

1 ***Different features of cholera in malnourished and non-malnourised children: analysis of 10-
2 year surveillance data from a large diarrheal disease hospital in urban Bangladesh***

3 Sharika Nuzhat[¶], Md Iqbal Hossain[¶], Nusrat Jahan Shaly¹, Rafiqul Islam¹, Soroar Hossain
4 Khan¹, A S G Faruque¹, Pradip Kumar Bardhan¹, Azharul Islam khan¹, Mohammod Jobayer
5 Chisti¹, Tahmeed Ahmed¹

6

7 ¹Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research,
8 Bangladesh (icddr,b), Mohakhali, Dhaka, Bangladesh

9

10 Corresponding author

11 E-mail: tahmeed@icddrb.org

12

13 [¶]These authors contributed equally to this work.

14

15

16

17

18

19

20 **Abstract**

21 **Background:** Malnourished children are more prone to infectious diseases including severe
22 diarrhea compared to non-malnourished children. Understanding of the differences in the
23 presentation of severe diarrhea such as cholera in children with varying nutritional status may
24 help in the early identification and management these children. However, data are scarce on
25 differences in the presentation in such children. Thus, we aimed to identify the clinical
26 differentials among children with cholera with or without malnutrition.

27 **Methods:** Data were extracted from diarrheal disease surveillance system (DDSS) of the Dhaka
28 Hospital of icddr,b for the period, January 2008 to December 2017. Among under-five children,
29 cholera positive (culture confirmed) and malnourished children (weight-for-age, weight-for-
30 length or height-for-age Z score (WAZ, WHZ or HAZ) <-2) were considered as the cases
31 (n=305) and children with cholera but non-malnourished (WAZ, HAZ, and WHZ ≥ -2.00 to
32 $\leq +2.00$) were the controls (n=276).

33 **Results:** A total of 14,403 under-five children were enrolled in the surveillance system during
34 the study period. After adjusting for potential covariates such as maternal illiteracy and slum
35 dwelling, it was revealed that under-five malnourished children with cholera significantly more
36 often presented to the hospital during evening hours (6 pm to 12 mid-night) (OR=1.64, 95%
37 CI=1.16-2.31, P<0.05), had fathers who were illiterate (OR=1.70, 95% CI=1.11-2.62, P<0.05),
38 presented with history of cough within last 7 days (OR=1.64, 95% CI=1.10-2.43, P<0.05),
39 dehydrating diarrhea (OR=1.70, 95% CI=1.15-2.53, P<0.05), and had longer hospitalization
40 (OR=1.50, 95% CI=1.05-2.14, P<0.05).

41 **Conclusions:** The study results underscore the importance of understanding of the basic
42 differences in the presentation of severe cholera in malnourished children for prompt
43 identification and the subsequent management of these children. These observations may help
44 policy makers in formulating better case management strategy.

45 **Key words:** Cholera, Malnutrition, Dehydration, under-five children

46

47 **Author Summary:**

48 Malnourished children are more vulnerable to infectious diseases including cholera in
49 comparison to the non-malnourished children. They often have suboptimal immune function,
50 though there is no precise information on whether there is any difference in associated factor(s)
51 or clinical course of cholera in under-five children with varying nutritional status. Therefore, this
52 study was conducted to elucidate these insights by using the surveillance data of the Dhaka
53 hospital of icddr,b. Among all the under-five children with cholera, 305 malnourished (WAZ or
54 WLZ or HAZ <-2) children constituted as the cases (malnourished), and another 276 non-
55 malnourished (WAZ, HAZ, and WHZ ≥ -2.00 to $\leq +2.00$) cholera children formed the comparison
56 group.

57 In this study we revealed that care seeking at evening time was more common in the
58 malnourished children with cholera compared to those without malnutrition. Dehydrating
59 diarrhea was about two folds higher and prolonged hospitalization was frequent in malnourished
60 children with cholera than their counterparts. These key findings may help policy makers in
61 formulating better case management strategy in the near future.

