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Abstract 
 
All single-cell RNA-seq protocols and technologies require library preparation prior to sequencing 
on a platform such as Illumina. Here, we present the first report to utilize the BGISEQ-500 platform 
for scRNA-seq, and compare the sensitivity and accuracy to Illumina sequencing. We generate a 
scRNA-seq resource of 468 unique single-cells and 1,297 matched single cDNA samples, 
performing SMARTer and Smart-seq2 protocols on mESCs and K562 cells with RNA spike-ins. 
We sequence these libraries on both BGISEQ-500 and Illumina HiSeq platforms using single- and 
paired-end reads. The two platforms have comparable sensitivity and accuracy in terms of 
quantification of gene expression, and low technical variability. Our study provides a standardised 
scRNA-seq resource to benchmark new scRNA-seq library preparation protocols and sequencing 
platforms. 
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Main Text 

Background 

Single cell RNA-seq (scRNA-seq) has become the established approach to dissect cellular 
heterogeneity, unravel cell states and identify subpopulation structures across different cell types 
[1–4]. The different scRNA-seq methods and technologies have been benchmarked using synthetic 
RNA spike-ins [5–7]. However, to date, most scRNA-seq methods require cDNA libraries to be 
compatible with Illumina sequencing platform. BGISEQ-500 provides an alternative short-read 
sequencing technology, which is based on combinatorial probe-anchor synthesis (cPAS) to form 
DNA nanoball nanoarrays for stepwise sequencing using polymerase [13]. The Illumina system 
uses stepwise sequencing by polymerase on DNA microarrays prepared by bridge PCR. Here, we 
assess the suitability of BGISEQ-500 sequencing platform for scRNA-seq, and compare with 
matched data obtained from the Illumina HiSeq platform.  

We perform two different scRNA-seq methods (SMARTer and Smart-seq2) on mouse embryonic 
stem cells and human K562 cells [8,9]. We utilize both External RNA Controls Consortium 
(ERCCs) and Spike-in RNA Variants (SIRVs) that span 92 synthetic RNA species and 69 artificial 
transcripts, of varying lengths, concentrations, GC contents, isoforms and abundance levels. We 
benchmark and compare the performance metrics (sensitivity and accuracy) for the different cells, 
protocols and technologies across both sequencing platforms.  

As in our previous framework [5], we define ‘sensitivity’ (or lower detection limit) as the minimum 
number of input RNA spike-in molecules that are detected as expressed within a single-cell. 
‘Accuracy’ refers to the correlation between the estimated abundances of input RNA spike-ins and 
the ground truth, i.e. input molecules added to the single-cell reaction (Fig. S1A-B). The BGISEQ-
500 platform has been previously applied to detection of small noncoding RNAs [10], human 
genome re-sequencing [11] and palaeogenomic ancient DNA sequencing [12], but not to scRNA-
seq.  

In this study, we perform the first systematic scRNAseq comparison across the two sequencing 
platforms, using 1,297 matched single cDNA samples from 468 unique single-cells across different 
scRNA-seq protocols. We compare and assess whether alternative library preparation and 
sequencing platform can be utilized for the same scRNA-seq samples with comparable accuracy, 
sensitivity and robustness as the current state-of-art Illumina HiSeq platform. The generated 
scRNA-seq datasets also provide a large data resource for comparison of new protocols and 
computational methods.  

Results 

We performed two scRNA-seq methods (SMARTer and Smart-seq2) in parallel on 288 single-
mESCs using both ERCCs and SIRVs spike-ins on the microfluidics-based Fluidigm C1-system 
[8,9]. The Smart-seq2 method was performed in replicates (SM2 replicate 1 and 2). The single-cell 
lysis, reverse transcription and pre-amplification for all methods was done within the C1-system. 
We used the single-cell cDNA from each protocol to generate 576 single-cell sequencing libraries 
for Illumina HiSeq2500 (Illumina) and BGISEQ-500 (Fig. 1A; Methods). This allowed us to 
sample the same ‘matched’ single-cells (288 cells) across two sequencing platforms (Fig. 1A).  
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For each single-cell, we performed filtering, quality control and converted aligned reads to 
normalized transcript per million (TPM) units (Methods). We calculated the sensitivity and 
accuracy for both spike-ins across matched single-cells sequenced on both sequencing platforms, as 
devised in our past computational framework [5] (Fig. S1C-D). Globally, the single-cell accuracy 
was similar across sequencing platforms, irrespective of scRNA-seq protocol (Pearson correlation 
coefficient R=0.66-0.70, Fig. S1C, E). The sensitivity (i.e. detection limit) was comparable, ranging 
from 21 to 47 molecules (number of RNA molecules #M=21-47; Fig. S1D, F) between sequencing 
platforms, while SM2-seq replicate 1 could detect down to 12 RNA molecules within single cells 
(Fig. S1F).  

