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Genomes computationally inferred from large metagenomic data
sets are often incomplete and may be missing functionally important
content and strain variation. We introduce an information retrieval
system for large metagenomic data sets that exploits the sparsity
of DNA assembly graphs to efficiently extract subgraphs surround-
ing an inferred genome. We apply this system to recover missing
content from genome bins and show that substantial genomic se-
quence variation is present in a real metagenome. Our software
implementation is available at https://github.com/spacegraphcats/
spacegraphcats under the 3-Clause BSD License.
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M etagenomics is the analysis of microbial communities
through shotgun DNA sequencing, which randomly sam-
ples many subsequences (reads) from the genomic DNA of
each microbe present in the community (1).

A common problem in metagenomics is the reconstruction
of individual microbial genomes from the mixture. Typically
this is done by first running an assembly algorithm that recon-
structs longer linear regions based on a graph of the sampled
subsequences (2), and then binning assembled contigs together
using compositional features and genic content (3, 4). These
“metagenome-assembled genomes” are then analyzed for phylo-
genetic markers and metabolic function. In recent years, nearly
200,000 metagenome-assembled genomes have been published,
dramatically expanding our view of microbial life (5-10).

Information present in shotgun metagenomes is often
omitted from the binned genomes due to either a failure to
assemble (11, 12) or a failure to bin. The underlying technical
reasons for these failures include low coverage, high sequencing
error, high strain variation, and/or sequences with insufficient
compositional or genic signal. Recent work has particularly fo-
cused on the problem of strain confusion, in which high strain
variation results in considerable fragmentation of assembled
content in mock or synthetic communities (11, 12); the extent
and impact of strain confusion in real metagenomes is still
unknown but potentially significant - metagenome-assembled
genomes may be missing 20-40% of true content (13-15).

Associating unbinned metagenomic sequence to inferred
bins or known genomes is technically challenging. Some
approaches use mapping or k-mer baiting, in which assembled
sequences are used to extract reads or contigs from a
metagenome or graph (16-20). These methods fail to recover
genomic content that does not directly overlap with the query,
such as large indels or novel genomic islands. Moreover, most
assembly graphs undergo substantial heuristic error pruning
and may not contain relevant content (11, 12). Graph queries
have shown promise for recovering sequence from regions
that do not assemble well but are graph-proximal to the

query (21, 22). However, many graph query algorithms are
NP-hard and hence computationally intractable in the general
case; compounding the computational challenge, metagenome
assembly graphs are frequently large, with millions of nodes,
and require 10s to 100s of gigabytes of RAM for storage.

In this paper, we develop and implement a scalable graph
query framework for extracting unbinned sequence from
metagenome assembly graphs with millions of nodes. Cru-
cially, we exploit the structural sparsity of compact De Bruijn
assembly graphs in order to compute a succinct index data
structure in linear time. We use this framework to perform
neighborhood queries in large assembly graphs, which enables
us to extract the genome of a novel bacterial species, recover
missing sequence variation in amino acid sequences for genome
bins, and identify missing content for metagenome-assembled
genomes. Our query methods are assembly-free and avoid
techniques that may discard strain information such as error
correction. These algorithms are available in an open-source
Python software package, spacegraphcats (23).

Results

Dominating sets enable efficient neighborhood queries in
large assembly graphs. We designed and implemented (23) a
set of algorithms for efficiently finding content in a metagenome
that is close to a query as measured by distance in a compact
De Bruijn graph (cDBG) representation of the sequencing
data (Figure 1). To accomplish this, we organize the cDBG
into pieces around a set of dominators that are collectively
close to all vertices. In this context, the neighborhood of a
query is the union of all pieces it overlaps; to enable efficient
search, we build an invertible index of the pieces.

We compute dominators so that the minimum distance
from every vertex in the cDBG to some dominator is at most
r (an r-dominating set) using Algorithm 1, which is based on
the linear-time approximation algorithm given by Dvorak and
Reidl (24). Although finding a minimum r-dominating set is
NP-hard (25-27) and an approximation factor below logn is
probably impossible (26) in general graphs, our approach guar-
antees constant-factor approximations in linear running time
by exploiting the fact that (compact) De Bruijn graphs have
bounded expansion, a special type of sparsity (28). Algorithm 1
first annotates the graph to determine the distances between
all pairs of vertices at distance at most 7 (lines 1-3) and then
uses these distances to ensure each vertex is close to a domina-
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pieces

Fig. 1. Starting from a collection of genomic sequences (a), we form an assembly graph where nodes represent distinct linear subsequences (b). In this assembly graph,
known as a compact De Bruijn graph (4), nodes may represent many k-mers. The original genomic sequences correspond to walks in the graph, and shared nodes between
the walks represent shared subsequences. We then (c) identify a subset of nodes D called a dominating set so that every node in the assembly graph is at distance at most
one from some member of D (marked pink). We further partition the graph into pieces by assigning every node to exactly one of the closest members of D (beige regions in (c)
and (d)). For a genomic query @, the neighborhood of Q in this graph is the union of all pieces which share at least one k-mer with the query. The colorful subsets of the

pieces in (d) correspond to the neighborhoods of the queries Q1, Q2.

tor. The core of the efficient distance computation is based on
distance-truncated transitive fraternal (dtf) augmentations (24)
which produce a directed graph in which each arc uv is labeled
with w(uv), the distance from u to v in the original cDBG.
Importantly, our implementation enhances the algorithm
in (24) by computing only r—1 rounds of dtf-augmentations in-
stead of 2r—1. Since augmentation is the computationally most
expensive part of the pipeline and the running time depends
non-linearly on the number of rounds, this vastly improves this
algorithm’s scalability. To maintain approximation guarantees
on the dominating set size with fewer augmentations, we intro-
duce a threshold parameter domThreshold(r) which affects the
constant factor in our worst-case bound. We selected a thresh-
old (see Supp. Material) that produces r-dominating sets of
comparable size to those computed by the algorithm in (24).
Additionally, we found that processing vertices using a mini-
mum in-degree ordering (line 6) was superior to other common
orders (e.g. arbitrary, min/max total degree, max in-degree).
After computing an r-dominating set D of G with Algo-
rithm 1, Algorithm 2 partitions the vertices of G into pieces

Algorithm 1 rdomset(G,r)

Input: Graph G, radius r
Output: r-dominating set D of G

1. Gy« orient(G)
2: forie2,...,rdo
3: G + dtfAugmentation(G,_1)
4: Initialize d[v] + oo and c[v] - 0 for all v € G
5 D+
6: for all v € G, sorted by ascending in-degree do
7: for all u € N~ (v) do
8: d[v] < min (d[v], d[u] + w(uv))
9: if d[v] > r then
10: D+ DU{v} and d[v] < 0
11: for all u € N~ (v) do
12: dlu] + min (d[u], w(uv))
13: clu] + clu] +1
14: if c[u] > domThreshold(r) then
15: D+ DU{u} and dfu] + 0
16: for all w € N~ (u) do
17: d[w] < min (d[w], w(wu))

18: return D

so that each piece P[v] contains a connected set of vertices for
which v is the closest member of D (Figure 1). Finally, we
use minimal perfect hashing (mphfIndex) (29) to compute an
invertible index™ between pieces and their sequence content in
the metagenome.

One feature of this approach is that the dominating set and
index only need to be computed once for a given metagenome,
independent of the number and content of anticipated queries.
Queries can then be performed using Algorithm 3 in time that
scales linearly with the size of their neighborhood — all genomic
content assigned to pieces that contain part of the query.

Our implementations of these algorithms in spacegraphcats
can be run on metagenomic data with millions of cDBG nodes
(Table 1); indexing takes under an hour, enabling queries to
complete in seconds to minutes (Table 2). See Appendix A
for full benchmarking (including cDBG construction). This
provides us with a tool to systematically investigate assembly
graph neighborhoods.

*an invertible function that defines both an index and the corresponding inverted index

Algorithm 2 indexPieces(M,r)

Input: Metagenome M, radius r
Output: Invertible index I: M — P; P is a set of pieces
: G < cDBG(M)
D < rdomset(G,r)
Initialize §[v] v for all v € D
U+~ V(G)\D
while U # 0 do
for v e V(G)\ U do
for u € N(v)NU do
Ofu] + &[]
U<+ U\{u}
Plv] + {u: §[u] = v}
: return mphfIndex(M,P)

© ® oW
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Algorithm 3 search(/nr, Q)

Input: Index Irq, Query Q

Output: The query neighborhood Ng
1 NG = Upeo I (Im(K))
2: return Ny
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Fig. 2. Neighborhood queries enable recovery of relevant genomic content. (a) Left Panel: Recovery of each of three target genomes from podarV using queries at a variety of
Jaccard distances from the target. Recovery is calculated as containment of target genome in query neighborhood. (b) Right Panel: Recovery of novel Proteiniclasticum
content from podarV. Nucleotide content from two of the three known P. ruminis genomes overlapped approximately a megabase of sequence in the query neighborhood,
which also contained approximately 2.3 Mbp of unknown sequence; the third known genome, P. ruminis CGMCC, was omitted from the figure as it is 99.7% similar to P ruminis

DSM. Numbers are in thousands of k-mers.

Dataset V| |E)|V| |D| QI  1PnNgl
podarV 916 041 22 542350 1475892 4106
HuSB1 13852950 26 6724505 1112516 106 091

Table 1. Number of cDBG nodes |V/|, edge density of cDBG |E|/|V],
size of 1-dominating set | D|, average query size (k-mers) |Q|, and

average number of pieces in query neighborhood |P N Ng|. Queries
are the 51 genomes and 23 genome bins fully present in podarV and
HuSB1, respectively.

Dataset  Algorithm Time (s)  Memory (MB)
rdomset 78.1 4304
podarV indexPieces 359.9 14108
search 14.9 3463
rdomset 1181.1 60238
HuSB1 indexPieces 859.3 40713
search 67.9 15228

Table 2. Time and memory usage of spacegraphcats for Algorithms 1-
3 on representative metagenome data. The times for Algorithm 3
are averaged over all queries (see Table 1). Statistics reported for
Algorithm 2 exclude lines 1-2 of pseudocode. Times are rounded
to the nearest tenth of a second; memory is rounded to the nearest
Megabyte.