62 **Introduction**

63 Cholera is a leading public health concern globally, with an estimated 1.3-4.0 million cases
64 occurring each year, worldwide [1]. Moreover, a significant disease burden of cholera has been
65 reported in young children [2]. Higher rates of malnutrition among pre-school children have been
66 observed in Bangladesh [3]. Malnourished children are at a higher risk of severity of diarrhea
67 and death, moreover, the disease severity has been found to be associated with nutritional status,
68 body size, and etiologic agents of diarrheal episodes [4]. A study in Brazil reported that the
69 clinical presentations of early childhood severe diarrhea may vary because of diverse etiologies.
70 Understanding of the differences in the presenting features of severe diarrhea especially in
71 cholera, that are associated with varying nutritional status of the young children is thus critically
72 important for early identification and management these children. Hence, with an attempt to
73 address the existing knowledge gap as well as to share research findings with policy makers for
74 formulating better case management strategy we undertook this study to examine the clinical
75 feature differentials among children infected with *Vibrio cholerae* who presented with or without
76 malnutrition.

77

78 **Methods**

79 **Ethical statement**

80 For this study, data were extracted from the electronic database of hospital-based diarrheal
81 disease surveillance system (DDSS) of Dhaka Hospital of icddr,b. The DDSS has the approval
82 from institutional review board of icddr,b (Research Review Committee and Ethical Review

83 Committee) for data analysis. ERC was also pleased with the voluntary participation,
84 maitainance of rights of the participants and confidential handling of personal information by the
85 hospital doctors and accepted this consenting procedure. At the time of enrolment into DDSS,
86 verbal consent was obtained from the parents or the attending caregivers of each child following
87 hospital policy. The verbal consent was recorded by keeping a check mark in the questionnaire
88 that was again assured by showing the mark to parents or caregiver. DDSS is a routine ongoing
89 surveillance in hospitals of icddr,b located in Dhaka, Bangladesh. At the time of consenting,
90 parents or caregivers were assured of ‘any risk being no more than minimal risk’, ‘their
91 participation is voluntary’, ‘their rights to withdraw from the study, and ‘the maintenance of
92 strict confidentiality of disclosed information. They were also informed about the use of
93 collected data for analysis and using the results for improving patient care, conducting researches
94 and also publication without disclosing the name or identity of their children.

95 **Study population and study site**

96 Dhaka Hospital of icddr,b provides care and free treatment to around 150,000 diarrheal disease
97 patients each year and about 62% of them are children less than 5 years of age. The DDSS
98 systematically (from every 50th patient according to their hospital ID number) collects
99 information including age, sex, socio-demographic characteristics, clinical features, and etiology
100 of diarrhea. Parents or caregivers are interviewed by research assistants who collect
101 demographic, socioeconomic and clinical data. A physician documents the clinical findings
102 including dehydration status. A fresh stool sample is collected and submitted to laboratory for
103 microbiological evaluation. All relevant information is recorded into the electronic database as
104 soon as possible. For the present study, analysis was limited to under-five children who were

105 cholera positive and enrolled into the DDSS from January 2008 to December 2017. Nutritional
106 status of these children was assessed at the time of discharge from the hospital. Weight was
107 measured nearest to 100 g using a digital scale and length/height was estimated using a locally
108 manufactured length board with a precision of 0.1 cm. Nutritional status was assessed by Z-
109 scores following WHO 2006 growth standards.

110 **Study design**

111 A case control study design was followed. The study group (cases) comprised of malnourished
112 diarrheal children with associated *Vibrio cholerae* infections and those presented at the same
113 time without malnutrition constituted the concurrent comparison group (controls).

114 **Definition**

115 Malnutrition was defined in children 0-59 months of age with any of the indices of malnutrition
116 such as: weight for age z-score (WAZ) or height for age z-score (HAZ) or weight for height z-
117 score (WAH) < -2 . Non-malnourished children had WAZ, HAZ, and WHZ ≥ -2.00 to $\leq +2.00$. A
118 child with cholera had growth of *V. cholerae* in the fecal specimen.

119 **Data Analysis**

120 Data were analyzed using SPSS for windows (version 20; SPSS Inc, Chicago, IL) and Epi Info 7.
121 Differences in the proportion were compared by the Chi-square test. A probability value of $<$
122 0.05 was considered as statistically significant. Strength of association was determined by
123 calculating odds ratios (OR) and their 95% confidence intervals (CI). Logistic regression was
124 performed to identify factors that were considered significantly associated with malnourished
125 cholera children after adjusting for potential confounding variables. Multicollinearity between

126 independent variables was also checked before constructing logistic regression models having a
127 variance inflation factor (VIF) of < 3.0.

128 **Results**

129 A total of 14, 403 under-five children were enrolled in the DDSS during the study period and
130 581 children were found to have culture proven cholera. Out of them, according to the eligibility
131 criteria 305 belonged to the study group (cases) while the rest 276 constituted the comparison
132 group (controls). Bi-variate analysis revealed that the cases more often had illiterate mothers and
133 lived in slum settlements compared to the controls. The cases compared to their counterpart
134 commonly reported to the facility at evening hours (6 pm -12 mid-nights), often had history of
135 cough within the last seven days, and were found to seek out care for dehydrating diarrhea. The
136 cases often required longer hospitalization than the controls (Table 1).

