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Dynamic functional connectivity networks and gene expression

Abstract

Cognitive processing depends on the temporal co-ordination of functional brain networks. This
fundamental aspect of neurophysiology potentially bridges the genetic regulation of neuronal
activity and developmental cognitive impairments. We investigated brain network dynamics in a
neurodevelopmental disorder of known genetic origin, by comparing individuals with ZDHHC9-
associated intellectual disability to individuals with no known impairment. We used Hidden Markov
Modelling on magnetoencephalography (MEG) data, at rest and during auditory oddball stimulation,
to characterise transient network dynamics. At rest, network dynamics distinguished the groups,
with ZDHHC9 participants showing longer state activation. Crucially, ZDHHC9 gene expression levels
predicted the group differences across networks, supporting an association between molecular
pathology and neurophysiology. In contrast, network dynamics during auditory oddball stimulation
did not show this association. We demonstrate a link between brain network dynamics and regional
gene expression, and present a valuable method for understanding the real-time neural mechanisms
linking genetic variation to cognitive difficulties.

Keywords: Atypical brain development, cognitive development, functional connectivity, human
genetics, magnetoencephalography (MEG)
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Introduction

In recent years, whole-brain imaging methods have advanced our ability to characterise functional
brain connectivity, and have revealed that distributed neural systems support cognition and
behaviour (Astle et al., 2016; Barnes et al., 2015; Smith et al., 2015; Vidaurre et al. 2017a).
Disruptions to functional connectivity are considered a characteristic feature of multiple
developmental disorders, but surprisingly little is known about the mechanisms that drive this
variability. It is well known that genetic factors influence the intrinsic organisation of functional
networks (e.g. Bathelt et al., 2016, 2017; Colclough et al., 2017; Wang et al., 2015). In many cases,
genes are likely to influence the developmental emergence of functional networks via regulation of
continuous activity-dependent physiological processes, rather than by fixed anatomical differences.
However, understanding of the rapid synchronization and integration of functional connectivity
networks on fast time-scales is limited, partly because there is scarcity of methods capable of
characterising the fast dynamics of brain networks. As a result, there is currently little understanding
of the genetic effects on these networks and the cellular mechanisms that could drive their
developmental variability, or the consequences of perturbations to these network dynamics for
cognition. The aim of this study is to redress this by exploring dynamic transient brain connectivity in
a group of individuals with a neurodevelopmental disorder of known genetic origin.

The current methods capable of deriving system wide neural networks largely assume that the
networks remain stationary over time. Functional magnetic resonance imaging (fMRI) has been the
primary method for investigating coordination between brain regions, by measuring covariations in
the haemodynamic response (Beckmann et al., 2005; Damoiseaux et al., 2006; Smith et al., 2009).
Magnetoencephalography (MEG) provides a powerful complement to fMRI because it captures the
electrophysiological nature of the underlying networks (Barnes et al. 2016). The primary approach to
identifying functional connectivity networks with MEG is to measure the synchronisation between
the amplitude envelopes of oscillations within certain frequency bands, which yields networks of co-
ordinated activity across spatially separate brain regions (de Pasquale et al.,, 2010; O’Neill et al.,
2015; Sudre et al., 2017). This approach has characterised resting state networks (RSNs) that show a
closely overlapping topography with those found using fMRI (Astle et al., 2016; Barnes et al., 2015;
Demuru et al., 2017; de Pasquale et al., 2010). However, with both fMRI and MEG, the estimates of
functional connectivity are typically derived by aggregating activity over large time windows, such as
the full resting state acquisition period. This defines large-scale networks as remaining stationary,
whether during rest or task performance. If large-scale neural networks play an important role in
supporting cognitive processes, then they must synchronise their activity on a timescale of around
50-200ms, switching far more quickly than can be captured using averages taken from time window
methods (Hindriks et al., 2017).

More recently, researchers have developed analytical techniques that fully capitalise on the high
temporal resolution of MEG. An example is the use of Hidden Markov Modelling (HMM) to explore
the temporal dynamics of these networks (Baker et al., 2014; Vidaurre et al., 2016; Viduarre et al.,
2017b; Vidaurre et al. in press). Instead of estimating the correlation between band-limited
amplitude envelopes separately in one large time window at a time, the HMM is a data-driven
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method that identifies a sequence of “states”, whereby each state corresponds to a unique pattern
of brain network activity and correlation that reoccurs at different points in time. For example, the
pattern of amplitude envelope activity that characterises each state can be well-estimated by
pooling over the evidence provided by the many repeated visits to the state. This means that
individual state visits can be potentially very short in time. Indeed, it has been shown that the HMM
can identify network dynamics in resting MEG on ~100ms time-scale, which is much faster than can
be investigated with traditional sliding time window approaches (Baker et al., 2014; Viduarre et al.,
2016). By quantifying the time-series of MEG data as a sequence of transient states, the HMM
provides information about the points in time at which each state is active, enabling the
characterisation of the temporal dynamics of each state or network. Further, the HMM allows the
detection of rapid, transient organisation of brain networks and therefore represents a powerful
tool for understanding how network dynamics can be influenced by, for example, genetic factors.

The application of these methods remains in its infancy. As a result we have yet to establish how
underlying neurobiological or molecular mechanisms can influence the formation of these large-
scale networks or their intrinsic temporal dynamics. Individuals with rare single gene mutations can
represent a unique and interesting window to investigate the specific interactions between cellular
and physiological processes involved in cognitive development. This is because, unlike
neurodevelopmental disorders defined by behavioural impairments, they have a highly specific and
known aetiology, common across all cases. Here, we studied a group of individuals with mutations in
ZDHHC9, a rare recurrent cause of X-linked intellectual disability (XLID; Han et al., 2017; Raymond et
al., 2007; Schirwani et al., 2018; Masurel-Paulet et al 2014). Individuals with ZDHHC9 mutations are
susceptible to a combined phenotype of speech and language impairments, cognitive difficulties,
and Rolandic Epilepsy (RE; Baker et al., 2015). ZDHHC9 encodes a palmitoylation enzyme involved in
the post-translational modification and intracellular trafficking of specific target substrates, including
recruitment of receptors and ion channels to the synapse (Fukata & Fukata, 2010). Although multiple
substrates may be relevant to neurodevelopmental disorders, one palmitoylation target is thought
to be Post-Synaptic Density protein 95 (PSD-95) which is critical to activity-dependent AMPA
receptor availability (El-Husseini et al., 2000a; El-Husseini et al., 2000b; Topinka & Bredt, 2010).
Palmitoylation is itself activity-dependent, and influences synaptic stability across multiple
timescales during development (Kang et al 2008; Kaur et al 2016; Globa and Bamji 2017; Levy and
Nicoll 2017). Hence, the loss of ZDHHC9 function and reduction in palmitoylation efficiency may
alter dynamic aspects of post-synaptic activity, impacting on the emergence and stability of
functional networks supporting cognition. Because of this proposed physiological role of ZDHHC9,
we predicted that mutations to the gene might result in a perturbation to the dynamic nature of
large-scale neural networks. Furthermore, we sought to assess whether those networks most
altered would reflect the regional expression profile of the gene, whereby the temporal dynamics
would be altered maximally in those networks in which the gene is highly expressed.

