

1 Fatty acid profiles in adipose tissues and liver differ between horses and ponies

2

3 Fatty acid profiles differ in horses and ponies

4

5 Stephanie Adolph¹, Carola Schedlbauer¹, Dominique Blaue¹, Axel Schöniger², Claudia Gittel³,

6 Walter Brehm³, Herbert Fuhrmann², Ingrid Vervuert^{1*}

7

8 ¹ Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine,
9 University of Leipzig, Leipzig, Germany

10 ² Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig,
11 Germany

12 ³ University Equine Hospital, formerly Large Animal Clinic for Surgery, Faculty of Veterinary
13 Medicine, University of Leipzig, Leipzig, Germany

14

15 * Corresponding author

16 E-mail: ingrid.vervuert@vetmed.uni-leipzig.de (IV)

18 Abstract

19 Fatty acids, as key components of cellular membranes and complex lipids, may play a
20 central role in endocrine signalling and the function of adipose tissue and liver. Thus, the lipid
21 fatty acid composition may play a role in health and disease status in the equine. This study
22 aimed to investigate the fatty acid composition of different tissues and liver lipid classes by
23 comparing Warmblood horses and Shetland ponies under defined conditions. We hypothesized
24 that ponies show different lipid patterns than horses in adipose tissue, liver and plasma. Six
25 Warmblood horses and six Shetland ponies were housed and fed under identical conditions.
26 Tissue and blood sampling were performed following a standardized protocol. A one-step lipid
27 extraction, methylation and trans-esterification method with subsequent gas chromatography was
28 used to analyse the total lipid content and fatty acid profile of retroperitoneal, mesocolon and
29 subcutaneous adipose tissue, liver and plasma. In the adipose tissues, saturated fatty acids (SFAs)
30 and n-9 monounsaturated fatty acids (n-9 MUFA) were most present in ponies and horses. N-6
31 polyunsaturated fatty acids (n-6 PUFA), followed by SFAs, were most frequently found in liver
32 tissue and plasma in all animals. Horses, in comparison to ponies, had significantly higher n-6
33 PUFA levels in all tissues and plasma. In liver tissue, horses had significantly lower hepatic iso-
34 branched-chain fatty acids (iso-BCFAs) than ponies. The hepatic fatty acid composition of
35 selected lipid classes was different between horses and ponies. In the polar PL fraction, horses
36 had low n-9 MUFA and n-3 PUFA contents but higher n-6 PUFA contents than ponies.
37 Furthermore, iso-BCFAs are absent in several hepatic lipid fractions of horses but not ponies.

38 The differences in fatty acid lipid classes between horses and ponies provide key information on
39 the species- and location-specific regulation of FA metabolism, thus affecting health and disease
40 risk.

42 Introduction

43 The physiological fundamentals of the lipid metabolism of equids are poorly understood.

44 Several studies have shown that lipid and lipoprotein statuses differ among horse breeds [1-5].

45 Ponies have higher plasma lipoprotein contents than horses and seem to be more susceptible to

46 developing hyperlipidaemia under a negative energy balance [2,5,6]. However, little is known

47 about the impact of fatty acid (FA) profiles on lipid metabolism and homeostasis in different

48 horse breeds. FAs are integral parts of cellular membranes and complex lipids such as

49 triacylglycerides (TAGs) and phospholipids (PLs). They are involved in various general and

50 specific biological processes that act to regulate cell and tissue metabolism, function and cellular

51 signalling, thus affecting health, welfare and disease risk [7,8]. Specifically, polyunsaturated FAs

52 (PUFAs) of the n-3 and n-6 FA family seem to be metabolically related to health conditions and

53 inflammation. PUFAs of the n-3 series rather than n-6 PUFAs have commonly been shown to

54 exert molecular actions that result in an improved risk factor profile in relation to metabolic and

55 inflammatory dysregulations [9-11]. It is further speculated that the health impact of n-3 PUFAs

56 on whole body homeostasis is mediated by resetting the adipose tissue (AT) function [12]. AT is

57 no longer considered a simple fat storing tissue but rather contributes as an integrative key

58 regulator in energy homeostasis and systemic metabolism [12,13]. AT can influence and

59 communicate with many other tissues, including the brain, heart, vasculature, muscle and liver,

60 on different molecular levels by releasing pro- and anti-inflammatory mediators such as

61 interleukin 1 beta (IL-1 β), interleukin 6 (IL-6), tumour necrosis factor alpha (TNF- α) and other

62 adipokines [13,14]. In equids, a close link between AT function and health conditions is
63 postulated [15]. Controversial studies about whether visceral fat or subcutaneous fat depots have
64 a greater modulating impact on inflammation exist [16,17]. Thus, it is important to address how
65 tissues vary with respect to FA composition in horses and ponies.

66 The aim of the current study was to compare the FA contents and profiles of different
67 ATs, liver, plasma, and hepatic lipid classes between Shetland ponies and Warmblood horses.
68 Considering the differences in the lipoprotein metabolism of horses and ponies, it was
69 hypothesized that the FA profiles, with a special focus on the n-6 and n-3 PUFA dynamics, were
70 different between equine breeds.

71

72 **Materials and methods**

73

74 **Animals and preselection criteria**

75 Six Shetland ponies with a mean age (\pm SD) of 6 ± 3 years and six Warmblood horses
76 with a mean age (\pm SD) of 10 ± 3 years, all geldings with a median body condition score of (25th
77 /75th percentile) 3.7 (2.2/4.4) for ponies and 3.6 (3.1/4.2) for horses on a scale of 1 to 6 [18] and
78 a mean body weight (BW) (\pm SD) of 118 ± 29 kg (ponies) and 589 ± 58 kg (horses), were
79 included in the study. Animals were individually housed in box stalls and bedded on straw. All
80 animals had turnout onto a sand paddock for at least 5 h a day. During a two-week
81 acclimatization period to the experimental procedure, animals were fed daily 2 kg meadow

82 hay/100 kg BW, which was divided into two equal portions, one offered in the morning and one
83 offered in the evening.

84 The animals had free access to water at all times. All animals were assessed for plasma
85 adrenocorticotropic hormone (ACTH) to rule out pituitary pars intermedia dysfunction (PPID).
86 Insulin dysregulation was excluded for all animals, as fasting serum insulin values were under
87 the threshold of < 20 µU/ml after the combined glucose-insulin test (CGIT) performed according
88 to Eiler et al. [19]. The project was approved by the ethics committee for animal rights protection
89 of the Leipzig district government, in accordance with German legislation for animal rights and
90 welfare (No. TVV 32/15). The study was part of a larger project on the consequences of
91 increasing BW gain in horses and ponies.

92

93 **Blood collection**

94 Aliquots of blood samples were collected by jugular vein puncture into tubes coated with
95 sodium fluoride or a coagulation activator after an 8 h overnight fast to determine plasma
96 glucose, serum insulin and plasma lipid FA composition. Samples were allowed to clot for 30-60
97 min before centrifugation. Plasma and serum were removed and stored at -80 °C until analysis.

98

99 **Adipose and liver tissue collection**

100 For tissue collection, animals were sedated with romifidine (0.04 mg/kg BW, Sedivet®)
101 and butorphanol (0.03 mg/kg BW, Alvegesic®). General anaesthesia was induced with 0.08

102 mg/kg BW diazepam (Diazepam-Lipuro®) and ketamine (3 mg/kg BW, Ursotamin®). Animals
103 were orotracheally intubated, and anaesthesia was maintained with isoflurane (Isofluran® CP).
104 Animals were placed in dorsal recumbency on a padded surgical table. After aseptic preparation,
105 a 20 cm ventral midline incision was performed from cranial to the umbilicus. AT (~5 g at each
106 location) was collected from the margins of incision (retroperitoneal (RPN)) and the mesocolon
107 (MSC) of the descending colon (= visceral fat). Liver tissue (~2 g) was collected by biopsy
108 forceps. After the abdomen was closed, the animals were repositioned in lateral recumbency.
109 After aseptic skin preparation, incisions (~4 cm) were performed lateral to the tail head and in
110 the middle of the neck at the nuchal crest. Approximately 5 g AT (subcutaneous (SC)) was
111 collected from each location. A portion of each tissue biopsy specimen was stored in formalin,
112 and the remainder was immediately flash frozen and stored in liquid nitrogen until analysis.
113 After the procedure, horses and ponies were placed in a well-padded box to recover from general
114 anaesthesia. All animals were treated with 1.1 mg/kg BW flunixin-meglumine (Flunidol® RPS
115 50 mg/ml) for three days.

