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Abstract

Background: Population dynamic models can be used in conjunction with time
series of species abundances to infer interactions. Understanding microbial
interactions is a prerequisite for numerous goals in microbiome research;
predicting how populations change over time, determining how manipulations of
microbiomes affect dynamics, and designing synthetic microbiomes to perform
tasks are just a few examples. As such, there is great interest in adapting
population dynamic theory for microbial systems. Despite the appeal, numerous
hurdles exist. One hurdle is that the data commonly obtained from DNA
sequencing yield estimates of relative abundances, while population dynamic
models such as the generalized Lotka-Volterra model track absolute abundances
or densities. It is not clear whether relative abundance data alone can be used to
infer parameters of population dynamic models such as the Lotka-Volterra model.

Results: We used structural identifiability analyses to determine the extent to
which time series of relative abundances can be used to parameterize the
generalized Lotka-Volterra model. We found that only with absolute abundance
data to accompany relative abundance estimates from sequencing can all
parameters be uniquely identified. However, relative abundance data alone do
contain information on relative interaction strengths, which is sufficient for many
studies where the goal is to estimate key interactions and their effects on
dynamics. Our results also indicate that the relative interaction rates that can be
estimated using relative abundance data provide ample information to estimate
relative changes of absolute abundance over time. Using synthetic data for which
we know the underlying structure, we found our results to be robust to modest
amounts of both process and measurement error.

Conclusions: Fitting the generalized Lotka-Volterra model to time-series
sequencing data typically requires either assuming a constant population size or
performing additional measurements to obtain absolute abundances. We have
found that these assumptions are not strictly necessary because relative
abundance data alone contain sufficient information to estimate relative rates of
interaction, and thus to infer key drivers of microbial population dynamics.

Keywords: microbiome; parameter identifiability; mathematical model;
generalized Lotka-Volterra; time-series; dynamics

Background
There is considerable interest in applying population dynamic theory to microbial

systems to test hypotheses relating to ecosystem stability, to determine the drivers

of dynamics, and to predict how populations will change over time [e.g., to pre-

vent illnesses such as ulcers; cf. 1–8]. While modern DNA sequencing technologies

allow rapid and inexpensive characterization of microbial community composition
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and have uncovered enormous microbial diversity, relatively little is known regard-

ing the interactions governing the population dynamics of constituent members of

microbial communities. It is these interactions that determine which members of

a microbial community will flourish, and understanding them is key to manipulat-

ing microbiomes to promote health, designing synthetic microbial communities to

perform tasks, and inferring stability to assess risk.

Despite the expectation that population dynamic models should be applicable

to microbial systems, barriers exist to the application of traditional modeling ap-

proaches to microbiomes. One such barrier results from the nature of sequence data

as a proxy for species abundance. The raw data from high-throughput microbiome

samples are a large number of sequence reads which are grouped by similarity,

giving the number of reads belonging to a particular group. These groups have dif-

ferent meanings depending on the methods employed but, for our purposes, can be

thought of as different (pseudo-)species. The number of reads for a group is then

divided by the total number of sequence reads in the sample giving an estimate of

relative abundance.

In contrast to the relative abundance estimates obtained from sequence reads,

most population dynamic models, including the generalized Lotka-Volterra (gLV)

model, describe absolute abundances or densities rather than sequence observation

rates or relative abundances. Methods exist to convert the relative abundance data

to absolute abundances by estimating absolute abundance from additional data

(e.g., qPCR) [3, 9, 10]. However, such data are not typically collected in microbiome

studies and, when collected, are quite error-prone themselves; thus we are often left

with only estimates of relative abundances over time.

Numerous methods exist to estimate species’ interaction strengths in a gLV model

from microbial time series data [3, 9–14]. The most common technique for estimating

parameters is to utilize a discrete time version of the model, and estimate coefficients

using linear regression. When formulated in this way, it has been recognized that

the design matrix for the regression is singular [13] because relative abundance data

alone do not contain sufficient information to estimate parameters. As such, methods

typically rely on an assumption of constant population size or additional data on

absolute abundance to complement sequence data so that absolute abundances or

densities of each species can be estimated. While interaction strengths have been

successfully estimated in microbial communities by fitting time-series of species’

densities to the gLV model, it is unknown to what extent relative abundances alone

contain information on interaction strengths.