137 **Table 1. Clinical findings of cholera children with or without malnutrition (2008-2017)**

Variable	Malnourished cholera children (n=305) (%)	Non- malnourished cholera children (n=276) (%)	OR	95%CI	P value
Male	186 (61%)	169 (61.2%)	0.99	0.71-1.38	0.981
Illiterate mother	105 (34.4%)	70 (25.4%)	1.55	1.08-2.21	0.022
Illiterate father	117 (38.4%)	68 (24.6%)	1.9	1.33-2.72	0.001
Slum area	41 (13.4%)	22 (8%)	1.8	1.04-3.10	0.047

Non-sanitary Toilet	68 (22.3%)	51 (18.5%)	1.27	0.84-1.90	0.300
Use of untreated drinking water	197 (64.6%)	161 (58.3%)	1.3	0.93-1.82	0.143
No use of antibiotic at home	115 (37.7%)	110 (39.9%)	0.91	0.65-1.28	0.656
Presence of vomiting	265 (86.9%)	237 (85.9%)	1.1	0.68-1.8	0.814
Presence of fever	15 (4.9%)	9 (3.3%)	1.53	0.7-3.57	0.427
Presence of abdominal pain	87 (28.5%)	83 (30.1%)	0.93	0.65-1.33	0.750
History of cough within last 7 days	93 (30.5%)	57 (20.7%)	1.69	0.33-14.29	0.009
History of measles	11 (3.6%)	12 (4.3%)	0.82	0.36-1.9	0.807
Diarrheal duration < 24hours	129 (42.3%)	135 (48.9%)	0.77	0.55-1.06	0.129
Dehydration (some/severe)	242 (79.3%)	184 (66.7%)	1.9	1.32-2.8	0.001
Watery stool	291 (94.4%)	267 (96.7%)	0.7	0.3-1.63	0.543
Use of IV fluid	145 (47.7%)	123 (44.7%)	1.13	0.81-1.56	0.527
Reporting time (6.00 pm to 12.00 mid-night)	76 (24.9 %)	41(14.9 %)	1.89	1.24 -2.88	0.004
Length of stay > 24hours	143(47.4 %)	96(36 %)	1.14	1.14-2.24	0.008
Death	0 (0%)	1 (0.4%)	-	-	0.948

138 % denotes percentage of cholera positive malnourished and non-malnourished group until

139 mentioned otherwise

140 Logistic regression analysis adjusting for potential covariates such as maternal illiteracy, and

141 slum dwelling revealed that malnourished children under 5 years of age with cholera

142 significantly more often had paternal illiteracy, history of cough, reported to the hospital in

143 evening hours, presented with dehydrating diarrhea, and had longer stay at hospital (Table 2).
144 Another logistic regression revealed no significant association between untreated drinking water,
145 non-sanitary toilet use, febrile illness and cholera in malnourished children.

146 **Table 2. Logistic regression analysis to find out independent factors associated with**
147 **cholera in malnourished children**

Characteristic	Adjusted OR	95%CI	P value
Illiterate mother	0.98	0.63-1.54	0.943
Illiterate father	1.74	1.13-2.67	0.012
Slum dwelling	1.75	0.97-3.21	0.071
History of cough within last 7 days	1.61	1.08-2.39	0.019
Reporting time (6.00 pm to 12.00 mid night)	1.76	1.14-2.73	0.011
Dehydration (some/severe)	1.67	1.13-2.48	0.011
Length of stay > 24hours	1.51	1.06-2.15	0.022

148

149 **Discussion**

150 The present study observed different features of cholera in children with or without malnutrition.
151 The most important significant observation is the 67% excess risk of dehydrating diarrhea in
152 malnourished cholera children than non-malnourished cholera children. Other important
153 observations in malnourished cholera children with dehydrating diarrhea than non-malnourished

154 cholera children were: i) most often care seeking at evening-night hours, and iii) longer
155 hospitalization of malnourished cholera children.

