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ABSTRACT  

Spontaneous or pharmacological loss of epigenetic repression exposes thousands of 

promoters encoded in transposable elements (TEs) for pervasive transcriptional 

activation. How TE responses differ between epigenetically relaxed cancer cells and what 

factors govern such variation remains however largely unknown. By quantifying TE 

transcription initiation at single cell and locus resolution in epigenetically targeted cancer 

cells, we characterize specific groups of co-regulated loci that drive over ten-fold variation 

in TE load per single cell. Such variable activity patterns are largely linked to cell cycle 

stages, stress response signatures, and immune pathways. Furthermore, cells with high 

levels of specific transcription factors show increased TE expression, while within such 

cells, multi-copy families are differentially regulated in response to local sequence 

divergence of binding sites and the locus’ repressive or active chromosomal contexts. Our 

data thereby implicates the regulation of potent promoters within TEs as an 

underestimated source of transcriptional heterogeneity following epigenetic therapy. 
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INTRODUCTION 

Transposable elements (TEs) are DNA sequences that multiply in the germline via vertical 

transmission. They have been evolutionary successful in colonizing many eukaryotic 

genomes and their massive expansion lead to partial neo-functionalization, in particular 

as regulatory elements1,2. Inactivating mutations have neutralized the threat of insertional 

mutagenesis for most human TEs. Nevertheless, retrotransposons (LINEs, SINEs, and 

LTRs) that require an RNA intermediate for their life-cycle encode strong promoter activity 

that poses the risk of spurious transcriptional activation and subsequent epigenetic 

perturbation across numerous genomic loci3,4. Host cells therefore utilize multiple 

epigenetic surveillance mechanisms, such as DNA methylation and histone modifications, 

to prevent the pervasive mis-expression of TEs5,6.  

Accordingly, pharmacological targeting of any such suppressive mechanisms may 

provoke immune responses in cancer cells by releasing TEs as a source for neoantigens 

or virus-mimicking double-stranded RNAs7,8. Since the initial discovery of this effect for 

DNA hypomethylating agents, the list of drugs triggering ‘viral mimicry’ has been steadily 

extended and now even includes molecules with no direct target in the epigenetic enzyme 

machinery9,10. The surprisingly broad spectrum of TE activation by distinct classes of anti-

cancer drugs illustrates our lack of knowledge about the factors governing their de-

repression propensity. For example, while TEs are targeted by common mechanisms for 

epigenetic repression, their ancient promoters are diverse at multiple levels. TE 

sequences are originating from many classes and families, which continue to diverge even 

after their immobilization, creating diverse repertoires of cis-elements that can promote 

binding by different trans-factors11,12. The genomic and epigenomic contexts of TEs are 

also diverse, with specific families enriched in repressed or active genomic domains, 

within proximity to other regulatory elements, or away from them13. How these factors 

contribute to the potentially complex and locus-specific regulation of TEs, especially once 

epigenetic repression is eroded or targeted therapeutically remains unknown7,8,14. 

Here, we develop a 5’ single-cell RNA sequencing (scRNA-seq) strategy with integrated 

TE and genic analysis pipeline, to map active transcription start sites (TSSs) within TEs 

de novo and model their co-regulation within sub-populations of single cells. We applied 

our new approach to study two cancer cell lines following treatment with a clinically 

established DNA hypomethylating agent and HDAC inhibitor, a drug combination known 

to induce massive expression of specific TE families14. Unexpectedly, we found highly 
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heterogeneous overall TE activity levels in different populations of single cells. This 

heterogeneity is driven by specific groups of co-regulated TEs, which in turn were strongly 

linked with fundamental biological processes, including the cell cycle, stress responses, 

and type-I interferon signaling. Activity patterns of loci from genetically similar families 

were correlated with specific sequence polymorphisms in their putative promoters, the 

expression of corresponding transcription factors (TFs), as well as with the transcriptional 

permissiveness of their genomic neighborhood. 5’ scRNA-seq therefore highlights the 

necessity to deconvolute TEs’ transcriptional output to the single cell and locus level. 

Using this new technology it is now possible to investigate poorly appreciated aspects of 

genome regulation in epigenetically de-repressed cells, not only following epigenetic 

therapy, but during specific embryonic stages15,  aging16, and carcinogenesis17. 

RESULTS 

Epigenetic therapy induces heterogeneous TE de-repression in single cancer cells. 

We cultured lung and colon cancer cell lines (H1299 and HCT116, respectively) and 

performed 5’ scRNA-seq to map the transcriptional response to an established epigenetic 

drug regimen combining a low-dose DNA hypomethylating agent and an HDAC inhibitor 

(DACSB). After exclusion of low-quality cell barcodes (Fig S1A), we retained over 15,000 

single cell profiles from treated and untreated cells, with a median gene transcript count 

of 7972 to 17328 unique molecular identifiers (UMIs) per cell across conditions  (Fig 1A). 

We further confirmed UMI enrichment towards the 5’ start of gene models, allowing us to 

de novo identify between 11,448 and 14,756 putative TSS with high consistency between 

conditions (Fig S1B-F). The resulting TSS intervals accounted for ~62% of the total genic 

signal and the remaining UMIs could be attributed to transcriptional noise or technical 

effects (Fig S1G-H). 

