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ABSTRACT

Spontaneous or pharmacological loss of epigenetic repression exposes thousands of
promoters encoded in transposable elements (TEs) for pervasive transcriptional
activation. How TE responses differ between epigenetically relaxed cancer cells and what
factors govern such variation remains however largely unknown. By quantifying TE
transcription initiation at single cell and locus resolution in epigenetically targeted cancer
cells, we characterize specific groups of co-regulated loci that drive over ten-fold variation
in TE load per single cell. Such variable activity patterns are largely linked to cell cycle
stages, stress response signatures, and immune pathways. Furthermore, cells with high
levels of specific transcription factors show increased TE expression, while within such
cells, multi-copy families are differentially regulated in response to local sequence
divergence of binding sites and the locus’ repressive or active chromosomal contexts. Our
data thereby implicates the regulation of potent promoters within TEs as an

underestimated source of transcriptional heterogeneity following epigenetic therapy.
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INTRODUCTION

Transposable elements (TEs) are DNA sequences that multiply in the germline via vertical
transmission. They have been evolutionary successful in colonizing many eukaryotic
genomes and their massive expansion lead to partial neo-functionalization, in particular
as regulatory elements'2, Inactivating mutations have neutralized the threat of insertional
mutagenesis for most human TEs. Nevertheless, retrotransposons (LINEs, SINEs, and
LTRs) that require an RNA intermediate for their life-cycle encode strong promoter activity
that poses the risk of spurious transcriptional activation and subsequent epigenetic
perturbation across numerous genomic loci®4. Host cells therefore utilize multiple
epigenetic surveillance mechanisms, suchas DNA methylation and histone modifications,

to prevent the pervasive mis-expression of TEs®®.

Accordingly, pharmacological targeting of any such suppressive mechanisms may
provoke immune responses in cancer cells by releasing TEs as a source for neoantigens
or virus-mimicking double-stranded RNAs”8. Since the initial discovery of this effect for
DNA hypomethylating agents, the list of drugs triggering ‘viral mimicry’ has been steadily
extended and now even includes molecules with no direct target in the epigenetic enzyme
machinery®1°, The surprisingly broad spectrum of TE activation by distinct classes of anti-
cancer drugs illustrates our lack of knowledge about the factors governing their de-
repression propensity. For example, while TEs are targeted by common mechanisms for
epigenetic repression, their ancient promoters are diverse at multiple levels. TE
sequences are originating from many classes and families, which continue to diverge even
after their immobilization, creating diverse repertoires of cis-elements that can promote
binding by different trans-factors'*'2. The genomic and epigenomic contexts of TEs are
also diverse, with specific families enriched in repressed or active genomic domains,
within proximity to other regulatory elements, or away from them?*3. How these factors
contribute to the potentially complex and locus-specific regulation of TESs, especially once

epigenetic repression is eroded or targeted therapeutically remains unknown’:814,

Here, we develop a 5’ single-cell RNA sequencing (scRNA-seq) strategy with integrated
TE and genic analysis pipeline, to map active transcription start sites (TSSs) within TEs
de novo and model their co-regulation within sub-populations of single cells. We applied
our new approach to study two cancer cell lines following treatment with a clinically
established DNA hypomethylating agent and HDAC inhibitor, a drug combination known

to induce massive expression of specific TE families'*. Unexpectedly, we found highly
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heterogeneous overall TE activity levels in different populations of single cells. This
heterogeneity is driven by specific groups of co-regulated TEs, which in turn were strongly
linked with fundamental biological processes, including the cell cycle, stress responses,
and type-l interferon signaling. Activity patterns of loci from genetically similar families
were correlated with specific sequence polymorphisms in their putative promoters, the
expression of corresponding transcription factors (TFs), as well as with the transcriptional
permissiveness of their genomic neighborhood. 5 scRNA-seq therefore highlights the
necessity to deconvolute TES’ transcriptional output to the single cell and locus level.
Using this new technology it is now possible to investigate poorly appreciated aspects of
genome regulation in epigenetically de-repressed cells, not only following epigenetic
therapy, but during specific embryonic stages?'®, aging®, and carcinogenesis?’.

RESULTS

Epigenetic therapyinduces heterogeneous TEde-repression in single cancer cells.
We cultured lung and colon cancer cell lines (H1299 and HCT116, respectively) and
performed 5 scRNA-seq to map the transcriptional response to an established epigenetic
drug regimen combining a low-dose DNA hypomethylating agent and an HDAC inhibitor
(DACSB). After exclusion of low-quality cell barcodes (Fig S1A), we retained over 15,000
single cell profiles from treated and untreated cells, with a median gene transcript count
of 7972 to 17328 unique molecular identifiers (UMIs) per cell across conditions (Fig 1A).
We further confirmed UMI enrichment towards the 5’ start of gene models, allowing us to
de novo identify between 11,448 and 14,756 putative TSS with high consistency between
conditions (Fig S1B-F). The resulting TSS intervals accounted for ~62% of the total genic
signal and the remaining UMIs could be attributed to transcriptional noise or technical
effects (Fig S1G-H).