116

117 **Plasma glucose and serum insulin**

118 Plasma glucose concentrations were determined using the glucose oxidase
119 (GOD)/peroxidase (POD) method [20]. Serum insulin was analysed by an immunoradiometric
120 assay (IRMA)(¹²⁵I) kit for human insulin (0-500 µIU/ml (0-17.5 ng/ml) (Demeditec Diagnostics
121 GmbH, Kiel, Germany).

122 **Total FA profile and lipid class FA composition**

123

124 **Thin-layer chromatography**

125 The liver (0.1 g) and fat samples (0.5 g) were cut into small pieces and put into 10 ml
126 glass tubes containing a solvent mixture of chloroform and methanol (1:1 v/v). The final dilution
127 was 1:50 for fat and 1:10 for liver tissues (1 g wet material corresponds to 1 ml). Tissue samples
128 were homogenized, and total lipids were extracted for FA analysis.

129 Total lipids of the homogenized liver samples were extracted using a mixture of water,
130 chloroform and methanol (0.8:0.5:1.5 v/v/v) [21]. Next, 0.2% butylated hydroxytoluene (BHT)
131 in methanol was added to increase the oxidative stability of lipids during the extraction
132 procedure. Following intensive shaking, two phases were generated by the addition of a
133 chloroform/water solution (1:1 v/v). After centrifugation at 4,500 rpm for 10 min at 15 °C, the
134 lower layer (chloroform phase) was collected, chloroform was evaporated under a gentle
135 nitrogen stream, and the lipids were solved in a chloroform/methanol (1:1 v/v) mixture.

136 The different lipid classes were separated by preparative thin-layer chromatography on
137 0.5 mm silica PSC plates (5 cm×5 cm, Merck, Darmstadt, Germany). The diluted samples,
138 containing approximately 2.5 mg lipid, and a standard mixture consisting entirely of 1 mg/mol
139 TAG, non-esterified FAs (NEFAs), cholesterol (C), cholesterol ester (CE) and PLs were spotted
140 on pre-washed PSC plates. In the second step, plates were incubated in a solvent system
141 containing chloroform and methanol (95:5 v/v) for band visualization. Single bands

142 corresponding to the different lipid classes were identified via the authentic standards after
143 primuline staining, scraped off and subsequently extracted and esterified for analysing FA
144 profiles with internal standards.

145 A one-step lipid extraction, methylation and trans-esterification method with subsequent
146 gas chromatography (GC) [22] was used to determine the total FA content and lipid class FA
147 compositions of the various ATs and liver tissues, with L-phosphatidylcholin-C17:0 (0.8 mg/ml)
148 as an internal standard.

149 Fatty acid methyl esters (FAMEs) were separated on a Varian CP 3800 gas
150 chromatograph (GC, Varian, Darmstadt, Germany) equipped with a 30 m Omegawax TM 320
151 capillary column (0.32-mm ID, 0.2 μ m df) (Supelco, Bellefonte, PA, USA). The GC oven
152 temperature was set at 200 °C, and helium was used as a carrier gas with a flow rate of 1 ml/min.
153 Chromatographic peaks were integrated by the Star 5.0 software (Varian) using the internal
154 standard as the reference peak. FAMEs were used to identify and evaluate FAs assuming a direct
155 relationship between peak area and FAME weight. Total FA was expressed as μ mol/g tissue or
156 μ mol/ml, and FA composition was expressed as percent of total FA content. Blank values were
157 subtracted in case of unavoidable contamination of reagents and solvents with some FAs (C10:0,
158 C14:0, C16:1n7, C18:0, C22:2n6, C24:1n9) [22].

159

160

161 **Desaturase and elongase activity indices**

162 Desaturase and elongase activity indices were calculated using the product/precursor ratio
163 of the percentages of individual FAs according to the following notation: C16:1n-7/C16:0 = $\Delta 9$ -
164 desaturase (SCD16), C18:1n-9/C18:0 = $\Delta 9$ -desaturase (SCD18), C18:3n-6/C18:2n-6 = $\Delta 6$ -
165 desaturase (D6D), and C20:4n-6/C20:3n-6 = $\Delta 5$ -desaturase (D5D) and C18:0/C16:0 = elongase
166 (Elo).

167

168 **Statistical analysis**

169 Statistical analyses were performed using a statistical software program (Statistica,
170 StatSoft GmbH, Hamburg, Germany). Data were tested for normality by the Shapiro-Wilk test.
171 Levene's test was used to assess equality of variance. A non-parametric Mann-Whitney U-test
172 was applied to determine differences in the lipid FA composition and FA ratios between horses
173 and ponies. The Kruskal-Wallis ANOVA was used to compare different locations for FA
174 distribution and FA ratios. A two-tailed Dunn's test correcting for multiple comparisons was
175 done as a post hoc test. Differences were considered significant at P values lower than 0.05. Data
176 are presented as medians with 25th and 75th percentiles.

177

178

179 **Results**

180 **FA composition of adipose tissue**

181 The total lipid FA concentrations of RPN-, MSC- and SCfat were similar between horses
182 and ponies, but higher FA levels were found in the liver tissue of ponies than in those of horses
183 (Table 1). Saturated fatty acids (SFAs) and n-9 monounsaturated fatty acids (MUFAs) were the
184 most abundant FA groups in the RPN-, the MSC- and SCfat depots (Table 2) in both horses and
185 ponies. There were no significant differences in the percent composition of the SFA, MUFA and
186 iso-branched-chain FA (iso-BCFA) fractions between horses and ponies. Horses had a
187 significantly higher amount of n-6 PUFAs ($P < 0.01$) and a trend for lower n-3 PUFAs than
188 ponies.

189

190

191 **Table 1. FA concentrations of different ATs, liver (μmol/g tissue) and plasma (μmol/ ml) in**
192 **horses (n=6) and ponies (n=6).**

Adipose tissue			Liver	Plasma	
	RPNfat	MSCfat	SCfat tail		
FA (μmol/g tissue)	μmol/ml				
Total					
Pony	1,914 ^a (1277/2340)	2,057 ^a (1503/2881)	1,522 ^a (856/2234)	129 ^c (122/169)	6.39 ^c (5.87/6.77)
Horse	2,035 ^a (1653/2076)	1,740 ^a (1118/2275)	2,172 ^a (1744/2650)	97.7 ^c (88.7/107)	6.02 ^c (5.52/6.53)
<i>P</i> -value	0.82	0.59	0.39	< 0.01	0.59

193 RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty acid;

194 SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty

195 acid, iso-BCFA: iso-branched-chain fatty acid.

196 Data are presented as medians and 25th/75th percentiles in (parentheses). Lower-case superscripts

197 within a row with different letters indicate significantly different values (*P* ≤ 0.05). Significant

198 differences in FA content between horses and ponies are identified by *P* values ≤ 0.05

199

200

201 **Table 2. FA composition (% of total FA amounts) of the different ATs, liver and plasma in**
 202 **horses (n=6) and ponies (n=6).**

Adipose tissue			Liver	Plasma	
	RPNfat	MSCfat	SCfat tail		
FA (%) of total FA					
SFA					
Pony	37.9 ^a (36.0/41.3)	34.5 ^{ab} (32.8/35.1)	36.0 ^{ab} (32.3/38.2)	39.5 ^a (38.2/40.7)	31.1 ^b (30.6/31.5)
Horse	40.1 ^a (36.5/41.3)	37.1 ^{ab} (35.1/38.6)	35.9 ^{ab} (34.7/37.4)	43.1 ^a (39.9/47.8)	30.8 ^b (30.7/30.9)
<i>P</i> -value	0.48	0.09	0.94	0.13	0.67
MUFA					
n-7					
Pony	6.42 ^{abc} (6.08/10.0)	7.68 ^{ac} (6.58/10.0)	8.41 ^a (7.89/9.06)	3.06 ^b (2.67/3.94)	3.16 ^{bc} (2.42/4.09)
Horse	6.08 ^{abc} (5.34/6.98)	6.27 ^{ab} (5.75/7.05)	8.38 ^a (6.55/9.30)	2.49 ^c (2.34/2.64)	2.63 ^{bc} (2.47/2.66)
<i>P</i> -value	0.39	0.13	0.94	0.09	0.39
n-9					
Pony	27.6 ^{ab} (25.5/32.3)	31.1 ^a (26.9/34.3)	29.6 ^a (29.1/33.4)	13.7 ^b (12.7/17.5)	13.9 ^b (13.4/15.7)
Horse	28.4 ^{ab}	30.4 ^a	30.7 ^a	11.7 ^b	12.9 ^b