We also identified molecules mapping unambiguously to individual TE loci, and confirmed 

that the treatment triggered on average a 1.56 – 1.72 (H1299 and HCT116) fold 

transcriptional induction of TEs in both cell lines (Fig 1B). This allowed us to quantify TE 

transcription at single cell resolution with high accuracy based on 19 – 7037 (12 – 6444 

for HCT116) TE UMIs per cell post treatment. Interestingly, both cell lines showed 

profound intercellular heterogeneity in their TE transcriptional load (7.53 and 7.87-fold 

change between 5 and 95 percentile in H1299 and HCT116, respectively), and in 

particular in LTR activity (10.5 and 9.35 fold variation, Fig 1C). The surprising extent of 
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global TE expression heterogeneity motivated further in-depth analysis of locus- and 

family- specific variability in TE de-repression, and the factors contributing to it. 

5’ scRNA-seq defines putative TSSs in thousands of TE loci  

Encouraged by the robust identification of genic TSSs based on 5’ scRNA-seq data, we 

adapted our approach to define transcriptional activity originating in TEs. We focused 

solely on UMIs that uniquely mapped to individual genomic TE loci (between 86.17 and 

88.96% of all TE UMIs post treatment, Fig S2A), which allowed the unbiased 

quantification of transcriptional activity for most families (Fig S2B). To improve power in 

detecting bona-fide TSS activity within TEs, we initially focused on treated cells and 

aggregated their UMIs over consensus sequence models for 1076 families (between 3 to 

228,527 loci per model) representing the four major TE classes (LTR, LINE, SINE, and 

DNA) (Fig 1D). We binned the consensus sequence model of each family and analyzed 

relative enrichment of bins as a proxy for specific TSS activity (Fig 1E). This led to the 

identification of 722 bins in 442 families with putative TSS activity in H1299 cells (862/506 

in HCT116). As shown in Fig 1F, mapping UMIs on the TE consensus model for families 

with at least one specific bin reflected a highly specific pattern of localized consensus 

transcription initiation (see Fig 1G and Fig S2C for case examples). We validated that this 

effect is not correlated with variable mapping efficiency in degenerate TE sequences (Fig 

S2D). Although the degree of TSS specificity was markedly different among broad classes 

of TEs (Fig S2E), the overall transcriptional density (molecules per kb), in non-TSS TE 

bins was comparable (Fig S2F). This showed elevation in transcriptional output was 

indeed specific for TSSs in certain families rather than a consequence of broad patterns 

of genomic de-repression without promoter specificity. Applying the same approach to 

untreated cells, we found little TE signal originating from bona-fide TSS activity (Fig S2G), 

which is why we focused downstream analyses on epigenetically de-repressed cells. In 

conclusion, we observed specific transcriptional initiation in consensus models of de-

repressed TE families (and LTRs in particular) following treatment which facilitates 

subsequent inference of activity for individual TE copies at single cell resolution. 

To better understand potential intra-TE family expression dynamics, we decomposed 

consensus TSS signals back into their single components and investigated the 

contribution of individual TE copies to the TE consensus signal. We found that most of the 

active families aggregated transcriptional contribution from a large number of expressed 

loci (329 out of 442 expressed families with over 10 contributing loci in H1299, 405 out of 
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507 in HCT116) (Fig S3A). For highly expressed families, we also confirmed that the 

specificity of the TSS bin was completely consistent between copies (Fig 1H and Fig 

S3B). On the other hand, for all TE families, the transcriptional response was incomplete 

and a large number of TE loci remained repressed (Fig 1I and Fig S3C). For the most 

consistently active family (LTR12C), we observed transcriptional activity in 2208/2310 (in 

H1299/HCT116) out of 2735 loci. Although half of all LTR12C UMIs were contributed by 

only 3.17/3.38% (n=70/78) of the loci, intrafamily sequence diversity allowed us to identify 

true transcriptional activity for the remaining copies rather than counting misaligned UMIs 

from few high output TSSs (Fig S3D and S3E). To validate the inferred TE expression 

patterns, we confirmed a high degree of consistency in the activity of TE loci between the 

two treated cancer cell lines (Fig S3F), in particular for loci associated with high 

expression. In conclusion, we defined 136,366 genomic loci from 442 TE families (170,746 

from 506 in HCT1160) as sites of potential transcriptional initiation following epigenetic 

therapy. The activity in these sites generated 0 – 23.9% (0 – 38% HCT116) of the total 

RNA molecule count profiled per cell (3.1 and 5.85% on average, respectively), suggesting 

a considerable influence on the genomic landscape of transcriptional initiation which goes 

beyond canonical assembly of transcriptional machineries at genic TSSs. This highlights  

the importance of understanding the mechanisms driving the specification and activation 

of TE TSSs at single cell and single locus resolution. 

TE metacells uncover co-regulatory TE modules  

Having identified transcriptional output from thousands of TE loci at single-cell resolution, 

we next searched for cell subpopulations that share TE expression patterns, as a way to 

define TE co-regulatory modules. Analysis of normalized single cell transcriptional 

variance identified high variance TE TSS loci in treated cells (Fig 2A). Those TSSs also 

showed a detailed and non-homogeneous correlation structure (Fig 2B and Fig S3G) 

within the single cell cohort, confirming their expression is not a mere reflection of variable 

global TE load following treatment. Furthermore, TE clusters that were correlated in their 

expression patterns also showed a high degree of pairwise sequence similarity and often 

mapped to phylogenetically related families (Fig 2B, lower right). We organized correlated 

TEs into groups and annotated the derived TE modules (10 for each cell line) based on 

their dominant TE class/superfamily associations. This resulted in the identification of 

multiple ERV modules (comprising mostly solitary LTRs) with a complex correlation 
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structure, a HCT116-specific LINE/DNA module, as well as 2 modules (3 in HCT116) 

defined by weaker association of multiple Alu elements.  