We also identified molecules mapping unambiguously to individual TE loci, and confirmed
that the treatment triggered on average a 1.56 — 1.72 (H1299 and HCT116) fold
transcriptional induction of TEs in both cell lines (Fig 1B). This allowed us to quantify TE
transcription at single cell resolution with high accuracy based on 19 — 7037 (12 — 6444
for HCT116) TE UMIs per cell post treatment. Interestingly, both cell lines showed
profound intercellular heterogeneity in their TE transcriptional load (7.53 and 7.87-fold
change between 5 and 95 percentile in H1299 and HCT116, respectively), and in
particular in LTR activity (10.5 and 9.35 fold variation, Fig 1C). The surprising extent of
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global TE expression heterogeneity motivated further in-depth analysis of locus- and
family- specific variability in TE de-repression, and the factors contributing to it.

5’ scRNA-seq defines putative TSSs in thousands of TE loci

Encouraged by the robust identification of genic TSSs based on 5° scRNA-seq data, we
adapted our approach to define transcriptional activity originating in TEs. We focused
solely on UMIs that uniquely mapped to individual genomic TE loci (between 86.17 and
88.96% of all TE UMIs post treatment, Fig S2A), which allowed the unbiased
guantification of transcriptional activity for most families (Fig S2B). To improve power in
detecting bona-fide TSS activity within TEs, we initially focused on treated cells and
aggregated their UMIs over consensus sequence models for 1076 families (between 3 to
228,527 loci per model) representing the four major TE classes (LTR, LINE, SINE, and
DNA) (Fig 1D). We binned the consensus sequence model of each family and analyzed
relative enrichment of bins as a proxy for specific TSS activity (Fig 1E). This led to the
identification of 722 bins in 442 families with putative TSS activity in H1299 cells (862/506
in HCT116). As shown in Fig 1F, mapping UMIs on the TE consensus model for families
with at least one specific bin reflected a highly specific pattern of localized consensus
transcription initiation (see Fig 1G and Fig S2C for case examples). Wevalidated that this
effect is not correlated with variable mapping efficiency in degenerate TE sequences (Fig
S2D). Although the degree of TSS specificitywas markedly different among broad classes
of TEs (Fig S2E), the overall transcriptional density (molecules per kb), in non-TSS TE
bins was comparable (Fig S2F). This showed elevation in transcriptional output was
indeed specific for TSSs in certain families rather than a consequence of broad patterns
of genomic de-repression without promoter specificity. Applying the same approach to
untreated cells, we found little TE signal originating from bona-fide TSS activity (Fig S2G),
which is why we focused downstream analyses on epigenetically de-repressed cells. In
conclusion, we observed specific transcriptional initiation in consensus models of de-
repressed TE families (and LTRs in particular) following treatment which facilitates

subsequent inference of activity for individual TE copies at single cell resolution.

To better understand potential intra-TE family expression dynamics, we decomposed
consensus TSS signals back into their single components and investigated the
contribution of individual TE copies to the TE consensus signal. We found that most of the
active families aggregated transcriptional contribution from a large number of expressed

loci (329 out of 442 expressed families with over 10 contributing loci in H1299, 405 out of
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507 in HCT116) (Fig S3A). For highly expressed families, we also confirmed that the
specificity of the TSS bin was completely consistent between copies (Fig 1H and Fig
S3B). On the other hand, for all TE families, the transcriptional response was incomplete
and a large number of TE loci remained repressed (Fig 11 and Fig S3C). For the most
consistently active family (LTR12C), we observed transcriptional activity in 2208/2310 (in
H1299/HCT116) out of 2735 loci. Although half of all LTR12C UMIs were contributed by
only 3.17/3.38% (n=70/78) of the loci, intrafamily sequence diversity allowed us to identify
true transcriptional activity for the remaining copies rather than counting misaligned UMIs
from few high output TSSs (Fig S3D and S3E). To validate the inferred TE expression
patterns, we confirmed a high degree of consistency in the activity of TE loci between the
two treated cancer cell lines (Fig S3F), in particular for loci associated with high
expression. In conclusion, we defined 136,366 genomic loci from 442 TE families (170,746
from 506 in HCT1160) as sites of potential transcriptional initiation following epigenetic
therapy. The activity in these sites generated 0 — 23.9% (0 — 38% HCT116) of the total
RNA molecule count profiled per cell (3.1 and 5.85% on average, respectively), suggesting
a considerable influence on the genomic landscape of transcriptional initiation which goes
beyond canonical assembly of transcriptional machineries at genic TSSs. This highlights
the importance of understanding the mechanisms driving the specification and activation
of TE TSSs at single cell and single locus resolution.

TE metacells uncover co-regulatory TE modules

Having identified transcriptional output from thousands of TE loci at single-cell resolution,
we next searched for cell subpopulations that share TE expression patterns, as a way to
define TE co-regulatory modules. Analysis of normalized single cell transcriptional
variance identified high variance TE TSS loci in treated cells (Fig 2A). Those TSSs also
showed a detailed and non-homogeneous correlation structure (Fig 2B and Fig S3G)
within the single cell cohort, confirming their expression is not a mere reflection of variable
global TE load following treatment. Furthermore, TE clusters that were correlated in their
expression patterns also showed a high degree of pairwise sequence similarity and often
mapped to phylogenetically related families (Fig 2B, lower right). We organized correlated
TEs into groups and annotated the derived TE modules (10 for each cell line) based on
their dominant TE class/superfamily associations. This resulted in the identification of

multiple ERV modules (comprising mostly solitary LTRs) with a complex correlation
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structure, a HCT116-specific LINE/DNA module, as well as 2 modules (3 in HCT116)
defined by weaker association of multiple Alu elements.