Neighborhood queries enable recovery of relevant unknown
genomic content. We first measured how well an inexact query
can recover a target genome from a metagenome. For a bench-
mark data set, we used the podarV data set (30). This is a
“mock” metagenome containing genomes from 65 strains and
species of bacteria and archaea, each grown independently
and rendered into DNA, then combined and sequenced as a
metagenome. This metagenome is a commonly used bench-
mark for assembly (12, 31-33).

To evaluate the effectiveness of neighborhood query at re-
covering strain variants, we chose three target genomes from
podarV— Porphyromonas gingivalis ATCC 33277, Treponema
denticola ATCC 35405, and Bacteroides thetaiotaomicron VPI-
5482 — that have many taxonomically close relatives in Gen-
Bank. We then used these relatives to query the podarV
mixture and measure the recovery of the target genome. The

results, in Figure 2(a), show that graph neighborhood query
can recover 35% or more of some target genomes starting
from a relative with Jaccard similarity as low as 1%: even a
small number of shared k-mers sufficed to define a much larger
neighborhood that contains related genomes.

We next applied neighborhood query to retrieve an un-
known genome from podarV. Several papers have noted the
presence of unexpected sequence in the assemblies of this data,
and Awad et al. identify at least two species that differ from
the intended mock metagenome contents (12, 31). One species
variant has partial matches to several different Fusobacterium
nucleatum genomes, while the other incompletely matches to
three strains of Proteiniclasticum ruminis.

The complete genomes of these two variants are not in pub-
lic databases and, for the Proteiniclasticum variant, cannot be
entirely recovered with existing approaches: when we assemble
the reads that share k-mers with the available genomes, a
marker-based analysis with CheckM estimates that 98.8% of
the Fusobacterium variant is recovered, while only 72.96% of
the Proteiniclasticum variant is recovered. We therefore tried
using neighborhood queries to expand our knowledge of the
Proteiniclasticum variant.

We performed a neighborhood query into podarV with all
three known Proteiniclasticum genomes from GenBank. We
then extracted the reads overlapping this neighborhood and
assembled them with MEGAHIT. The retrieved genome neigh-
borhood for Proteiniclasticum contains 2264K novel k-mers
(Figure 2(b)). The reads from the query neighborhood assem-
bled into a 3.1 Mbp genome bin. The assembly is estimated by
CheckM to be 100% complete, with 10.3% contamination. The
mean amino acid identity between P. ruminis ML2 and the
neighborhood assembly is above 95%, suggesting that this is
indeed the genome of the Proteiniclasticum variant, and that
neighborhood query retrieves a full draft genome sequence (see
Supp. Material A).

Query neighborhoods in a real metagenome do not always as-
semble well. Real metagenomes may differ substantially from
mock metagenomes in size, complexity, and content. In par-
ticular, real metagenomes may contain a complex mixture of
species and strain variants (34) and the performance of assem-
bly and binning algorithms on these data sets is challenging to
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Fig. 3. Query neighborhoods in HuSB1 metagenome are large and contain additional marker genes. (a) Left Panel: Neighborhood sizes are larger in HuSB1 than in podarV.
Here we queried podarV and HuSB1 using each of 51 and 23 genomes fully present in the respective datasets and measured the relative size of its neighborhood—a size of 1
indicates that no additional sequence is present in the neighborhood, while a size of 2 indicates that the retrieved neighborhood is twice the size of the query genome. (b)
Right Panel: Query neighborhoods are estimated to be more complete than the original genome bins. We queried HuSB1 using each of 23 genomes binned from SB1, and
assembled the resulting neighborhoods using MEGAHIT and Plass. The blue points represent completeness estimates of MEGAHIT-assembled neighborhoods, while green
and pink bars represent the additional or missing content in the Plass assemblies respectively.

evaluate in the absence of ground truth. One recent compari-
son of single-cell genomes and metagenome-assembled genomes
in an ocean environment found that up to 40% of single-cell
genome content may be missing in metagenome-assembled
genomes (15).

We first ask whether genome query neighborhood sizes in a
real metagenome differ from mock metagenomes. We examined
genomes inferred from the SB1 sample from the Hu et al. (2016)
study, in which 6 metagenomic samples taken from various
types of oil reservoirs were sequenced, assembled, binned,
and computationally analyzed for biochemical function (35).
Examining the 23 binned genomes in GenBank originating
from the SB1 sample, we compared the HuSB1 neighborhood
size distribution with the podarV data set (Figure 3(a)). We
saw that more genome bins in HuSB1 have 1.5x or larger query
neighborhoods than do the genomes in podarV. This suggests
the presence of considerably more local neighborhood content
in the real metagenome than in the mock metagenome.

We next investigated metagenomic content in the query
neighborhoods. As with the unknown variants in podarV,
we used CheckM to estimate genome bin completeness. The
estimated bin completeness for many of the query genomes is
low (Appendix A). To see if the query neighborhoods contain
missing marker genes, we assembled reads from the query
neighborhoods using MEGAHIT. However, we found little
improvement in the completion metrics (Figure 3(b)).

Investigating further, we found that the query neighbor-
hood assemblies contain only between 4% and 56% of the
neighborhood k-mer content (Appendix A), suggesting that
MEGAHIT is not including many of the reads in the assembly
of the query neighborhoods. This could result from high error
rates and/or high strain variation in the underlying reads
(11, 12).

To attempt the recovery of more gene content from the
assemblies, we turned to the Plass amino acid assembler (36).
Plass implements an overlap-based amino acid assembly ap-

proach that is considerably more sensitive than nucleotide
assemblers and could be more robust to errors and strain
variation (37).

When we applied Plass to the reads from the query neigh-
borhoods, we saw a further increase in neighborhood complete-
ness (Figure 3(b)). This suggests that the genome bin query
neighborhoods contain real genes that are accessible to the
Plass amino acid assembler. We note that these are unlikely to
be false positives, since CheckM uses a highly specific Hidden
Markov Model (HMM)-based approach to detecting marker
genes (38).

Some query neighborhoods contain substantial strain vari-
ation. If strain variation is contributing to poor nucleotide
assembly of marker genes in the query neigborhoods, then
Plass should assemble these variants into similar amino acid
sequences. Strain variation for unknown genes can be difficult
to study due to lack of ground truth, but highly conserved
proteins should be readily identifiable.

The gyrA gene encodes an essential DNA topoisomerase
that participates in DNA supercoiling and was used by (35)
as a phylogenetic marker. In the GenBank bins, we found
that 15 of the 23 bins contain at least one gyrA sequence
(with 18 gyrA genes total). We therefore used gyrA for an
initial analysis of the Plass-assembled neighborhood content
for all 23 bins. To avoid confounding effects of random
sequencing error in the analysis and increase specificity at the
cost of sensitivity, we focused only on high-abundance data:
we truncated all reads in the query neighborhoods at any
k-mer that appears fewer than five times, and ran Plass on
these abundance-trimmed reads from each neighborhood. We
then searched the gene assemblies with a gyrA-derived HMM,
aligned all high-scoring matches, and calculated a pairwise
similarity matrix from the resulting alignment.

When we examine all of the high-scoring gyrA protein
matches in the hard-trimmed data, we see considerable se-
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Fig. 4. Query neighborhoods in HuSB1 contain sequence variants and new genes. (a) Left Panel: gyrA has substantial minor sequence variation in several query neighborhoods.
In this multidimensional scaling plot, each point represents a distinct gyrA sequence from the Plass assemblies of four representative query neighborhoods, colored by query
binned genome. The triangles represent gyrA sequences originating from the query binned genome, if any are present. The inlays are visualizations of assembly graphs of
reads that contain gyrA sequence in each neighborhood. Unitigs are colored by their cluster of origin; matches to gyrA sequences from the bin are highlighted using color from
relevant triangle. (b) Right Panel: Genome neighborhoods re-associate annotated functionality to binned genomes. For each of 23 genome bins originating from HuSB1, we
found the unbinned content by removing all orthologs found in the binned genomes in (39) and by counting distinct ortholog annotations once. Functional content is distributed
throughout pathways present in the binned genomes, and increases functionality associated with binned genomes by approximately 13%.

quence variation in some query neighborhoods (Figure 4(a)).
Much of this variation is present in fragmented Plass assem-
blies; when the underlying nucleotide sequences are retrieved
and used to construct a compact De Bruijn graph, the vari-
ation is visible as spurs off of a few longer paths (insets in
Figure 4(a)). When we count the number of well-supported
amino acid variants in isolated positions (i.e. ignoring linkage
between variants) we see that ten of the 23 neighborhoods have
an increased number of gyrA genes, with four neighborhoods
gaining a gyrA where none exists in the bin (Appendix A;
see lowest inset in Figure 4(a) for one example). Only one
neighborhood, M. bacterium, loses its gyrA genes due to the
stringent k-mer abundance trimming. Collectively, the use of
the Plass assembler on genome neighborhoods substantially
increases the number of gyrA sequences associated with bins.

We see this same pattern for many genes, including alasS,
gyrB, rpb2 domain 6, recA, rplB, and rpsC (Appendix A).
This shows that multiple variants of those proteins are present
within at least some of the neighborhoods and implies the
presence of underlying nucleotide strain variation. This strain
variation may be one reason that nucleotide assembly performs
poorly: on average, only 19.6% of Plass-assembled proteins
are found within the nucleotide assemblies.

Query neighborhoods assembled with Plass contain addi-
tional functional content. In addition to capturing variants
close to sequences in the bins, we identify many novel genes
in the query neighborhoods. We used KEGG to annotate the
Plass-assembled amino acid sequences, and subtracted any ho-
molog already annotated in the genome bin. We also ignoreed
homolog abundance such that each homolog is counted only
once per neighborhood.

Novel functional content is distributed throughout path-
ways present in the genome bins, and increases functionality
associated with binned genomes by approximately 13% (Fig-

ure 4(b)). This includes orthologs in biologically relevant
pathways such as methane metabolism, which are important
for biogeochemical cycling in oil reservoirs (35).