We adapted the MetaCell framework18 to identify TE metacells as groups of single cells 

showing highly similar TE co-expression patterns. Analysis of TE metacells and the 

distribution of TE expression over them showed that the rich correlation structure among 

TE TSSs is reflecting an organization of the single cell cohort into groups representing 

distinctive combinatorial expression signatures (Fig 2C). Importantly, although the 

observed metacells differed considerably in their overall TE burden (Fig 2C, top panel), 

some of the co-expressed TE TSS modules behaved antagonistically. This was the case 

even for modules grouping together the same superfamily of ERV elements (e.g. modules 

ERV9-IV and ERV9-VII in H1299) (Fig S3G), confirming metacells were identifying 

combinatorial TE regulation rather than approximating different degrees of overall TE 

activity. These findings demonstrate regulated TE expression dynamics in treated cells 

and suggest the presence of inter- and intra-family specific transcriptional regulation going 

beyond global and stochastic epigenetic de-repression.  

Gene expression correlates with specific TE activation signatures 

The observed TE subpopulation dynamics hint towards coordinated control of TE modules 

by factors acting in trans. In that case, TE metacells, which are statistically derived based 

solely on TE expression, should be distinguishable also by their gene expression 

signatures. Consistent with this idea, we observed remarkably rich gene expression 

signatures in TE metacells (Fig 3A-C), that exceeded any localized effect of TE de-

repression on nearby genes (Fig S4A). Globally, we detected 6518 (3950 in HCT116) 

(chi-squared, FDR < 0.01) genes with significant differential expression between TE 

metacells. More specifically, genes enriched in specific TE metacells were functionally and 

spatially related. For example, in H1299 we observed KRT8, KRT18 and additional genes 

overexpressed in TE metacells #22 and #8, expressing TE module ERV9-II (Fig S4B). In 

HCT116, expression of early-immediate genes (JUN, ARC) were enriched in TE metacells 

#1 expressing TE module ERV1/ERVK (Fig S4C). The LINE/DNA module was highly 

specific for HCT116 metacell #13, comprising presumably apoptotic cells based on their 

high mitochondrial and autophagy-related gene expression signature (ATG10, DNASE1) 

(Fig S4D). Importantly, we identified a group of TE metacells in H1299 (#12-14, #21) that 

were enriched for expression of loci within chromosomal locus 19q3 (Fig S4E and F), 

suggesting potential copy number heterogeneity as the underlying mechanism for up-
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regulation of TEs and genes in these metacells. However, most other TEs were not linked 

with specific chromosomal domains, and included a balanced mixture of chromosomal loci 

that are unlikely to be explained by sub-clonal structure bearing specific chromosomal 

aberrations (Fig S4G and H).   

To complement the detection of these combinatorial gene expression patterns in TE 

metacells, we searched for gene expression signatures that correlated with overall TE 

load in single cell resolution (Fig S5A). We found various immune-related genes (e.g. 

IL16) to be positively associated with overall TE load, in line with recent reports on de-

repressed endogenous retroviruses (ERVs) triggering a viral-like interferon (IFN)-

response7,8,19. Indeed, overall IFN-I intensity was correlated with total TE load (Fig S5B) 

and this effect was mostly driven by specific LTRs families at the metacell level (Fig S5C). 

However, the effect size was modest with at most 1.61 and 1.5 fold change in IFN-I 

expression between TE metacells in H1299 and HCT116, respectively. In summary, our 

analysis defines a rich subpopulation structure in treated cells, involving combinatorial 

activity of different TE TSSs, and correlated patterns of regulated gene expression. These 

data suggest a cancer cell’s state may regulate classical gene and TE promoters 

simultaneously. 

TE activation patterns are cell-cycle dependent 

Some of the most notable gene expression signatures observed for TE metacells involved 

co-regulation of multiple cell cycle genes (e.g. MKI67, UBE2C, PTTG1). To follow up on 

these observations and characterize systematically potential cell cycle regulation of TE 

expression, we generated cell cycle metacell models using a selected set of genes in each 

cell line (Fig 3D and S6A). To our surprise, expression of different TE families (especially 

SINEs) largely varied between cycling and non-cycling cells, even before treatment (Fig 

S6B). Studying this effect at higher resolution, we projected the total expression of TE 

modules on the inferred cell cycle trajectory (Fig 3E-F). This resulted in observation of 

unexpectedly pervasive cell cycle correlation of TE expression patterns. In H1299, some 

TE modules (ERVL-MaLR/ERVL, ERV9-III, and ERV9-VII) peaked in expression at 

G1/G0, while other TE modules (ERV9-IV, and ERV9-VI) showed positive correlation of 

their expression with specific stages in S phase. Analogous dynamics (albeit less specific) 

were inferred for HCT116 cells. Interestingly, analysis of the distributions of genomic time 

of replication for loci in different TE modules showed remarkable diversity as well. We 

observed an overall enrichment of active Alu elements at early replicating domains 
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consistent with the general preference of SINEs to active genomic loci. More surprisingly, 

we detected distinct time of replication distributions for different ERV9 TE modules, for 

example showing in H1299 the ERV9-III module as early replicating and the ERV-IV 

module as late replicating. The correlation between TE cell cycle dynamics and time of 

replication was imperfect – although the two modules with the latest time of replication in 

H1299 (ERV-III, ERV-VII) showed decrease in expression during replication.  