We adapted the MetaCell framework!® to identify TE metacells as groups of single cells
showing highly similar TE co-expression patterns. Analysis of TE metacells and the
distribution of TE expression over them showed that the rich correlation structure among
TE TSSs is reflecting an organization of the single cell cohort into groups representing
distinctive combinatorial expression signatures (Fig 2C). Importantly, although the
observed metacells differed considerably in their overall TE burden (Fig 2C, top panel),
some of the co-expressed TE TSS modules behaved antagonistically. This was the case
even for modules grouping together the same superfamily of ERV elements (e.g. modules
ERVO-IV and ERV9-VIl in H1299) (Fig S3G), confirming metacells were identifying
combinatorial TE regulation rather than approximating different degrees of overall TE
activity. These findings demonstrate regulated TE expression dynamics in treated cells
and suggest the presence of inter- and intra-family specific transcriptional regulation going
beyond global and stochastic epigenetic de-repression.

Gene expression correlates with specific TE activation signatures

The observed TE subpopulation dynamics hint towards coordinated control of TE modules
by factors acting in trans. In that case, TE metacells, which are statistically derived based
solely on TE expression, should be distinguishable also by their gene expression
signatures. Consistent with this idea, we observed remarkably rich gene expression
signatures in TE metacells (Fig 3A-C), that exceeded any localized effect of TE de-
repression on nearby genes (Fig S4A). Globally, we detected 6518 (3950 in HCT116)
(chi-squared, FDR < 0.01) genes with significant differential expression between TE
metacells. More specifically, genes enriched in specific TE metacells were functionally and
spatially related. For example, in H1299 we observed KRT8, KRT18 and additional genes
overexpressed in TE metacells #22 and #8, expressing TE module ERVO-Il (Fig S4B). In
HCT116, expression of early-immediate genes (JUN, ARC) were enriched in TE metacells
#1 expressing TE module ERV1/ERVK (Fig S4C). The LINE/DNA module was highly
specific for HCT116 metacell #13, comprising presumably apoptotic cells based on their
high mitochondrial and autophagy-related gene expression signature (ATG10, DNASE1)
(Fig S4D). Importantly, we identified a group of TE metacells in H1299 (#12-14, #21) that
were enriched for expression of loci within chromosomal locus 19qg3 (Fig S4E and F),

suggesting potential copy number heterogeneity as the underlying mechanism for up-
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regulation of TEs and genes in these metacells. However, most other TEs were not linked
with specific chromosomal domains, and included a balanced mixture of chromosomalloci
that are unlikely to be explained by sub-clonal structure bearing specific chromosomal
aberrations (Fig S4G and H).

To complement the detection of these combinatorial gene expression patterns in TE
metacells, we searched for gene expression signatures that correlated with overall TE
load in single cell resolution (Fig S5A). We found various immune-related genes (e.g.
IL16) to be positively associated with overall TE load, in line with recent reports on de-
repressed endogenous retroviruses (ERVs) triggering a viral-like interferon (IFN)-
response’®1° Indeed, overall IFN-I intensity was correlated with total TE load (Fig S5B)
and this effect was mostly driven by specific LTRs families at the metacell level (Fig S5C).
However, the effect size was modest with at most 1.61 and 1.5 fold change in IFN-I
expression between TE metacells in H1299 and HCT116, respectively. In summary, our
analysis defines a rich subpopulation structure in treated cells, involving combinatorial
activity of different TE TSSs, and correlated patterns of regulated gene expression. These
data suggest a cancer cell's state may regulate classical gene and TE promoters

simultaneously.
TE activation patterns are cell-cycle dependent

Some of the most notable gene expression signatures observed for TE metacells involved
co-regulation of multiple cell cycle genes (e.g. MKI67, UBE2C, PTTG1). To follow up on
these observations and characterize systematically potential cell cycle regulation of TE
expression, we generated cell cycle metacell models using a selected set of genes in each
cell line (Fig 3D and S6A). To our surprise, expression of different TE families (especially
SINESs) largely varied between cycling and non-cycling cells, even before treatment (Fig
S6B). Studying this effect at higher resolution, we projected the total expression of TE
modules on the inferred cell cycle trajectory (Fig 3E-F). This resulted in observation of
unexpectedly pervasive cell cycle correlation of TE expression patterns. In H1299, some
TE modules (ERVL-MaLR/ERVL, ERV9-ll, and ERV9-VI) peaked in expression at
G1/GO0, while other TE modules (ERV9-IV, and ERV9-VI) showed positive correlation of
their expression with specific stagesin S phase. Analogous dynamics (albeit less specific)
were inferred for HCT116 cells. Interestingly, analysis of the distributions of genomic time
of replication for loci in different TE modules showed remarkable diversity as well. We

observed an overall enrichment of active Alu elements at early replicating domains
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consistent with the general preference of SINEs to active genomic loci. More surprisingly,
we detected distinct time of replication distributions for different ERV9 TE modules, for
example showing in H1299 the ERV9-Illl module as early replicating and the ERV-IV
module as late replicating. The correlation between TE cell cycle dynamics and time of
replication was imperfect — although the two modules with the latest time of replication in

H1299 (ERV-II, ERV-VI) showed decrease in expression during replication.

Interestingly, we observed mild cell cycle correlations for some of the identified TE
modules even in untreated cells, suggesting this effect is generally applicable, even when
TEs are only weakly and sporadically de-repressed (Fig S6C). Together, these data
indicate that chromosomal dynamics during replication can act together with different

cellular programs to regulate specific patterns of TE activity.