Using parameter identifiability analyses to systematically account for the com-

positional nature of the data, we determine the extent to which time-series of mi-

crobiome sequencing data contain information about parameters of the gLV model.

We address the question as to whether relative abundance measurements alone,

as obtained by sequencing techniques, can be used to estimate species interaction

strengths in a gLV model. If relative abundance measurements cannot be used to

estimate all species interaction strengths as has been previously suggested, what

additional measurements would be needed to make this possible, and what parame-

ters or combinations of parameters can be estimated using only relative abundance

measurements? We then verify the structural identifiability results using synthetic

microbial community time series data.
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Results
Generalized Lotka-Volterra Model

Assuming large, well-mixed, closed populations with only two-way interactions be-

tween microbes, the change in density of microbes over time can be described by a

system of differential equations where the dynamics of a focal microbe Ni satisfy:

dNi

dt
= hi(Ni)︸ ︷︷ ︸

intrinsic growth
or death of Ni

+
∑
j

fij(Ni, Nj)︸ ︷︷ ︸
growth or death
of Ni caused by
interaction with

microbe Nj

+
∑
k

gik(Ni, Xk)︸ ︷︷ ︸
growth or death
of Ni caused by
interaction with

exogenous variable Xk

for i ∈ {1, 2, ..., n}, where n is the number of species in the microbial community.

The function hi(Ni) is the rate of growth or death of Ni, fij(Ni, Nj) is a function

describing the growth or death of Ni caused by interaction with microbe Nj , and

gik(Ni, Xk) is a function describing the growth or death of Ni caused by interaction

with exogenous variable Xk (e.g., resource, toxin). Ignoring exogenous variables

(gik = 0) and specifying the functions hi(Ni) = riNi and fij(Ni, Nj) = βi,jNiNj

yields the classical generalized Lotka-Volterra model

1

Ni

dNi

dt
= ri +

n∑
j=1

βi,jNj (1)

where the parameter ri is a positive growth rate and the interaction rate βi,j de-

scribes how microbe j affects the growth rate of microbe i. Typically, the parameters

βi,i are constrained to be negative so that the carrying capacity ki = −ri/βi,i is

positive.

Structural Identifiability of gLV with Relative Abundance Data

A given model and observation state combination is said to be “structurally identi-

fiable” if it is possible to uniquely estimate the parameters of the model assuming

error-free measurements [15]. The goal of structural identifiability analyses is to

identify model parameters that cannot be estimated from a given data type. More-

over, analysis of structural identifiability can reveal parameters or combinations of

parameters that are uniquely identifiable, and can inform the re-parameterization

of a model in terms of identifiable combinations of parameters. For the gLV model

in equation (1), the structural identifiability problem can be set up as follows: given

a noise-free time series of the relative abundance of each microbe (i.e., Ni/N for

all i where N =
∑

iNi), determine whether it is possible to estimate parameters ri

and βi,j for all i and j of equation (1).

Results of structural identifiability analyses demonstrate that time series of rel-

ative abundance data do not contain enough information to uniquely estimate all

parameters of the gLV model (equation (1)). Indeed, multiple sets of parameters

can lead to identical relative abundance outputs (Figs. 1 and 2, Table 1). However,

if additional information on absolute abundance can be obtained (e.g., through

qPCR or optical density measurements) to complement relative abundance data,

our results indicate that the parameters of a gLV model can be uniquely identified.
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Moreover, we demonstrate that such additional information need not be obtained

at each time point; even one measurement of absolute abundance can, in theory, be

used as the key piece of information to anchor the parameters giving identifiable

estimates.

In most studies, additional information on absolute abundance is not available,

and parameters of the gLV model must be estimated with only relative abundance

data. While our results show that all parameters cannot be uniquely identified in

this situation, we found that the relative interaction rates can still be obtained.

The values of βi,j are identifiable up to a constant. Specifically, because the pa-

rameters ri are identifiable and βi,j are identifiable up to a constant, the relative

topology of the interaction network corresponding to the interactions βi,j can still

be estimated, even though the precise values of βi,j are not identifiable. Thus, given

relative abundance data, relative interaction rates can be estimated. In many stud-

ies, this may be sufficient, as it would still allow for the identification of the key

microbial interactions that provide services and drive dynamics.