	(27.8/29.0)	(29.9/31.1)	(29.4/33.0)	(10.9/11.7)	(12.3/14.4)
<i>P</i> -value	0.59	0.70	0.70	0.03	0.18
n-11					
Pony	0.07 ^a (0.06/0.09)	0.06 ^a (0.06/0.07)	0.07 ^a (0.06/0.07)	0.15 ^b (0.11/0.19)	0.10 ^{ab} (0.09/0.14)
Horse	0.07 ^{ab} (0.06/0.08)	0.08 ^{ab} (0.06/0.10)	0.06 ^{ab} (0.05/0.08)	0.02 ^a (0.02/0.02)	0.09 ^b (0.09/0.11)
<i>P</i> -value	1.00	0.24	0.82	< 0.01	0.94
PUFA					
n-3					
Pony	17.0 ^a (13.2/19.0)	17.4 ^a (12.6/21.6)	16.8 ^a (11.1/19.4)	10.1 ^{ab} (7.38/11.9)	6.42 ^b (5.80/7.05)
Horse	12.3 ^a (10.8/15.0)	12.0 ^a (11.5/14.7)	12.0 ^a (10.3/15.0)	8.03 ^{ab} (7.07/8.9)	4.27 ^b (3.88/4.51)
<i>P</i> -value	0.09	0.13	0.24	0.24	0.02
n-6					
Pony	6.77 ^a (6.34/7.82)	7.03 ^a (6.34/7.61)	6.71 ^a (5.93/7.77)	22.4 ^{ab} (21.4/23.1)	41.8 ^b (40.9/46.0)
Horse	10.9 ^{ab} (9.83/14.4)	10.6 ^{ab} (10.55/13.9)	9.12 ^a (8.70/12.4)	30.0 ^{bc} (27.8/37.1)	47.6 ^c (46.3/48.7)
<i>P</i> -value	< 0.01	< 0.01	< 0.01	< 0.01	0.02
Iso-BCFA					

Pony	0.47 ^a (0.30/0.73)	0.48 ^a (0.30/0.78)	0.53 ^a (0.35/0.75)	10.0 ^b (9.57/10.3)	0.66 ^{ab} (0.62/0.89)
Horse	0.51 ^{abc} (0.46/0.57)	0.50 ^{ab} (0.44/0.60)	0.50 ^a (0.42/0.55)	1.89 ^c (1.38/2.26)	0.71 ^{bc} (0.60/0.80)
<i>P</i> -value	0.70	1.00	0.82	< 0.00	0.82
n-6/n-3					
Pony	0.40 ^a (0.33/0.59)	0.40 ^a (0.29/0.60)	0.40 ^a (0.31/0.69)	2.22 ^{ab} (1.80/3.13)	6.50 ^b (5.80/7.93)
Horse	0.89 ^a (0.66/1.33)	0.88 ^a (0.71/0.95)	0.76 ^a (0.58/1.20)	3.74 ^{ab} (3.12/5.25)	11.2 ^b (10.3/12.55)
<i>P</i> -value	< 0.01	< 0.01	0.02	< 0.01	0.02

203 RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty acid;

204 SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty

205 acid,

206 iso-BCFA: iso-branched-chain fatty acid.

207 Data are presented as medians and 25th/75th percentiles in (parentheses). Lower-case superscripts

208 within a row with different letters indicate significantly different values (*P* ≤ 0.05). Significant

209 differences in FA composition and FA ratio between horses and ponies are identified by *P* values

210 ≤ 0.05

211

212

213 **FA composition of the liver**

214 In addition to SFAs, PUFAs of the n-6 FA family were the most dominant lipid FA in the
215 liver (Table 2). The hepatic n-3 PUFA content was not different between ponies and horses, but
216 the percentage of the hepatic n-6 PUFA fraction was significantly higher in horses than in
217 ponies. The n-6/n-3 ratios calculated for all tissues and plasma in horses were significantly lower
218 than those in ponies. Except for the total hepatic n-11 MUFA fraction in ponies, MUFA contents
219 were lower in the liver than in AT depots for both horses and ponies. The total n-11 MUFA
220 concentration in the liver of ponies was 5-fold higher than the corresponding MUFA content in
221 horses.

222 Ponies contained a 2-fold higher proportion of n-11 MUFAs in the liver than in the
223 different ATs. Liver iso-BCFA content (10.0%) was 5-fold higher in ponies than in horses.

224

225 **FA composition of plasma**

226 In horses and ponies, SFAs and PUFAs of the n-6 FA family represented the majority of
227 plasma lipids (Table 2).

228

229 **Tissue comparison**

230 A comparison of the different fat depots with liver tissue showed that horses and ponies
231 have inverted n-6/n-3 PUFA ratios and higher percentages of iso-BCFAs in the liver than in the
232 AT depots (Table 2).

233 $\Delta 9$ -desaturase activity indices determined from the 16:1n7/16:0 ratio and 18:1n9/18:0
234 ratio were significantly lower in the liver than in the ATs for both horses and ponies (Fig 1A and
235 B). Increased $\Delta 6$ - and $\Delta 5$ -desaturase and elongase indices were found in the liver compared to
236 the AT depots in all animals (Fig 1C-E). In this context, horses had a significantly higher hepatic
237 $\Delta 5$ -desaturase index than ponies (Fig 1D).

238

239 **Fig 1. Calculated Desaturase and Elongase Activity Indices.** Product/precursor ratio of the
240 percentages of individual FAs represent desaturase and elongase activity indices:
241 (A) C16:1n-7/C16:0 = $\Delta 9$ -desaturase (D9D16), (B) C18:1n-9/C18:0 = $\Delta 9$ -desaturase (D9D18),
242 (C) 18:3n-6/C18:2n-6 = $\Delta 6$ -desaturase (D6D), (D) C20:4n-6/C20:3n-6 = $\Delta 5$ -desaturase (D5D)
243 and (E) C18:0/C16:0 = elongase (Elo). Data are shown as whisker plots. Boxes represent the
244 interquartile range (IQR) between the 25th and 75th percentiles. Horizontal lines are medians.
245 Error bars show the full range excluding outliers (dots), which are defined as being more than 1.5
246 IQR outside the box. Lower-case superscripts with different letters indicate significant
247 differences in these values between equine species ($P \leq 0.05$).

248

249 Plasma FA lipid composition (Table 1b) and $\Delta 9$ -, $\Delta 6$ - and $\Delta 5$ -desaturase and elongase
250 indices corresponded more closely to the liver profile than to the AT profiles in both horses and
251 ponies (Fig 1A-E).

252 In all animals, the majority of hepatic FAs accumulated in the polar PL fraction. Among
253 the neutral FA fractions, TAGs had the highest FA amount, followed by NEFAs and CEs
254 (Table 3). The absolute amounts of FAs in the PL fraction were significantly higher in ponies
255 than in horses ($P = 0.004$). In ponies, the FA levels in the hepatic NEFA fraction were 2-fold
256 higher ($P = 0.03$) and that of the CE fraction 3-fold higher ($P = 0.004$) than those in horses.
257 There were no significant differences in the FA levels of TAGs except for one pony that
258 indicated TAG FA values 10-fold higher than the average FA content measured in the TAG
259 fractions of the other animals.

260

261

262 **Table 3. FA content (μmol/g) of the separated hepatic lipid classes in horses (n=6) and in**
263 **ponies (n=6).**

	PL	NEFA	TAG	CE
FA (μmol/g tissue)				
Total				
Ponies	94.0 ^a (88.6/100)	5.06 ^{bc} (3.52/6.72)	27.9 ^{ab} (18.9/58.7)	2.45 ^c (1.83/2.46)
Horses	68.2 ^a (61.4/70.7)	2.62 ^{bc} (2.04/2.94)	26.2 ^{ab} (24.5/30.2)	0.61 ^c (0.51/0.83)
<i>P</i> -value	< 0.01	0.03	0.82	< 0.01

264 PL: phospholipid; NEFA: non-esterified free fatty acid; TAG: triacylglyceride; CE: cholesterol
265 ester; RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty
266 acid; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated
267 fatty acid, iso-BCFA iso-branched-chain fatty acid.