Trans and cis factors shape the complex de-repression landscape of multi-copy
families

The analysis of TE metacells and TE TSS modules suggested that some of the de-
repression dynamics are correlated with the activity of specific trans-factors. However,
since even highly responsive TE families were characterized by only partial de-repression
of the family’s loci, we next aimed to define sequence features and genomics contexts
that predispose loci to become de-repressed. Focusing on families contributing at least 5
loci to TE modules, we first found strong correlation between the distance of a TE locus
to the nearest expressed genic TSS, and its de-repression predisposition (Fig 4A and Fig
S7A). This effect was linked with enriched de-repression probability of loci in the active
chromosome compartment, and lower de-repression in loci within lamina associated
domains (Fig 4B and Fig S7B). Analysis of DNA methylation data before and after
treatment!* showed that de-repressed TE loci are significantly more methylated before
treatment than loci that are not de-repressed (Fig 4C). After treatment, TE methylation
levels are decreasing around the responsive TEs, converging to levels similar to those
initially observed in the non-responsive loci prior to treatment. This result is suggesting the
non-responsive TE loci are relying on mechanisms other than DNA methylation for
repression, while the de-repressed loci show tight correlation, and likely a causal link

between methylation and repression.

In addition to genomic context and epigenomic markup, sequence divergence between

TEs within the same family may be predictive of de-repression trends!4. To test this, we
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clustered 2666 (excluding 66 loci on chromosome Y) sequences from the LTR12C family
according to their sequence, deriving two distinct clusters varying by hyper-variable
regions at multiple positions and in particular close to the identified TSS (Fig 4D). We then
hierarchically classified elements in each of the two clusters according to their time of
replication and analyzed the overall expression in each group, as well as the distribution
of expression over TE metacells (Fig 4E). The data showed substantially strong
expression in genetic cluster #2 compared to #1 (p << 0.01 in both cell lines, Wilcox).
Within the genetic clusters, we still observed a strong correlation between time of
replication and activity patterns (p<<0.01 in both cell lines, Wilcox), highlighting how broad
genomic context and sequence composition additively contribute to the de-repression
propensity within a TE family.

Interestingly, overall expression intensities of both clusters could be disconcordant and
even inversely correlated at the single-cell level (Fig S7C), suggesting sequence
variations in cis may be interpreted by a cells TF arsenal resulting in differential
transcriptional activation. In search of such putative regulators, we identified several
candidate TFs with cluster-specific correlations, including multiple zinc finger proteins and
other genes with reported function in retrovirus biology (e.g. IRF77) (Fig 4F). To our
surprise, NFY, a known activator of LTR12C expression?°, was positively associated with
expression of cluster 2 loci while lacking association with the other group in HCT116 cells.
We hypothesized that partial regulation by NFY of a subset of loci should be reflected by
differential binding affinities of the trimeric NFY complex. Indeed, NFYA ChIP-seq signal®*
from two cancer cell lines showed specific coverage for cluster 2 loci (p << 0.01, Wilcox),
especially those in early replicating compartments (Fig 4G and Fig7D). The lack of
binding affinity towards cluster 1 loci coincided with a specific and highly localized
degeneration of NFY DNA binding sites, directly upstream of the TSS (Fig 4H). Together,
the data suggest that cluster #2 TEs are de-repressed independently of NFYA availability,
possibly given permissive epigenomic contexts that are receptive to more general
activation machinery, while Cluster #1 TEs are dependent on NFYA for driving de-

repression in less favorable epigenomic contexts.

DISCUSSION

We performed 5’ single-cell transcriptional profiling to de novo identify TSS activity in
epigenetically de-repressed cancer cells. Using a computational approach that leverages

the high genomic copy-number and sequence conservation of TE families, we robustly
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pinpointed the exact sites and degree of transcription initiation in thousands of loci
representing the major transposon classes. This uncovered a rich and dynamic landscape
of TE cell-to-cell variation in supposedly homogenous cancer populations. We observed
different overall transcriptional dynamics for the four major TE classes. SINE
retrotransposons largely showed a pattern of expression consistent with a more sporadic
and spurious de-repression, although globally correlated with cellular proliferation.
Specific families of DNA transposons and LINEs were linked to a presumed pre-apoptotic
phenotype, suggesting broad-scale loss of genomic control. On the other hand and
consistent with a previous report??, we observed structured activity of LTR
retrotransposons, which was linked to specific stages of the cell cycle and additional genic
pathways. Coordinated activity of multiple loci from the same TE family was observed
systematically, but in some cases, and contrary to our expectations, loci of the same LTR
family could be clusteredinto modules showing distinct combinatorial expression patterns.
This data shows that even in cells with largely perturbed epigenetic integrity, TE de-
repression is still regulated by trans-factors (through cell cycle fluctuation or more stable
transcriptional states).

As exemplified for members of the massivelyde-repressed LTR12C TE family, intra-family
expression variability is associated with at least three layers of regulation. First, activated
loci rely on a favorable broad genomic context and proximity to activator machinery at
constitutively active TSSs. Second, de-repression involve change in local epigenetic
composition (in particular DNA methylation) of the TE TSSs. Finally, specific sequence
characteristics within the TE family consensus module are linked with locus-specific
regulation, ensuring or preventing effective recruitment of the activatory trans-machinery;,
as we have exemplified for NFY. Single cell RNA-seq can uncover the combinatorics of
these layers and how they affect TE regulation in general, improving our understanding of
the previously described cell-type and disease-specific TE expression landscapes?*-2.