Genes in these neighborhoods contain important metabolic
functionality expanding the pathways already identified in
(35). We find 40 unique orthologs involved in nitrogen fixation
across eight neighborhoods, four of which had no ortholog in
the bin. Importantly, we find the ratio of observed orthologs
approximately matches that noted in (35), where two thirds
of nitrogen fixation functionality is attributable to archaea (29
of 40 orthologs). This is in contrast to most ecological systems
where bacteria are the dominant nitrogen fixers (35).

Discussion

Efficient graph algorithms provide novel tools for investigat-
ing graph neighborhoods. Recent work has shown that incor-
porating the structure of the assembly graph into the analysis
of metagenome data can provide a more complete picture of
gene content (21, 22). While this has provided evidence that
it is useful to analyze sequence that has small graph distance
from a query (is in a “neighborhood”), this approach has not
been widely adopted. Naively, local expansion around many
queries in the assembly graph does not scale to these types of
analyses due to the overhead associated with searching in a
massive graph. The neighborhood index structure described in
this work overcomes this computational obstacle and enables
rapid exploration of sequence data that is local to a query.
Because a partition into pieces provides an implicit data
reduction (the cDBG edge relationships are subsumed by
piece membership), the query-independent nature of the index
allows many queries to be processed quickly without loading
the entire graph into memory. Our approach consequently
provides a data exploration framework not otherwise available.
Exploiting the structural sparsity of cDBGs is a crucial com-
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ponent of our algorithms. First, it is necessary to use graph
structure to obtain a guarantee that Algorithm 2 finds a small
number of pieces since the size of a minimum r-dominating
set cannot be approximated better than a factor of logn in
general graphs’ unless NP C DTIME(n© (0818 ™)y (26). With-
out such a guarantee, we cannot be sure that we are achieving
significant data reduction by grouping cDBG vertices into
pieces. Being able to do this in linear time also ensures that in-
dexing and querying can scale to very large data sets. Further-
more, because we utilize a broad structural characterization
(bounded expansion) of cDBGs rather than a highly specialized
aspect, our methods enable neighborhood-based information
retrieval in any domain whose graphs exhibit bounded expan-
sion structure; examples include some infrastructure, social,
and communication networks (24, 40, 41).

Neighborhood queries extend genome bins.In both the
podarV and HuSB1 metagenomes, neighborhood queries were
able to identify additional content likely belonging to query
genomes. In the podarV mock metagenome, we retrieved a
potentially complete genome for an unknown strain based on
partial matches to known genomes. In the HuSB1 metagenome,
we increased the estimated completeness of most genome bins
— in some cases substantially, e.g. in the case of P_ bacterium
34__ 609 we added an estimated 20.9% to the genome bin. In
both cases we rely solely on the structure of the assembly graph
to expand the genome bins. We do not make use of sequence
composition, contig abundance, or phylogenetic marker genes
in our search. Thus graph proximity provides an orthogonal
set of information for genome-resolved metagenomics that
could be used to improve current binning techniques.

Query neighborhoods from real metagenomes contain sub-
stantial strain variation that may block assembly. Previous
work suggests that metagenome assembly and binning ap-
proaches are fragile to strain variation (11, 12). This may pre-
vent the characterization of some genomes from metagenomes.
The extent of this problem is unknown, although the major-
ity of approaches to genome-resolved metagenomics rely on
assembly and thus could be affected.

In this work, we find that some of the sequence missing
from genome bins can be retrieved using neighborhood queries.
For HuSB1, some genome bins are missing as many as 68.5%
of marker genes from the original bins, with more than half
of the 22 bins missing 20% or more; this accords well with
evidence from a recent comparison of single-cell genomes and
metagenome-assembled genomes (15), in which it was found
that metagenome-assembled genomes were often missing 20%
to 40% of single-cell genomic sequence. Neighborhood query
followed by amino acid assembly recovers additional content for
all but two of the genome bins; this is likely an underestimate,
since Plass may also be failing to assemble some content.

When we bioinformatically analyze the function of the ex-
panded genome content from neighborhood queries, our results
are consistent with the previous metabolic analyses by (35),
and extend the set of available genes by 13%. This suggests
that current approaches to genome binning are specific, and
that the main question is sensitivity, which agrees with a more
direct measurement of lost content (15).

fThat is, graphs about which we make no structural assumptions.

Neighborhood queries enable a genome-targeted workflow to
recover strain variation. The spacegraphcats analysis workflow
described above starts with genome bins. The genome bins
are used as a query into the metagenome assembly graph,
following which we extract reads from the query neighborhood.
We assemble these reads with the Plass amino acid assembler,
and then analyze the assembly for gene content. We show
that the Plass assembly contains strain-level heterogeneity at
the amino acid level, and that this heterogeneity is supported
by underlying nucleotide diversity. Even with stringent error
trimming on the underlying reads, we identify at least thirteen
novel gyrA sequences in ten genome neighborhoods.

Of note, this workflow explicitly associates the Plass as-
sembled proteins with specific genome bins, as opposed to
a whole-metagenome Plass assembly which recovers protein
sequence from the entire metagenome but does not link those
proteins to specific genomes. The binning-based workflow
connects the increased sensitivity of Plass assembly to the full
suite of tools available for genome-resolved metagenome analy-
sis, including phylogenomic and metabolic analysis. However,
spacegraphcats does not separate regions of the graph shared
in multiple query neighborhoods; existing strain recovery ap-
proaches such as DESMAN or MSPminer could be used for
this purpose (16, 19).

One future step could be to characterize unbinned genomic
content from metagenomes by looking at Plass-assembled
marker genes in the metagenome that do not belong to any
bin’s query neighborhood. This would provide an estimate of
the extent of metagenome content remaining unbinned.

Conclusions

The neighborhood query approach described in this work pro-
vides an alternative window into metagenome content associ-
ated with binned genomes. We extend previous work showing
that assembly-based methods are fragile to strain variation,
and provide an alternative workflow that substantially broad-
ens our ability to characterize metagenome content. This first
investigation focuses on only two data sets, one mock and
one real, but the neighborhood indexing approach is broadly
applicable to all shotgun metagenomes.

In this initial investigation of neighborhood indexing, we
have focused on using neighborhood queries with a genome bin.
We recognize that this approach is of limited use in regions
where no genome bin is available; spacegraphcats is flexible
and performant enough to support alternative approaches such
as querying with k-mers belonging to genes of interest.

Potential applications of spacegraphcats in metagenomics
include developing metrics for genome binning quality, an-
alyzing pangenome neighborhood structure, exploring r-
dominating sets for » > 1, extending analyses to colored
De Bruijn graphs, and investigating de novo extraction of
genomes based on neighborhood content. We could also ap-
ply spacegraphcats to analyze the neighborhood structure of
assembly graphs overlayed with physical contact information
(from e.g. HiC), which could yield new applications in both
metagenomics and genomics (42, 43).

More generally, the graph indexing approach developed
here may be applicable well beyond metagenomes and se-
quence analysis. The exploitation of bounded expansion to
efficiently compute r-dominating sets on large graphs makes
this technique applicable to a broad array of problems.
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Materials and Methods

Data. We use two data sets: SRR606249 from podarV (44) and
SRR1976948 (sample SB1) from hu (39). FEach data set was
first preprocessed to remove low-abundance k-mers as in (45), us-
ing trim-low-abund.py from khmer v2.1.2 (46) with the parame-
ters -C 3 -Z 18 -M 20e9 -V -k 31. We build compact De Bruijn
graphs using BCALM v2.2.0 (47). Stringent read trimming at low-
abundance k-mers was done with trim-low-abund.py from khmer,
with the parameters -C 5 -M 20e9 -k 31.

Software. The source code for the index construction and search
is available at https://github.com/spacegraphcats/spacegraphcats (23).
It is implemented in Python 3 under the 3-Clause BSD License.
Version 1.1, used in this paper, is archived at DOI: 10.5281/zen-
0do0.2505206.

Snakemake (48) workflows to reproduce all of the
analysis are available at https:/github.com/spacegraphcats/
2018-paper-spacegraphcats/, and Jupyter Notebooks to recre-
ate Figures 1, 2, 3, and 4(b) are in that same repository (49).
The notebooks rely on the numpy, matplotlib, pandas, scipy, and
Vega-Lite libraries (50-54). The workflow repository is archived at
DOI: 10.5281/zenodo.2592780.

Benchmarking. We measured time and memory usage for Algo-
rithms 1-3 by executing the following targets in the spacegraphcats
conf/Snakefile: catlas.csv for rdomset, contigs.fa.gz.mphf for
indexPieces, and search for search. We report wall time and
maximum resident set size, running under Ubuntu 18.04 on an NSF
Jetstream virtual machine with 10 cores and 30 GB of RAM (55, 56).
To measure maximum resident set size, we used the memusg script
(Jaeho Shin, https://gist.github.com /netj/526585).

Graph denoising. For each data set, we built a compact De Bruijn
graph (cDBG) for k=31 by computing the set of unitigs with
BCALM (57), removing all vertices of degree one with a mean
k-mer abundance of 1.1 or less, and then contracting long degree-
two paths when possible.

Neighborhood indexing and search. We used spacegraphcats to build
an r-dominating set for each denoised cDBG and index it. We
then performed neighborhood queries with spacegraphcats, which
produces a set of cDBG nodes and reads that contributed to
them. The full list of query genomes for the Proteiniclasticum
query is available in Supp Material A, and the NCBI acces-
sions for the P. gingivalis, T. denticola, and B. thetaiotamicron
queries are in the directory pipeline-base of the paper repos-
itory, files strain-gingivalis.txt, strain-denticola.txt, and
strain-bacteroides.txt, respectively.

Search results analysis. Query neighborhood size, Jaccard contain-
ment, and Jaccard similarity were estimated using modulo hash
signatures with a k-mer size of 31 and a scaled factor of 1000, as
implemented in sourmash v2.0a9 (58).

Assembly and genome bin analysis. We assembled reads using
MEGAHIT v1.1.3 (31) and Plass v2-c7e35 (36), treating the reads
as single-ended. Bin completeness was estimated with CheckM
1.0.11, with the -reduced_tree argument (38). Amino acid identity
between bins and genomes was calculated using CompareM commit
7cd51276 (https://github.com/dparks1134/CompareM).