We investigated the dynamics of functional networks at rest and during an auditory oddball task. We

included both protocols because it is unclear whether the impact of a mutation upon neuronal

dynamics would be most apparent when the system is at ‘rest’ or when under sensory stimulation.

For our stimulation protocol we chose an auditory oddball task, because ZDHHC9 participants have

previously been shown to have impaired language development (Baker et al 2015). Auditory oddball

tasks, which require rapid habituation to a repeated standard stimulus and sensitivity to deviations
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from this stimulus, have been used to index auditory processing in developmental language
disorders. These studies have established that language impairment is frequently associated with
poorer auditory change detection and reduced sensitivity to phonetic and linguistic cues (Ahmmed,
Clarke, & Adams, 2008; Baldeweg et al., 1999; Datta et al., 2010; Davids et al., 2011; Shafer et al.,
2011).

In sum, the aim of this study was to apply the novel HMM method to map dynamic neural
abnormalities in individuals with ZDHHC9 mutations, during both rest and a passive auditory task,
and to determine whether these abnormalities relate to the expression profile of the gene. To our
knowledge, this is the first study that has sought to establish whether there is a link between the
dynamics of large-scale brain networks, and the regional expression of genes associated with
synaptic regulation.

Methods
Participants

Eight male participants with an inherited mutation to ZDHHC9 (age in years: mean = 26.70, standard
deviation (SD) = 13.74, range = 13.25-41.83) were compared to seven age-matched male controls
(age in years: mean = 27.23, SD = 14.05, range = 10.17-42.50; t = -0.74, p = .943). All control
participants had no history of neurological disorders or cognitive impairments. For a detailed
description of clinical and cognitive characteristics of the ZDHHC9 group, compared to an age and 1Q
matched control group, refer to Baker et al. (2015). In brief, ZDHHC9 participants had mild to
moderate intellectual disability (standardised 1Q scores: mean = 64.88, SD = 5.70, range = 57-73).
Additionally, they displayed poor verbal fluency, difficulties with non-speech oromotor control, and
relatively strong receptive language abilities compared to expressive and written abilities. These
communication characteristics distinguished the ZDHHC9 group from an age- and IQ-matched
comparison group (Baker et al., 2015). Ethical approval for the study was granted by the Cambridge
Central Research Ethics Committee (11/0330/EE).

MEG data acquisition and pre-processing

For each participant we acquired data during 9 minutes of eyes-closed resting state and a 12 minute
passive auditory oddball task. The data acquired from these two protocols was analysed separately,
although using the same pipeline (Figure 1). During the resting-state scan, participants were
instructed to relax with their eyes closed and allow their mind to wander, without thinking of
anything in particular, but without falling asleep. The oddball task was based upon a design by
Cowan et al. (1993) using a roving standard stimulus and delivered in two 6 minute blocks.
Participants heard a sequence of tones at the same frequency, followed by a sequence of tones of a
different frequency. The repeated tone in each sequence was, therefore, the standard stimulus, and
first tone of the new sequence was the deviant tone. The frequency of the repeated standard stimuli
altered randomly between three frequencies of 250Hz, 500Hz and 1000Hz. The number of standard
stimulus presentations that occurred in a single stimulus train varied randomly from 6 to 12. Tones
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were 50ms in duration and the inter-tone interval was 500ms. Participants were asked to watch a
silent nature documentary and to ignore the tones.

MEG data were acquired at the MRC Cognition and Brain Sciences Unit, Cambridge, U.K. All scans
were obtained using the 306-channel high-density whole-head VectorView MEG system (Elekta
Neuromag, Helsinki), consisting of 102 magnetometers and 204 orthogonal planar gradiometers,
located in a light magnetically shielded room. Data were sampled at 1 kHz and signals slower than
0.01 Hz were not recorded. Before acquisition a 3D digitizer (Fastrack Polhemus Inc., Colchester, VA,
USA) was used to record the positions of five head position indicator (HPI) coils and 50-100
additional headshape points evenly distributed over the scalp, all relative to the participants’ fiducial
points (nasion and left and right preauricular), which could later be co-registered on MRI scans for
source reconstruction. An ECG electrode was attached to each wrist to measure the pulse, and we
attached bipolar electrodes to obtain horizontal and vertical electro-oculograms (HEOGs and
VEOGs). Head position was monitored throughout the recoding using the HPI coils.

External noise was removed from the MEG data using a signal-space separation (sss) method, and
adjustments in head position during the recording were compensated for using MaxMove software,
both implemented in MaxFilter version 2.1 (Elekta Neuromag). Following, data were converted to an
SPM12 format and down-sampled to 250Hz. Continuous data were inspected and short sections
with large signal jumps or artefacts were removed. A temporal independent components analysis
(FastICA) was used in sensor space to remove artefacts arising from blinks, saccades and pulse-
related cardiac artefacts, by manual visual inspection. The criterion for removing artefacts was a high
correlation between the topography of an independent component and one of the HEOG, VEOG and
ECG channels. The artefacts were removed by subtraction. Approximately 2-4 components were
removed per participant.