Understanding the genomic rules of TE de-repression is particularly important in the
context of epigenetic therapy, where a subset of ERVs is reported to mimic a viral-like
interferon response and to serve as a rich source of potentially immunogenic
neoantigens” 8. We found the expression of several LTR families to be correlated with
overall interferon type-l gene expression at single cell resolution. Such variability
inherently represents differential response to treatment, motivating further studies on the
interplay between TE activity, intra-cellular regulation of immune response, and the
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efficacy of epigenetic and immunotherapy. Epigenetic relaxation is also observed during
massive genome-wide DNA demethylation during embryogenesis, germline development,
or when cells progressively lose their canonical DNA methylation in ageing?¢-2%. The
pervasive regulation of TE dynamics we observed in this study suggest the possibility that
a large number of un-appreciated hotspots of genomic activity can become activated in
such processes. Incorporating single cell TE activity profiles into models of epigenetic
control and gene regulation will provide a powerful tool for understanding TE sub-
functionalization toward developmental enhancers and alternative promoters, as well as
in the context of aberrant de-repression leading to disease.

DATA ACCESS

Raw and processed data were deposited in the gene expression omnibus repository
under accession GSE121309.

MATERIAL AND METHODS
Cell culture and treatment

HCT116 parental colorectal cell lines (HD PAR-033) were obtained from Horizon
Discovery Ltd, Cambridge, UK and NCI-H1299 non-small cell lung cancer cells were
provided by the courtesy of Prof. Moshe Oren. H1299 cells were cultured in RPMI 1640
(Gibco 21875034l) and HCT116 cells were grown in heat-inactivated McCoy’'s 5A medium
(Biological Industries, Israel; 01-075-1A), both supplemented with 10% Fetal Bovine
Serum (Gibco FBS 10270-106), 0.4% Penicillin-Streptomycin (Biological Industries, Israel;
01-031-1C) and 1% L-glutamine (Biological Industries, Israel; 01-020-1). Conditioned
media were filtered through a 0.22 microns filter (Corning, 430769) prior to culture. Cells
were split at a ratio of 1:10 every 2-3 days using 0.05% trypsin-EDTA solution C
(Biological Industries, Israel; 03-053-1B). Treatment with the DNA hypomethylating agent
5-Aza-2'-deoxycytidine (Sigma-Aldrich, A3656; Lot #SLBS4457) and HDAC inhibitor
SB939 (Cayman Chemical, 10443; Lot# 0435336-34) was performed as previously
described!®. To prepare single-cell suspensions, cells were processed according to the
instructions of the 10x Genomics Single Cells Protocols Cell Preparation Guide (10x
Genomics, CG00053 Rev C). About 4000 cells per cell line and treatment condition were
used as input for further processing.

5’ single-cell RNA sequencing
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Libraries were generated using the Chromium Single Cell 5 Library & Gel Bead (10x
Genomics, PN-1000014) according to the manufacturer’s instructions and sequenced on
the llumina NextSeq 550 using the High Output v2 kit (llumina, TG-160-2004).

Curation and binning of gene and TE models

Gene models were based on Gencode release 28 (GRCh38.p12) obtained from
(https://www.gencodegenes.org/releases/). Exon coordinates of all transcript isoforms
were reduced to a single set per gene symbol using the reduce function of the R package
GenomicRanges. To minimize mapping ambiguity for exons shared between different
genes, we then created a set of non-overlapping exon coordinates with the disjoin function
of the same package and retained all gene symbols for shared intervals. After elongating
the 5 end of exons containing annotated TSSs to 100bps or to the next exon, we binned

the resulting coordinates into 20bp intervals.

We downloaded genomic TE alignments generated by RepeatMasker open-4.0.5%° with
the repeat library 20140131 from (http://www.repeatmasker.org/species/hg.html). The

obtained alignments were used to map genomic TE sequences onto their relative position
on the corresponding consensus model at 20bp resolution (Fig S8). Rare TE sequence
polymorphisms not aligning to the corresponding consensus model were assigned to the
closest preceding consensus alignment. In case resulting 20bp genomic TE bins
ambiguously mapped to more than one TE family, only the family with highest alignment
score was retained. To minimize misassignment of genic UMIs onto TE loci, we finally
excluded TE bins located within genic exons (except those overlapping any genic

reference TSS) to generate the final TE coordinate set.
Data processing

Read pairs missing the constant part of the template switch oligo (defined by a hamming
distance to TTTCTTATATGGG greater than 4) were excluded before subsequent
processing with the cell-ranger analysis software version 2.1.0. Alignment was performed
against the human GRCh38-1.2.0 reference using non-default Cell Ranger parameters
(chemistry = SC5P-PE; rl1_length = 100; r2_length = 50) and the alignment-specific
parameter (--outFilterMultimapScoreRange: 2) for improved mapping specificity. UMI
tools* (--per-cell; --extract-umi-method = tag; --buffer-whole-contig; --cell-tag = CR; --umi-
tag = UR; --paired) was used to remove duplicates. Barcodes were classified as cell-

associated using the standard Cell Ranger (2.1.0) procedure. Identified cell barcodes with
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low mitochondrial (stripped nuclei) or ribosomal counts were further excluded from this set
(Fig S1A). Coordinates of the first position of readl in properly and uniquely aligned read
pairs were tested for overlaps with binned exon or TE intervals and used for downstream

analysis.