Gene targeted analysis. Analysis of specific genes was done with HM-
MER v3.2.1 (59). Plass amino acid assemblies were queried with
HMMER hmmscan using the PFAM domains listed in Supp Material
8, using a threshold score of 100 (60). Matching sequences were then
extracted from the assemblies for further analysis. To overcome
problems associated with comparing non-overlapping sequence frag-
ments, only sequences that overlapped 125 of the most-overlapped
200 residues of the PFAM domain were retained (all sequences
shared a minimum overlap of 50 residues with all other sequences).
These sequences were aligned with MAFFT v7.407 with the -auto
argument (61). Pairwise similarities were calculated using HMMER
where the final value represented the number of identical amino

acids in the alignment divided by the number of overlapping residues
between the sequences. Pairwise distances were visualized using a
multidimensional scaling calculated in R using the cmdscale func-
tion. To visualize the assembly graph structure underlying these
amino acid assemblies, we used paladin v1.3.1 to map abundance-
trimmed reads back to the Plass amino acid assembly, with -f 125
to set the minimum ORF length accepted (62). We extracted the
reads that mapped to the gene of interest, created an assembly
graph using BCALM v2.2.0 (57), and visualized the graph using
Bandage v0.8.1 (63). We colored nucleotide sequences originating
from the bins using the BLAST feature in Bandage.

KEGG Analysis. We annotated the Plass assemblies using Ky-
oto Encyclopedia of Genes GhostKOALA v2.0 (64). To as-
sign KEGG ortholog function, we used methods implemented at
https://github.com/edgraham/GhostKoalaParser release 1.1.

ACKNOWLEDGMENTS. This work is funded in part by the Gor-
don and Betty Moore Foundation’s Data-Driven Discovery Initiative
through Grants GBMF4551 to C. Titus Brown, GBMF4553 to Jef-
frey Heer, and GBMF4560 to Blair D. Sullivan. This work arose
from the Barnraising for Data-Intensive Discovery at Mt. Desert
Island Biological Lab in May 2016. We thank Erich Schwarz, Mar-
tin Steinegger, Johannes S6ding, Mark Blaxter, and members of
the Data Intensive Biology lab at UC Davis for discussion and
feedback.

1. Christopher Quince, Alan W Walker, Jared T Simpson, Nicholas J Loman, and Nicola Segata.
Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9):833-844,
sep 2017. . URL https:/doi.org/10.1038/nbt.3935.

2. Jason Pell et al. Scaling metagenome sequence assembly with probabilistic de bruijn graphs.
PNAS, 109(33):13272-13277, 2012. . URL https://doi.org/10.1073/pnas.1121464109.

3. C. C. Laczny, C. Kiefer, V. Galata, T. Fehimann, C. Backes, and A. Keller. Busybee web:
metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic
Acids Research, page gkx348, 2017.

4. H. Lin and Y. Liao. Accurate binning of metagenomic contigs via automated clustering se-
quences using information of genomic signatures and marker genes. Scientific Reports, 6:
24175, 2016.

5. Donovan H. Parks, Christian Rinke, Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Wood-
croft, Paul N. Evans, Philip Hugenholtz, and Gene W. Tyson. Recovery of nearly 8, 000
metagenome-assembled genomes substantially expands the tree of life. Nature Microbiol-
ogy, 2(11):1533-1542, sep 2017. . URL https://doi.org/10.1038/s41564-017-0012-7.

6. Benjamin J. Tully, Elaina D. Graham, and John F. Heidelberg. The reconstruction of 2, 631
draft metagenome-assembled genomes from the global oceans. Scientific Data, 5:170203,
jan 2018. . URL https://doi.org/10.1038/sdata.2017.203.

7. Robert D. Stewart, Marc D. Auffret, Amanda Warr, Andrew H. Wiser, Maximilian O. Press,
Kyle W. Langford, Ivan Liachko, Timothy J. Snelling, Richard J. Dewhurst, Alan W. Walker,
Rainer Roehe, and Mick Watson. Assembly of 913 microbial genomes from metagenomic
sequencing of the cow rumen. Nature Communications, 9(1), feb 2018. . URL https://doi.org/
10.1038/s41467-018-03317-6.

8. Tom O. Delmont, Christopher Quince, Alon Shaiber, Ozcan C. Esen, Sonny TM Lee,
Michael S. Rappé, Sandra L. McLellan, Sebastian Licker, and A. Murat Eren. Nitrogen-
fixing populations of planctomycetes and proteobacteria are abundant in surface ocean
metagenomes. Nature Microbiology, 3(7):804-813, jun 2018. . URL https://doi.org/10.1038/
s41564-018-0176-9.

9. Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J.
Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano, Kotaro
Ise, Yohey Suzuki, Natasha Dudek, David A. Relman, Kari M. Finstad, Ronald Amundson,
Brian C. Thomas, and Jillian F. Banfield. A new view of the tree of life. Nature Microbiology,
1(5), apr 2016. . URL https://doi.org/10.1038/nmicrobiol.2016.48.

10. Edoardo Pasolli, Francesco Asnicar, Serena Manara, Moreno Zolfo, Nicolai Karcher, Fed-
erica Armanini, Francesco Beghini, Paolo Manghi, Adrian Tett, Paolo Ghensi, Maria Car-
men Collado, Benjamin L. Rice, Casey DuLong, Xochitl C. Morgan, Christopher D. Golden,
Christopher Quince, Curtis Huttenhower, and Nicola Segata. Extensive unexplored hu-
man microbiome diversity revealed by over 150, 000 genomes from metagenomes span-
ning age, geography, and lifestyle. Cell, 176(3):649-662.€20, jan 2019. URL https:
/ldoi.org/10.1016/j.cell.2019.01.001.

11. Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Jo-
hannes Droge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, Andreas Bremges,
Adrian Fritz, Ruben Garrido-Oter, Tue Sparholt Jergensen, Nicole Shapiro, Philip D Blood,
Alexey Gurevich, Yang Bai, Dmitrij Turaev, Matthew Z DeMaere, Rayan Chikhi, Niranjan Na-
garajan, Christopher Quince, Fernando Meyer, Monika Balvoéitté, Lars Hestbjerg Hansen,
Saeren J Segrensen, Burton K H Chia, Bertrand Denis, Jeff L Froula, Zhong Wang, Robert
Egan, Dongwan Don Kang, Jeffrey J Cook, Charles Deltel, Michael Beckstette, Claire
Lemaitre, Pierre Peterlongo, Guillaume Rizk, Dominique Lavenier, Yu-Wei Wu, Steven W
Singer, Chirag Jain, Marc Strous, Heiner Klingenberg, Peter Meinicke, Michael D Barton,
Thomas Lingner, Hsin-Hung Lin, Yu-Chieh Liao, Genivaldo Gueiros Z Silva, Daniel A Cuevas,
Robert A Edwards, Surya Saha, Vitor C Piro, Bernhard Y Renard, Mihai Pop, Hans-Peter
Klenk, Markus Goker, Nikos C Kyrpides, Tanja Woyke, Julia A Vorholt, Paul Schulze-Lefert,
Edward M Rubin, Aaron E Darling, Thomas Rattei, and Alice C McHardy. Critical assessment


https://github.com/spacegraphcats/spacegraphcats
https://github.com/spacegraphcats/2018-paper-spacegraphcats/
https://github.com/spacegraphcats/2018-paper-spacegraphcats/
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1038/s41564-017-0012-7
https://doi.org/10.1038/sdata.2017.203
https://doi.org/10.1038/s41467-018-03317-6
https://doi.org/10.1038/s41467-018-03317-6
https://doi.org/10.1038/s41564-018-0176-9
https://doi.org/10.1038/s41564-018-0176-9
https://doi.org/10.1038/nmicrobiol.2016.48
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1101/462788
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/462788; this version posted March 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

20.

21.

22.

28.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

. Sherine Awad,

of metagenome interpretation—a benchmark of metagenomics software. Nature Methods, 14
(11):1063-1071, oct 2017. . URL https://doi.org/10.1038/nmeth.4458.

Luiz Irber, and C. Titus Brown. Evaluating metagenome
assembly on a simple defined community with many strain variants.
https://www.biorxiv.org/content/early/2017/07/03/155358, 2017. URL https://www.biorxiv.org/
content/early/2017/07/03/155358.

C Titus Brown. Strain recovery from metagenomes. Nature Biotechnology, 33(10):1041—
1043, oct 2015. . URL https://doi.org/10.1038/nbt.3375.

llana L. Brito and Eric J. Alm. Tracking strains in the microbiome: Insights from metagenomics
and models. Frontiers in Microbiology, 7, may 2016. . URL https://doi.org/10.3389/fmicb.2016.
00712.

. Johannes Alneberg, Christofer M. G. Karlsson, Anna-Maria Divne, Claudia Bergin, Felix

Homa, Markus V. Lindh, Luisa W. Hugerth, Thijs J. G. Ettema, Stefan Bertilsson, Anders F.
Andersson, and Jarone Pinhassi. Genomes from uncultivated prokaryotes: a comparison of
metagenome-assembled and single-amplified genomes. Microbiome, 6(1), sep 2018. . URL
https://doi.org/10.1186/s40168-018-0550-0.

Christopher Quince, Tom O. Delmont, Sébastien Raguideau, Johannes Alneberg, Aaron E.
Darling, Gavin Collins, and A. Murat Eren. DESMAN: a new tool for de novo extraction of
strains from metagenomes. Genome Biology, 18(1), sep 2017. . URL https://doi.org/10.
1186/s13059-017-1309-9.

Stephen Nayfach, Beltran Rodriguez-Mueller, Nandita Garud, and Katherine S. Pollard. An
integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial trans-
mission and biogeography. Genome Research, 26(11):1612-1625, oct 2016. URL
https://doi.org/10.1101/gr.201863.115.

Erik Garrison. Graphical pangenomics. PhD thesis, Cambridge University, October 2018.
URL https://doi.org/10.5281/zenodo.1463032. As submitted, awaiting viva (defense) and fur-
ther revision.

Florian Plaza Onate, Emmanuelle Le Chatelier, Mathieu Almeida, Alessandra C L Cervino,
Franck Gauthier, Frederic Magoules, S Dusko Ehrlich, and Matthieu Pichaud. MSPminer:
abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data.
Bioinformatics, sep 2018. . URL https://doi.org/10.1093/bioinformatics/bty830.