[Figure 1 — Pipeline Figure]
MEG source reconstruction, parcellation, and envelope calculation

Each participant’s continuous pre-processed MEG data were co-registered to their individual
structural T1-weighted MRI scan with a Imm image resolution, using the digitised headshape points
and fiducials. For one participant without an individual MRI scan, we used a T1l-weighted 1mm
template in MNI space. Co-registration was run using the OSL toolbox in SPM12 (https://ohba-
analysis.github.io/osl-docs/), which aligned the MRI coordinates with the fiducials and headshape
points before positioning these data within the MEG sensors using the HPIs for source space
analysis.

The MEG sensor data were then low pass filtered at 4-30Hz, to focus on slower frequencies only.
This is the frequency range at which amplitude correlations have been shown to produce robust
resting state brain networks (Luckhoo et al., 2012; Colclough et al. 2016). For each subject, source
space activity was then estimated at every point of an 8mm whole-brain grid using a linearly
constrained minimum variance (LCMV) scalar beamformer that combines information across both
sensor types and accounts for the reduction in dimensionality induced by the signal-space
separation method (Van Veen et al.,, 1997, Woolrich, Hunt, Groves, & Barnes, 2011). The
beamformer used a set of adaptive spatial filters to weight the sensor measurements into an
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estimate of neuronal activity using the cortical grid, by maximising the band-passed signal at each
grid point whilst minimising the signal passed from all other grid points. This process aimed to
reduce the effect of signal leakage from neighbouring regions in order to provide a more accurate
estimate of activity at each grid location. The beamformer repeated this process across all grid
points to produce a whole-brain reconstruction of source-space activity.

Following the beamformer projection of the oscillatory signal into source space, the data across all
grid points underwent parcellation into 38 regions of interest using an 8mm mask, applying the
method described in Colclough, Brookes, Smith, & Woolrich (2015) and Colclough, et al. (2017). In
brief, each parcel was identified using a symmetric orthogonalisation to produce parcel time-courses
which were as close as possible to the original time-courses across voxels whilst minimising signal
leakage, and correcting for source spread. The time-course of oscillatory activity within each parcel
was then obtained using a principal components analysis (PCA), in which the time-courses from all
voxels in the parcel were submitted to a PCA, where the first principal component was used as the
time-course estimate for that parcel using the spatial filter method.

The amplitude envelope of each parcel’s oscillatory time-course was then calculated using a Hilbert
transform, which estimated the instantaneous signal amplitude at each time point. As in Baker et al.
(2014), for computational efficiency the amplitude envelopes were down sampled to 40 Hz by
temporally averaging within sliding windows with a width of 100ms and 75% overlap between
consecutive windows. The parcellation of the source-space data acted to reduce the dimensionality
of the oscillatory activity across all source locations into 38 time-courses, to be submitted to the
HMM. The amplitude envelopes were then concatenated temporally across all participants to
produce a single dataset for the HMM analysis. The envelope data from each participant were
demeaned and normalized by their variance prior to concatenation.

Group level exploratory analysis of networks (Hidden Markov Model)

We ran the HMM using the group-level exploratory analysis of networks (GLEAN) toolbox
(https://github.com/OHBA-analysis/GLEAN; Vidaurre et al., 2017). The HMM is specified a priori to
derive a certain number of states from the data; we set the HMM to infer eight states, based on
previous work suggesting that this number represents a reasonable trade-off between providing a
sufficiently rich description and avoiding an overly complex, and therefore hard to interpret,
representation (Baker et al., 2014).

The HMM describes the time-series of MEG amplitude envelope data as a temporal sequence of
states, where each state describes the data as coming from a unique 38-dimensional multivariate
normal distribution, defined by a covariance matrix and a mean vector. Each state, therefore,
corresponds to a unique pattern of amplitude envelope activity and covariance that reoccurs at
different points in time; where the HMM state time-courses define the points in time at which each
state was ‘active’. The estimated state time-courses, corresponding to a binary sequence showing
the points in time when that state was most probable, were obtained using the Viterbi algorithm
(Rezek & Roberts, 2005).

To produce spatial maps of the changes in amplitude envelope activity associated with each state,
the state time-courses were partially correlated onto whole-brain parcel-wise amplitude envelopes
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concatenated across subjects. The resulting state maps show the brain areas whose amplitude
envelopes increase or decrease when the brain visits that state, compared to what happens on
average over time.

From the state time-courses, we were able to quantify the temporal characteristics of each state in
terms of four measures of interest: 1) Fractional occupancy: the proportion of time each state was
active, 2) Number of occurrences: the number of times a state was active, 3) Mean life time: the
average time spent in a state before transitioning to another state, and 4) Mean interval length: the
average duration between recurring visits to that state. Because these temporal properties reflect
the duration and frequency of the coordinated oscillatory activity characterising each state, it was of
particular interest to examine whether the expression of the ZDHHC9 mutation affected the
dynamics of these connectivity patterns. To test this hypothesis, we compared each of these
temporal characteristics between groups using non-parametric permutation testing. For each
temporal property, on each of the eight states, we randomly allocated participants’ values to two
groups and calculated the mean difference between these groups. This process was repeated 10,000
times to generate a null distribution of the mean difference between groups that would be expected
when group membership was random. The actual group difference was then compared to the
permuted null distribution to assess whether this group difference was greater than what we would
have expected by chance, and the position of the observed mean difference in the null distribution
provided the p-value. All p-values were corrected for multiple comparisons using the Benjamini-
Hochberg procedure for false discovery rate (FDR) correction, which is appropriate for maximising
power with a large number of tests (Hochberg & Benjamini, 1990).

ZDHHC9 gene expression permutation testing

Gene expression data were obtained from the Allen Brain Atlas Human Brain public database
(http://human.brain-map.org; Hawrylycz et al.,, 2012). These datasets were based on microarray
analysis of postmortem tissue samples from 6 human donors aged between 18 and 68 years with no
known history of neuropsychiatric or neurological conditions. MRIs and transformations from
individual donor MR space to MNI coordinates were also obtained from the Allen Brain Atlas
website. Gene expression (RNA) values were averaged across these 6 donors and mapped onto
areas of the Desikan-Killiany (DK) parcellation of the MNI brain. This provided 68 cortical regional
ZDHHC9 expression values (34 in each hemisphere).