268 Lower-case superscripts within a row with different letters indicate significantly different values
269 ($P \leq 0.05$). Significant differences in FA content between horses and ponies are identified by
270 P values ≤ 0.05 .

271
272 N-6 PUFAs were the most abundant FAs in the PL fractions of horses and ponies,
273 followed by SFAs, n-9 MUFA, n-3 PUFAs together with iso-BCFAs and, at last, n-7 and n-11
274 MUFA (Table 4). Compared to horses, ponies had significant higher n-9 MUFA and n-3 PUFA

275 levels but significant lower n-6 PUFA contents in the PL fraction, resulting in a lower n-6/n-3
276 ratio. No significant differences in SFA and iso-BCFA levels were found in the hepatic PL
277 fractions between horses and ponies. Similar to the PL fraction, n-6 PUFA levels and calculated
278 n-6/n-3 ratios in NEFAs, TAGs and CE were significantly higher in horses than in ponies. N-11
279 MUFAs and
280 iso-BCFAs were absent from the hepatic NEFA fraction of horses. In ponies, the hepatic CE
281 fraction had significantly higher n-3 PUFA levels but lower SFA amounts than that in horses.
282 Ponies had the highest iso-BCFA levels and the lowest n-9 PUFA contents in the hepatic CE
283 fraction. These FAs were completely absent from the CE fraction of the horse liver.
284
285

286 **Table 4. FA composition (% of total FA amounts) of the separated hepatic lipid classes in**
 287 **horses (n=6) and in ponies (n=6).**

	PL	NEFA	TAG	CE
FA (%) of total FA content				
SFA				
Ponies	34.7 ^{ac} (34.4/35.9)	54.8 ^b (47.3/56.0)	37.3 ^{abc} (34.3/38.8)	30.2 ^c (28.8/32.9)
Horses	36.6 ^a (35.9/36.9)	53.47 ^a (49.6/56.51)	36.3 ^a (35.9/38.7)	49.9 ^a (31.7/60.94)
<i>P</i> -value	0.09	0.82	1.00	0.04
MUFA				
n-7				
Ponies	2.16 ^{ab} (1.64/2.92)	3.03 ^b (2.63/4.24)	5.58 ^b (4.94/8.63)	0.99 ^a (0.84/1.06)
Horses	1.79 ^{ac} (1.75/1.90)	2.47 ^{ab} (2.26/2.85)	5.46 ^b (5.34/5.51)	0.37 ^c (0.00/0.98)
<i>P</i> -value	0.59	0.18	1.00	0.13
n-9				
Pony	14.7 ^{ab} (13.4/15.2)	12.8 ^{ab} (11.0/24.2)	28.0 ^b (27.0/29.2)	1.18 ^a (1.16/1.54)
Horse	11.6 ^a (10.9/13.1)	11.0 ^a (8.62/12.4)	23.2 ^{ab} (22.5/25.5)	n.d.

<i>P</i> -value	0.02	0.39	0.06	
n-11				
Ponies	0.05 ^a (0.04/0.07)	0.50 ^b (0.33/0.58)	0.07 ^{ab} (0.06/0.09)	n.d.
Horses	0.04 ^a (0.04/0.05)	n.d.	0.05 ^a (0.04/0.06)	n.d.
<i>P</i> -value	0.70		0.09	
<hr/> PUFA				
n-3				
Ponies	4.40 ^a (3.44/5.12)	9.89 ^{ab} (9.01/12.00)	14.7 ^b (12.2/16.4)	8.70 ^{ab} (6.52/14.6)
Horses	2.94 ^{ac} (2.70/3.42)	12.6 ^{ab} (9.03/13.8)	13.8 ^b (12.6/16.2)	2.87 ^c (2.18/3.13)
<i>P</i> -value	0.03	0.31	0.94	0.00
n-6				
Ponies	40.5 ^a (38.6/40.9)	11.6 ^{bc} (10.0/13.9)	7.71 ^c (7.00/8.37)	29.5 ^{ab} (25.4/32.5)
Horses	44.0 ^a (42.1/45.5)	21.8 ^{ab} (20.6/25.9)	13.27 ^b (12.1/14.5)	45.9 ^a (34.9/65.6)
<i>P</i> -value	< 0.01	< 0.01	< 0.01	0.06
<hr/> Iso-BCFA				
Ponies	3.20 ^a	6.42 ^{ab}	5.39 ^a	23.2 ^b

	(2.11/3.35)	(5.54/6.70)	(3.63/6.24)	(22.0/26.4)
Horses	2.39 ^a (1.71/3.02)	n.d.	5.18 ^{ab} (3.78/5.74)	n.d.
<i>P</i> -value	0.48		0.82	
n-6/n-3				
Ponies	9,31 ^{ab} (7.53/11.2)	1,12 ^c (1.03/1.31)	0,57 ^{bc} (0.43/0.71)	3,37 ^a (2.01/5.63)
Horses	14,6 ^a (12.3/16.9)	1,78 ^{ab} (1.66/2.32)	0,93 ^b (0.80/1.12)	17,8 ^a (12.55/21.2)
<i>P</i> -value	0.03	< 0.01	< 0.01	< 0.01

288 PL: phospholipid; NEFA: non-esterified free fatty acid; TAG: triacylglyceride; CE: cholesterol
289 ester; RPNfat: retroperitoneal fat, MSCfat: mesocolon fat; SCfat: subcutaneous fat; FA: fatty
290 acid; SFA: saturated fatty acid; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated
291 fatty acid, iso-BCFA: iso-branched-chain fatty acid.

292 Data are expressed as medians with 25th/75th percentiles in (parentheses). Lower-case
293 superscripts within a row with different letters indicate significantly different values (*P* ≤ 0.05).

294 Significant differences in FA composition and FA ratio between horses and ponies are identified
295 by

296 *P* values ≤ 0.05.

297

298

299 **Discussion**

300 The current study aimed to compare FA profiles of ATs, liver and plasma between lean
301 Shetland ponies and lean Warmblood horses. For general background information, healthy
302 animals with a moderate body condition score (BCS) [18] and cresty neck score (CNS) [23] were
303 included in the ongoing study. Using standardized conditions, our study provides key
304 information on the differences in FA class distribution of lipids in different tissues by comparing
305 lean ponies with lean horses under controlled feeding and management conditions.

306 The regulating impact of ATs on lipid metabolism and tissue crosstalk seemed to be
307 different in horses and ponies [24]. Ex vivo studies on the lipolysis activity of equine adipocytes
308 highlighted a disturbed NEFA release from TAG fat stores as a cause for hyperlipidaemia in
309 ponies but not in horses under negative energy intake [24]. However, little is known about the
310 function of the FA lipid profile in AT metabolism in equids, although FAs are known to act as
311 regulatory key players in various physiological, metabolic and inflammatory processes [7,25].

312 In equids, most studies on the AT lipid pattern have mainly focused on the intramuscular
313 fat depots [26-30]. To our knowledge, this study is the first to investigate differences in the FA
314 composition of various visceral and subcutaneous fat depots between horses and ponies. The
315 lipid FA composition and lipid metabolism of tissues is substantially influenced by the diet
316 [28,31,32]. To minimize dietary effects, feeding protocols were standardized in animals by
317 feeding them meadow hay for several weeks. In the present study, no significant differences in

318 the total FA content and FA lipid profile between the distinct AT locations were found in horses
319 and ponies (Table 1).

320 Our results confirmed previous studies that highlighted n-3 PUFAs and, to a lesser extent,
321 n-6 PUFAs, as well as SFAs and n-9 MUFAAs, as the main FA classes in ATs [28,29]. The
322 predominance of PUFAs in ATs is well explained by the meadow hay intake [30] and the low
323 biohydrogenation activity in the gut, resulting in an efficient uptake and deposition of PUFAs
324 from grass species rich in n-3 and n-6 PUFAs into tissues [26,33].