Application to Synthetic Community Data

To test whether modest observation and process error fundamentally affect the

identifiability properties of the gLV model with relative abundance data, we created

synthetic data of a three species community and sampled the likelihood surface

of the parameter values given the synthetic data with noise (Fig. 3). We found

that neither observation nor process error, nor both simultaneously, fundamentally

affected the identifiability properties of the gLV model with relative abundance data

(Fig. 4).

Surprisingly, our results also indicate that the relative interaction rates—that can

be estimated using relative abundance data—provide ample information to estimate

relative changes of absolute abundance over time (Fig. 5). That is, total abundance

relative to initial total abundance can be estimated from a time series of relative

abundances of all microbes in conjunction with a gLV model. Of course, if the model

is misspecified, or data sufficiently sparse, such estimation may not be possible for

a given study system.

Discussion
As a simple and general model that describes how interactions shape population

dynamics of communities, the gLV is a natural candidate model for interpreting mi-

crobial time-series data [2, 4, 13, 16]. To date, fitting the gLV model to time series

requires either 1) assuming a constant population size so that the gLV model can be

fit directly to relative abundance data; or 2) performing additional measurements

to obtain absolute abundances. We find that such assumptions or additional data

are not strictly necessary. Using structural identifiability analysis and numerical

simulations, we have shown that relative abundance data alone contain sufficient

information to obtain relative rates of interaction. The ability to estimate the topol-

ogy of an interaction network with only relative abundance time-series data would

greatly expand the range of datasets available to interpret with dynamic models,

as estimates of absolute abundances are typically unavailable.

Although our results demonstrate that much information can be gleaned from

time-series relative abundance measurements, technical hurdles exist to efficiently
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estimate parameters of a gLV model with only relative abundance data. While

multiple methods exist to fit gLV models to absolute abundance time-series data

[e.g., 9, 10, 13], the most common technique is to substitute
dlog(Ni)

dt
for

1

Ni

dNi

dt
in equation (1), yielding

dlog(Ni)

dt
= ri +

m∑
j=1

βi,jNj . (2)

Because equations (2) are linear in Nj , a discrete time version of the model can be

fit to absolute abundance time-series data without the need to numerically solve

the differential equations, typically with some form of regularization used to avoid

overfitting. Unfortunately, there is no obvious analogous transformation of the rel-

ative abundance equations into a linear system, and thus to fit a gLV model to

relative abundance data requires numerically solving the differential equations iter-

atively, which, while feasible for smaller systems, is a more computationally expen-

sive proposition, particularly for large communities.

As with any statistical method, care must be taken when estimating parame-

ters of the gLV model. Just because the relative interaction rates are structurally

identifiable with relative abundance data does not mean that they are practically

identifiable for all systems. Some parameters may not be practically identifiable due

to the nature of the specific system. For example, if a species never gets near its

carrying capacity, the carrying capacity may not be well estimated. Similarly, the

number of data points is not the only determinant of the amount of information

contained in a time series; time series in which populations exhibit large changes

in population sizes due to, for example, perturbations, typically contain more in-

formation regarding interactions than time-series of species at steady state. The

level and type of noise also dictates the ability to accurately estimate interaction

parameters. For example, poor sequencing depth can increase measurement error

and yield poor estimates of parameters.

Developing a better understanding of how microbes interact with each other and

their environment is required for numerous goals in microbiome research, includ-

ing detecting dysbioses, manipulating microbiomes to promote healthy function

and preventing disease, and designing synthetic microbial communities for specific

tasks. Such an understanding can be facilitated by interpreting data in conjunction

with appropriate mathematical models. Some microbial communities may be better

modeled with more complex formulations than the gLV model that incorporate ad-

ditional factors, for example, higher order interactions, indirect resource-mediated

interactions, time varying interactions, and various forms of stochasticity. The opti-

mal level of detail to be included in such a model likely depends on numerous factors

including the complexity of the microbial community, the level of understanding of

the underlying dynamics, the structure of noise in the data, and the goals of the

study.

Conclusions
Regardless of the underlying model structure, population dynamic models must

be adapted to utilize common forms of data, such as the relative abundance data
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obtained from high-throughput sequencing. We have found that when fit to a com-

mon population dynamic model, the generalized Lotka-Volterra model, a time series

of relative abundance data contains information on relative interaction strengths.