Interestingly, we observed mild cell cycle correlations for some of the identified TE 

modules even in untreated cells, suggesting this effect is generally applicable, even when 

TEs are only weakly and sporadically de-repressed (Fig S6C). Together, these data 

indicate that chromosomal dynamics during replication can act together with different 

cellular programs to regulate specific patterns of TE activity.  

Trans and cis factors shape the complex de-repression landscape of multi-copy 

families 

The analysis of TE metacells and TE TSS modules suggested that some of the de-

repression dynamics are correlated with the activity of specific trans-factors. However, 

since even highly responsive TE families were characterized by only partial de-repression 

of the family’s loci, we next aimed to define sequence features and genomics contexts 

that predispose loci to become de-repressed. Focusing on families contributing at least 5 

loci to TE modules, we first found strong correlation between the distance of a TE locus 

to the nearest expressed genic TSS, and its de-repression predisposition (Fig 4A and Fig 

S7A). This effect was linked with enriched de-repression probability of loci in the active 

chromosome compartment, and lower de-repression in loci within lamina associated 

domains (Fig 4B and Fig S7B). Analysis of DNA methylation data before and after 

treatment14 showed that de-repressed TE loci are significantly more methylated before 

treatment than loci that are not de-repressed (Fig 4C). After treatment, TE methylation 

levels are decreasing around the responsive TEs, converging to levels similar to those 

initially observed in the non-responsive loci prior to treatment. This result is suggesting the 

non-responsive TE loci are relying on mechanisms other than DNA methylation for 

repression, while the de-repressed loci show tight correlation, and likely a causal link 

between methylation and repression. 

In addition to genomic context and epigenomic markup, sequence divergence between 

TEs within the same family may be predictive of de-repression trends14. To test this, we 
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clustered 2666 (excluding 66 loci on chromosome Y) sequences from the LTR12C family 

according to their sequence, deriving two distinct clusters varying by hyper-variable 

regions at multiple positions and in particular close to the identified TSS (Fig 4D). We then 

hierarchically classified elements in each of the two clusters according to their time of 

replication and analyzed the overall expression in each group, as well as the distribution 

of expression over TE metacells (Fig 4E). The data showed substantially strong 

expression in genetic cluster #2 compared to #1 (p << 0.01 in both cell lines, Wilcox). 

Within the genetic clusters, we still observed a strong correlation between time of 

replication and activity patterns (p<< 0.01 in both cell lines, Wilcox), highlighting how broad 

genomic context and sequence composition additively contribute to the de-repression 

propensity within a TE family.  

Interestingly, overall expression intensities of both clusters could be disconcordant and 

even inversely correlated at the single-cell level (Fig S7C), suggesting sequence 

variations in cis may be interpreted by a cell’s TF arsenal resulting in differential 

transcriptional activation. In search of such putative regulators, we identified several 

candidate TFs with cluster-specific correlations, including multiple zinc finger proteins and 

other genes with reported function in retrovirus biology (e.g. IRF77) (Fig 4F). To our 

surprise, NFY, a known activator of LTR12C expression20, was positively associated with 

expression of cluster 2 loci while lacking association with the other group in HCT116 cells. 

We hypothesized that partial regulation by NFY of a subset of loci should be reflected by 

differential binding affinities of the trimeric NFY complex. Indeed, NFYA ChIP-seq signal21 

from two cancer cell lines showed specific coverage for cluster 2 loci (p << 0.01, Wilcox), 

especially those in early replicating compartments (Fig 4G and Fig7D). The lack of 

binding affinity towards cluster 1 loci coincided with a specific and highly localized 

degeneration of NFY DNA binding sites, directly upstream of the TSS (Fig 4H). Together, 

the data suggest that cluster #2 TEs are de-repressed independently of NFYA availability, 

possibly given permissive epigenomic contexts that are receptive to more general 

activation machinery, while Cluster #1 TEs are dependent on NFYA for driving de-

repression in less favorable epigenomic contexts. 

DISCUSSION 

We performed 5’ single-cell transcriptional profiling to de novo identify TSS activity in 

epigenetically de-repressed cancer cells. Using a computational approach that leverages 

the high genomic copy-number and sequence conservation of TE families, we robustly 
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pinpointed the exact sites and degree of transcription initiation in thousands of loci 

representing the major transposon classes. This uncovered a rich and dynamic landscape 

of TE cell-to-cell variation in supposedly homogenous cancer populations. We observed 

different overall transcriptional dynamics for the four major TE classes. SINE 

retrotransposons largely showed a pattern of expression consistent with a more sporadic 

and spurious de-repression, although globally correlated with cellular proliferation. 