325 In addition to ATs, the liver plays a major role in FA metabolism, which argues that
326 researchers should focus more closely on hepatic FAs and their metabolism [34]. However, data
327 on hepatic lipid composition and FA metabolism in equids are rare. As expected, the total FA
328 content in liver tissue was significantly lower than that in the different ATs. In the liver, FAs
329 mainly accumulate in the polar PL fraction, followed by the neutral fractions of TAGs, NEFAs
330 and CEs for both horses and ponies (Table 3). Interestingly, SFA levels were quite similar
331 between ATs and liver, but significant differences were found in MUFA and essential n-6 PUFA
332 levels (Table 2). FAs in adipocytes mainly result from dietary FAs, which enter the adipocytes to
333 form neutral TAGs for energy storage, thereby primarily accumulating SFAs and MUFAAs [35].
334 Furthermore, the majority of *de novo* synthesis of non-essential FAs may occur in the AT depots
335 and not in the liver, as has been recently described for equids [36]. Data from the present study,
336 showing significantly higher 16:1n-7/16:0 and 18:1n9/18:0 ratios in the AT depots than in liver
337 tissue, supports these findings by reflecting a higher AT $\Delta 9$ -desaturase activity (Fig 1A and B).

338 Following *de novo* lipogenesis of saturated palmitic acid (C16:0) and stearic acid (C18:0) in the
339 cell, Δ -9 desaturase catalyses the production of monounsaturated palmitoleic acid (C16:1n-7)
340 from the 16:0 precursor and of oleic acid (C18:1n-9) from its 18:0 precursor [37]. Thus, the
341 accumulation of C16:1n-7 and 18:1n9 as the main products of lipogenesis could reflect high *de*
342 *novo* lipogenesis activity in AT depots.

343 In the liver, essential FAs are used as precursors for other FAs, especially long-chain
344 PUFAs. In addition, FAs can be converted to biologically active FA-derived compounds such as
345 eicosanoids that regulate a variety of physiological processes [38].

346 The n-6 PUFA contents being higher in the liver than in the ATs might be explained by a
347 higher percentage of PLs being present in the membranes of the hepatocytes than in those of
348 adipocytes. Namely, n-6 PUFA arachidonic acid (AA) is an important component of the
349 membrane PLs. Hepatocytes preferably incorporate PUFAs, especially members of the n-6
350 PUFA family, in the polar PL structures of the cellular membranes [34] rather than in neutral
351 storage lipids such as TAGs. In adipocytes, high amounts of FAs accumulate in cytosolic TAGs
352 for energy storage, mainly including SFAs and MUFAAs and smaller amounts of PUFAs [35].
353 Higher n-6 PUFA levels resulted in reduced n-3 PUFA levels, explaining the n-3/n-6 ratio being
354 inverted between liver and ATs (Table 2).

355 Species-derived differences in the FA profile of selected ATs and liver were found for
356 n-6 PUFAs. Horses had significantly higher n-6 PUFA contents in the ATs and liver compared to
357 ponies. As the diets were standardized between horses and ponies, the differences in n-6 PUFAs

358 might be related to genetically or metabolically derived differences in the incorporation,
359 utilization or storage of PUFAs. Studies in humans confirm that in addition to nutritional
360 influences, genetic background is highly important for PUFA composition in tissues [39].
361 Genetic association studies on the FA composition of ATs, serum PLs and erythrocyte
362 membrane PLs in humans of different ethnic backgrounds revealed that polymorphisms (SNPs)
363 in the desaturase *FADS* gene clusters [40-43] determine the efficiency of n-3 and n-6 PUFA
364 processing, thus affecting total PUFA status. Compared to major allele carriers, minor allele
365 carriers of the *FADS* SNPs had minor desaturase activities, indicating a high association of
366 genotype and absolute endogenous n-3 and n-6 PUFA levels [43]. The data from the current
367 study confirm significant differences in the desaturase and elongase activity indices between
368 horses and ponies for liver tissue and some ATs (Fig 1A, B, D and E). This result might support
369 the hypothesis of a variant genotype within the equids. In addition, genetic variations of other
370 candidate genes were evidenced affecting PUFA binding, translocation and transport in human
371 and animal tissues [39,42,44-46]. Furthermore, enzyme selectivity for specific FAs, rates of FA
372 uptake, FA mobilization and FA reuptake were assumed to affect the PUFA composition of ATs
373 in humans and different animal models [44-47]. In this context, FA chain length and degree of
374 unsaturation are critical factors that might affect the individual FA supply to tissues [48]. For n-3
375 PUFAs, slower uptake into ATs [31] and higher mobilization [49] in relative to their values in
376 other FAs have been observed in humans. Thus, differences in the n-6 and n-3 PUFA tissue

377 availability in the equine sub-species might be a result of nutrigenetic interactions of dietary
378 PUFAs and variations in genes encoding for PUFA enzymes and transporters.

379 In horses, the higher n-6 PUFA levels seemed surprising. PUFAs of the n-6 FA family
380 are considered pro-inflammatory [9], which may predispose individuals to inflammatory
381 responses and metabolic dysregulation [38,50,51]. Among n-6 PUFAs, AA in particular has
382 signalling effects that may create a pro-inflammatory, pro-allergic and pro-tumour environment
383 [7]. AA mainly acts as a precursor for eicosanoids and derived mediators that are associated with
384 inflammatory diseases and immune responses. In addition, free AA may directly promote
385 inflammatory processes by activating the transcription factor Nuclear factor kappa B (NFkB),
386 which regulates the expression of genes associated with innate and adaptive immunity [52]. The
387 essential linoleic acid (LA) (18:2n6), as an integral part of cellular membrane ceramides, is
388 important in skin and barrier function [53]. LA can be metabolized to AA by several desaturase
389 and elongase enzyme activities. Several *in vitro* studies on macrophages and *in vivo* studies in
390 humans have indicated that LA has only a limited effect on inflammation with respect to a
391 reduced release of pro-inflammatory cytokines such as IL-1 β and IL-6 [54,55]. Considering the
392 range of different biological effects of the two n-6 PUFAs, it seems no longer relevant to
393 describe the functional impacts of FA families or classes; rather, the activities of individual FAs
394 and their relevance to health and disease risk should be detailed [7]. In earlier studies on the FA
395 composition of serum PLs in equids, it was evidenced that ponies and horses contained higher
396 LA contents despite having less AA in serum lipids than other herbivores [1,56,57]. The inverse

397 relationship of the two n-6 PUFAs in serum might have particular relevance in prostaglandin
398 production. For example, human endothelial cells [58], skin fibroblasts [59] or mouse
399 macrophages [60] enriched with LA showed reduced AA contents in the cellular PLs and
400 reduced prostaglandin (PGI₂) release. It is speculated that these two n-6 PUFAs also have an
401 inverse relationship in the hepatic lipid stores of equids. Further investigations of LA and AA
402 metabolism in relation to prostaglandin syntheses and inflammatory tissue responses in horses
403 and ponies are needed.

404 Furthermore, the combined influences of n-3 and n-6 PUFAs on several regulatory and
405 signalling systems [7,25,55] predisposes the n-6/n-3 ratio as an additional critical factor
406 influencing health and diseases in humans and animals [50,61]. In the present study, both horses
407 and ponies had n-6/n-3 ratios < 1 in ATs and of 2 or 3 in the liver. Similar results have been
408 reported for subcutaneous ATs in healthy horses of different breeds [26]. Further investigations
409 on the n-6/n-3 PUFA ratio in cases of metabolic dysregulation are important to determine
410 optimal tissue and individual dietary ratios. The importance of the dietary n-6/n-3 ratio in diverse
411 chronic health conditions such as obesity-linked inflammation and insulin dysregulation was
412 evidenced in Sprague-Dawley rat models and human studies [50,61,62]. Reduction in n-6
413 PUFAs in the diet to a n-3/n-6 PUFA ratio of 1:1 was evidenced to prevent excessive n-6
414 eicosanoid action and Toll-like receptor 4 (TLR4)-induced production of pro-inflammatory
415 cytokines via an effective blocking of corresponding signalling pathways by n-3 PUFA action.
416 This approach avoids metabolic disorders and is beneficial for health. Use of n-6 PUFA-

417 dominated dietary ratios of 1:4 failed to result in these changes [61,62]. However, it cannot be
418 excluded that the adaptation period to the same diet was too short to exclude any dietary
419 influences on PUFAs in the present study.