Since sensitivity can be dependent on sequencing depth [5], we compared whether the total number 
of sequenced reads varied between platforms. Not surprisingly, the BGI-cells had much higher 
sequencing depth, which accounts for slightly increased sensitivity (Fig. S1G). At the respective 
sequencing depths, the number of genes expressed across single mESCs were similar across 
scRNA-seq protocol and sequencing platform (Fig. S1H). Interestingly, the SM2 replicate 1 could 
be split into two robust subpopulations across both sequencing platforms, differing in number of 
genes expressed and expression of key pluripotency markers (Fig. S1H). The truly pluripotent 
subpopulation had increased global expression and of stem cell markers (Illumina>5000 and 
BGI>7500 genes), while the differentiated-like subpopulation expressed fewer genes and stem cell 
markers (Fig. S1HI) [14]. The statistics for each matched single-cell are summarised in Table S1. 

To account for biases due to sequencing depth and technical variability, we downsampled total 
reads across two orders of magnitude (raw reads to 106, 105, 104 total reads). We re-computed 
sensitivity and accuracy using a linear model that returns individual corrected performance 
parameters on the data. After accounting for depth, both sensitivity and accuracy were highly 
similar across single-cells between scRNA-seq protocols and sequencing platforms (Fig. 1BC). The 
detection limit was consistent between scRNA-seq protocols and sequencing platforms (#M=46-
73), with the sensitivity reaching saturation around ~3 million reads (red dashed line; Fig. 1B). The 
accuracy was also consistent (R=0.62~0.67) between platforms, reaching saturation at ~2.5 million 
reads (red dashed line; Fig. 1C). 

Since the same single cells were sequenced across both platforms, we next assessed the matched 
cell-similarity by comparing total expression (Genes+spike-ins), and for spike-ins alone, by random 
downsampling to 1 million reads per single-cell. First, we performed Principal component analysis 
(PCA) using total gene expression, plotting each matched cell by two points representing the 
sequencing platforms, where the distance between them is a measure of gene expression similarity 
(dashed line; Fig 1D). The PCA captured strong similarity between matched cells (short distance) 
for most of the single-cells across both platforms, with low PC1 (8-14%) and PC2 (4%) 
contribution.  

To control for technical noise and selective bias from genes, we also performed PCA using both 
spike-ins (without genes) on matched cells. The matched cells in resulting PCA were more 
uniformly place with short distance and low PC1 (~7%) and PC2 (~5-6%) variation across both 
platforms (Fig. S2A). For SM2 replicate 1, we overlaid the PCA with number of gene expressed 
and could re-confirm that subpopulations were biological and not driven by technical variation (Fig. 
S1I, S2B). To assess the performance metrics between the two sequencing platforms, we correlated 
the single-cell sensitivities for each matched cell both before and after downsampling. Without any 
downsampling, we expected and observed that the single-cell sensitivity correlations were low,  
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owing to dependence on sequencing depth (Fig S2C). However upon downsampling to 1 million 
reads, the correlations were significantly improved and were more consistent across protocols and 
sequencing platforms (R=0.52~0.70). In summary, the comparison of different performance metrics 
across matched single-cells using different protocols was highly comparable and  similar between 
Illumina HiSeq2000 and BGISEQ-500 sequencing platforms.   

We repeated our benchmarking comparison on plate-based Smart-seq2 using 82 mESCs and 98 
human K562 cells, containing ERCC spike-ins only. From both mESCs and K562s, we generated 
600 sequencing libraries for BGISEQ-500 using both single- and paired-end sequencing and 
matched 121 sequencing libraries for HiSeq 4000 paired-end sequencing (721 sequencing libraries 
in total) (Fig. 2A; Table S1-S5). We generated 3-20 million reads for each single across both 
sequencing platforms. To account for sequencing depth, we randomly downsampled to 1 million 
reads per cell and calculated performance metrics for each single-cell across sequencing platforms. 
The mESCs and K562s have dramatically variable amount of cellular RNA/cell, however we could 
robustly detected >8500 genes and spike-ins in each cell type, with over 90% commonly detected 
between both platforms (Fig. S3A; Table S2). Owing to differential RNAs/cell, the K562 had a 
increased sensitivity across both sequencing platforms and we could consistently detect genes and 
spike-ins represented by just a few molecules (#M=3-4). This compares to a somewhat worse but 
consistent mESCs detection limit (#M=42~49). The accuracy for both cell types was quite high and 
consistent (R=~0.85~0.88), indicating similar performance metrics across sequencing platforms 
(Fig. 2B and S3B-C). The statistics for each matched K562 and mES cell across both platforms are 
provided in Table S2. 