Next we wanted to explore whether the impact of the mutation on dynamic transient networks was
predicted by the expression profile of the ZDHHC9 gene. Specifically, does regional variation in the
expression of the gene predict which networks ought to be most disrupted by the mutation? Simply
performing a spatial correlation between the gene expression and the activity pattern across parcels
would not work because the networks are highly variable. Instead we calculated a gene expression
value for each network, by taking the 20 most active parcels for each network and summing the
level of gene expression. The 20 most active parcels of each network were defined as those with the
strongest contribution to that network, which was indexed by the absolute partial correlation of the
state-time courses with the amplitude envelopes in each parcel. Twenty parcels were selected as
this was thought to best reflect an optimal trade-off between peak activation and spatial state
distribution.
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Before summing them, we weighted the gene expression values by activity levels within each parcel.
This weighting was necessary because some networks are heavily dominated by only a few parcels,
whereas others are more evenly distributed. To make the process equivalent across all states we
normalised the activity levels within each state. The normalisation step allowed us to repeat the
process and generate null distributions that were comparable across states. The sum of these values
thus provided an expression value for the ZDHHC9 gene for each network. A null distribution was
generated from the random selection of 20 parcel expression values across all 68 cortical parcels, by
applying a normalised linear weight activation value, before summing the weighted expression
value. This was done for 10,000 iterations to form the null distribution of activation-weighted
expression values across each state. We then compared the mean gene expression value of the null
distribution compared to the mean for the parcels within each state, to test for a higher level of
within-state ZDHHC9 gene expression than would be expected by chance. Given the use of a smaller
number of tests in this case, we corrected for multiple comparisons using the Holm-Bonferroni
method, which accounted for the multiple tests done whilst retaining more power than the
Bonferroni correction (Abdi, 2010).

Results
Dynamic transient networks derived from the HMM in the resting state data

We first ran the HMM on resting data from the control and ZDHHC9 participants separately, to verify
that similar networks were present in each group. The spatial patterns of activity in each state
strongly overlapped between groups, and were similar to established resting state networks at
slower time-scales (e.g. Damoiseaux et al., 2006; Smith et al., 2012) and to Baker et al (2014).

After confirming that we obtained similar spatial patterns of activity in both groups, we ran the
HMM on all participants’ concatenated data to derive common states across both groups, on which
we could then compare the groups on temporal measures of interest. Figure 2 shows the spatial
maps of each network derived from the resting state data. In the spatial maps, the red/yellow
colours represent brain areas in which the amplitude envelope increases when the brain visits that
state and blue colours represent brain areas in which the amplitude envelope decreases in that
state. The states included sensorimotor networks (State 1 and State 3), a frontoparietal network
(State 2), early visual networks (State 4 and State 6), a higher-order visual network (State 5), a left
temporal network (State 7), and a distributed frontotemporoparietal network (State 8).

We next characterised the temporal properties of each state in terms of its fractional occupancy,
number of occurrences, mean life time, and mean interval length. We tested whether these
temporal properties differed between the ZDHHC9 and control group using non-parametric
permutation testing, as described in the Methods, and corrected for multiple comparisons using the
Benjamini-Hochberg false discovery rate procedure. On the fractional occupancy measure only an
early visual network (State 4) distinguished the two groups, whereby the ZDHHC9 group spent a
higher percentage of time in this state than the control group (actual group mean difference 6.92%;
p = 0.01). No other states differed significantly between the groups in fractional occupancy. In terms
of the number of occurrences, none of the eight states differed between the groups. The mean
lifetime of the states differed between the groups on the early visual network (State 4), where the
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duration spent in this state was longer for the ZDHHC9 participants than controls, but this was non-
significant following multiple comparison correction. No other states differentiated the groups.

Table 1 presents the descriptive statistics across all states, and Table 2 summarises the group
differences and statistical results.

[Figure 2 — Resting state networks]

[Table 1 — Descriptive statistics]

[Table 2 — Statistical tests of group differences in temporal dynamics, and gene expression]
Dynamic transient networks derived from the HMM in the oddball data

We applied the same analysis pipeline as described in the Methods to the oddball dataset. Two
ZDHHC9 participants were excluded from the oddball analysis due to failed source reconstruction,
but this did not affect the age-matching of the samples (ZDHHC9 group age in years: mean = 27.11,
SD = 12.80, range = 13.25-41.83; comparison with control group, t = -0.015, p = .988). As with the
resting state data, we first established whether similar networks were generated by conducting the
analysis on each group separately. Following this we combined the two groups into a single analysis.
The 8 states derived from the oddball dataset can be seen in Figure 3. The states included a parietal
network (State 1), frontoparietal networks (State 2 and State 7), fronto-occipital networks (State 3
and State 8), a frontotemporal network (State 4), right temporoparietal network (State 5), and
bilateral temporal network (State 6).

[Figure 3 — Oddball networks]

We next examined whether the temporal properties of the networks distinguished the ZDHHC9 and
control groups. As with the resting state data we tested this using non-parametric permutation
testing, as described in the Methods, and corrected for multiple comparisons using the Benjamini-
Hochberg false discovery rate procedure. Table 1 summarises the descriptive statistics and Table 2
presents the statistical comparisons between groups. In short, the groups consistently differed in the
bilateral temporal network (State 6) and fronto-occipital network (State 8) in fractional occupancy,
number of occurrences and mean interval length. The ZDHHC9 group spent a lower proportion of
time in both states, with a lower number of occurrences and shorter mean interval length. However,
these group differences were not significant after correcting for multiple comparisons.

In summary, we were able to derive networks from both the resting-state and oddball data which
showed good similarity to known functional connectivity networks obtained from fMRI and time-
averaged MEG data. The two groups differed significantly in an early visual network in the resting
state data, with ZDHHC9 participants spending a longer period of time in this state. Bilateral
temporal and fronto-occipital networks showed descriptive between-group differences, with lower
activation indices in the ZDHHC9 group, but these differences were not significant following multiple
comparison correction. The next step in our analysis was to explore the level of ZDHHC9 gene
expression in the HMM-derived networks, and test whether relative between-group differences in
network dynamics were associated with the relative expression profile of the gene.
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State-wise gene expression permutation testing

We next wanted to test whether the impact of the mutation on brain dynamics was predicted by the
expression profile of the gene. Using gene expression data from the Allen Atlas (Hawrylycz et al.,
2012) we identified the level of ZDHHC9 gene expression within each of the 68 cortical parcels. For
each network we could then calculate a gene expression value across the top 20 most active parcels
in that state which was weighted by the distribution of activation within each state, as described in
the Methods. For each state, the thresholded percentage value refers to the absolute partial
correlation threshold required to provide the top 20 active parcels in that state. We corrected for
multiple comparisons using the Holm-Bonferroni procedure (see Methods).