420 Another interesting finding of the current study was the high iso-BCFA content in the
421 liver of horses and ponies compared to that in the ATs (Table 2). In mammals, BCFAs are found
422 in several tissues, including skin, brain, blood and cancer cells [63-66]. According to their
423 structure and main metabolic origin, several types of BCFAs were differentiated. Iso- and
424 anteiso-BCFAs, also called terminal BCFAs, are the main components of bacterial membranes
425 and are synthesized from branched-chain amino acids and their corresponding branched-short-
426 chain carboxylic acids [67]. However, the non-terminal BCFAs were reported to be synthesized
427 in tissues [68]. Although the function and physiological roles of BCFAs are rarely understood,
428 their wide distribution in different tissues might suggest an important function in several
429 metabolic processes. Studies in humans reported anti-inflammatory and insulin-synthesizing
430 effects of BCFAs [63,69]. It is speculated that BCFAs may affect metabolic genes and
431 transcription factors [64].

432 However, little information is available on the role of BCFAs in horses. Santos et al. [70]
433 found high levels of BCFAs in the equine hindgut, which might be related to bacterial and
434 protozoan mass or bacterial and protozoan fermentation. It is well known from ruminants that the
435 bacterial BCFAs of the rumen can be absorbed and incorporated into TAG tissues, thus
436 increasing the terminal BCFA content in ATs and milk lipids [67]. Likewise, with regard to our

437 findings in ATs and plasma, Belaunzaran et al. [71] determined similar levels of BCFAs in horse
438 meat and ATs and assumed that BCFA absorption occurred from diet rather than by absorption
439 of fermentation products. Previous studies that confirm various iso- and anteiso-BCFAs as major
440 components in plant surface waxes [72] support the idea of dietary uptake of BCFAs by tissues.
441 Nevertheless, data on BCFA status in liver tissue were not obtained. In accordance with our data,
442 high BCFA levels, ranging from 2.1% to 2.5% of total FA content, were found in the liver of
443 ruminants [67]. The high hepatic BCFA amounts in bovines were thought to be associated with
444 TAG accumulation. This link was also confirmed in the current study. However, the highest iso-
445 BCFA contents were highlighted in the CE fraction of the pony liver, in contrast to a complete
446 lack of hepatic CE iso-BCFAs in horses. Clearly, there exists species-derived differences in iso-
447 BCFA metabolism that might be linked to cholesterol metabolism in equids. We further
448 speculate that different expression patterns of receptors and enzymes are involved in intracellular
449 degradation, turnover and transport of iso-BCFAs through the plasma membranes in ponies and
450 horses. Further research on the entire role and metabolism of iso-BCFAs in hepatic FA
451 metabolism is required. In that context, it seems appropriate to investigate the function of
452 different iso-BCFAs in context with metabolic dysregulation in horses and ponies.

453 Interestingly, horses rather than ponies lack some of the FA classes in different hepatic
454 lipid fractions. Studies by Yamamoto et al. [73] confirm the lack of hepatic n-9 and n-11 MUFAs
455 in the polar CE fraction and found comparable levels of SFAs in the CE (61.7% of total FA) and

456 neutral TAG fraction (44.1% of total FA) as we did. However, data on the long chain FA were
457 missing, which is partly offset by data from the current study.

458 FA levels and lipid profiles were similar between liver and plasma, suggesting plasma as
459 a potential biomarker for liver lipid content and FA lipid composition [74]. These findings are
460 further supported by the close relationship of the FA elongase and desaturase indices in the liver
461 and plasma, which were both different from those in the ATs (Fig 1A-E).

462

463 Conclusion

464 The present results provide basic data on the FA profiles in different ATs, liver and
465 plasma in lean horses and ponies under standard conditions. The higher n-6/n-3 ratios in the ATs,
466 liver and plasma of horses in comparison to ponies and differences in the desaturase and
467 elongase indices may reflect breed-related differences in the acquisition (e.g., FA uptake and *de*
468 *novo* lipogenesis), removal (i.e., mitochondrial FA oxidation and FA mobilization) and turnover
469 of FA. In liver tissue, horses also had lower hepatic iso-BCFA levels than ponies. As iso-BCFAs
470 are linked to anti-inflammatory and insulin-synthesizing effects, these findings need further
471 elucidation.

472 Acknowledgments

473 The authors are grateful to Gabriele Dobeleit, Sabine Kleemann and Jana Tietke for their
474 enormous technical support.

475

476 **Supporting information**

477 **S1 Table. Descriptive data of equines.** * Mean \pm SD. ** Median (25th/75th percentile).

478 ¹Mean median of two independent evaluators.

479

481 **References**

482 1. Bauer JE, Ransone WD. Fatty acid composition of serum lipids in fasting ponies. *Lipids*.
483 1983;18: 397-401.

484 2. Watson TDG, Burns L, Love S, Packard CJ, Shepherd J. The isolation, characterisation
485 and quantification of the equine plasma lipoproteins. *Equine Vet J*. 1991;23: 353-359.

486 3. Asadi F, Asadian P, Shahriari A, Pourkabir M, Kazemi A. Serum lipid and lipoprotein
487 patterns of Iranian horses. *Rev Sci Tech*. 2011;30: 955-960.

488 4. Nazifi S, Saeb M, Rategh S, Khojandi A. Serum lipids and lipoproteins in clinically
489 healthy Caspian miniature horses. *Veterinarski Arhiv*. 2005;75: 175-182.

490 5. Straub R, Petitjean J, Tschudi P. Serumlipide und lipoproteide bei gesunden Equiden.
491 *Schweizer Archiv fur Tierheilkunde*. 1977;119: 92-101.

492 6. Jeffcott L, Field J. Current concepts of hyperlipaemia in horses and ponies. *Vet Rec*.
493 1985;116: 461-466.

494 7. Calder PC. Functional roles of fatty acids and their effects on human health. *J Parenter
495 Enteral Nutr*. 2015;39: 18S-32S.

496 8. Juárez-Hernández E, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ. Role of bioactive
497 fatty acids in nonalcoholic fatty liver disease. *Nutr J*. 2016;15: 72.

498 9. Rodrigues HG, Sato FT, Curi R, Vinolo MAR. Fatty acids as modulators of neutrophil
499 recruitment, function and survival. *Eur J Pharmacol*. 2016;785: 50-58.

500 10. Michalak A, Mosińska P, Fichna J. Polyunsaturated fatty acids and their derivatives:
501 therapeutic value for inflammatory, functional gastrointestinal disorders, and colorectal
502 cancer. *Front Pharmacol.* 2016;7: 459.

503 11. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. *Nature.*
504 2014;510: 92-101.

505 12. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose tissue remodeling: its role in
506 energy metabolism and metabolic disorders. *Front Endocrinol.* 2016;7: 30.

507 13. Blüher M. Clinical relevance of adipokines. *Diabetes Metab J.* 2012;36: 317-327.

508 14. Frank N, Geor RJ, Bailey SR, Durham AE, Johnson PJ. Equine metabolic syndrome. *J
509 Vet Intern Med.* 2010;24: 467-475.

510 15. Ertelt A, Barton A-K, Schmitz RR, Gehlen H. Metabolic syndrome: is equine disease
511 comparable to what we know in humans? *Endocr Connect.* 2014;3: R81-R93.

512 16. Burns TA, Geor RJ, Mudge MC, McCutcheon LJ, Hinchcliff KW, Belknap JK.
513 Proinflammatory cytokine and chemokine gene expression profiles in subcutaneous and
514 visceral adipose tissue depots of insulin-resistant and insulin-sensitive light breed horses.
515 *J Vet Intern Med.* 2010;24: 932-939.

516 17. Bruynsteen L, Erkens T, Peelman LJ, Ducatelle R, Janssens GPJ, Harris PA, et al.
517 Expression of inflammation-related genes is associated with adipose tissue location in
518 horses. *BMC Vet Res.* 2013;9: 240.

519 18. Carroll CL, Huntington PJ. Body condition scoring and weight estimation of horses.