Since we generated mESC data from different scRNA protocols, technologies and sequencing 
platforms containing ERCC spike-ins in two different batches, we collectively assessed the mESCs 
performance metrics for both platforms. We downsampling the raw reads and observed that both 
sensitivity and accuracy were comparable between both platforms (Fig. S3DE). The sensitivity and 
accuracy were saturated at ~2 million and ~200,000 reads respectively (Fig. S3A-B). We also 
observed similar detected genes detected between both platforms (Fig. S3F, Table S2). In summary, 
our analysis demonstrates similar and robust performance metrics between BGISEQ-500 and 
Illumina platforms for scRNA-seq.  

Our dataset spans 468 unique single cells of two different cell types (mESCs, K562s), two scRNA-
seq protocols (SMARTer, Smart-seq2), two technologies (Fluidigm C1, plate-based) and matched 
1,297 libraries across Illumina and BGISEQ-500 sequencing platform (Table S1-S4). In addition to 
paired-end sequencing data across BGISEQ-500 and Illumina platform, we also generated matched 
mESCs and K562 scRNA-seq data using 100bp single-end (SE), generating a huge benchmarking 
data with over 750 GB of raw single-cell data. Comparing the BGISEQ-500 SE and PE data, the  
average sequencing depth per cell was ~9.6 and ~8.7 million reads respectively (Table S3 and Table 
S4). Both SE and PE datasets detected >9500 genes for K562s and  >9000 genes for mESCs. The 
accuracies for K562 and mESCs cells across both SE and PE reads was R=~0.70-0.85, and the 
sensitivities for K562 and mESCs cells were #M=4~25 across both SE and PE reads. Comparing 
the raw reads across both mESCs and K562, we also observed higher number alternative splicing 
events at single-cell level across all sequencing runs (Fig. S3G).   

In summary, our datasets and comparative performance assessment offers a large standardized 
resource to the community to further investigate potential technical biases including GC content, 
isoform quantification, impact of read-lengths across different scRNA-seq protocols, technologies 
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and sequencing platforms. The matched 1,297 single-cell datasets and annotations would serve as 
an ideal starting point for benchmarking and comparison of new protocols and computational 
methods for the scientific community. 

Discussion 

The rapid developments in single-cell genomics are transforming our understanding of biological 
systems by capturing underlying gene expression variability to identify cell types, states and 
transitions across cell populations. Single-cell transcriptomic profiling is a multi-step sampling 
procedure, where the first major step involves cell lysis, RNA capture, reverse-transcription of 
RNA, preamplification of cDNA generation. The next major step requires single-cell cDNA to be 
converted into a sequencing compatible library, followed by sequencing. There are several scRNA-
seq protocols that utilize different chemistries, platforms and technologies to address the first 
critical step of converting RNA into cDNA. The technical variation, performance metrics 
(sensitivity, accuracy) and reproducibility for the first critical step have been recently evaluated and 
benchmarked using synthetic RNA spike-in molecules [5–7]. However, all the scRNA-seq 
protocols and technologies require libraries to be compatible for sequencing on Illumina platform.  
  
Our study is the first to utilize BGISEQ-500 platform for scRNA-seq. Our comprehensive 
benchmarking of performance metrics utilises two scRNA-seq protocols (SMARTer and Smart-
seq2), multiple spike-ins (ERCC alone, ERCC+SIRV), two different cell lines (mESCs, K562s), 
two technologies (Fluidigm C1, plate-based) across Illumina HiSeq and BGISEQ-500 platform. 
Utilizing 468 single K562 and mES cells and matched 1,297 single-cell libraries, we observe 
BGISEQ-500 to be highly comparable in sensitivity, accuracy and reproducibility to Illumina 
platform, while being considerably more cost effective. 
 