Alignment benchmark

The impact of throwing multi-mapping reads before TE quantification was assessed by
counting the number of unique and multi-mapping reads (Fig S2A and B). In case multiple
alignments (up to 10 distinct genomic positions) mapped to the same TE family, the read
was assigned to the family with maximal count (ties were resolved randomly). Family-wise
mappability score was then defined as the percentage of uniquely mapped from all UMIs

(including multi-mappers).

Pairwise hamming distances between reads mapping to the same TE family were
calculated by first extracting first mates of read pairs aligning to LTR12C loci on the plus
strand of chromosome 1. To minimize the impact of frameshifts, only mates mapping to
the maximally covered position in each locus were retained and the number of mates was
capped at 100 per locus. The resulting 2425 x 2425 comparisons representing mates
mapping to 65 expressed LTR12C loci are shownin Fig S3D.

Read error simulations were performed using the mutateReads function of our Reputils R

package (source code can be found here: https://tanaylab.bitbucket.io/Reputils). Briefly,

reference sequences of one million sampled TE alignments were extracted, randomly
mutated using 0.25, 0.5, 1, 2, 4, and 8% global error rates, and re-aligned against the
genome using mapping parameters as before.

TSS mapping

UMI counts were aggregated for all cells per TE family or gene bin. To account for TE
inter- and intrafamily bin copy-number and size variations, TE aggregate bin UMI counts
were normalized by a bin’s genomic copy-number and median width, and regularized by
the families’ median bin copy-number (Fig S8). Genic bins with a minimal UMI to total
gene expression ratio of 0.1 and at least 10 raw UMIs were marked as putative TSSs and
combined if less than 100bp apart. For TE bins, we applied more stringent TSS selection
criteria due to the lack of reference annotation and higher expected background signal.
Specifically, we calculated the UMI enrichment over the neighboring 8 bins (with an offset
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of 1 in both directions) and assessed statistical significance based on the Poisson
distribution. TE bins with at least 20 raw UMIs, fold-change > 3, and FDR corrected p-
value < 0.01 were selected as putative TSS. While both genic TSS and non-TSS UMIs
were retained (distinguished by an [# TSS suffix), only UMI signal from individual TE loci
corresponding to the identified TSS bin were kept before summarizing molecule counts in
a UMI matrix U = [uri] on features f and cells i. For gene-level analyses, we focused on
protein-coding genes and excluded non-TSS UMI counts in case a gene was associated
with an enriched TSS. This exclusion was done to minimize the impact of UMI signal from

de-repressed intronic TE loci bleeding into reference gene models4.

Metacell analysis
Transposable elements

Weused the MetaCell package® version 0.3.39 for TE feature selection, grouping of cells,
and to calculate gene enrichment along those groups, with the following adaptations. No
preliminary cell filtering was applied to TE UMl counts. Markers to model cell-to-cell
similarity were selected based on a normalized variance threshold above 0.1, a total UMI
count of at least 10 molecules, and second highest UMI count of 2 after downsampling to
401 (H1299) and 370 (HCT116) TE TSS UMIs. After constructingan initial similarity graph
with a K = 100 parameter, we sampled 500 metacell covers with a minimal cell size of 50,
each organizing 75% of cells into coherent groups in the graph. The resulting pairwise co-
clustering of all single cells was used as input to construct the final similarity graph and

robust metacell covers were inferred using default parameters.
Cell cycle

Cell cycle-related genes were defined based on their correlation to one of the marker
genes PCNA, E2F1, TOP2A, MKI67, UBE2S, ATAD2, ARL6IP1, AURKA, or RRM2 (r >=
0.14 to 0.25). Clustering correlated genes based on downsampled single-cell UMI count
matrices, was followed by manual selection of gene clusters that consisted of cohesive
cell cycle gene modules. This procedure was repeated for all conditions using four
different down-sampling depths (n=10000 to 5000 genic UMIs) to finally select 63 - 119
cell cycle regulated genes for further analysis. Metacell analysis of a UMI matrix consisting
of these genes alone (aiming at larger metacell sizes by setting min_mc_size = 100) was
then performed. The resulting cell cycle metacells were arranged according to their

estimated phase (From GO/1 to mitotic exit) in a supervised fashion based on the
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expression of marker genes (Fig S6A), organizing all cells along a putative cell cycle

trajectory.

Cell cycle effect on TE expression

2D projection of single cells and metacells according to the cell cycle model was performed
using the standard Metacell projection algorithm setting T_edge to 0.05%L. To plot cell cycle
progression of individual TE modules, we used the grouping of cells according to the genic
cell cycle module. Downsampled expression levels of TE modules were summarized per
cell and their enrichment was compared to the module’s mean expression intensity across
all cells. The resulting enrichment score was visualized on top of the cell cycle projection
or logz transformed (a pseudocount of 1 was added) before applying non-parametric local
regression (locally weighted smoothing) across cells grouped by their cell cycle metacell
stage. This approach provided adequate power for testing correlation of TEs with different
cell cycle phases, and we therefore did not aim at more continuous modelling of the

transcriptional dynamics as suggested by more direct modelling strategies3233,
Time of replication, lamin association, and NFY ChlIP-seq

Repli-seq and DAM-ID normalized coverage files were obtained from the 4D nucleus3*
data portal (https://data.4dnucleome.org/) for HCT116 and H1-hESC cells, respectively.