[Figure 4 — Gene expression]

In the resting state data, the two early visual networks (States 4 and 6) and the left temporal
network (State 7) had significantly above-chance levels of ZDHHC9 gene expression. In the oddball
task data, the bilateral temporal network (State 6) and frontoparietal network (State 7) had
significantly elevated levels of ZDHHC9 gene expression. This was relative to what we would expect
in a network of that size and activity profile by chance, whereby chance levels were derived using
permutation testing as described in the Methods. Table 2 presents the results of the statistical tests
for gene expression across all states.

In sum, in both the resting state and task data, the gene expression analysis indicated that five of the
MEG functional networks identified in both case and control groups showed a disproportionately
high expression of ZDHHC9: two early visual networks and left temporal network at rest, and the
bilateral temporal network and frontoparietal network in the oddball task. Figure 4 presents the
cortical distribution of ZDHHC9 and illustrative state maps showing spatial overlap with regions of
high gene expression.

Statistical association between gene expression and dynamic network group differences

Finally, we sought to determine whether ZDHHC9 gene expression would predict group differences
in neuronal dynamics across networks. We used a Spearman’s rank-order correlation to test for a
statistical association between the magnitude of the gene expression effect, indexed by the p-value
of gene expression in each state from our permuted distributions, and the magnitude of the group
difference, indexed by the p-value of the group difference on each temporal measure (from the
group-level permutation testing). Because the p-values were derived from permuted distributions
they provided a measure of the size of the gene expression effect and group difference in each state,
allowing us to test for a relationship between the extent to which network dynamics distinguished
the groups and the level of gene expression.

The resting state data showed a significant association between the magnitude of dynamic
differences and gene expression. The group difference in fractional occupancy, number of
occurrences, and mean interval length was significantly associated with gene expression across
states (fractional occupancy: rs = 0.89, p = 0.005; number of occurrences: r; = 0.73, p = 0.048; mean
interval length: rs = 0.80, p = 0.022). This demonstrated that these dynamic properties of resting
state networks were significantly associated with the strength of gene expression, whereby higher
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gene expression was associated with a larger impact of the mutation on the dynamic properties
across networks. On the other hand, mean lifetime was not significantly associated with gene
expression (mean lifetime: r; =0.22, p = 0.606).

The oddball task data did not show a significant relationship between the magnitude of dynamic
group differences and gene expression (fractional occupancy: rs = 0.00, p = 1.00; number of
occurrences: rs = -0.05, p = 0.935; mean lifetime: r; = -0.55, p = 0.171; mean interval length: rs = 0.24,
p = 0.582). Figure 5 presents these results across the resting state and oddball task data.

In sum, we tested the association between group differences in dynamic network properties and
gene expression across the resting state and oddball task networks. At rest the size of the group
difference in fractional occupancy, number of occurrences, and mean interval length was
systematically associated with the level of gene expression.

[Figure 5 — Association between group difference in network dynamics and gene expression]

Discussion

Little is known about variability in dynamic network properties or the underlying
physiological mechanisms that drive this variability. In the current study we sought to characterise
the dynamics of functional connectivity networks in individuals with the ZDHHC9 gene mutation, a
single-gene developmental disorder associated with a homogenous phenotype of intellectual,
language, and attentional impairments. We examined network dynamics using a Hidden Markov
Model (HMM), a data-driven method that captures functional networks on a millisecond timescale
and quantifies their dynamics. At rest, an early visual network was active for a significantly longer
proportion of time in individuals with the ZDHHC9 mutation than in age-matched controls.
Importantly, across all resting state networks the size of the mutation effect was strongly predicted
by the expression profile of the gene: the greater the gene expression within a particular network,
the stronger the impact of the mutation on the dynamics of that network. During the auditory
oddball task there were no consistent group effects that survived multiple comparisons correction,
and there was no correspondence between network dynamics and gene expression. In summary, in
resting state MEG data we identified the impact of the gene mutation on the dynamics of specific
networks, and crucially, the graded impact of this mutation was predicted by the level of gene
expression across networks. However, these gene effects were not reliably detected in task-positive
data.

At rest, the higher proportion of time spent in the early visual network in the ZDHHC9 group
suggested less dynamic regulation of transitioning into and out of this brain state than in control
participants. One interpretation of this finding is that slower engagement of certain functional
networks at rest may present a constraint on higher-level cognitive abilities (Basten et al., 2015). A
growing number of studies have argued that the rapid and transient organisation of multiple
network configurations at rest necessarily provides the flexibility to adapt to the changing demands
of cognitive processing, by providing a continuous ‘dynamic repertoire’ of states to quickly engage
the optimal network configuration for a given task (e.g. Bressler & Tognoli, 2006; Deco et al., 2011).
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Aligning with this, recent work by Schultz and Cole (2016) observed that smaller changes in
functional connectivity patterns between rest and distinct tasks correlated with higher levels of fluid
intelligence. Given the intellectual difficulties in individuals with the ZDHHC9 gene mutation (Baker
et al., 2015), it is plausible that slower dynamic transitions between resting state networks may
constrain the emergence of higher level cognitive abilities through reduced efficiency in coordinating
relevant network configurations (e.g. Hearne et al., 2016; Song et al., 2008; van den Heuvel, Stam,
Kahn, & Pol, 2009).