Jillian M. Petersen, Anna Kemper, Harald Gruber-Vodicka, Ulisse Cardini, Matthijs van der
Geest, Manuel Kleiner, Silvia Bulgheresi, Marc MuBmann, Craig Herbold, Brandon K.B. Seah,
Chakkiath Paul Antony, Dan Liu, Alexandra Belitz, and Miriam Weber. Chemosynthetic sym-
bionts of marine invertebrate animals are capable of nitrogen fixation. Nature Microbiology,
2(1), oct 2016. . URL https://doi.org/10.1038/nmicrobiol.2016.195.

Evgenii | Olekhnovich, Artem T Vasilyev, Vladimir | Ulyantsev, Elena S Kostryukova, and
Alexander V Tyakht. MetaCherchant: analyzing genomic context of antibiotic resistance
genes in gut microbiota. Bioinformatics, 34(3):434-444, oct 2017. . URL https://doi.org/
10.1093/bioinformatics/btx681.

Tyler P. Barnum, Israel A. Figueroa, Charlotte I. Carlstrém, Lauren N. Lucas, Anna L.
Engelbrektson, and John D. Coates. Genome-resolved metagenomics identifies genetic
mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing commu-
nities. The ISME Journal, 12(6):1568-1581, feb 2018. URL https:/doi.org/10.1038/
$41396-018-0081-5.

C. T. Brown, D. Moritz, M. P. O’Brien, F. Reidl, and B. D. Sullivan. spacegraphcats, v1.0.
http://dx.doi.org/10.5281/zenodo. 1478025, November 2018.

F. Reidl. Structural sparseness and complex networks. 2016. URL http:/publications.
rwth-aachen.de/record/565064. Aachen, Techn. Hochsch., Diss., 2015.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85—103. Springer, 1972.

Miroslav Chlebik and Janka Chlebikova. Approximation hardness of dominating set problems
in bounded degree graphs. Information and Computation, 206(11):1264—1275, 2008.
Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
& Business Media, 2012.

Patrice Ossona de Mendez et al. Sparsity: graphs, structures, and algorithms, volume 28.
Springer Science & Business Media, 2012. .

Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable
minimal perfect hashing for massive key sets. CoRR, abs/1702.03154, 2017. URL http:
/larxiv.org/abs/1702.03154.

M. Shakya, C. Quince, J. H. Campbell, Z. K. Yang, C. W. Schadt, and M. Podar. Comparative
metagenomic and rrna microbial diversity characterization using archaeal and bacterial syn-
thetic communities. Environmental Microbiology, 15(6):1882-1899, 2013. ISSN 1462-2920.
. URL http://dx.doi.org/10.1111/1462-2920.12086.

Dinghua Li, Ruibang Luo, Chi-Man Liu, Chi-Ming Leung, Hing Fung Ting, Kunihiko Sadakane,
Hiroshi Yamashita, and Tak-Wah Lam. MEGAHIT v1.0: A fast and scalable metagenome
assembler driven by a dvanced methodologies and community practices. Methods, 102:3—
11, jun 2016. . URL https://doi.org/10.1016/j.ymeth.2016.02.020.

Brandon K. B. Seah and Harald R. Gruber-Vodicka. gbtools: Interactive visualization of
metagenome bins in r. Frontiers in Microbiology, 6, dec 2015. URL https://doi.org/10.
3389/fmicb.2015.01451.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. metaspades: a
new versatile metagenomic assembler. Genome Research, 27(5):824—-834, 2017.

Itai Sharon, Michael Kertesz, Laura A. Hug, Dmitry Pushkarev, Timothy A. Blauwkamp,
Cindy J. Castelle, Mojgan Amirebrahimi, Brian C. Thomas, David Burstein, Susannah G.
Tringe, Kenneth H. Williams, and Jillian F. Banfield. Accurate, multi-kb reads resolve complex
populations and detect rare microorganisms. Genome Research, 25(4):534-543, feb 2015. .
URL https://doi.org/10.1101/gr.183012.114.

Ping Hu, Lauren Tom, Andrea Singh, Brian C. Thomas, Brett J. Baker, Yvette M. Piceno,
Gary L. Andersen, and Jillian F. Banfield. Genome-resolved metagenomic analysis reveals
roles for candidate phyla and other microbial community members in biogeochemical transfor-
mations in oil reservoirs. mBio, 7(1), jan 2016. . URL https://doi.org/10.1128/mbio.01669-15.
Martin Steinegger, Milot Mirdita, and Johannes Soding. Protein-level assembly increases
protein sequence recovery from metagenomic samples manyfold. aug 2018. . URL https:

37.

38.

39.

40.

41,

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

//doi.org/10.1101/386110.

Youngik Yang and Shibu Yooseph. SPA: a short peptide assembler for metagenomic data.
Nucleic Acids Research, 41(8):e91—e91, feb 2013. . URL https://doi.org/10.1093/nar/gkt118.
Donovan H. Parks, Michael Imelfort, Connor T. Skennerton, Philip Hugenholtz, and Gene W.
Tyson. CheckM: assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Research, 25(7):1043-1055, may 2015. . URL https:
//doi.org/10.1101/gr.186072.114.

P. Hu, L. Tom, A. Singh, B. C. Thomas, B. J. Baker, Y. M. Piceno, G. L. Andersen, and J. F.
Banfield. Genome-resolved metagenomic analysis reveals roles for candidate phyla and other
microbial community members in biogeochemical transformations in oil reservoirs. MBio, 7
(1):e01669-15, 2016. .

Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sanchez Villaamil, Somnath Sik-
dar, and Blair D. Sullivan. Structural sparsity of complex networks: Random graph models
and linear algorithms. CoRR, abs/1406.2587, 2014. URL http:/arxiv.org/abs/1406.2587.
Wojciech Nadara, Marcin Pilipczuk, Roman Rabinovich, Felix Reidl, and Sebastian Siebertz.
Empirical evaluation of approximation algorithms for generalized graph coloring and uniform
quasi-wideness. In Gianlorenzo D’Angelo, editor, 17th International Symposium on Exper-
imental Algorithms, SEA 2018, June 27-29, 2018, L'Aquila, ltaly, volume 103 of LIPIcs,
pages 14:1-14:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL
https://doi.org/10.4230/LIPlcs.SEA.2018.14.

Martial Marbouty, Axel Cournac, Jean-Frangois Flot, Flervé Marie-Nelly, Julien Mozziconacci,
and Romain Koszul. Metagenomic chromosome conformation capture (meta3c) unveils the
div ersity of chromosome organization in microorganisms. eLife, 3, dec 2014. . URL https:
//doi.org/10.7554/elife.03318.

Christopher W. Beitel, Lutz Froenicke, Jenna M. Lang, lan F. Korf, Richard W. Michelmore,
Jonathan A. Eisen, and Aaron E. Darling. Strain- and plasmid-level deconvolution of a syn-
thetic metagenome by sequencing proximity ligation products. PeerJ, 2:e415, may 2014. .
URL https://doi.org/10.7717/peerj.415.

Migun Shakya et al. Comparative metagenomic and rrna microbial diversity characterization
using archaeal and bacterial synthetic communities. Environ. microbiol., 15(6):1882—-1899,
20183. .

Qingpeng Zhang, Sherine Awad, and C. Titus Brown. Crossing  the
streams: a framework for streaming analysis of short DNA sequencing reads.
https://doi.org/10.7287/peerj.preprints.890v1, mar 2015. URL https://doi.org/10.7287/
peerj.preprints.890v1.

Daniel Standage, Ali yari, Lisa J. Cohen, Michael R. Crusoe, Tim Head, Luiz Irber, Shan-
non EK Joslin, N. B. Kingsley, Kevin D. Murray, Russell Neches, Camille Scott, Ryan Shean,
Sascha Steinbiss, Cait Sydney, and C. Titus Brown. khmer release v2.1: software for biolog-
ical sequence analysis. The Journal of Open Source Software, 2(15):272, jul 2017. . URL
https://doi.org/10.21105/joss.00272.

Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201-i208, jun 2016. .
URL https://doi.org/10.1093/bioinformatics/btw279.

J. Koster and S. Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioinfor-
matics, 28(19):2520-2522, aug 2012. . URL https://doi.org/10.1093/bioinformatics/bts480.
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al.
Jupyter notebooks-a publishing format for reproducible computational workflows. In ELPUB,
pages 87-90, 2016.

Stéfan van der Walt, S Chris Colbert, and Gaél Varoquaux. The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22-30, mar
2011. . URL https://doi.org/10.1109/mcse.2011.37.

John D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90-95, 2007. . URL https://doi.org/10.1109/mcse.2007.55.

Wes McKinney. pandas: a foundational python library for data analysis and statistics. Python
for High Performance and Scientific Computing, pages 1-9, 2011.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001—. URL http://www.scipy.org/. [Online; accessed <today>].

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. Vega-lite: A
grammar of interactive graphics. /EEE Transactions on Visualization and Computer Graphics,
23(1):341-350, jan 2017. . URL https://doi.org/10.1109/tvcg.2016.2599030.

Craig A. Stewart, George Turner, Matthew Vaughn, Niall I. Gaffney, Timothy M. Cockerill, lan
Foster, David Hancock, Nirav Merchant, Edwin Skidmore, Daniel Stanzione, James Taylor,
and Steven Tuecke. Jetstream. In Proceedings of the 2015 XSEDE Conference on Scientific
Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE '15. ACM Press, 2015. .
URL https://doi.org/10.1145/2792745.2792774.

John Towns, Timothy Cockerill, Maytal Dahan, lan Foster, Kelly Gaither, Andrew Grimshaw,
Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray
Scott, and Nancy Wilkens-Diehr. XSEDE: Accelerating scientific discovery. Computing in
Science & Engineering, 16(5):62—74, sep 2014. . URL https://doi.org/10.1109/mcse.2014.80.
Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201-i208, 2016.

C. T. Brown, L. Irber, and L. Cohen. dib-lab/sourmash: v1.0. https://doi.org/10.5281/zenodo.
153989, September 2016.

Sean R Eddy and HMMER Development Team. Hmmer v3.2.1, jun 2018. URL http://hmmer.
org/. http:/hmmer.org.