Moreover, relative interaction rates provide ample information to estimate rela-

tive changes of absolute abundance over time. Such findings provide critical in-

formation for designing temporal studies aimed at inferring microbial interaction

networks, and greatly expand the number of studies amenable to such analysis.

Specifically, we have shown that qPCR data—to convert relative abundance into

absolute density—are not strictly necessary to obtain such networks. By appropri-

ately connecting mechanistic models like the gLV with relative abundance data, we

can potentially tease apart meaningful interactions governing microbial population

dynamics.

Methods
Structural Identifiability of gLV with Relative Abundance Data

We wish to determine the upper bound on the information contained in a time

series of relative abundance data in relation to the gLV model defined in equations

(1). As previously mentioned, after grouping by similarity, sequencing data give

estimates of the relative abundance of each group, whereas equation (1) tracks

absolute abundances or densities. We will use structural identifiability analyses

to determine the extent to which relative abundance data can be used to infer

population dynamic parameters.

A variety of methods exist to determine structural identifiability of ODE models

[17]. We will utilize a differential algebraic approach which is relevant for rational-

function ODE models such as equation (1). To apply this method on the model

described in equation (1), the idea is to first algebraically manipulate the system of

differential equations into an equivalent system written only in terms of observable

state variables (i.e., the measured data) and their derivatives. The resulting system

can be regarded as a system of differential algebraic equations (DAEs) with poly-

nomial coefficients which, after dividing by the coefficient of the highest ranking

polynomial to make the resulting system monic, leads to an input-ouput relation

that has identifiable coefficients [15, 18]. While this method is theoretically valid

for a microbial community of arbitrary size, the algebra becomes cumbersome for

even relatively small communities. Nevertheless, analyses of communities of small

size uncovers clearly recognizable patterns that appear to be broadly applicable to

communities of arbitrary size.

We begin by analyzing the structural identifiability of the two species gLV model

X ′ = r1X + β1,1X
2 + β1,2XY

Y ′ = r2Y + β2,1XY + β2,2Y
2

N ′ = X ′ + Y ′.

(3)

In equations (3), X represents the absolute abundance of the first species, Y the

absolute abundance of the second species, N = X + Y the total abundance of mi-

crobes in the community, and all derivatives are with respect to time. Note that

N,X, and Y are all time-dependent (e.g., N(t)), but we are suppressing the time
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notation for brevity. Ideally, we would like to use measurements of relative abun-

dances to estimate parameters of (3). To check identifiability, we rewrite equations

(3) in terms of the measurable quantities (relative abundances). Let x = X/N and

y = Y/N be relative abundance of microbes X and Y , respectively. Differentiating

x with respect to t yields

x′ = X ′N−1 −XN−2 (X ′ + Y ′) . (4)

Utilizing X = Nx and Y = N(1 − x) and equation (4), equations (3) can be

rewritten in terms of relative abundances and N as

x′ = x(1− x)N

(
(r1 − r2)

N
+ (β1,1 − β1,2)x+ (β2,2 − β2,1)(1− x) + (β1,2 − β2,1)

)
y′ = −x′

N ′ = N
(
−r2(x− 1) + r1x+N

(
β2,2(x− 1)2 + x (β1,2 + β2,1 − (−β1,1 + β1,2 + β2,1)x)

))
.

(5)

Solving the first equation in (5) for N yields

N =
(r1 − r2) (x− 1)x+ x′

(x− 1)x (β2,2 + β1,2(x− 1)− (β1,1 − β2,1 + β2,2)x)
. (6)

Substituting (6) and its derivative into the N ′ equation in (5) and collecting terms

yields

0 = x′′(t)
(
x(t)3 ((β2,1 − β2,2)− (β1,1 − β1,2))

− x(t)2 ((β2,1 − 2β2,2)− (β1,1 − 2β1,2))

−x(t) (β2,2 − β1,2))

− x′(t)2
(
2x(t)2 ((β2,1 − β2,2)− (β1,1 − β1,2))

−x(t) ((β2,1 − 2β2,2)− (2β1,1 − 3β1,2)) + β1,2)

− x′(t)(x(t)3 (r1β1,1 + r2β2,2 + (r1(β2,1 − 2β2,2)− r2(2β1,1 − β1,2)))

− x(t)2 (r1β1,1 + 2r2β2,2 + (r1(β2,1 − 4β2,2)− 2r2(β1,1 − β1,2)))

− x(t) (2r1β2,2 − r2(β1,2 + β2,2)))

− x(t)5(r1 − r2) (r1(β2,1 − β2,2)− r2(β1,1 − β1,2))

+ x(t)4(r1 − r2) (r1(2β2,1 − 3β2,2)− r2(2β1,1 − 3β1,2))

− x(t)3(r1 − r2) (r1(β2,1 − 3β2,2)− r2(β1,1 − 3β1,2))

− x(t)2(r1 − r2)(β2,2r1 − β1,2r2).

