
conditions, which appear limited only by woodlands. In the bank vole, cultivated areas possibly act
compensating the genetic fragmentation due to the loss of woodland and the increase of urban areas.
Overall, we conclude that the difference between these species in their ability to use different habitats
is still reflected in the difference between their genetic structure, but this difference is likely to

increase if woodlands will be further replaced by urban, but not cultivated areas.
Genetic diversity

Habitat fragmentation did not produce a detectable loss of genetic variation in two species. Levels of
diversity in different populations are comparable to those reported for other rodent species*®’1-73,
When the global genetic divergence between populations is analyzed, the wood mouse shows much
weaker population structure than the bank vole. This pattern is expected considering that, at a short
geographic scale (distances <30 km), genetic structure is commonly found only in rodents with a
specialized ecological niche™"°.

With the exclusion of the population sampled in PRV (see below), the wood mouse appears
rather homogenous at this geographic scale, indicating that gene flow is not prevented by the human-
induced fragmentation of their natural habitat. This result reflects the enormous capacity of adaptation
and mobility in this species, which can be found in all types of forests and even in cultivated fields in
some periods of the year®®-82. On the other hand, populations of the bank vole sampled in the same
patches showed the presence of a significant genetic differentiation with a lower degree of genetic
admixture and higher Fst values. Similar studies on bank vole confirmed that there is a significant

reduction of gene flow already at geographical distance of about 8 km®, and that environmental

12
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features, such as seasonal temperature variations, can contribute in a decisive way in increasing the
genetic structure of this species® .

Spatial patterns of gene-flow

Isolation by distance was significant, indicating that geographic distance is an important factor for
both species. An additional shared feature appears the isolation of PRV in all the analyses, supporting
the hypothesis that individuals in both species have some difficulty to reach this area. This result may
be related to the fact that woodland and urban areas are highly diffused around PRV, and the IBR
analysis suggested that woodland acts as a barrier for the wood mouse whereas urban areas act as a
barrier for the bank vole.

The relevance of woodland as a barrier for the wood mouse can be explained by the
competition with the forest specialist bank vole or/and with the congeneric species Apodemus
flavicollis, as shown by empirical studies of the strength of interspecific competition in shaping small
mammal communities in fragmented landscapes®2.

Additional areas of enhanced or reduced gene flow, in comparison with the isolation by
distance pattern in the background, were found for the bank vole. Specifically, three main areas
showed gene flow higher than expected, corresponding to western, eastern and northern patches.
Barriers separating them are composed of a mix of different environmental features, but the IBR
modelling suggests that urban areas play the major role.

Finally, a few general comments on the results provided by the IBR analyses are needed.
Railways and roads (never wider than 10 meters in this area) cannot be considered as barriers to the
dispersal of these species, consistently with previous studies’>’®. Indeed, roads appear as a factor that
favours gene flow in the wood mouse. This may be because, for this species, the size of the roads
present in the study area should not be considered as a barrier and/or that roads, in the environmental
matrix, were included in (or surrounded by) a suitable ground. Similarly, cultivated fields do not limit
dispersal, but may even play a role as corridors®®. The only anthropogenic factor that seems to

negatively affect the dispersal pattern (only in the bank vole) is the presence of urban areas. Clearly,
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if woodlands will be further reduced by urbanization, genetic fragmentation could become an issue

for the bank vole, but not for the wood mouse.