Robert D. Finn, Penelope Coggill, Ruth Y. Eberhardt, Sean R. Eddy, Jaina Mistry, Alex L.
Mitchell, Simon C. Potter, Marco Punta, Matloob Qureshi, Amaia Sangrador-Vegas, Gus-
tavo A. Salazar, John Tate, and Alex Bateman. The pfam protein families database: towards
a more sustainable future. Nucleic Acids Research, 44(D1):D279-D285, dec 2015. . URL
https://doi.org/10.1093/nar/gkv1344.

K. Katoh and D. M. Standley. MAFFT multiple sequence alignment software version 7: Im-
provements in performance and usability. Molecular Biology and Evolution, 30(4):772-780,
jan 2013. . URL https://doi.org/10.1093/molbev/mst010.


https://doi.org/10.1038/nmeth.4458
https://www.biorxiv.org/content/early/2017/07/03/155358
https://www.biorxiv.org/content/early/2017/07/03/155358
https://doi.org/10.1038/nbt.3375
https://doi.org/10.3389/fmicb.2016.00712
https://doi.org/10.3389/fmicb.2016.00712
https://doi.org/10.1186/s40168-018-0550-0
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1101/gr.201863.115
https://doi.org/10.5281/zenodo.1463032
https://doi.org/10.1093/bioinformatics/bty830
https://doi.org/10.1038/nmicrobiol.2016.195
https://doi.org/10.1093/bioinformatics/btx681
https://doi.org/10.1093/bioinformatics/btx681
https://doi.org/10.1038/s41396-018-0081-5
https://doi.org/10.1038/s41396-018-0081-5
http://dx.doi.org/10.5281/zenodo.1478025
http://publications.rwth-aachen.de/record/565064
http://publications.rwth-aachen.de/record/565064
http://arxiv.org/abs/1702.03154
http://arxiv.org/abs/1702.03154
http://dx.doi.org/10.1111/1462-2920.12086
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.3389/fmicb.2015.01451
https://doi.org/10.3389/fmicb.2015.01451
https://doi.org/10.1101/gr.183012.114
https://doi.org/10.1128/mbio.01669-15
https://doi.org/10.1101/386110
https://doi.org/10.1101/386110
https://doi.org/10.1093/nar/gkt118
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1101/gr.186072.114
http://arxiv.org/abs/1406.2587
https://doi.org/10.4230/LIPIcs.SEA.2018.14
https://doi.org/10.7554/elife.03318
https://doi.org/10.7554/elife.03318
https://doi.org/10.7717/peerj.415
https://doi.org/10.7287/peerj.preprints.890v1
https://doi.org/10.7287/peerj.preprints.890v1
https://doi.org/10.21105/joss.00272
https://doi.org/10.1093/bioinformatics/btw279
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1109/mcse.2007.55
http://www.scipy.org/
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1145/2792745.2792774
https://doi.org/10.1109/mcse.2014.80
https://doi.org/10.5281/zenodo.153989
https://doi.org/10.5281/zenodo.153989
http://hmmer.org/
http://hmmer.org/
https://doi.org/10.1093/nar/gkv1344
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1101/462788
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/462788; this version posted March 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

62. Anthony Westbrook, Jordan Ramsdell, Taruna Schuelke, Louisa Normington, R Daniel Berg-
eron, W Kelley Thomas, and Matthew D MacManes. PALADIN: protein alignment for func-
tional profiling whole metagenome shotgun data. Bioinformatics, 33(10):1473-1478, jan
2017. . URL https://doi.org/10.1093/bioinformatics/btx021.

63. Ryan R. Wick, Mark B. Schultz, Justin Zobel, and Kathryn E. Holt. Bandage: interactive
visualization ofde novogenome assemblies: Fig. 1. Bioinformatics, 31(20):3350-3352, jun
2015. . URL https://doi.org/10.1093/bioinformatics/btv383.

64. Minoru Kanehisa, Yoko Sato, and Kanae Morishima. BlastKOALA and GhostKOALA: KEGG
tools for functional characterization of genome and metagenome sequences. Journal of
Molecular Biology, 428(4):726-731, feb 2016. . URL https://doi.org/10.1016/}.jmb.2015.11.
006.


https://doi.org/10.1093/bioinformatics/btx021
https://doi.org/10.1093/bioinformatics/btv383
https://doi.org/10.1016/j.jmb.2015.11.006
https://doi.org/10.1016/j.jmb.2015.11.006
https://doi.org/10.1101/462788
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/462788; this version posted March 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A. Appendix

Approximation guarantee. Let us introduce some notation for the
analysis of Algorithm 1. We first partition the vertices of D ac-
cording to whether they were added in line 10 (denoted by D1) or
in line 15 (denoted by D2). Let v1,...,v, be the vertex- order in
which they are iterated over in the loop starting at line 6. We will
use the notation Di, D;, d*, and ¢ to represent the states of the
respective sets and data structures during the ith iteration of said
loop. Let 7 := domThreshold(r) be the chosen threshold (we discuss
a good value for 7 on cDBGs below).

Lemma 1. After the for-loop at line 7 has finished,
) distg (v, D?)  if distg(v, D?) <7, and
d'[vi] =

%) otherwise.

Proof. The statement trivially holds while D* = ), so assume
otherwise. Let ujp, € D’ be the vertex closest to v; and let h < i
be the iteration in which uj was added to D (either in line 10 or
line 15 of that iteration).

If d := distg (vi, up) > 7, then d?[v;] has not been changed yet
and is still set to co. Otherwise, consider the three possible scenarios
promised by the distance-property of dtf-augmentations:

Case 1: vup € éd- Then w(viup) = d and in iteration h
the value of d"[v;] is set to the correct value d at line 8. By
assumption this distance remains minimal until iteration ¢ and
hence d*[v;] = d"[v;] = d.

Case 2: upv; € G,4. Then w(viup) = d and in iteration i the
value of d*[v;] is set to the correct value d at line 8.

Case 3: zuy,,zv; € Gg with w(zup) + w(zv;) = d.
During iteration h the value of d”[z] is set to w(zuy) at line 8 and
subsequently retrieved in iteration ¢ when d'[v;] is set to

di[z] + w(zup) = w(zuy) + w(zv;) = d.

We conclude that after the execution of the loop at line 8. d*[v;]
is set to oo if v; is not dominated by D; and is otherwise set
to distg(vi, D*), as claimed. O

As an immediate consequence, we see the conditional statement at
the end of the loop at line 8 accurately determines whether v; is
dominated by D; or not. Accordingly, line 15 of the loop is only
executed if v; is not dominated by D?. Another consequence is that
all vertices in D; have large distance to each other:

Corollary 1. The set Dy is (r 4+ 1)-scattered in G.

We need one more important property of the algorithm in order to
derive the approximation factor.

Lemma 2. For every w € G it holds that |D1 N N, (w)] <7+ 1.

Proof. Assume towards a contradiction that 7 + 2 such vertices
Vigyvos Vi 42, 11 < f2 < ... < ir42 exist in D1 N N, (w). Since
every such vertex v;, ¢ € {i1,...ir+2}, was added to D in part (2),
part (3) of the algorithm was executed during iteration i as well.
Thus c[w] was increased in each iteration ¢ and during iteration i1
we have that c[w] > 7 + 1 after the increment of c[w]. There-
fore part (4) must have been executed for w, including w into D.
Hence w € D? for s > ir41 and in particular w € Dir+2. But
then v;_,, was dominated by w at the beginning of iteration ir 42
since we assumed that w(rv; ,) <7, thus v;_,, would not have
been included in D at step (2). This contradicts our assumption of
Vi, o € D1 so the claim must hold. O

Lemma 3. There exists a subset A C D1 such that A is (2r 4+ 1)-
scattered in G and

|D|

|A] > = =
2(1 +2)A (Gar)) A (Gr)

Proof. We construct an auxiliary graph H with vertices D; by
adding arcs v;v; for vs,v; € D1 with i < j whenever distg (v;, vj) <
2r. Let C_jz»p be a 2rth dtf-augmentation of G and let us create a
digraph H by orienting every edge uv € H as follows:
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1. If of uv,vu € égr, then orient wv in H according to the
corresponding arc in G, (if both arcs exists choose an arbitrary
orientation),

2. otherwise there exists w € N, (u) N Ny (v) with wa,(u) +

war(v) = distg(u,v) < 2r. Orient the edge uv towards that
vertex z € {u, v} for which wo,(z) is larger.

We now argue that A~ (H) is small. Consider any vertex v € H.
Every in-arc uwv € H either is of type 1, of which we have at
most A~ (ézr), or of type 2. Consider a group of in- arcs u;v,
1 < i < ¢ of type 2 that are all present because of a common
vertex w. Since w € N, (u), we have at most A~ (Gay) such groups.
By construction, way(wu;) < war(wv) and since both weights sum
to less than 2r, this means that wo,(wu;) < r. Lemma 2 now tells
us that £ < 7 + 1. Therefore v has at most (7 + 1)A™ (Ga,) in-arcs
of type 2 and we conclude that

A~ (H) < A (Gar) + (1 + 1)A (Gay)

(4 2)A™ (Gay).

This finally implies that H is 2(7 + 2)A~ (Ga,)-degenerate and
therefore contains an independent set A C V(H) of size at

least |A| > |H|/(2(7 + 2)A~ (Ga,)). Taken together with the fact
that |H| = |Di| > |D|/A™(G,) (every vertex added to D; will
cause at most A~ (ér) many vertices to be added to Dz in the loop
at line 11 and D = Dy U Da3), we find that

Al > D] ﬁ
2(1 4+ 2)A= (G2r)) A= (Gr)

By construction of H we conclude that A is (2r + 1)-scattered in G
of the claimed size. O

Since a (2r + 1)-scattered set provides a lower bound for an r-
dominating set, we conclude that Algorithm 1 computes a 2(7 +
2)A~ (@QT)A* (ér)—approximation of an optimal r-dominating set,
which is a constant-factor approximation in graphs of bounded
expansion.

In practice one could, depending on the value of A*(ér) and
A~ (éQr), compute the optimal value for 7. However, this would
necessitate the computation of 2r augmentation, the expensive step
we want to avoid. Alternatively, we can choose a ‘good enough’
value for 7 that still guarantees a constant-factor approximation
while being easy to determine in practice. In the context of cDBGs,
we found that 7 := (2r)? yields reliably good results.