520 Equine Vet J. 1988;20: 41-45.

521 19. Eiler H, Frank N, Andrews FM, Oliver JW, Fecteau KA. Physiologic assessment of blood

522 glucose homeostasis via combined intravenous glucose and insulin testing in horses. Am

523 J Vet Res. 2005;66: 1598-1604.

524 20. Raabo BE, Terkildsen TC. On the enzymatic determination of blood glucose. Scand J

525 Clin Lab Invest. 1960;12: 402-407.

526 21. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J

527 Biochem Physiol. 1959;37: 911-917.

528 22. Seidel A, Gueck T, Fuhrmann H. The influence of long-chain polyunsaturated fatty acids

529 on total lipid fatty acid composition of a canine mastocytoma cell line. J Vet Med Ser A.

530 2005;52: 219-224.

531 23. Carter RA, Geor RJ, Staniar WB, Cubitt TA, Harris PA. Apparent adiposity assessed by

532 standardised scoring systems and morphometric measurements in horses and ponies. Vet

533 J. 2009;179: 204-210.

534 24. Breidenbach A, Fuhrmann H, Deegen E, Lindholm A, Sallmann HP. Studies on equine

535 lipid metabolism - 2. Lipolytic activities of plasma and tissue lipases in large horses and

536 ponies. J Vet Med Ser A. 1999;46: 39-48.

537 25. Adolph S, Fuhrmann H, Schumann J. Unsaturated fatty acids promote the phagocytosis
538 of *Pseudomonas aeruginosa* and *Rhodococcus equi* by RAW264.7 macrophages. *Curr*
539 *Microbiol.* 2012;65: 649-655.

540 26. Belaunzaran X, Bessa RJB, Lavín P, Mantecón AR, Kramer JKG, Aldai N. Horse-meat
541 for human consumption — Current research and future opportunities. *Meat Sci.*
542 2015;108: 74-81.

543 27. Juárez M, Polvillo O, Gómez MD, Alcalde MJ, Romero F, Valera M. Breed effect on
544 carcass and meat quality of foals slaughtered at 24months of age. *Meat Sci.* 2009;83:
545 224-228.

546 28. He ML, Ishikawa S, Hidari H. Fatty acid profiles of various muscles and adipose tissues
547 from fattening horses in comparison with beef cattle and pigs. *Asian-Australas J Anim*
548 *Sci.* 2005;18: 1655-1661.

549 29. Sarriés MV, Murray BE, Troy D, Beriaín MJ. Intramuscular and subcutaneous lipid fatty
550 acid profile composition in male and female foals. *Meat Sci.* 2006;72: 475-485.

551 30. Shorland FB, Bruce LW, Jessop AS. Studies on the composition of horse oil. 2. The
552 component fatty acids of lipids from fatty tissues, muscle and liver. *Biochem J.* 1952;52:
553 400-407.

554 31. Summers LKM, Barnes SC, Fielding BA, Beysen C, Ilic V, Humphreys SM, et al.
555 Uptake of individual fatty acids into adipose tissue in relation to their presence in the diet.
556 *Am J Clin Nutr.* 2000;71: 1470-1477.

557 32. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, et al. Fat
558 deposition, fatty acid composition and meat quality: a review. *Meat Sci.* 2008;78: 343-
559 358.

560 33. Clauss M, Grum C, Hatt J-M. Polyunsaturated fatty acid content in adipose tissue in
561 foregut and hindgut fermenting mammalian herbivores: a literature survey. *Mamm Biol.*
562 2009;74: 153-158.

563 34. Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, et al. Nutritional
564 assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease
565 (NAFLD): a cross-sectional study. *J Hepatol.* 2008;48: 300-307.

566 35. Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS. Triacylglycerol
567 metabolism in adipose tissue. *Future Lipidol.* 2007;2: 229-237.

568 36. Suagee JK, Corl BA, Crisman MV, Wearn JG, McCutcheon LJ, Geor RJ. De novo fatty
569 acid synthesis and NADPH generation in equine adipose and liver tissue. *Comp Biochem
570 Physiol B Biochem Mol Biol.* 2010;155: 322-326.

571 37. Nakamura MT, Nara TY. Structure, function, and dietary regulation of $\delta 6$, $\delta 5$, and $\delta 9$
572 desaturases. *Annu Rev Nutr.* 2004;24: 345-376.

573 38. Calder PC. Mechanisms of action of (n-3) fatty acids. *J Nutr.* 2012;142: 592S-599S.

574 39. Lattka E, Klopp N, Demmelmair H, Klingler M, Heinrich J, Koletzko B. Genetic
575 variations in polyunsaturated fatty acid metabolism -- implications for child health? *Ann
576 Nutr Metab.* 2012;60: 8-17.

577 40. Xie L, Innis SM. Genetic variants of the FADS1 FADS2 gene cluster are associated with
578 altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in
579 women during pregnancy and in breast milk during lactation. *J Nutr.* 2008;138: 2222-
580 2228.

581 41. Sergeant S, Hugenschmidt CE, Rudock ME, Ziegler JT, Ivester P, Ainsworth HC, et al.
582 Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in
583 African Americans and European Americans with diabetes or the metabolic syndrome. *Br*
584 *J Nutr.* 2012;107: 547-555.

585 42. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic
586 loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide
587 association studies from the CHARGE consortium. *PLoS Genet.* 2011;7: e1002193.

588 43. Schaeffer L, Gohlke H, Müller M, Heid IM, Palmer LJ, Kompauer I, et al. Common
589 genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are
590 associated with the fatty acid composition in phospholipids. *Hum Mol Genet.* 2006;15:
591 1745-1756.

592 44. Birsoy K, Festuccia WT, Laplante M. A comparative perspective on lipid storage in
593 animals. *J Cell Sci.* 2013;126: 1541-1552.

594 45. Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues:
595 lipoprotein lipase- and CD36-mediated pathways. *J Lipid Res.* 2009;50: S86-S90.

596 46. Raclot T, Oudart H. Selectivity of fatty acids on lipid metabolism and gene expression.

597 Proc Nutr Soc. 1999;58: 633-646.

598 47. Hansen IA. Selective incorporation of fatty acids into lipids of lamb and rat intestinal

599 mucosa. Comp Biochem Physiol 1965;15: 27-31.

600 48. Raclot T. Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog

601 Lipid Res. 2003;42: 257-288.

602 49. Raclot T, Groscolas R. Individual fish-oil n-3 polyunsaturated fatty acid deposition and

603 mobilization rates for adipose tissue of rats in a nutritional steady state. Am J Clin Nutr.

604 1994;60: 72-78.

605 50. Simopoulos A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for

606 obesity. Nutrients. 2016;8: 128.

607 51. Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2: 355-374.

608 52. Camandola S, Leonarduzzi G, Musso T, Varesio L, Carini R, Scavazza A, et al. Nuclear

609 factor kB Is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem

610 Biophys Res Commun. 1996;229: 643-647.

611 53. Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim

612 Biophys Acta (BBA) - Mol Cell Biol Lipids. 2014;1841: 422-434.

613 54. Pischedda T, Hankinson SE, Hotamisligil GKS, Rifai N, Willett WC, Rimm EB. Habitual

614 dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US

615 men and women. Circulation. 2003;108: 155-160.

616 55. Schoeniger A, Adolph S, Fuhrmann H, Schumann J. The impact of membrane lipid
617 composition on macrophage activation in the immune defense against *Rhodococcus equi*
618 and *Pseudomonas aeruginosa*. *Int J Mol Sci.* 2011;12: 7510-7528.

619 56. Leat W, Baker J. Plasma polyunsaturated fatty acids of herbivores grazing pasture. *Proc*
620 *Nutr Soc.* 1969;28: 37A-38A.

621 57. Watson TDG, Burns L, Love S, Packard CJ, Shepherd J. Plasma lipids, lipoproteins and
622 post-heparin lipases in ponies with hyperlipaemia. *Equine Vet J.* 1992;24: 341-346.

623 58. Spector AA, Hoak JC, Fry GL, Denning GM, Stoll LL, Smith JB. Effect of fatty acid
624 modification on prostacyclin production by cultured human endothelial cells. *J Clin*
625 *Invest.* 1980;65: 1003-1012.

626 59. Spector AA, Kiser RE, Denning GM, Koh S-W, DeBault L. Modification of the fatty
627 acid composition of cultured human fibroblasts. *J Lipid Res.* 1979;20: 536-547.