156 As expected in malnourished children, lack of immune responses particularly the reduced
157 secretory IgA levels in the gut mucosa along with hypochlorhydria or achlorhydria made these
158 study children more vulnerable to diarrheal illnesses with relatively lower inoculums. Possible
159 explanation for more dehydrating diarrhea in malnourished cholera children are: these children
160 are more often slum dwellers with poor water-sanitation and hygienic practices that might have
161 caused the ingestion of larger inoculums of *Vibrio cholerae* resulting in greater challenging dose
162 of cholera toxin. Moreover, since malnourished children are likely to have an increased area of
163 gut mucosal surface compared to their body weight than the non-malnourished children they are
164 more vulnerable to higher purging rate and resultant greater stool output during diarrhea [4]. In
165 case of malnourished children with cholera, slower turnover rate of gut mucosal cells,
166 deficiencies of intestinal enzymes, micronutrients, and impaired immune responses with
167 exposures to larger inoculums because of their dwelling in more contaminated environments in
168 the slums might have caused more severe disease and delayed recovery, thereby, longer
169 hospitalization.

170 Dewan *et al.* reported that children with associated *Vibrio cholerae* infections were significantly
171 more severely underweight, stunted, and wasted. The study indicated that such association may
172 be due to impaired gastric barrier, hypochlorhydria, and prolonged intestinal mucosal injury that
173 are commonly observed in malnourished children [5]. A study in urban Bangladesh evaluated
174 the role of common diarrheal pathogens and revealed that children with *Vibrio cholerae*
175 infections were 5.5 times more likely to be associated with dehydrating diarrhea than that in case

176 of children without this causative agent [6] and these children were significantly more
177 malnourished. Similar to our findings, other cholera researchers from Bangladesh revealed
178 marked prolongation of duration of diarrhea in undernourished children [7]. Exerting greater
179 emphasis on stool output, Palmer *et al.* indicated that higher inoculum size is likely to cause
180 greater intestinal mucosal surface involvement causing higher stool volume per unit of time than
181 a longer duration of diarrhea [7]. On the basis of a study in the rural settings of Bangladesh,
182 Black *et al.* reported that child's small body size because of young age and low nutritional status
183 are more likely to result in more fluid loss (per kg body weight) during diarrhea and such
184 children are more vulnerable to severe dehydration and death if not properly treated by
185 appropriate rehydration therapy [4]. Most studies that reported association between malnutrition
186 and severity of diarrhea did not take into consideration the role of enteropathogens in causing
187 severity of dehydration and longer duration of the episode [5, 8]. Another study in Brazil
188 reported that children with fever, vomiting or both would capture 75% of the children at risk for
189 dehydrating diarrhea [9]. However, this study compared the inpatient cases versus outpatient
190 controls without relating to the etiology and nutritional status. In our study particularly with
191 cholera positive children, vomiting (86.9% vs 85.9%), fever (4.9% vs 3.3%) or abdominal pain
192 (28.5% vs 30.1%) did not demonstrate any significant difference in cholera children with or
193 without malnutrition.

194 Victora *et al.* observed strong association between low body weight of infants (regardless of
195 age) and risk of higher dehydration. Low body weight was observed to be a superior determinant
196 in comparison to the anthropometric indices for predicting dehydrating diarrhea in children
197 reporting to the health facility. The study mentioned that children with low body weight are
198 young, malnourished or both. These children have larger gut surface compared to their body size

199 in addition to greater purging rate due to diarrhea as compared to older children [8]. Thus
200 malnourished cholera children during hospitalization require intensive treatment with adjunct
201 appropriate antimicrobial and zinc therapy, careful assessments of dehydration at intervals,
202 appropriate dietary intervention with closer follow-up. Malnourished children are more prevalent
203 in families with low income and poor housing along with compromised water-sanitation and
204 hygienic practices. These children should be targeted for health education at household level
205 along with support for continued breast feeding, initiation of rehydration therapy soon after the
206 onset of diarrheal illnesses to prevent severity of disease with early referral of dehydrating
207 children to appropriate facilities to avoid unnecessary death.

208 These malnourished cholera children were mostly from the urban slums and due to the nature
209 and working hours of the father or mother or both, they presented to the facility during evening
210 hours or later. Another important observation from our study was that the malnourished cholera
211 children had a greater frequency of a history of cough within the last seven days. Cough is one of
212 the key clinical features of respiratory tract infections. The most common infections for
213 malnourished children are gastrointestinal and respiratory infections [10]. The first line of
214 defense mechanism for these infections is the innate immunity, particularly the epithelial
215 barriers and the mucosal immune response [11]. Malnourished children significantly suffer
216 from compromised mucosal barriers of the gastrointestinal, respiratory and urogenital tracts.