However, it is notable that the ZDHHC9 and control group were only distinguishable on the resting-
state dynamics of this early visual network, rather than more distributed frontoparietal or temporal
networks which we may have expected to mediate the intellectual and language difficulties in the
disorder (e.g. Langeslag et al., 2013). Although functional variations in the occipital cortex have been
linked to variability in intelligence (Jung & Haier, 2007) there is weak meta-analytic support for this
view (Basten et al.,, 2015). A plausible interpretation for the present study is that these sensory
spatiotemporal patterns of activity were more stable across participants (Lee & Frangou, 2017,
Moussa et al., 2012), allowing more reliable measurement of between-group differences in temporal
dynamics. The relationship between visual network connectivity and performance across varying
language, working memory and reasoning tasks (Schultz & Cole, 2016) suggests that early visual
network activation may reflect non-specific engagement in the attentional demands of the study.
Nevertheless, the slower dynamics may also be informative about the properties of resting state
networks in this disorder.

An important advance in the current study was our demonstration that the integrity of network
dynamics strongly overlap with regional differences in ZDHHC9 gene expression. We predicted that
state dynamics would be most altered in regions of elevated gene expression, with these regionally-
specific abnormalities potentially arising due to reduced palmitoylation and post-synaptic
dysfunction (Fukata & Fukata, 2010; El-Husseini et al., 2010a, 2010b). Our resting state results
strongly aligned with this expectation: at rest the magnitude of group differences in dynamic
network properties was associated with the level of ZDHHC9 gene expression across networks,
suggesting that higher expression of the ZDHHC9 mutation has a relatively direct effect on neuronal
dynamics. The significantly elevated levels of ZDHHC9 gene expression in resting state networks,
showing case-control differences, suggest that reduced capacity for activity-dependent post-synaptic
change, resulting from reduced palmitoylation, may be a contributory mechanism to slower network
dynamics (El-Husseini et al., 2010a, 2010b).

There was a striking difference between the resting and oddball data, in that there was no
association between ZDHHCY gene expression and network dynamics in the oddball task. One
possibility is that mutation effects do affect task network dynamics, but that the current sample had
insufficient power to detect them. For example, we observed differences in the bilateral temporal
and fronto-occipital network dynamics between the control and ZDHHC9 group. Whilst these effects
were not statistically significant, they align with findings in other populations with partially
overlapping phenotypes of language impairment who have also shown reduced sensitivity to
linguistic and non-linguistic auditory contrasts (Davids et al., 2011), which are in turn predictive of
subsequent language development (Port et al., 2016). Furthermore, weaker functional integration in
static language-relevant connectivity networks is also a cardinal feature of children with Rolandic
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epilepsy and comorbid language delays, features observed in the ZDHHC9 sample (Besseling et al.,
2013; McGinnity et al., 2017). The reason why these effects were not robust enough to survive our
multiple comparisons correction might be linked to the small number of cases within our sample.
However, this would not explain the complete lack of relationship with gene expression in the
oddball data, suggesting that this is not simply a power issue. A second alternative is that the
measures of neuronal dynamics used here are not the most sensitive for task-positive datasets.
There may be dynamic network properties, such as the temporal overlap of activation between
states, which we did not detect here but are nevertheless susceptible to disruption from post-
synaptic dysfunction. In essence, different neuronal mechanisms could reflect the behavioural
phenotype that we observe, but these are not directly influenced by the known aetiology of the
ZDHHC9 mutation.

There are important broader limitations to the current study. First, the sample size of studies of
single-gene mutations is inherently limited due to the rarity of these disorders. The present study
included all known UK families diagnosed with ZDHHC9-associated XLID at the time of recruitment,
but the small sample size necessitates replication of these results in a larger sample. However,
similar studies of small groups with a common aetiology have generated important hypotheses
about neural and genetic pathways to a disorder, such as Fragile X syndrome (Diersson & Ramakers,
2006; van der Molen et al., 2014). The present study further adds dynamic network irregularities as
neurobiology-relevant metrics associated with cognitive impairment. Second, the control group was
age-matched to the ZDHHC9 group but had age-typical IQ and language abilities. It is therefore
unclear whether the observed dynamic network differences are specifically tied to the combined
phenotype of low IQ and language impairment, the aetiology of ZDHHC9 mutations, or reflect more
general correlates of low cognitive ability. It is important for future studies to explore dynamic
functional connectivity in individuals with different aetiologies but matched on partially or fully
overlapping phenotypes, to draw firmer conclusions about the relationship between causal
pathways, dynamic network properties and behavioural phenotypes. In particular, relating dynamic
network properties to individual differences in cognition during development may assess whether
dynamic network irregularities present a risk factor for specific profiles of cognitive deficits.

Whilst there is a strong tradition of examining the impact of genetic effects on static functional
connectivity networks through either heritability (Colclough et al., 2017; Demuru et al., 2017; Fu et
al., 2015; Posthuma et al., 2005) or associations between gene expression and amplitude envelope
coordination in resting state activity (Gordon et al., 2015; Jamadar et al., 2012; Wang et al., 2015),
there remains a scarcity of work examining genetic effects on the fast transient dynamics of
functional connectivity networks. Investigating network dynamics is particularly compelling to
understand how gene expression perturbs communication within large scale brain networks, and
downstream impacts on cognitive abilities, due to the profound impact of genetics on synaptic
signalling (e.g. Forest et al., 2017; Meda et al., 2015; Richiardi et al., 2015; Whitaker et al., 2016;
Willemsen et al., 2013). For the first time we were able to demonstrate that dynamic connectivity
profiles of individuals with a gene mutation are significantly altered and, crucially, that the extent of
this alteration is strongly predicted by the expression profile of the gene. Critically, we have
demonstrated a valuable method for future work, which should seek to identify the nature of brain
network dynamics and their role in the emergence of higher-level cognitive abilities over
development.
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Control ZDHHCY
Fractional Number of Mean interval Fractional Number of Mean interval
Mean Lifetime Mean Lifetime
Occupancy Occurrences length Occupancy Occurrences length