(7)

Dividing equation (7) by the leading order coefficient ((β2,1 − β2,2)− (β1,1 − β1,2))

produces an input-output DAE strictly in terms of x′′, x′, and x whose coefficients

are identifiable. Finally, we check whether coefficients of the DAE have a unique

solution by considering an alternative set of parameters (a1, a2, a3, a4, a5, a6) that

produces the same output. Doing so gives the following result: r1 = a1, r2 = a2,

β1,1 = a3

a6
β2,2, β1,2 = a4

a6
β2,2, and β2,1 = a5

a6
β2,2. Thus, r1 and r2 are identifiable
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using relative abundance data, while βi,j are not identifiable; however, βi,j are

identifiable up to a constant.

We performed similar analyses for three, four, and five species gLV models and

found similar identifiability results (Supplemental Mathematica Notebook). Param-

eters ri are identifiable, while βi,j are only identifiable up to a constant.

Application to Synthetic Community Data

To verify the structural identifiability results of the previous section and to test how

error affects the identifiability results, we created two synthetic communities that,

according to the structural identifiability analysis in the previous section, should

yield identical relative abundance time series (Table 1, Fig. 1). We numerically

solved equations (3) with parameters in Table 1 using the function ode with the

default lsoda method in the deSolve R package.

To determine how error affects the identifiability results, we created more realistic

synthetic data with two sources of error: process error and measurement error.

Process error was added by using stochastic differential equations. Specifically, we

used a Wiener process (Brownian motion) to model environmental noise to the

system [19]:

dNi = Ni

ri +
n∑

j=1

βi,jNj

 dt+ σi
√
NidWi (8)

where σi scales the variance of the Wiener process (dWi), which is N (0,
√
dt)-

distributed random noise. After addition of the process error, we subsequently added

measurement error to the stochastically-modeled relative abundances. To do this,

we drew random proportions from a Dirichlet distribution having concentration

parameters αi = V Ñi/
∑

i Ñi, where the tilde indicates the population sizes simu-

lated by Eq. (8) and V scales the error magnitude (V is roughly equivalent to the

amplicon read count). Simulation of data with process and observation error was

performed using the pomp function in the POMP R package [20].

Once we created our synthetic data, we then used POMP’s particle Markov chain–

Monte Carlo (pMCMC) algorithm [cf. 21] to see if the correct parameters could be

inferred for several scenarios: the two scenarios presented in Table 1 and a third

scenario where the initial population size N0 = 1. The third scenario was performed

to demonstrate that relative changes in population size can be inferred from relative

abundance data (i.e., N(t) ≈ N0N̂(t) where the hat denotes the estimated popula-

tion size). Because we are strictly interested in whether the likelihood surface has a

maximum at the correct parameter values, we began the algorithm near the correct

parameter set to verify convergence of the fitting algorithm. There may be param-

eters that fit the realization with both types of error better than the parameters

that created the realization; however, the fitted parameters should be similar to the

parameters used to create the simulation.

The fitting was performed as follows. We assumed that every sample had 500

amplicon read counts that were then divided with respect to the relative proportions

of each species; accordingly, we specified that read counts (measurements) were

multinomially distributed. The time-step (dt) for the random process error was
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0.001. A prior uniform distribution was placed on each parameter, ρ, such that the

likelihood surface was defined on U(ρ−0.4|ρ|, ρ+0.4|ρ|). The MCMC algorithm was

first run for 2000 iterations with 200 particles used for filtering at each iteration.

During these iterations proposals were drawn using a multivariate-normal, adaptive,

random walk where the covariance matrix of MVN was defined as a diagonal matrix

with non-zero elements corresponding to
√

0.1 × |ρ|; after 100 iterations, a scaled

empirical covariance matrix based on the accepted proposal was used. Once the first

2000 iterations finished, the MCMC sampler was restarted and run for another 2000

iterations using the empirically determined covariance matrix from the previous

2000 iterations. After sampling was completed, the final 2000 iterations were thinned

by keeping only every 50th sample, resulting in 40 proposals from which to estimate

the summary statistics for each parameter.