628 60. Schroit A, Gallily R. Macrophage fatty acid composition and phagocytosis: effect of
629 unsaturation on cellular phagocytic activity. *Immunology.* 1979;36: 199-205.

630 61. Lands B, Bibus D, Stark KD. Dynamic interactions of n-3 and n-6 fatty acid nutrients.
631 Prostaglandins Leukot Essent Fatty Acids (PLEFA). 2017. doi:
632 10.1016/j.plefa.2017.01.012.

633 62. Liu H-Q, Qiu Y, Mu Y, Zhang X-J, Liu L, Hou X-H, et al. A high ratio of dietary n-3/n-6
634 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance
635 through suppressing activation of TLR4 in SD rats. *Nutr Res.* 2013;33: 849-858.

636 63. Mika A, Stepnowski P, Kaska L, Proczko M, Wisniewski P, Sledzinski M, et al. A
637 comprehensive study of serum odd- and branched-chain fatty acids in patients with
638 excess weight. *Obesity*. 2016;24: 1669-1676.

639 64. Kniazeva M, Crawford QT, Seiber M, Wang C-Y, Han M. Monomethyl branched-chain
640 fatty acids play an essential role in *caenorhabditis elegans* development. *PLoS Biol*.
641 2004;2: e257.

642 65. Wongtangtintharn S, Oku H, Iwasaki H, Toda T. Effect of branched-chain fatty acids on
643 fatty acid biosynthesis of human breast cancer cells. *J Nutr Sci Vitaminol*. 2004;50: 137-
644 143.

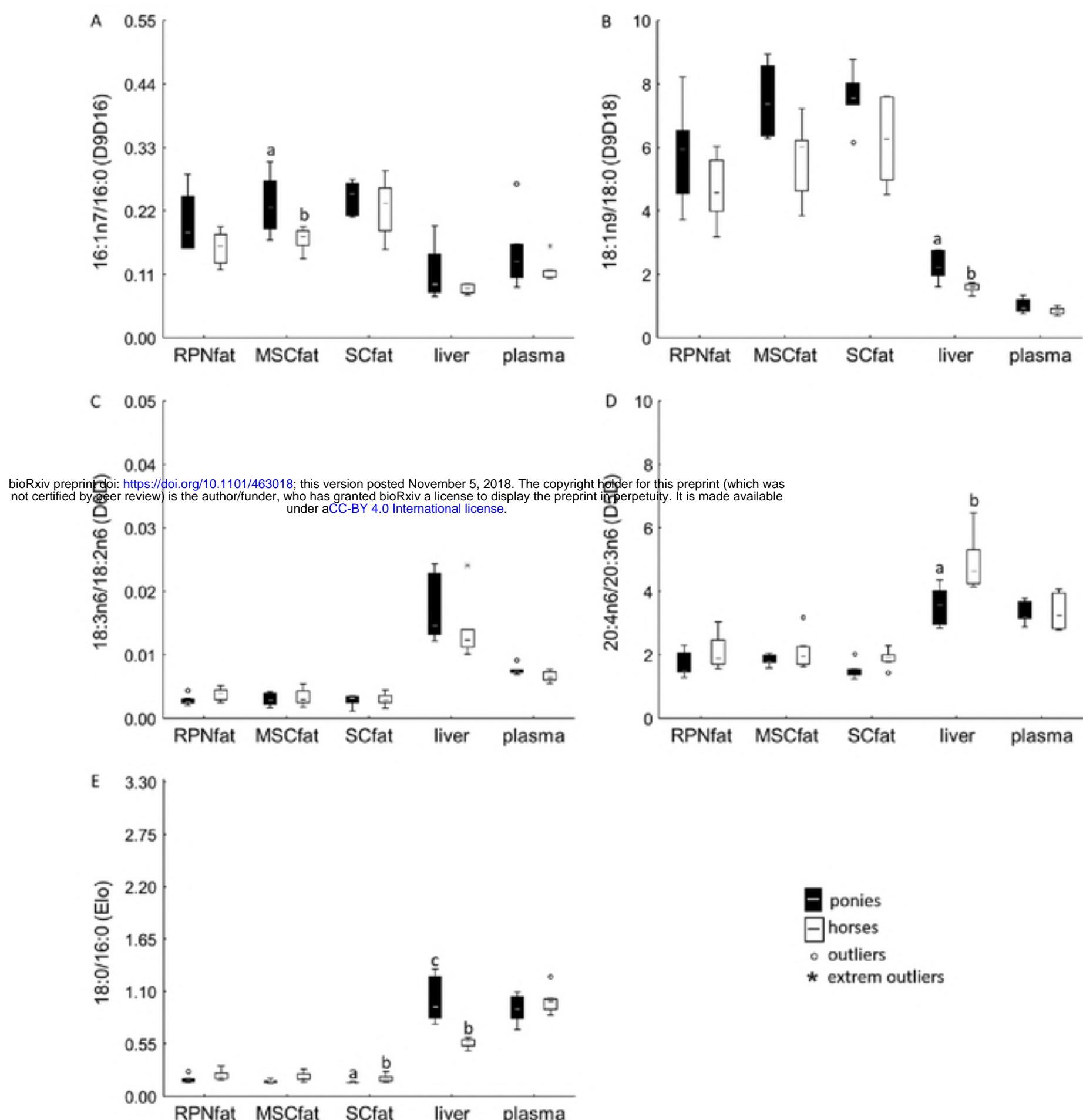
645 66. Yang Z, Liu S, Chen X, Chen H, Huang M, Zheng J. Induction of apoptotic cell death
646 and *in vivo* growth inhibition of human cancer cells by a saturated branched-chain fatty
647 acid, 13-methyltetradecanoic acid. *Cancer Res*. 2000;60: 505-509.

648 67. Alves SP, Raundrup K, Cabo Â, Bessa RJB, Almeida AM. Fatty acid composition of
649 muscle, adipose tissue and liver from muskoxen (*Ovibos moschatus*) living in West
650 Greenland. *PLoS One*. 2015;10: e0145241.

651 68. Horning MG, Martin DB, Karmen A, Vagelos PR. Fatty acid synthesis in adipose tissue.
652 II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. *J Biol Chem*.
653 1961;236: 669-672.

654 69. Aungst BJ. Structure/effect studies of fatty acid isomers as skin penetration enhancers
655 and skin irritants. *Pharm Res*. 1989;06: 244-247.

656 70. Santos AS, Rodrigues MAM, Bessa RJB, Ferreira LM, Martin-Rosset W. Understanding
657 the equine cecum-colon ecosystem: current knowledge and future perspectives. *Animal*.
658 2011;5: 48-56.


659 71. Belaunzaran X, Lavín P, Barron LJR, Mantecón AR, Kramer JKG, Aldai N. An
660 assessment of the fatty acid composition of horse-meat available at the retail level in
661 northern Spain. *Meat Sci*. 2017;124: 39-47.

662 72. Still GG, Davis DG, Zander GL. Plant epicuticular lipids: alteration by herbicidal
663 carbamates. *Plant Physiol*. 1970;46: 307-314.

664 73. Yamamoto M, Tanaka Y, Sugano M. Serum and liver lipid composition and lecithin:
665 cholesterol acyltransferase in horses, *Equus caballus*. *Comp Biochem Physiol B*.
666 1979;62: 185-193.

667 74. Ma DWL, Arendt BM, Hillyer LM, Fung SK, McGilvray I, Guindi M, et al. Plasma
668 phospholipids and fatty acid composition differ between liver biopsy-proven
669 nonalcoholic fatty liver disease and healthy subjects. *Nutr Diabetes*. 2016;6: e220.

Figures

Fig 1 Calculated desaturase and elongase activity indices. Product/precursor ratio of the percentages of individual FA represent desaturase and elongase activity indices: A) C16:1n-7/C16:0 = $\Delta 9$ -desaturase (D9D16), B) C18:1n-9/C18:0 = $\Delta 9$ -desaturase (D9D18), C) 18:3n-6/C18:2n-6 = $\Delta 6$ -desaturase (D6D), D) C20:4n-6/C20:3n-6 = $\Delta 5$ -desaturase (D5D) and E) C18:0/C16:0 = elongase (Elo). Data are shown as whisker plots. Boxes represent the interquartile range (IQR) between the 25th and 75th percentile. Horizontal lines are medians.