Computational Runtimes. See “Benchmarking” in Materials and
Methods for benchmarking methods.

The podarV data set was retrieved from the NCBI SRA using
accession SRR606249. The full build and indexing of the 103
million error-trimmed reads (10.3 Gbp in total) took approximately
23 minutes and required 12.8 GB of RAM. Loading the indices for
search required 4.3 GB of RAM and a search with a 3 Mbp genome
took approximately 32 seconds.

The HuSB1 data set was retrieved from the NCBI SRA using
accession SRR1976948. The full build and indexing of the 34 million
error-trimmed reads (8.5 Gbp in total) required approximately 217
minutes and required 24.4 GB of RAM. Loading the indices for
search required 18 GB of RAM and a search with a 3 Mbp genome
took approximately 80 seconds.

For data set complexity (number of k-mers, number of cDBG
nodes) please see Table 1.

spacegraphcats pipeline overview. spacegraphcats follows a series of
steps when run on sequencing data, see Figure 5. In detail, we
perform the following steps.

BCALM. Use BCALM to generate a cDBG. Then convert a
BCALM unitigs.fa output (a ¢cDBG) into spacegraphcats files.
Outputs an undirected graph, a file containing the sequences, and
a .info.csv file containing information about the contig. Also
outputs sourmash k=31, scaled=1000 signatures for both input and
output files.

spacegraphcats.cdbg.label _cdbg. Build an index that can be
used to retrieve individual reads or contigs by cDBG node ID;
produce a SQLite database for fast retrieval. Briefly, this script
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creates a sqlite database with a single table, sequences, where
a query like SELECT DISTINCT sequences.offset FROM sequences
WHERE label ... can be executed to return the offset of all se-
quences with the given label; the offsets refer to BGZF coordinates
in the gzipped sequence collection. Here, 'label’ is the cDBG ID to
which the sequence belongs.

The script extract_reads_by_frontier_sqlite.py is a down-
stream script to extract the reads with a frontier search. Specifically:
1. walk through the contigs assembled from the cDBG; 2. build a
DBG cover using khmer tags, such that every k-mer in the DBG
is within distance d=40 of a tag; 3. label each tag with the cDBG
node ID from the contig; 4. save for later use.

spacegraphcats. catlas. catlas. The catlas is a hierarchical atlas for
querying graphs. Implements algorithms 1 and 2 (see main text).

spacegraphcats.indez.index__contigs__by__kmer. Use Minimal Per-
fect Hashing (see BBHash) to construct a fast lookup table connect-
ing k-mers in the cDBG to ¢cDBG node IDs.

spacegraphcats.search.extract _nodes by __query. Do a frontier
search, and retrieve cDBG node IDs and MinHash signature for the
retrieved contigs.

spacegraphcats.search.extract contigs. Retrieve the unitig se-
quences for a given list of cDBG nodes. Consumes the output of
extract_nodes_by_query to get the list of nodes.

spacegraphcats.search.extract_reads. Retrieve the reads for a list
of cDBG nodes. Consumes the output of extract_nodes_by_query
to get the list of nodes, and then uses the labeled cDBG output
by .cdbg.label_cdbg to find reads that overlap with the unitigs in
those nodes.

Query genome accession numbers for Proteiniclasticum search. See
Table 3.

Amino Acid Identity results for Proteiniclasticum. See Table 4.

HuSB1 analysis pipeline overview. See Figure 6. We implemented
three workflows to analyze the plass-assembled HuSB1 query neigh-
borhoods.

Genome bin completeness improvements for HuSB1. See Table 5.

K-mer inclusion of reads by MEGAHIT assemblies. See Table 7. We
estimated the number of k-mers in each query neighborhood that
were contained in the MEGAHIT assembly of that query neigh-
borhood. We used sourmash compute to calculate signatures with
k-size of 31 and a scaled value of 2000. We then used sourmash
compare to estimate containment in MEGAHIT assemblies. The
query neighborhood with the smallest containment, M. harundi-
nacea isolate 57 489, had the largest query neighborhood, while
the query neighborhood with the largest containment, M. bacterium
39 7, had the smallest query neighborhood.

Name NCBI accession

P. ruminis CGMCC  GCA_900099635.1
P. ruminis DSM GCA_000701905.1
P. ruminis ML2 GCA_900115135.1

Table 3. Accession humbers for genomes used in Proteiniclasticum
neighborhood query.
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Genome A Genome B Orthologous Genes ~ Mean AAI
P. ruminis ML2 P ruminis shakya 2546 95.74
P, ruminis DSM P, ruminis shakya 2391 93.47

Table 4. CompareM results for Proteiniclasticum genomes. P. ru-
minis shakya is the result of assembling the reads extracted from
podarV with the neighborhood search.

gyrA alignment. See Figure 7. The MDS plot in the left panel of fig-
ure 4 shows distinct gyrA sequences identified in the Plass assemblies
using HMMER. To visualize the sequences within these clusters and
in other query neighborhoods, we constructed a multiple sequence
alignment. However, because many sequences assembled by Plass
were fragmented (see Results: Some query neighborhoods contain
substantial strain variation), we first clustered the sequences at 95%
similarity using CD-HIT. We then aligned the centroid sequences us-
ing MAFFT with default settings. To produce the multiple sequence
alignment visualization, we calculated an unrooted neighbor join-
ing tree using the MAFFT alignment. Then we used the function
msaplot in the R package ggtree to plot the alignment.

gyrA by neighborhood. See Table 6. As can be seen in the left
panel of figure 4 in the main text, we observe many unique amino
acid sequences per single copy ortholog per query neighborhood.
Although we observe many possible traversal paths in compact De
Bruijn graphs built from reads that give rise to these sequences,
we have no way to ascertain whether we observed combinatorial
complexity by assembling variants that would never be linked in
nature. Therefore, we sought to conservatively estimate the number
of positions per amino acid sequence that contained variants using
MAFFT alignments. First, we subsetted the alignment to sequences
from one query neighborhood. Then we identified all aligned non-
gap characters for each position in the alignment (gaps were induced
in some neighborhoods by the presence of amino acid residues in
other query neighborhood amino acid sequences). For each of these
positions, we counted the number of unique amino acid sequences
per position, and the number of times each occurred at that position.
We then elimated any variant that occurred fewer than 10 times.
Lastly, we counted the number of well-supported distinct characters.
We did this for gyrA, as well as the amino acid sequences for the
other genes we tested (see other genes). Table 6 shows that we see
increased number of gyrA sequences in many neighborhoods even
with this conservative approach.

Other genes. See bin and neighborhood content results for alaS in
Table 9, gyrB in Table 10, recA in Table 11, rpb2d6 in Table 12,
rplB in Table 13, and rpsC in Table 14. We selected gyrB and recA
because they were used by HuSB1 to assign taxonomy to binned
genomes. We selected other genes used as single copy orthologs by
programs like CheckM, and with longer PFAM domains.
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(Use BCALM to build cDBG)

C_abel reads with cDBG node membership: spacegraphcats.cdbg.Iabel_cdbg)

Endex contigs and count node sizes: spacegraphcats.index.indexcontigsbykme) (Build catlas: spacegraphcats.catlas.catlas)

Gearch the catlas: spacegraphcats.search.extract_nodes_by_quer;)

(Extract contigs: spacegraphcats.search.extract_contigs) (Extract reads: spacegraphcats.search.extract_reads)

Fig. 5. The steps followed by spacegraphcats when run on sequencing data.

Bin name

Bin completeness

MEGAHIT (A)

Plass (A)

WS6 bacterium 36_33

P. bacterium 34_609

P. bacterium 33_209

M. bacterium 39_7

P. acetatigenes isolate 50_10
WS6 bacterium 34_10

M. infera isolate 46_47

A. bacterium 34_128

A. thermophila isolate 46_16
A. bacterium 49_20

M. marisnigri isolate 62_101
M. bacterium 46_47

B. bacterium
Methanocalculus sp. 52_23
Desulfotomaculum sp. 46_80
S. bacterium 57_84

S. bacterium 53_16
Desulfotomaculum sp. 46_296
A. bacterium 66_15

C. bacterium 38_11

TAO6 bacterium 32_111
Methanobacterium sp. 42_16

M. harundinacea isolate 57_489

31.5%
34.0%
47.9%
50.1%
56.7%
61.9%
63.8%
64.4%
67.2%
69.5%
721%
72.9%
80.0%
82.7%
83.5%
90.8%
91.5%
91.5%
94.2%
94.4%
94.5%
97.6%
100.0%

51.4% (19.9)
42.4% (8.4)
51.5% (3.6
50.9%
60.1%
67.3%
67.5% (3.8)
75.0% (10.6)
78.3% (11.1)
72.3% (2.7)
80.8% (8.6)
81.0% (8.1)
79.5% (-0.5)
87.4% (4.7)
93.1% (9.6)

)
0.9)
3.4)
5.5)

(
(
(
(
94.0% (
(
(
(
(

46.1% (14.6)
55.0% (20.9)
55.7% (7.8)
66.5% (16.5)
60.5% (3.8)

95.8% (12.3)
90.8% (0.0)
94.8% (3.3)
100.0% (8.5)
98.1% (4.0)
96.2% (1.8)
96.4% (1.8)
97.7% (0.1)
95.8% (-4.2)

Table 5. Bin and neighborhood completeness, as estimated by CheckM. “Bin
completeness” is the result of running CheckM on the genome sequence from
GenBank; MEGAHIT is the result of running CheckM on the MEGAHIT nu-
cleotide assembly of the neighborhood reads; Plass is the result of running
CheckM on the Plass amino acid assembly of the neighborhood reads. A is
the difference between the column and the bin completeness.
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Species gyrA (bin)  gyrA (Plass)

o

Methanobacterium sp. 42_16
P. bacterium 34_609
Desulfotomaculum sp. 46_80
S. bacterium 57_84

B. bacterium

P. acetatigenes isolate 50_10
WS6 bacterium 34_10

M. marisnigri isolate 62_101
C. bacterium 38_11

M. infera isolate 46_47

S. bacterium 53_16

M. bacterium 46_47

TAO06 bacterium 32_111

P. bacterium 33_209

A. bacterium 66_15
Methanocalculus sp. 52_23
WS6 bacterium 36_33

A. bacterium 34_128

A. thermophila isolate 46_16
M. harundinacea isolate 57_489
M. bacterium 39_7
Desulfotomaculum sp. 46_296
A. bacterium 49_20