217 The study may be replicated in other geographical and cultural settings to see if the same clinical
218 features play a similar role in causing dehydrating diarrhea in malnourished cholera children.
219 Cholera outbreaks in emergency settings, such as settlements for displaced population and in the
220 aftermath of natural calamities, are now commonly encountered. In such situations, the treatment

221 of children with severe acute malnutrition and cholera is difficult in terms of both competences
222 of clinicians well as coordination of logistics. The findings of our study are likely to be very
223 helpful in such situations emphasizing the critical need in keeping SAM children with cholera for
224 a longer period of time in the diarrhea treatment center before their referral to a nutritional
225 rehabilitation or outpatient treatment center.

226 This study was conducted in an urban hospital and vast majority of the patients represented with
227 poor socio-economic background. Our study children had higher degree of infection that
228 required hospitalization because of severe illness and they represented a relatively small
229 proportion of children while the vast majority of children with less severe disease received care
230 at the household level and did not seek care from the present facility. Respondents were mothers
231 who presented to the facility with their child; 27% had no formal schooling and 60% of their
232 children were malnourished and those who presented from urban slums, 65% were
233 malnourished. Thus our study children might not be representing the greater population.
234 However, our results are likely to generate several hypotheses. Future studies could better
235 describe the changes in presenting features along with etiology specific changes in clinical
236 features in malnourished children over time period. Along with the unbiased systematic
237 collection of data, a larger sample size, high quality laboratory performance and use of probing
238 techniques in interviewing of mothers or caregivers had thus been the strengths of the study.

239 **Acknowledgments**

240 This research study was funded by core donors which provide unrestricted support to icddr,b for
241 its operations and research. Current donors providing unrestricted support include: Government
242 of the People's Republic of Bangladesh; Global Affairs Canada (GAC); Swedish International

243 Development Cooperation Agency (Sida) and the Department for International Development
244 (UK Aid). We gratefully acknowledge these donors for their support and commitment to
245 icddr,b's research efforts.

246

247 **References**

- 248 1. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLoS neglected tropical diseases. 2015;9(6):e0003832.
- 249 2. Deen JL, Von Seidlein L, Sur D, Agtini M, Lucas ME, Lopez AL, et al. The high burden of cholera in children: comparison of incidence from endemic areas in Asia and Africa. PLoS neglected tropical diseases. 2008;2(2):e173.
- 250 3. National Institute of Population Research and Training (NIPORT) MaA, and ICF International. Bangladesh Demographic and Health survey 2014. Dhaka, Bangladesh and Rockville, Maryland, USA: NIPORT, Mitra Associates, and ICF International. 2016.
- 251 4. Black RE, Merson MH, Eusof A, Huq I, Pollard R. Nutritional status, body size and severity of diarrhoea associated with rotavirus or enterotoxigenic Escherichia coli. The Journal of tropical medicine and hygiene. 1984;87(2):83-9.
- 252 5. Dewan N, Faruque A, Fuchs G. Nutritional status and diarrhoeal pathogen in hospitalized children in Bangladesh. Acta Paediatrica. 1998;87(6):627-30.
- 253 6. Faruque A, Mahalanabis D, Islam A, Hoque S, Hasnat A. Common diarrhea pathogens and the risk of dehydration in young children with acute watery diarrhea: a case-control study. The American journal of tropical medicine and hygiene. 1993;49(1):93-100.
- 254 7. Palmer D, Koster F, Alam A, Islam M. Nutritional status: a determinant of severity of diarrhea in patients with cholera. Journal of infectious diseases. 1976;134(1):8-14.

266 8. Victora CG, Fuchs SC, Kirkwood BR, Lombardi C, Barros FC. Low body weight: a simple indicator
267 of the risk of dehydration among children with diarrhoea. *Journal of diarrhoeal diseases research.*
268 1997;7-11.

269 9. Victora CG, Kirkwood BR, Fuchs SC, Lombardi C, Barros FC. Is it possible to predict which
270 diarrhoea episodes will lead to life-threatening dehydration? *International journal of epidemiology.*
271 1990;19(3):736-42.

272 10. De Onis M, Monteiro C, Akré J, Clugston G. The worldwide magnitude of protein-energy
273 malnutrition: an overview from the WHO Global Database on Child Growth. *Bulletin of the World health
274 Organization.* 1993;71(6):703-12.

275 11. Janeway Jr CA, Medzhitov R. Innate immune recognition. *Annual review of immunology.*
276 2002;20(1):197-216.