Conclusions and implications for conservation

Overall, the results of this research show that, despite extensive habitat changes due to human
activities, levels of genetic variation are quite high in both species, and their difference in the dispersal
abilities is still reflected in the difference of genetic structure. The wood mouse, a generalist species
with high dispersal ability, shows in fact higher genetic connectivity than the bank vole, which is a
less mobile species closely linked to woodland areas. Nevertheless, we found also that cultivated
fields and urban areas modifies the natural dispersion patterns in both species, probably in a way that
will, in the future, increase the difference between their genetic structure. Our study supports the view
that patterns of gene flow can be differently affected, even in related and sympatric species, by the
same changes of land use. Locally, this implies that future monitoring efforts should prioritize the
bank vole, the species with the highest genetic structure where genetic fragmentation is more likely
to increase due to urbanization. More in general, we argue that predicting the genetic impact of habitat

fragmentation using single model species may be misleading.
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539  Table 1. Genetic diversity indices in the wood mouse and the bank vole populations: sample size (N),
540 number of alleles (Na), allelic richness (Ar), observed heterozygosity (Ho), and expected

541  heterozygosity (He).

Wood mouse Bank vole

N Na  Ar Ho He | N Na  Ar Ho He
ALB 10 54 55 075 0.71]13 57 6.2 057 0.78
BRN 7 48 55 072 075|114 64 6.7 067 081
FDT 14 79 58 074 081|114 65 68 071 0.80
FRR 14 72 54 072 074113 62 65 068 0.79
GST 14 62 48 066 075|114 57 59 072 0.76
API 14 66 50 073 071|114 47 52 072 0.74
IUG 14 65 50 070 073|114 52 58 0.67 0.77
MCD 14 65 52 064 069|214 44 48 065 0.68
MzZ 14 69 50 071 0.70 |13 55 6.2 069 0.77
PRV 9 34 43 091 069 |11 40 50 066 0.65
YAH 14 71 54 072 073]12 54 63 068 071
CRC 14 57 46 055 066 |14 45 48 057 0.68
SCP 14 66 51 069 07313 57 6.3 056 0.77
TST 14 65 51 066 0.68 |13 50 56 059 0.69
VRG 14 65 51 066 0.73]13 49 57 067 0.76
Mean 129 625 51 071 072|133 532 59 065 0.74
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Table 2. Pairwise Fst distances between sampled populations. Values above diagonal for the bank

vole and values below diagonal for the wood mouse. Bold values of Fst indicate significance after

Bonferroni correction.

ALB | BRN | FDT | FRR | GST | API | IUG |MCD | MZZ | PRV | YAH | CRC | SCP | TST | VRG
ALB - 004 | 005 | 002 | 008 | 0,07 | 0,05 | 0,06 | 0,04 | 0,43 | 0,05 | 0,41 | 0,05 | 0,08 | 0,07
BRN | 0,02 - 0,04 | 006 | 008 | 0,10 | 005 | 0,11 | 0,03 | 0,26 | 0,08 | 0,11 | 0,08 | 0,09 | 0,03
FDT | 0,00 | 0,00 - 001 | 006 | 0,42 | 0,07 | 0,09 | O,04 | 0,21 | 0,08 | 0,23 | 0,07 | 0,09 | 0,05
FRR | 0,00 | 0,00 | 0,01 - 004 | 0,10 | 0,07 | 0,10 | 0,03 | 0,22 | 0,07 | 0,13 | 0,06 | 0,10 | 0,05
GST | 0,00 | 0,01 | 0,02 | 0,00 - 0,13 | 0,08 | 0,22 | 005 | 0,45 | 0,07 | 0,20 | 0,07 | 0,07 | 0,04
API | 0,02 | 0,03 | 0,03 | 0,00 | 0,01 - 005 | 009 | 009 | 017 | 0,03 | 0,21 | 0,03 | 0,09 | 0,11
IUG | 0,00 | 0,02 | 0,02 | -0,01 | 0,02 | 0,01 - 0,0 | 0,06 | 0,24 | 0,02 | 0,10 | 0,04 | 0,08 | 0,07
MCD | 0,00 | 0,02 | 0,04 | 0,00 | 0,03 | 0,01 | 0,00 - 009 | 014 | 006 | 0,13 | 0,06 | 0,12 | 0,14
MZzZ | 0,01 | 0,03 | 0,04 | 0,01 | 0,02 | 0,01 | 0,01 | 0,00 - 0,16 | 0,06 | 0,11 | 0,05 | 0,07 | 0,04
PRV | 0,03 | 0,02 | 0,01 | 0,01 | 0,03 | 0,06 | 0,02 | 0,07 | 0,07 - 015 | 0,21 | 0,13 | 0,22 | 0,17
YAH | 0,01 | 0,00 | 0,00 | -0,01 | 0,00 | 0,00 |-0,02 | 0,02 | 0,00 | 0,05 - 0,07 | 0,01 | 0,04 | 0,06
CRC | 0,02 | 0,04 | 0,05 | 0,02 | 0,03 | 0,02 | 0,04 | 0,03 | 0,03 | 0,08 | 0,01 - 0,05 | 0,01 | 0,09
SCP | -0,01 | 0,02 | 0,01 | 0,00 | 0,01 | 0,01 | 0,00 | 0,00 | 0,02 | 0,02 | -0,02 | 0,02 - 0,04 | 0,05
TST | 0,00 | 0,02 | 0,04 | 0,01 | 0,02 | 0,01 | 0,01 | 0,00 | 0,01 | 0,06 | 0,02 | 0,03 | 0,00 - 0,08
VRG | -0,01 | 0,00 | 0,03 | 0,00 | 0,01 | 0,02 | 0,01 | 0,02 | 0,01 | 0,02 | 0,02 | 0,04 | 0,01 | 0,02 -
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547 Table 3. MMRR and Partial Mantel results for cumulative resistance surfaces. Abbreviation for
548 land cover elements are: cultivated terrain (CT), hedgerow (H), road (Ro), railway (Ra), urban area