Resting State Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
State | - Sensorimotor 19.17 529 420.14 103.48 1826l 27.22 0.90 0.38 18.18 8.19 33388 12496 21029 634l 1.20 0.57
State 2 - Frontoparietal 0.33 0.30 7.71 832 223.87 267.67 9530 8949 0.40 0.50 5.75 625 11054 121.94 147.16 20853
State 3 - Right sensorimotor 8.46 279 19657 48.04 15672 2371 1.91 0.59 11.40 563 24538 95.14 16027 29.76 1.54 0.56
State 4 - Early visual 10.01 292 243.00 5999 15394 36.95 1.59 0.49 16.93 572 32038 104.11 21047 5539 1.20 041
State 5 - Higher-order visual 18.94 11.24 27586  93.12 287.90 141.73 1.53 0.59 14.80 9.15 19838 124.28 307.93 130.13 5.80 820
State 6 - Early visual Il 29.17 12,62 563.57 14577 20872 51.95 0.59 0.24 20.43 9.07 401.50 13053 191.89 49.21 0.88 0.33
State 7 - Left temporal 8.68 292 220.14 5482 13990 2731 1.73 0.49 11.41 576 25025 112.14 15996 51.90 1.55 0.59
State 8 - Frontotemporoparietal 5.22 324 9743 44.19 20297 56.16 4.74 1.78 6.43 466 10538 5527 203.18 9375 6.72 2.19
Oddball Task

State | - Parietal 431 9.05 3743 7357 10578 14626 12896 6834 12.07 12,61 68.19 7473 31548 259.69 57.68 56.94
State 2 - Frontoparietal 2,62 2.60 11.64 839 22203 7357 3896 37.60 13.40 19.29 2061 1071 731.25 1021.40 2026 12,31
State 3 - Fronto-occipital 10.17 7.60 8936 6626 224.4| 75.67 12.91 16.74 1Lt 6.94 10053 6957 319.86 4420 26.03 26.96
State 4 - Frontotemporal 21,32 2201 69.21 33.46 398.80 250.83 12.91 4.97 15.95 12,91 51.86 17.47 35222 13243 10.22 10.06
State 5 - Right temporoparietal 13.28 1558 9450 113.89 19852 16669 7038 67.02 17.72 1263 13853 11629 26483 143.91 4027 50.34
State 6 - Bilateral temporal 18.42 847 9957 27,55 32373 78.18 245 1.07 8.33 512 61.47 28.13 32460 10258 19.26  24.25
State 7 - Frontoparietal || 11.70 1098 8207 63.75 255.65 13993 2571 3825 13.03 9.02 90,69 5692 291.51 14983 2582 26.59
State 8 - Fronto-occipital Il 19.05 1049 9929 31.10 301.25 107.02 297 2.00 8.40 626 56.19 2683 309.62 101.75 19.83 24.67

Table 1. Descriptive statistics of the temporal properties of each network, across the control and

ZDHHC9 participants.

Group Differences (Control - ZDHHCS9)

Fractional Number of Mean interval ZDHHCS9 Gene
Mean Lifetime

Occupancy Occurrences length expression
Resting State Mean p Mean p Mean P Mean P State vs. null, p-value
State | - Sensorimotor 099 0798 8627 0.170 -27.68 0312 -030 0.255 0.151
State 2 - Frontoparietal -0.07 0.758 1.96 0592 11333 0334 -51.85 0.531 1.045
State 3 - Right sensorimotor -294 0254 -4880 0268 -3.54 08I5 036 0.253 0.019
State 4 - Early visual -6.92 0.010%* -77.38 0.098 -56.53 0.031 039 0.124 0.000*
State 5 - Higher-order visual 4.14 0428 7748 0.197 -2003 0754 -427 0213 0.038
State 6 - Early visual Il 874 0.145 162.07 0.041 1683 0520 -029 0.060 0.000*
State 7 - Left temporal -273 0294 -30.11 0533 -20.07 0.403 0.18 0.522 0.004*
State 8 - Frontotemporoparietal -1.21 0599 -7.95 0765 -021 0999 -1.99 0976 0.668
Oddball Task
State | - Parietal -7.76 0261 -30.77 0.482 -209.70 0.089 7130 0.080 0.344
State 2 - Frontoparietal -1078 0.139 -897 0.118 -509.22 0.067 1870 0.36l 0.803
State 3 - Fronto-occipital -094 0805 -11.17 0760 -9544 0.020 -13.10 0.259 0.444
State 4 - Frontotemporal 538 0624 1735 0274 4658 0695 411 0434 0.488
State 5 - Right temporoparietal 444 0577 -44.03 0507 -6631 0459 30.10 0391 0.693
State 6 - Bilateral temporal 10.09 0.023 38.10 0.032 -0.87 0988 -1680 0.0I8 0.041
State 7 - Frontoparietal |l -1.32 0814 -862 0794 -3586 0660 -0.11 0901 0.000*
State 8 - Fronto-occipital |l 10.64 0.048 43.09 0.021 -838 0.882 -1690 0.042 0.134

Table 2. The results of the statistical tests for between-group differences in temporal dynamics
across the resting state and oddball tasks, and the statistical test of significant levels of ZDHHC9 gene

expression in each network. Statistical significance was derived using permutation testing and

corrected for multiple comparisons as described in the Methods. * denotes significance following

multiple comparison correction at the p < .05 level, and ** denotes significance at the p <.001 level.
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Figure 1. The processing and analysis pipeline used on the resting state and oddball task data.

Figure 2. The eight states inferred from the resting state data. Each map shows the partial
correlation between each state time course and the parcel-wise amplitude envelopes. The partial
correlation values have been thresholded to show correlation values above 70-80% of the maximum
correlation for each state, and the colour maps are normalised relative to all states.

Figure 3. The eight states inferred from the oddball task data. Each map shows the partial
correlation between each state time course and the parcel-wise amplitude envelopes. The partial
correlation values have been thresholded to show correlations above 60-80% of the maximum
correlation for each state. The colour maps are normalised relative to all states.

Figure 4. a) The normalized gene expression maps showing the distribution of levels of ZDHHC9 gene
expression throughout the cortex. Lighter colours correspond to higher levels of gene expression. b)
Illustrative state maps showing two networks which had significantly above-chance levels of ZDHHC9
gene expression: the early visual network at rest and the frontoparietal network in the oddball task.
The state maps show that the these networks overlap with regions of high gene expression on the
normalized gene expression maps.