Specific families of DNA transposons and LINEs were linked to a presumed pre-apoptotic 

phenotype, suggesting broad-scale loss of genomic control. On the other hand and 

consistent with a previous report22, we observed structured activity of LTR 

retrotransposons, which was linked to specific stages of the cell cycle and additional genic 

pathways. Coordinated activity of multiple loci from the same TE family was observed 

systematically, but in some cases, and contrary to our expectations, loci of the same LTR 

family could be clustered into modules showing distinct combinatorial expression patterns. 

This data shows that even in cells with largely perturbed epigenetic integrity, TE de-

repression is still regulated by trans-factors (through cell cycle fluctuation or more stable 

transcriptional states). 

As exemplified for members of the massively de-repressed LTR12C TE family, intra-family 

expression variability is associated with at least three layers of regulation. First, activated 

loci rely on a favorable broad genomic context and proximity to activator machinery at 

constitutively active TSSs. Second, de-repression involve change in local epigenetic 

composition (in particular DNA methylation) of the TE TSSs. Finally, specific sequence 

characteristics within the TE family consensus module are linked with locus-specific 

regulation, ensuring or preventing effective recruitment of the activatory trans-machinery, 

as we have exemplified for NFY. Single cell RNA-seq can uncover the combinatorics of 

these layers and how they affect TE regulation in general, improving our understanding of 

the previously described cell-type and disease-specific TE expression landscapes23–25.  

Understanding the genomic rules of TE de-repression is particularly important in the 

context of epigenetic therapy, where a subset of ERVs is reported to mimic a viral-like 

interferon response and to serve as a rich source of potentially immunogenic 

neoantigens7,8,14. We found the expression of several LTR families to be correlated with 

overall interferon type-I gene expression at single cell resolution. Such variability 

inherently represents differential response to treatment, motivating further studies on the 

interplay between TE activity, intra-cellular regulation of immune response, and the 
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efficacy of epigenetic and immunotherapy. Epigenetic relaxation is also observed during 

massive genome-wide DNA demethylation during embryogenesis, germline development, 

or when cells progressively lose their canonical DNA methylation in ageing26–28.  The 

pervasive regulation of TE dynamics we observed in this study suggest the possibility that 

a large number of un-appreciated hotspots of genomic activity can become activated in 

such processes. Incorporating single cell TE activity profiles into models of epigenetic 

control and gene regulation will provide a powerful tool for understanding TE sub-

functionalization toward developmental enhancers and alternative promoters, as well as 

in the context of aberrant de-repression leading to disease. 

DATA ACCESS 

Raw and processed data were deposited in the gene expression omnibus repository 

under accession GSE121309.  

MATERIAL AND METHODS 

Cell culture and treatment 

HCT116 parental colorectal cell lines (HD PAR-033) were obtained from Horizon 

Discovery Ltd, Cambridge, UK and NCI-H1299 non-small cell lung cancer cells were 

provided by the courtesy of Prof. Moshe Oren. H1299 cells were cultured in RPMI 1640 

(Gibco 21875034I) and HCT116 cells were grown in heat-inactivated McCoy’s 5A medium 

(Biological Industries, Israel; 01-075-1A), both supplemented with 10% Fetal Bovine 

Serum (Gibco FBS 10270-106), 0.4% Penicillin-Streptomycin (Biological Industries, Israel; 

01-031-1C) and 1% L-glutamine (Biological Industries, Israel; 01-020-1). Conditioned 

media were filtered through a 0.22 microns filter (Corning, 430769) prior to culture. Cells 

were split at a ratio of 1:10 every 2–3 days using 0.05% trypsin-EDTA solution C 

(Biological Industries, Israel; 03-053-1B). Treatment with the DNA hypomethylating agent 

5-Aza-2′-deoxycytidine (Sigma-Aldrich, A3656; Lot #SLBS4457) and HDAC inhibitor 

SB939 (Cayman Chemical, 10443; Lot# 0435336-34) was performed as previously 

described14. To prepare single-cell suspensions, cells were processed according to the 

instructions of the 10x Genomics Single Cells Protocols Cell Preparation Guide (10x 

Genomics, CG00053 Rev C). About 4000 cells per cell line and treatment condition were 

used as input for further processing.  

5’ single-cell RNA sequencing 
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Libraries were generated using the Chromium Single Cell 5’ Library & Gel Bead (10x 

Genomics, PN-1000014) according to the manufacturer’s instructions and sequenced on 

the Illumina NextSeq 550 using the High Output v2 kit (Illumina, TG-160-2004).  

Curation and binning of gene and TE models 

Gene models were based on Gencode release 28 (GRCh38.p12) obtained from 

(https://www.gencodegenes.org/releases/). Exon coordinates of all transcript isoforms 

were reduced to a single set per gene symbol using the reduce function of the R package 

GenomicRanges. To minimize mapping ambiguity for exons shared between different 

genes, we then created a set of non-overlapping exon coordinates with the disjoin function 

of the same package and retained all gene symbols for shared intervals. After elongating 

the 5’ end of exons containing annotated TSSs to 100bps or to the next exon, we binned 

the resulting coordinates into 20bp intervals. 