MNMOMN—- 2 4 4 a4 dddadaa000000 00

WMNOMNMNMNMNMNMMNOMN =+ 4 242422 VDNMNN =+ OO0 o

Table 6. Bin and neighborhood gyrA protein content.
gyrA count for each bin is the number of gyrA amino
acid sequences that are part of the original bin. gyrA
count by Plass is the minimum number of gyrA amino
acid sequences supported by at least one position with
at least 10 copies of each variant, e.g. “3” indicates that
there is at least one position in the multiple sequence
alignment of gyrA sequences for that neighborhood that
has 3 distinct variants in 10 distinct sequences.
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(F'Iass assembly of a query neighborhood)

Download PFAM domain alignment Truncate Plass assembly headers DWEEﬁ:‘{,;‘,““ % :A.Bg;‘r;(ome

Build HMM profile from PFAM ali with i (I‘ i Plass assembly headers) Annotate genome bins with prokka

Find contigs in assembly that match Annotate amino acid sequences Annotate assembly

PFAM domain using hmmscan Index the Plass assembly with paladin with KEGG GhostKOALA with KEGG GhostKOALA
Parse hmmscan output:
Align reads to Plass assembly with paladin find window of domain with the largest number Download genome bin annotations Download Plass assembly annotations
of overlapping sequences

Parse annotations for KEGG orthologs in Plass assembly " "
Convert SAM to BAM Extract contigs from Plass assembly annotations and not in genome bin annotations Parse annotations for nitrogenase KEGG orthologs
Parse hmmscan results: [ " " " l [ " " l
identify all matches Sort BAM Align contigs with MAFFT Cluster contigs with CD-HIT

Index BAM (Converl alignment to Stockholm formal) (Parse contig names)
Identify reads that mapped to contig that matched PFAM domain (Calculale pairwise identity using esl»alpid) (Deduplicate contig names)
Extract reads that mapped to PFAM domain Convert to a matrix Align contigs with MAFFT
Combine reads that mapped to PFAM domain (Calculale MDS) (P\o( a Multiple Sequence Alignment)

Remove duplicate reads

Assemble the cDBG with BCALM

Convert cDBG unitigs to GFA format

Visualize with Bandage

Fig. 6. Three workflows implemented to analyze the plass-assembled HuSB1 query neighborhoods. The first three steps, depicted in blue, were common across all workflows.
The green boxes depict the KEGG GhostKOALA annotation workflow, the results of which can be see in Figure 4. The orange boxes depict steps in common between the
clustering and variant workflows used to generate Figure 4. The red boxes depict steps used to generate the MDS clustering plot and the multiple sequence alignment (see
Figure 7). The gold boxes depict the steps of the variant workflow used to generate the assembly graphs.
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Fig. 7. A multiple sequence alignment and neighbor joining tree of representative gyrA amino acid fragments assembled by Plass from the genome neighborhoods in HuSB1.
Protein sequences that originated from the genome bin are prepended with "Bin." All other sequences were assembled by Plass.

Species MEGAHIT assembly containment

M. harundinacea isolate 57_489 4.2%

Desulfotomaculum sp. 46_296 12.7%

M. marisnigri isolate 62_101 13.6%

S. bacterium 57_84 19.4%

P. bacterium 34_609 19.7%

A. bacterium 66_15 20.5%

Desulfotomaculum sp. 46_80 24.1%

P. bacterium 33_209 26.3% Name PFAM accession
S. bacter!um 53_16 30.9% recA PF00154
A. bacterium 49_20 31.9% rplB PF00181
Methanoc.alculus sp. 52_23 33.4% rpsC PF00189
M. bacte.rlum 4§_47 36.6% gy'B PF00204
P. acetatlgenes isolate 50_10 36.6% gyrA PF00521
A. tl)acterllum 34_128 36.8% rpb2d6  PF00562
M. infera |so|atg 46_47 38.0% alas PFO1411
Methanobacterium sp. 42_16 38.0%

A. thermophila isolate 46_16 38.6%

TA06 bacterium 32_111 44.1% Table 8. Protein names and PFAM accessions for targeted analyses.
C. bacterium 38_11 44.4%

WS6 bacterium 34_10 53.2%

WS6 bacterium 36_33 53.8%

B. bacterium 54.2%

M. bacterium 39_7 55.7%

Table 7. Containment of neighborhood k-mer content in MEGAHIT
nucleotide assemblies.
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Species

ala$S (bin)

alaS (Plass)

P. acetatigenes isolate 50_10
A. bacterium 49_20

P. bacterium 34_609

B. bacterium

S. bacterium 53_16

A. bacterium 34_128

M. infera isolate 46_47

M. marisnigri isolate 62_101
M. bacterium 39_7
Methanobacterium sp. 42_16
C. bacterium 38_11

S. bacterium 57_84

TA06 bacterium 32_111

P. bacterium 33_209

A. bacterium 66_15

M. harundinacea isolate 57_489
Methanocalculus sp. 52_23
WS6 bacterium 36_33
Desulfotomaculum sp. 46_80
M. bacterium 46_47
Desulfotomaculum sp. 46_296
A. thermophila isolate 46_16
WS6 bacterium 34_10

NN = 4 2 b4l b a4 a3 a2 0000000 O

N = MNDMPNMMNMNMNOMN A 2 2202 a0 0NN OO OO o

Table 9. Bin and neighborhood ala$S protein content.

Species

gyrB (bin)

gyrB (Plass)

M. bacterium 39_7

P. acetatigenes isolate 50_10
Methanobacterium sp. 42_16
WS6 bacterium 36_33

P. bacterium 34_609
Desulfotomaculum sp. 46_80
S. bacterium 57_84

S. bacterium 53_16

A. thermophila isolate 46_16
P. bacterium 33_209

C. bacterium 38_11

M. infera isolate 46_47

M. bacterium 46_47

TA06 bacterium 32_111

A. bacterium 66_15

M. harundinacea isolate 57_489
WS6 bacterium 34_10
Methanocalculus sp. 52_23
M. marisnigri isolate 62_101
A. bacterium 34_128

A. bacterium 49_20

B. bacterium
Desulfotomaculum sp. 46_296

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
2
2
2

[ASI \C I \C I ST VT L T\ B i el Vi el e e el e le ool

Table 10. Bin and neighborhood gyrB protein content.
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Species

recA (bin)

recA (Plass)

M. bacterium 39_7

WS6 bacterium 34_10
Methanocalculus sp. 52_23
A. bacterium 49 _20

WS6 bacterium 36_33

P. bacterium 34_609

M. marisnigri isolate 62_101
S. bacterium 53_16

M. bacterium 46_47

A. thermophila isolate 46_16
B. bacterium

P. acetatigenes isolate 50_10
Methanobacterium sp. 42_16
C. bacterium 38_11

M. infera isolate 46_47

S. bacterium 57_84

A. bacterium 34_128

TAO6 bacterium 32_111

P. bacterium 33_209

A. bacterium 66_15

M. harundinacea isolate 57_489

Desulfotomaculum sp. 46_80
Desulfotomaculum sp. 46_296

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
2
2

Table 11. Bin and neighborhood recA protein content.

Species

rpb2d6 (bin)

rpb2d6 (Plass)

P. acetatigenes isolate 50_10
P. bacterium 34_609

S. bacterium 57_84

M. bacterium 46_47

C. bacterium 38_11

A. bacterium 49_20

M. bacterium 39_7
Methanobacterium sp. 42_16
Methanocalculus sp. 52_23
M. infera isolate 46_47

B. bacterium

S. bacterium 53_16

A. bacterium 34_128

TAO06 bacterium 32_111

A. bacterium 66_15

A. thermophila isolate 46_16
WS6 bacterium 36_33
Desulfotomaculum sp. 46_80
M. marisnigri isolate 62_101
Desulfotomaculum sp. 46_296
P. bacterium 33_209

M. harundinacea isolate 57_489

WS6 bacterium 34_10

N = = =4 4 4 a4 b d d d e d e a a4 0000

MDMNOMNMNMNMNOMNON - 4 4 4 a4 a0 0 = =00

Table 12. Bin and neighborhood rpb2d6 protein content.
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Species rplB (bin)  rpIB (Plass)

M. bacterium 39_7
Methanobacterium sp. 42_16
Methanocalculus sp. 52_23
WS6 bacterium 36_33

M. marisnigri isolate 62_101
M. harundinacea isolate 57_489
P. acetatigenes isolate 50_10
C. bacterium 38_11

A. bacterium 49_20

M. infera isolate 46_47

P. bacterium 34_609
Desulfotomaculum sp. 46_80
S. bacterium 57_84

B. bacterium

S. bacterium 53_16

A. bacterium 34_128

M. bacterium 46_47
Desulfotomaculum sp. 46_296
TAO06 bacterium 32_111

P. bacterium 33_209

A. bacterium 66_15

A. thermophila isolate 46_16
WS6 bacterium 34_10

- 4 4 a4 d a4 A d d e d d a4 000000
N = = 4 2 a4 4 e d e d a4 a4 000000

Table 13. Bin and neighborhood rpIB protein content.

Species rpsC (bin)  rpsC

M. bacterium 39_7 0
P. acetatigenes isolate 50_10 0
WS6 bacterium 34_10 0
Methanobacterium sp. 42_16 0
Methanocalculus sp. 52_23 0
WS6 bacterium 36_33 0
M. marisnigri isolate 62_101 0
B. bacterium 0
P. bacterium 33_209 0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Plass)

M. harundinacea isolate 57_489
M. infera isolate 46_47

C. bacterium 38_11

A. bacterium 49 20

P. bacterium 34_609

S. bacterium 57_84

S. bacterium 53_16

A. bacterium 34_128

M. bacterium 46_47

TAO06 bacterium 32_111

A. bacterium 66_15

A. thermophila isolate 46_16
Desulfotomaculum sp. 46_80
Desulfotomaculum sp. 46_296

NN 222 a4 a4 a0 0404000000000 0o

Table 14. Bin and neighborhood rpsC protein content.
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