Figure 5. The association between the magnitude of the group difference in network dynamics and
the level of ZDHHC9 gene expression, across all temporal measures and states. The states are
ranked by the level of gene expression on the y-axis, in which states with smaller p-values derived
from the permutation testing have higher levels of gene expression. The x-axis shows the p-value of
the group difference in network dynamics on each temporal measure, whereby smaller p-values
denote larger group differences. The plot for the resting state data demonstrates that the extent to
which the dynamic properties differed between groups was associated with a larger magnitude of
gene expression across all states. There was no significant across-state association between gene
expression and dynamic network group differences in the oddball task.
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Control ZDHHCY
Fractional Number of . Mean interval Fractional Mumber of . Mean interval
Cecupancy Occurrences M Lierme length Oecupancy Occurrences il e length

Resting State Mean sD Mean sD Mean D Mean sD Mean sD Mean 5D Mean sD Mean 5D
State | - Sensorimotor [9.17 529  420.14 10348 18256l 3722 0.50 0.38 18.18 8.19 33388 12498 21029 63.4| [.20 0.57
State 2 - Frontoparietal 0.33 0.30 7.71 832 22387 267457 95.30 89.49 040 0.30 575 625 11034 121,94 147,16 208.53
State 3 - Right sensorimotor 846 279 19657 48.04 5672 23.71 1.91 0.59 1140 5.63 24538 95.14 160.27 29.76 I.54 0.56
State 4 - Early visual LeXo} 292 243.00 5992 15394 36.95 .59 0.49 16.93 572 320383 10411 21047 55.39 1.20 0.41
State 5 - Higher-crder visual 18,94 I1.24 27586 93.12 28790 14173 .53 0.59 14.80 2.15 19338 12428 30793 130.13 5.80 8.20
State & - Early visual |l 29.17 12.62 56357 14577 20872 51.95 0.5% 0.24 2043 2.07 40150 13053 191.89 49,21 0.88 0.33
State 7 - Left temporal 8.68 292 220.14 5482 13990 27.31 .73 0.49 1141 .76 25025 11214 15996 51.90 I.55 0.59
State 8 - Frontotemporoparietal 522 3.24 97.43 44,19 20297 S56.16 4.74 1.78 6.43 466 10538 55.27 203.18 9375 6.72 .19
Oddball Task

State | - Parietal 431 2.05 37.43 7357 10578 14626 12896 68.34 12.07 1261 68.19 7473 31548 259469 57.68 56.94
State 2 - Frontoparietal 2.62 2.60 I 1.64 839 22203 73.57 38.96 37.60 13.40 [9.29 20.61 10,71 73125 102140 20.26 12.31
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State 7 - Frontoparietal || I1.70 10.98 82.07 63.75 253565 13993 25.71 38.25 13.03 2.02 20.69 56,92 29151 14983 25.82 26,59
State 8 - Fronto-occipital [l [9.05 049 99.29 3110 30125 107.02 2.97 2.00 8.40 6.26 56.19 26,83 30962 10175 [9.83 24.67



https://doi.org/10.1101/463323
http://creativecommons.org/licenses/by/4.0/

Group Differences (Contral - ZDHHCY)

Fractional Mumber of o Mean interval ZDHHCY Gene
Occupancy Occurrences Yigan Ligame length expression
Resting State Mean p Mean p Mean p Mean p State vs. null, p-value
State | - Sensorimotor 099 0798 8627 0170 2768 0312 030 0255 0.151
State 2 - Frontoparietal -0.07 0758 1.96 0592 11333 0334 5185 053] 1.045
State 3 - Right sensorimotor -294 0254 4880 0268 -3.54 0815 036 0253 0.019
State 4 - Early visual -6.92 0010* 7738 0093 -5653 0.03] 039 0124 .00
State 5 - Higher-order visual 414 0428 7748 0197 -2003 0754 427 0213 0.038
State & - Early visual |l 874 0145 16207 0041 1683 0520 039 0060 0.0
State 7 - Left temporal 273 0294 -30.11 0533 -2007 0403 018 0522 0,004
State 8 - Frontotemporoparietal -1.21 0599 795 0765 021 0999 -1.99 0976 0.668
Oddball Task
State | - Parietal -F76 0261 -3077 0482 -20270 008% 71.30 0080 0.344
State 2 - Frontoparietal -1078 0139 -897 0118 -509.22 0067 1870 036l 0.803
State 3 - Fronto-occipital 094 0805 -1L17 0760 -9544 0020 -13.10 0259 0.444
State 4 - Frontotemporal 538 0624 1735 0274 4658 0695 411 0434 0.488
State 5 - Right temporoparietal 444 0577 4402 0507 -6631 0459 32010 039 0.693
State & - Bilateral temporal 1009 0023 38.10 0032 -087 0938 -1680 0018 0.041
State 7 - Frontoparietal || -1.32 0814 -8e82 0794 -3586 06060 -0.011 0901 0.000=
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Figure 1. The processing and analysis pipeline used on the resting state and oddball task data.
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Figure 2. The eight states inferred from the resting state data. Each map shows the partial correlation
between each state time course and the parcel-wise amplitude envelopes. The partial correlation values
have been thresholded to show correlation values above 70-80% of the maximum correlation for each

state, and the colour maps are normalised relative to all states.
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Figure 3. The eight states inferred from the oddball task data. Each map shows the partial correlation
between each state time course and the parcel-wise amplitude envelopes. The partial correlation values
have been thresholded to show correlations above 60-80% of the maximum correlation for each state.

The colour maps are normalised relative to all states.
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Figure 4. a) The normalized gene expression maps showing the distribution of levels of
ZDHHC(9 gene expression throughout the cortex. Lighter colours correspond to higher

levels of gene expression. b) Illustrative state maps showing two networks which had
significantly above-chance levels of ZDHHC9 gene expression: the early visual network at
rest and frontoparietal network in the oddball task. The state maps show that the these
networks overlap with regions of high gene expression on the normalized gene expression

maps.
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Figure 5. The association between the magnitude of the group difference in network dynamics and the level of ZDHHC9
gene expression, across all temporal measures and states. The states are ranked by the level of gene expression on the y-
axis, in which states with smaller p-values derived from the permutation testing have higher levels of gene expression. The
x-axis shows the p-value of the group difference in network dynamics on each temporal measure, whereby smaller p-
values denote larger group differences. The plot for the resting state data demonstrates that the extent to which the
dynamic properties differed between groups was associated with a larger magnitude of gene expression across all states.
There was no significant across-state association between gene expression and dynamic network group differences in the
oddball task.
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