We downloaded genomic TE alignments generated by RepeatMasker open-4.0.529 with 

the repeat library 20140131 from (http://www.repeatmasker.org/species/hg.html). The 

obtained alignments were used to map genomic TE sequences onto their relative position 

on the corresponding consensus model at 20bp resolution (Fig S8). Rare TE sequence 

polymorphisms not aligning to the corresponding consensus model were assigned to the 

closest preceding consensus alignment.  In case resulting 20bp genomic TE bins 

ambiguously mapped to more than one TE family, only the family with highest alignment 

score was retained. To minimize misassignment of genic UMIs onto TE loci, we finally 

excluded TE bins located within genic exons (except those overlapping any genic 

reference TSS) to generate the final TE coordinate set. 

Data processing 

Read pairs missing the constant part of the template switch oligo (defined by a hamming 

distance to TTTCTTATATGGG greater than 4) were excluded before subsequent 

processing with the cell-ranger analysis software version 2.1.0. Alignment was performed 

against the human GRCh38-1.2.0 reference using non-default Cell Ranger parameters 

(chemistry = SC5P-PE; r1_length = 100; r2_length = 50) and the alignment-specific 

parameter (--outFilterMultimapScoreRange: 2) for improved mapping specificity. UMI 

tools30 (--per-cell; --extract-umi-method = tag; --buffer-whole-contig; --cell-tag = CR; --umi-

tag = UR;  --paired) was used to remove duplicates. Barcodes were classified as cell-

associated using the standard Cell Ranger (2.1.0) procedure. Identified cell barcodes with 
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low mitochondrial (stripped nuclei) or ribosomal counts were further excluded from this set 

(Fig S1A). Coordinates of the first position of read1 in properly and uniquely aligned read 

pairs were tested for overlaps with binned exon or TE intervals and used for downstream 

analysis. 

Alignment benchmark 

The impact of throwing multi-mapping reads before TE quantification was assessed by 

counting the number of unique and multi-mapping reads (Fig S2A and B). In case multiple 

alignments (up to 10 distinct genomic positions) mapped to the same TE family, the read 

was assigned to the family with maximal count (ties were resolved randomly). Family-wise 

mappability score was then defined as the percentage of uniquely mapped from all UMIs 

(including multi-mappers).   

Pairwise hamming distances between reads mapping to the same TE family were 

calculated by first extracting first mates of read pairs aligning to LTR12C loci on the plus 

strand of chromosome 1. To minimize the impact of frameshifts, only mates mapping to 

the maximally covered position in each locus were retained and the number of mates was 

capped at 100 per locus. The resulting 2425 x 2425 comparisons representing mates 

mapping to 65 expressed LTR12C loci are shown in Fig S3D. 

Read error simulations were performed using the mutateReads function of our Reputils R 

package (source code can be found here: https://tanaylab.bitbucket.io/Reputils). Briefly, 

reference sequences of one million sampled TE alignments were extracted, randomly 

mutated using 0.25, 0.5, 1, 2, 4, and 8% global error rates, and re-aligned against the 

genome using mapping parameters as before.  

TSS mapping 

UMI counts were aggregated for all cells per TE family or gene bin. To account for TE 

inter- and intrafamily bin copy-number and size variations, TE aggregate bin UMI counts 

were normalized by a bin’s genomic copy-number and median width, and regularized by 

the families’ median bin copy-number (Fig S8). Genic bins with a minimal UMI to total 

gene expression ratio of 0.1 and at least 10 raw UMIs were marked as putative TSSs and 

combined if less than 100bp apart. For TE bins, we applied more stringent TSS selection 

criteria due to the lack of reference annotation and higher expected background signal. 

Specifically, we calculated the UMI enrichment over the neighboring 8 bins (with an offset 
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of 1 in both directions) and assessed statistical significance based on the Poisson 

distribution. TE bins with at least 20 raw UMIs, fold-change > 3, and FDR corrected p-

value < 0.01 were selected as putative TSS. While both genic TSS and non-TSS UMIs 

were retained (distinguished by an |# TSS suffix), only UMI signal from individual TE loci 

corresponding to the identified TSS bin were kept before summarizing molecule counts in 

a UMI matrix U = [uf i] on features f and cells i. For gene-level analyses, we focused on 

protein-coding genes and excluded non-TSS UMI counts in case a gene was associated 

with an enriched TSS. This exclusion was done to minimize the impact of UMI signal from 

de-repressed intronic TE loci bleeding into reference gene models14. 

Metacell analysis  

Transposable elements 

We used the MetaCell package31 version 0.3.39 for TE feature selection, grouping of cells, 

and to calculate gene enrichment along those groups, with the following adaptations. No 

preliminary cell filtering was applied to TE UMI counts. Markers to model cell-to-cell 

similarity were selected based on a normalized variance threshold above 0.1, a total UMI 

count of at least 10 molecules, and second highest UMI count of 2 after downsampling to 

401 (H1299) and 370 (HCT116) TE TSS UMIs. After constructing an initial similarity graph 

with a K = 100 parameter, we sampled 500 metacell covers with a minimal cell size of 50, 

each organizing 75% of cells into coherent groups in the graph. The resulting pairwise co-

clustering of all single cells was used as input to construct the final similarity graph and 

robust metacell covers were inferred using default parameters.  