Replicates were averaged and resulting coverage values were percent rank and logz
transformed. NFYA fold change over control signal from two replicates in K562 cells was
downloaded from the ENCODE?! data portal and percent rank transformed.

Multiple sequence alignment and genetic divergence

MAFFT® version 7.394 was used to align sequences with a gap opening penalty and
offset of 1.1 and 0, respectively. Positions with a gap frequency greater than 99% on the
alignment were removed for visualization. Distances between TE loci were computed
using the dist.dna function of the R package ape using the indelblock substitution model.
Ward's linkage was used to group loci. A locus’ position-wise divergence from the
consensus was defined as 1 — that bases’ consensus frequency (including gaps as a fifth
base). Group-wise sequence divergence was calculated based on the maximal delta in

base frequency per position.

Selection of IFN-I genes
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All annotated IFN-I genes from the interferome®® database were downloaded and further
filtered for genes that were consistently upregulated with a minimal average fold-change
of 2 across at least 2 independent studies. We compared expression between untreated
and treated cells for the remaining 1220 putative IFN-I regulated genes and defined a final
setof 164 (H1299) and 127 (HCT116) genes with increased (log2 fold-change larger than

2) expression following treatment.

DNA methylation analysis

DNA methylation values for untreated and treated H1299 cells were downloaded from the
gene expression omnibus repository under accession GSE81322. Hgl9 CpG coordinates

were lifted to hg38 using the liftOver function from the Genomic Ranges R package.

Statistical analysis

All statistical analyses were performed using the R statistical environment, version 3.4.2.
Unless stated otherwise, box plot center lines indicate data medians, box limits indicate
the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range from the
25th and 75th percentiles, and outliers are not shown. For group-wise comparison of two
distributions from different samples or treatments, the two-tailed nonparametric Wilcoxon
and Mann-Whitney test was used. Unless stated otherwise, p-values < 0.05 were
considered statistically significant and significance levels are depicted as follows: * P <
0.05, ** P < 0.005, *** P < 0.0005. The Benjamini and Hochberg method was used to
correct for multiple hypothesis testing.

Code availability

Analysis scripts and  processed data files are available under

(https://bitbucket.org/tanaylab/brocks_et_al nat com_2019 epitherapy_scrna/src/defaul
t/).
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Figure 1| Single-cell RNA-seq identifies the transcription start site of genes

A) Summary of the applied experimental workflow.
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B) Violin plot showing the single-cell density distribution of total genic and TE UMI
counts for untreated (red) and treated (blue) H1299 (left) and HCT116 (right) cells.

C) Single-cell density distribution of TE load (TE UMis / total UMIs) in four classes,
before (light colors) and after (dark colors) treatment.

D) Enrichment scores for TE consensus bins (Y axis), by total UMI counts on
neighboring bins for H1299 (top) and HCT116 (bottom) cells. Bins identified as
putative TSSs are highlighted in red.

E) Aggregate normalized UMI count distribution along the consensus models for
families with at least 1 detected TSS bin in H1299 (n=442, left) and HCT116
(n=506, right) cells. Family profiles (rows) are centered around the TSS bin with
highest raw expression and arranged by TE class (colored boxes) and TSS bin
enrichment. UMI aggregate counts of the maximum TSS bin are shown in the right.

F) Distribution of normalized UMI counts along the consensus model of selected
(highest overall expression in H1299) representatives from each TE class. Putative
TSS bins are highlighted in red.

G) Number of TSS and non-TSS UMIs mapping to different TE classes in treated
H1299 cells.

H) Per locus total number of UMIs as a function of TSS-only UMIs for representative
TE families. For each TE class, the maximally expressed family in H1299 cells was
selected.

[) Distribution of total UMIs per locus for representative TE families.
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Figure 2| Meta-grouping of cellswith consistent TE expressionidentifies structured

variation in TE transcription

A) Normalized variance vs. mean UMI counts in down-sampled TE TSSs UMI
matrices.

B) Single-cell expression correlation (upper triangle) and pairwise genetic divergence
(lower triangle) for 10 TE TSSs modules in H1299 (top) and HCT116 (bottom)
cells. SINE and non-SINE modules are plotted separately for clarity. Color
annotation represent a loci’s TE class or superfamily membership.

C) H1299 (upper) and HCT116 (lower) single-cell expression matrix showing the
rolling mean (five cells) of downsampled and log2 transformed UMI counts. Rows
represent individual loci arranged by TE modules and columns correspond to
individual cells grouped by metacells and arranged by total TE load. The two upper
bar plots indicate a cell’'s absolute TE load and the contribution of each TE class
toit.
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Figure 3 | TE meta-cells are linked to the cell cycle and other gene-modules

A) Shown are enrichment values for genes (rows) over TE metacells (columns). Left
color bars indicate genic TSS overlap with ERV9 family members (green) and
mapping to chromosome 19 in H1299. Metacell numbers (bottom) are consistent
with Figure 3.

B) Enrichment values for TE loci (rows) across metacells (columns). Rows are
grouped by module (as in Fig 3). Colored bars represent the superfamily/class
membership of a locus. Alu modules are not shown.

C) Average TE load per metacell. Colors indicate the contribution of individual TE
classes to the total.

D) Metacell regularized force-directed single-cell 2D projection based on cell cycle
transcriptome signatures. Grey dots represent individual cells. The color of the
corresponding metacell ID (squares positioned at the centroid) is based on the
average expression footprint of presumed mitosis-specific genes (top 10 genes
with highest footprint in mitotic metacell).