Declarations

A. Ethics approval and consent to participate

Not applicable

B. Consent for publication

Not applicable

C. Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study. Code

is available as additional files.

D. Funding

Support for this project comes from National Institutes of Health grant P20GM104420.

E. Author’s contributions

CHR and BJR designed the research. CHR, MJE, and BJR performed mathematical and computational analyses.

CHR and BJR drafted the manuscript with input from MJE.

F. Acknowledgements

We thank the CMCI Microbiome working group for useful discussion.

G. Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Mathematics, University of Idaho, 875 Perimeter Dr., 83844 Moscow, USA. 2Department of

Biological Sciences, University of Idaho, 875 Perimeter Dr., 83844, Moscow, USA. 3Bioinformatics and

Computational Biology Program, University of Idaho, 875 Perimeter Dr., 83844, Moscow, USA.

References
1. Costello, E.K., Stagaman, K., Dethlefsen, L., Bohannan, B.J.M., Relman, D.A.: The application of ecological

theory toward an understanding of the human microbiome. Science 336(6086), 1255–1262 (2012).

doi:10.1126/science.1224203. http://science.sciencemag.org/content/336/6086/1255.full.pdf

2. Faust, K., Raes, J.: Microbial interactions: from networks to models. Nat Rev Micro 10(8), 538–550 (2012)

3. Stein, R.R., Bucci, V., Toussaint, N.C., Buffie, C.G., Rätsch, G., Pamer, E.G., Sander, C., Xavier, J.B.:
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Figure 1 Interactions in the synthetic three-species community. The values in the arrows
indicate parameters in the synthetic community.
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Figure 2 Multiple parameter sets lead to identical relative abundance dynamics. Comparison of
two gLV systems with different parameters that yield different absolute abundances (left panels)
but identical relative abundances (right panels). “Scaled” versus “unscaled” refers to the fact that
the non-identifiable parameters can be scaled by a constant to produce infinitely many systems
with identical dynamics in terms of the relative abundances. (The scaling constant chosen here
was 100.) See Table 1 for parameter values.
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Figure 3 Dynamics with process and observation error. The example synthetic 3-species gLV
system with process error and observation error incorporated. Process error was added using a
Wiener process to simulate environmental noise. Observation error was added by sampling from a
Dirichlet distribution with concentration parameters based on read-count number. See Methods
for further details.
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Figure 4 Fits of the synthetic 3-species gLV system with process and observation error. The
left-hand column shows the results for the “Value 1” set of parameters (Table 1), while the
right-hand column shows the results for the “Value 2” set of parameters. Fitting was done by
starting the algorithm near the correct parameters set and giving it the correct total population
size at t = 0 (N0 = 0.28 and N0 = 28, respectively). The fits for the relative abundance data are
quite similar (last row), as are the extrapolated fits of the absolute abundance data (middle row).
Relative error of the parameter estimates was defined as relative error = x/x̂− 1, where x is the
estimated value and x̂ is the true value. The relative error was bounded on [−0.4, 0.4] by the
assumed priors.
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Figure 5 Reconstruction of relative population size. If a model is fit where it is assumed that
N0 = 1, then information is recovered about the fold-change in the population’s size over time.
The mean estimate (solid red line) does a fairly good job of matching the stochastic population
trajectory (blue line). The dashed red lines show the range of population values produced by
numerically solving the 3-species gLV system for all accepted parameter sets in the MCMC
algorithm.
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Tables

Table 1 Parameter values used in numerical simulations

Parameter Value 1 Value 2
r1 6 6
r2 4 4
r3 2 2
β1,1 −0.05 −5
β1,2 0.15 15
β1,3 -0.20 -20
β2,1 -0.01 -1.0
β2,2 −0.026 −2.6
β2,3 0.05 5.0
β3,1 0.10 10
β3,2 -0.10 -10
β3,3 −0.0148 −1.481

Additional Files
Additional file 1 — Mathematica Notebook

Mathematica notebook for parameter identifiability of 2-5 species generalized Lotka-Volterra models with relative

abundance data.

Additional file 2 — R Markdown File

R code for the application to synthetic community data.
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