Cell cycle 

Cell cycle-related genes were defined based on their correlation to one of the marker 

genes PCNA, E2F1, TOP2A, MKI67, UBE2S, ATAD2, ARL6IP1, AURKA, or RRM2 (r >= 

0.14 to 0.25). Clustering correlated genes based on downsampled single-cell UMI count 

matrices, was followed by manual selection of gene clusters that consisted of cohesive 

cell cycle gene modules. This procedure was repeated for all conditions using four 

different down-sampling depths (n=10000 to 5000 genic UMIs) to finally select 63 - 119 

cell cycle regulated genes for further analysis. Metacell analysis of a UMI matrix consisting 

of these genes alone (aiming at larger metacell sizes by setting min_mc_size = 100) was 

then performed. The resulting cell cycle metacells were arranged according to their 

estimated phase (From G0/1 to mitotic exit) in a supervised fashion based on the 
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expression of marker genes (Fig S6A), organizing all cells along a putative cell cycle 

trajectory.  

Cell cycle effect on TE expression 

2D projection of single cells and metacells according to the cell cycle model was performed 

using the standard Metacell projection algorithm setting T_edge to 0.0531. To plot cell cycle 

progression of individual TE modules, we used the grouping of cells according to the genic 

cell cycle module. Downsampled expression levels of TE modules were summarized per 

cell and their enrichment was compared to the module’s mean expression intensity across 

all cells. The resulting enrichment score was visualized on top of the cell cycle projection 

or log2 transformed (a pseudocount of 1 was added) before applying non-parametric local 

regression (locally weighted smoothing) across cells grouped by their cell cycle metacell 

stage. This approach provided adequate power for testing correlation of TEs with different 

cell cycle phases, and we therefore did not aim at more continuous modelling of the 

transcriptional dynamics as suggested by more direct modelling strategies32,33. 

Time of replication, lamin association, and NFY ChIP-seq 

Repli-seq and DAM-ID normalized coverage files were obtained from the 4D nucleus34 

data portal (https://data.4dnucleome.org/) for HCT116 and H1-hESC cells, respectively. 

Replicates were averaged and resulting coverage values were percent rank and log2 

transformed. NFYA fold change over control signal from two replicates in K562 cells was 

downloaded from the ENCODE21 data portal and percent rank transformed. 

Multiple sequence alignment and genetic divergence 

MAFFT35 version 7.394 was used to align sequences with a gap opening penalty and 

offset of 1.1 and 0, respectively. Positions with a gap frequency greater than 99% on the 

alignment were removed for visualization. Distances between TE loci were computed 

using the dist.dna function of the R package ape using the indelblock substitution model. 

Ward’s linkage was used to group loci. A locus’ position-wise divergence from the 

consensus was defined as 1 – that bases’ consensus frequency (including gaps as a fifth 

base). Group-wise sequence divergence was calculated based on the maximal delta in 

base frequency per position. 

Selection of IFN-I genes 
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All annotated IFN-I genes from the interferome36 database were downloaded and further 

filtered for genes that were consistently upregulated with a minimal average fold-change 

of 2 across at least 2 independent studies. We compared expression between untreated 

and treated cells for the remaining 1220 putative IFN-I regulated genes and defined a final 

set of 164 (H1299) and 127 (HCT116) genes with increased (log2 fold-change larger than 

2) expression following treatment.  

DNA methylation analysis 

DNA methylation values for untreated and treated H1299 cells were downloaded from the 

gene expression omnibus repository under accession GSE81322. Hg19 CpG coordinates 

were lifted to hg38 using the liftOver function from the Genomic Ranges R package. 

Statistical analysis 

All statistical analyses were performed using the R statistical environment, version 3.4.2. 

Unless stated otherwise, box plot center lines indicate data medians, box limits indicate 

the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile range from the 

25th and 75th percentiles, and outliers are not shown. For group-wise comparison of two 

distributions from different samples or treatments, the two-tailed nonparametric Wilcoxon 

and Mann-Whitney test was used. Unless stated otherwise, p-values < 0.05 were 

considered statistically significant and significance levels are depicted as follows: * P < 

0.05, ** P < 0.005, *** P < 0.0005. The Benjamini and Hochberg method was used to 

correct for multiple hypothesis testing. 

Code availability 

Analysis scripts and processed data files are available under 

(https://bitbucket.org/tanaylab/brocks_et_al_nat_com_2019_epitherapy_scrna/src/defaul

t/). 
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FIGURES 

 

Figure 1 | Single-cell RNA-seq identifies the transcription start site of genes 

A) Summary of the applied experimental workflow.  
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B) Violin plot showing the single-cell density distribution of total genic and TE UMI 

counts for untreated (red) and treated (blue) H1299 (left) and HCT116 (right) cells.  

C) Single-cell density distribution of TE load (TE UMIs / total UMIs) in four classes, 

before (light colors) and after (dark colors) treatment.  

D) Enrichment scores for TE consensus bins (Y axis), by total UMI counts on 

neighboring bins for H1299 (top) and HCT116 (bottom) cells. Bins identified as 

putative TSSs are highlighted in red. 

E) Aggregate normalized UMI count distribution along the consensus models for 

families with at least 1 detected TSS bin in H1299 (n=442, left) and HCT116 

(n=506, right) cells. Family profiles (rows) are centered around the TSS bin with 

highest raw expression and arranged by TE class (colored boxes) and TSS bin 

enrichment. UMI aggregate counts of the maximum TSS bin are shown in the right.  

F) Distribution of normalized UMI counts along the consensus model of selected 

(highest overall expression in H1299) representatives from each TE class. Putative 

TSS bins are highlighted in red. 