From our mESC scRNA-seq dataset, we could further distinguish technical artifacts (sequencing 
depth) from biological variation (subpopulations) across both sequencing platforms. We observe 
higher alternative splicing events in K562s compared to mESCs across both sequencing platforms. 
Our data strongly supports the notion that minimal variability is introduced during library 
preparation and sequencing for both Illumina and BGISEQ-500 platforms. In combination with our 
previous framework [5], we believe that variability between the steps of scRNA-seq protocols is 
largest during the RNA to cDNA step. Given the similar single-cell characteristics (number of 
genes, expression range, subpopulation etc.) and performance metrics across different library 
preparation and sequencing platforms in our datasets, BGISEQ-500 library preparation and 
sequencing is robust and comparable to Illumina HiSeq platforms for single-cell applications. 
 
We observe minimal variability in cDNA processing across different library preparation and 
sequencing platforms. In the current study, we did not perform scRNA-seq protocols with Unique 
Molecular Identifiers (UMIs) that account for PCR amplification biases. Given that UMIs primarily 
address biases during the RNA-to-cDNA stage (and to cDNA amplification), this would not impact 
our assessment of sequencing platforms. The UMI protocols could easily be extended to be 
compatible with sequencing on BGISEQ-500 platform. Our large resource for benchmarking 
scRNA-seq data suggests that the BGISEQ-500 platform is suitable for plate-based (microwell or 
nanowell), droplet and microfluidics technologies.  
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In addition to benchmarking, we provide a large comprehensive multi cell type, protocol and 
platform scRNA-seq dataset spanning 468 cells and 1,297 libraries to the community. Given the 
large research initiatives profiling transcriptomes of single cells in mouse [3,15] and Human, such 
as the Human Cell Atlas [16], achieving high quality and cost effective methods is paramount. Our 
standardized resource can be utilized for investigating technical biases and for benchmarking 
scRNA-seq protocols and computational methods. 
 
Declarations 
Data availability 
The datasets generated and analysed during the current study are deposited at ArrayExpress (E-
MTAB-7239), BioProject (PRJNA430491) and SRA (SRP132313). 
 
Competing interests 
KNN, ZM and SAT declare no competing financial interests. 
MJ, XH, HZ, JX, CW, SQ, ZZ, LW, BL, YH and SL are employees of Beijing Genomics Institute, 
Shenzhen, China.  
  
Funding 
This study was supported by ERC grant (#260507) to SAT. KNN was supported by a Wellcome 
Trust Grant (105031/B/14/Z) and core funding from SDU, Denmark. Z.M was supported by 
Wellcome Trust grant (nr. 108437/Z/15/Z).  
 
Acknowledgements 
The authors thank the Teichmann lab for helpful discussions and comments on the manuscript. 

Authors' contributions 

KNN, XH, SL and SAT designed and supervised the project. KNN, HZ, JX and CW performed the 
experiments with help from SQ, ZZ, LW, BL, and YH. KNN and ZM performed the bioinformatics 
analysis. KNN, ZM, MJ, XH and SAT wrote the manuscript. All authors reviewed and approved the 
manuscript.   

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 5, 2018. ; https://doi.org/10.1101/463117doi: bioRxiv preprint 

https://doi.org/10.1101/463117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8 

Figure Legends 
Figure 1: (A) Schematic overview of the mESC scRNA-seq experiment and sequencing. (B) 
Single-cell detection limit (Sensitivity) of mESC cells, downsampled across two orders of 
magnitude from SMARTer and two Smart-seq2 replicates (633 samples). The single-cell 
sensitivities are largely similar between different library preparation across scRNA-seq protocols. 
(C) Single-cell accuracy of mESC cells, downsampled across two orders of magnitude for 
SMARTer and two Smart-seq2 replicates (633 samples). The grey dotted lines indicate 
downsampling at different read depths per cell, while red line indicates saturation per cell. (D) PCA 
for matched single-cell cDNA samples performed using SMARTer and two replicates of Smart-
seq2 and sequenced across both sequencing platforms. Red and green colored circles indicate 
sequencing of matched cDNA on Illumina HiSeq2500 and BGISEQ-500 respectively. The dotted 
lines represent distance i.e. measure of similarity across sequencing platforms. (E) Single-cell 
correlations for each scRNA-seq protocol and across sequencing platforms. The correlations 
(R=0.52~0.70) are comparable between sequencing platforms.  
 