549  (Ua) and woodland (W).

Land cover resistance MMRR Partial Mantel

Species CTIH|Ro|Ra|UA | W R? B t p r p
Woodmouse | 5 (10| 1 |10 | 10 | 500 | 0.180 | -0.0413 | -3.776 | 0.006 0.304 0.0773
Bank vole 5 (10|10 (10 |500 | 1 | 0.174 | 0.0219 1.645 | 0.001 0.489 0.0384
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551  Table 4. Concise summary of the major results obtained in the two species.

Main factors
Species Ecology Overall genetic structure limiting gene
flow

Main factors

favouring gene flow

Expected: no/low

Wood Generalist, found in

mouse different habitats Observed: F4=0.03; no significant
deviation from IBD

Woodland

Expected: yes
Bank Specialist, prefer
vole forests Observed: F¢=0.08; significant

deviation from IBD

Urban areas

552
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Cultivated areas;
areas around roads

Cultivated areas;
woodland
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Figure 1. The study area. It is located in the Province of Viterbo, Central Italy. Landscape is

reclassified according to the features utilized in the IBR analysis. RA represent the only railway

intersecting the study area. Population codes as in Table 1.
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558  Figure 2. Population assignment test performed with STRUCTURE. Bar plots represent the genetic
559  composition of single individuals (thin vertical columns) from K = 2 to K = 4. A) wood mouse; B)
560 bank vole. (C) Maps of the study area with the genetic composition of each population for K = 3 in

561 the wood mouse (left) and the bank vole (right).
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Figure 3. Individual-based EEMS analysis of effective migration rates (m) for the wood mouse (left)
and the bank vole (right). The effective migration rate is represented on a logio scale. Areas showing
negative values (orange) represent possible barriers to gene-flow while zones with positive values
(blue) correspond to places of increased gene-flow, both with respect to the Isolation by Distance
background (white). Migration surfaces are averages of 3 runs each with 50, 100, 200, 300, and 400

demes.
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Figure 4. Goodness of fit for models of landscape resistance. Panels show the coefficient of
determination (R?) for models analysing genetic differentiation (panel A-B: wood mouse; panel C-D:
bank vole) in relation to resistance (A, C) and permeability (B, D) distance matrices plotted against
resistance values for different landscape features. Circles with black outline showed significant P-

values.
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