G) Number of TSS and non-TSS UMIs mapping to different TE classes in treated 

H1299 cells. 

H) Per locus total number of UMIs as a function of TSS-only UMIs for representative 

TE families. For each TE class, the maximally expressed family in H1299 cells was 

selected. 

I) Distribution of total UMIs per locus for representative TE families. 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/462853doi: bioRxiv preprint 

https://doi.org/10.1101/462853
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/462853doi: bioRxiv preprint 

https://doi.org/10.1101/462853
http://creativecommons.org/licenses/by-nc/4.0/


21 
 

Figure 2 | Meta-grouping of cells with consistent TE expression identifies structured 

variation in TE transcription  

A) Normalized variance vs. mean UMI counts in down-sampled TE TSSs UMI 

matrices. 

B) Single-cell expression correlation (upper triangle) and pairwise genetic divergence 

(lower triangle) for 10 TE TSSs modules in H1299 (top) and HCT116 (bottom) 

cells. SINE and non-SINE modules are plotted separately for clarity. Color 

annotation represent a loci’s TE class or superfamily membership. 

C) H1299 (upper) and HCT116 (lower) single-cell expression matrix showing the 

rolling mean (five cells) of downsampled and log2 transformed UMI counts.  Rows 

represent individual loci arranged by TE modules and columns correspond to 

individual cells grouped by metacells and arranged by total TE load. The two upper 

bar plots indicate a cell’s absolute TE load and the contribution of each TE class 

to it. 
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Figure 3 | TE meta-cells are linked to the cell cycle and other gene-modules 

A) Shown are enrichment values for genes (rows) over TE metacells (columns). Left 

color bars indicate genic TSS overlap with ERV9 family members (green) and 

mapping to chromosome 19 in H1299. Metacell numbers (bottom) are consistent 

with Figure 3.  

B) Enrichment values for TE loci (rows) across metacells (columns). Rows are 

grouped by module (as in Fig 3). Colored bars represent the superfamily/class 

membership of a locus. Alu modules are not shown. 

C) Average TE load per metacell. Colors indicate the contribution of individual TE 

classes to the total. 

D) Metacell regularized force-directed single-cell 2D projection based on cell cycle 

transcriptome signatures. Grey dots represent individual cells. The color of the 

corresponding metacell ID (squares positioned at the centroid) is based on the 

average expression footprint of presumed mitosis-specific genes (top 10 genes 

with highest footprint in mitotic metacell). 

E) Projection as before but colors indicate summarized expression intensity of 

indicated TE modules. 

F) Cell cycle metacells (columns) were arranged according to their estimated cell 

cycle phase from left (G0/G1) to right (mitotic exit) in a supervised fashion. Upper 

rows show the smoothed enrichment of aggregated TE modules across metacells. 

TE modules were arranged by their median time of replication (right boxplots). 

Mitosis and replication expression scores (lower rows) summarize downsampled 

UMI counts of the top 10 genes in the respective cell cycle gene module. 

Significance is based on Wilcoxon rank-sum test comparing cells from metacells 

#1-5 (#1-6 in HCT116) against #6-10 (#7-12 in HCT116).   
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Figure 4 | Sequence composition and genomic context explain TE transcriptional 

activation and variability 

A) Boxplot showing the distance to the nearest identified genic TSS for active (>10 

TSS UMIs, orange) and silent (0 TSS and non-TSS UMIs, blue) TE loci grouped 

by TE class/superfamily membership in H1299 cells. Boxplot whiskers extend 0.5 

times the interquartile range from the 25th and 75th percentiles and loci more than 

2 mega bases away are not shown.  

B) Lamina-association of active (orange) and silent (blue) TE loci grouped by TE 

class/superfamily in H1299 cells. 

C) Distribution of average methylation for active (orange) and silent (blue) TE loci 

before (light colors) and after treatment (dark colors) grouped TE class/superfamily 

membership in H1299 cells. 

D) Rolling mean (five nucleotides) of the sequence divergence between two genetic 

subgroups of highly expressed LTR12C elements. Colors indicate the degree of 

divergence. 

E) Multiple sequence alignment (left) and TE metacell expression (right) for 2666 

LTR12C loci hierarchically grouped by genetic sequence (clusters #1 and #2), time 

of replication (early and late), and transcriptional activity (silent (0 UMIs), low (less 

than 10 TSS UMIs) and high (at least 11 TSS UMIs)). Loci (rows) within a group 

are arranged according to K-means clustering of TE metacell footprints. Numbers 

to the right indicate the number of loci and their percentage from total for each 

group. Colors either represent the position-wise genetic divergence from the 

consensus or the TE metacell footprint. Alignment is identical for H1299 (left panel) 

and HCT116 (right panel) cells, but the order may differ according to cell-line 

specific expression dynamics. 

F) Spearman correlation of TF expression levels to summarized LTR12C genetic 

group 1 and 2 loci counts (all downsampled). Color of annotated TFs represents 

distance to nearest highly expressed LTR12C element. 

G) K562 ChIP-seq signal for NFYA on top of the LTR12C multiple sequence 

alignment. Individual loci are grouped according to the H1299 data shown in E. 

H) Consensus sequence logos from position 1900 to 2025 on the alignment for group 

1 and 2 loci. Putative NFY motif sites are highlighted. 
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