Figure 2: (A) Schematic overview of the mESC and K562 scRNA-seq experiment using plate-
based Smart-seq2 protocol and sequencing. (B) The sensitivity of mESCs and K562s cells 
downsampled across two orders of magnitude (633 samples). The sensitivity is critically dependent 
on sequencing depth. Therefore, more deeply sequenced K562 are more sensitive than mESCs. 
Between the sequencing platforms, sensitivity is highly similar (C) The accuracy of mESCs and 
K562s downsampled across two orders of magnitude (633 samples). The accuracy is marginally 
dependent on sequencing depth. Therefore, accuracy is largely similar and comparable between 
mESCs and K562s, irrespective of sequencing platform. The grey dotted lines indicate 
downsampling at different read depths per cell, while red line indicates saturation per cell. 
 
Supplementary Figure 1: (A) Schematic description of performance metrics for comparing 
scRNA-seq protocols and sequencing platforms. Sensitivity is described as the minimum number of 
input molecules (spike-in), where the detection probability is 50%. (B) Accuracy is calculated as the 
Pearson correlation between estimated expression (TPMs) and input spike-in concentrations 
(ground-truth). (C&D) Single-cell accuracy and sensitivity of mESC cells (without downsampling) 
for SMARTer and two Smart-seq2 replicates (633 samples) across both sequencing platforms. (E-
H) Single-cell accuracy, sensitivity, sequenced reads and genes detected between scRNA-seq 
protocols and sequencing platforms represented in violin plots. Two subpopulations are observed in 
Smart-seq2 replicate 2 based on genes detected across both sequencing platforms. (I) Heatmap with 
expression of pluripotency markers for Smart-seq2 replicate 2 cells across both HiSeq2500 and 
BGISEQ-500 cells. The cutoff of 5000 (HiSeq2500) and 7500 genes (BGISEQ-500) was visually 
selected based on Fig S1H. The subpopulation expressing higher number of genes is truly 
pluripotent, while the other subpopulation seems to be on differentiation path.  
 
Supplementary Figure 2: (A) PCA using only spike-in RNAs (ERCCs and SIRVs) for matched 
single-cell cDNA samples performed using SMARTer and two replicates of Smart-seq2 and 
sequenced across both sequencing platforms. Red and green colored circles indicate sequencing of 
matched cDNA on Illumina HiSeq2500 and BGISEQ-500 respectively. The dotted lines represent 
distance i.e. measure of similarity across sequencing platforms. (B)  PCA of Smart-seq2 replicate 2 
re-colored by subpopulations with different number of genes detected. The cutoff of 5000 
(HiSeq2500) and 7500 genes (BGISEQ-500) was visually selected based on Fig S1H. (C) Single-
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cell correlations using only spike-in RNAs (ERCCs and SIRVs) for each scRNA-seq protocol and 
between sequencing platforms. The correlations (R=0.14~0.52) are quite poor owing to critical 
dependence of sensitivity on sequencing depth.   
 
Supplementary Figure 3: (A-C) Number of genes detected (A), sensitivity (B) and accuracy (C) 
for mESCs and K562s between both sequencing platforms represented in violin plots. Higher 
sequencing depth of K562s accounts for higher gene detection, higher sensitivity and more 
accuracy. (D-F) Comparison of all mESC data from different scRNA-seq protocols. The sensitivity 
(D) and accuracy (E) single-cell comparison between protocols and sequencing platforms after 
downsampling. The grey dotted lines indicate downsampling (104, 105, 106 reads), while red line 
indicates saturation per cell. (F) Visualisation of single-cell accuracy, detection limit and genes 
detected (without downsampling) in violin plots. The accuracy is largely similar for all protocols 
and sequencing platforms, while the sensitivity and genes detected vary with sequencing depth. (G) 
Box plots describing number of alternative splicing events across mESCs and K562s using raw 
reads from all sequencing runs. The SE and PE describe single- and paired-end sequencing with 
respective read lengths across both sequencing platforms. 
 
 
Supplementary Table 1: Single-cell library statistics computed from raw sequencing reads for 
mESCs and K562s performed using SMARTer and Smart-seq2 protocols and sequenced across 
HiSeq2500 and BGISEQ-500 platforms.  
Supplementary Table 2: Single-cell library statistics computed from randomly downsampled 1 
million sequencing reads for mESCs and K562s from both scRNA-seq protocols and across 
HiSeq2500 and BGISEQ-500 sequencing platforms. 
Supplementary Table 3: Single-cell library statistics computed from for all mESCs and K562 
replicate libraries sequenced on BGISEQ-500 platform using single-end (SE) reads 
Supplementary Table 4: Single-cell library statistics computed from for all mESCs and K562 
replicate libraries sequenced on BGISEQ-500 platform using Paired-end (SE) reads.  
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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