E) Projection as before but colors indicate summarized expression intensity of
indicated TE modules.

F) Cell cycle metacells (columns) were arranged according to their estimated cell
cycle phase from left (GO/G1) to right (mitotic exit) in a supervised fashion. Upper
rows show the smoothed enrichment of aggregated TE modules across metacells.
TE modules were arranged by their median time of replication (right boxplots).
Mitosis and replication expression scores (lower rows) summarize downsampled
UMI counts of the top 10 genes in the respective cell cycle gene module.
Significance is based on Wilcoxon rank-sum test comparing cells from metacells
#1-5 (#1-6 in HCT116) against #6-10 (#7-12 in HCT116).

23


https://doi.org/10.1101/462853
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/462853; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

A B C

— 1 Expression m ™ 1 Expression Expression

™ Active 1 m Active 1.00 i Active
Silent

Treatment

DMSO

Silent Silent
m DACSB
J:l ; 000

15

Distance active

gene (Mbs)
Lt

z. O h Ji
% | B
Lamin-B1
DNA Metyhlation
3

o & écf’ & \go" ERV9s  ERVL-MalLRs SINEs
¢ N e ¢ e
N
@QS <&
D Divergence
(3 T—
o e Low  High
Qo
b Sos|
£z, [‘Mmhm TTRRY ™ ¥
H1299 SFes ¢ % HCT116 %
— =) 5 806
5 A 12.53
£
mel E 117
- 761
I () 581 49
~
£ 1257 1564
— >
g 5
5 B
& L— 84
" 548
c
o — 323 3.08
O
o~
B
m —
5
<
£ 1720 19.54
o
S -
= = |
— BI = 173 649 asa
L e 2 09 08
- =HI
B E E T=e- 02 2221 2345
H B ’:’E =
g =} 3 i
FEERRE
| z i CEE W 90 338 225
SO FEEN 0 2 azs
gxs £§8BEEEEEEE Lod Leci
1] .9 ‘g Position on Alignment Position on Allgnment
S g L High 5 0 115
3 g % Divergence "¢ < -t
S w from Expression
F o consensus G
H1299 HCT116 l
02 o Nearest ” K62
o cenpAll * 02 o LTR12C (bps) 2 s oA
2 cesPg1 m 0-1000 3 - ChIP signal
5 l'ZNF‘é"B S — = 1001- 100,000 5 >15
% 0 méﬁrgs.za |RF7|J1UNBH . ..0 % m>100000 ]
2 . 0.1 [2NFeS2[1 . e N
5 5 . ° KL§5|‘CSRNP2|1 .' 2 E °
< : ZNF740‘ zNFHB- -
x 0 ) NKX3- 1|1 5- %- E
[=4 . .
- » MXD4 0.0
o : -
= * NRiH4 . H o
201 : SREBF1e £ i v R
5 : - Sl Wl ww o wemm oW
9 01 e ZNF444|1 g { e - — £ il
2 ] " AT
8_02 HMgATl1 . zscANtet g, . e I‘
: o o
01 00 01 02 -010 -005 000 005 010 ik & 3
5
Correlation to LTR12C genetic group 1 an) CA@- £
NFYA- MAD0GO.3 g
3

24


https://doi.org/10.1101/462853
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/462853; this version posted July 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Figure 4 | Sequence composition and genomic context explain TE transcriptional

activation and variability

A) Boxplot showing the distance to the nearest identified genic TSS for active (>10
TSS UMIs, orange) and silent (0 TSS and non-TSS UMis, blue) TE loci grouped
by TE class/superfamily membership in H1299 cells. Boxplot whiskers extend 0.5
times the interquartile range from the 25th and 75th percentiles and loci more than
2 mega bases away are not shown.

B) Lamina-association of active (orange) and silent (blue) TE loci grouped by TE
class/superfamily in H1299 cells.

C) Distribution of average methylation for active (orange) and silent (blue) TE loci
before (light colors) and after treatment (dark colors) grouped TE class/superfamily
membership in H1299 cells.

D) Rolling mean (five nucleotides) of the sequence divergence between two genetic
subgroups of highly expressed LTR12C elements. Colors indicate the degree of
divergence.

E) Multiple sequence alignment (left) and TE metacell expression (right) for 2666
LTR12C loci hierarchically grouped by genetic sequence (clusters #1 and #2), time
of replication (early and late), and transcriptional activity (silent (O UMIs), low (less
than 10 TSS UMIs) and high (at least 11 TSS UMIs)). Loci (rows) within a group
are arranged according to K-means clustering of TE metacell footprints. Numbers
to the right indicate the number of loci and their percentage from total for each
group. Colors either represent the position-wise genetic divergence from the
consensus or the TE metacell footprint. Alignment is identical for H1299 (left panel)
and HCT116 (right panel) cells, but the order may differ according to cell-line
specific expression dynamics.

F) Spearman correlation of TF expression levels to summarized LTR12C genetic
group 1 and 2 loci counts (all downsampled). Color of annotated TFs represents
distance to nearest highly expressed LTR12C element.

G) K562 ChIP-seq signal for NFYA on top of the LTR12C multiple sequence
alignment. Individual loci are grouped according to the H1299 data shownin E.

H) Consensus sequence logos from position 1900 to 2025 on the alignment for group
1 and 2 loci. Putative NFY motif sites are highlighted.
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