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Abstract

Transfer entropy (TE) is a powerful algorithm which attempts to detect the transfer of
information from one system to another. In neuroscience, it has the potential to track
the movement of information through complex neuronal systems, and provide powerful
insights into their organization and operation. One such application is the ability to
infer the existence of causal connectivity (such as synaptic pathways) between neurons
in a culture being recorded by micro-electrode array (MEA).

There are several challenges, however, in applying TE to neurological data; one of
these is the ability to robustly classify what experimental TE value qualifies as
significant. We find that common methods in spike train analysis such as a Z-test
cannot be applied, as their assumptions are not met. Instead, we utilize surrogate data
to compute a sample under the null hypothesis (no causal connection), and resample
experimental data through Markov chain Monte Carlo (MCMC) methods to create a
sample of TE values under experimental conditions. A standard non-parametric test
(Mann-Whitney U-test) is then applied to compare these samples, and determine if they
represent a significant connection.

We have applied this methodology to MEA recordings of neuronal cultures
developing over a period of roughly a month, and find that it provides a wealth of
information regarding the cultures’ maturity. This includes features such as the directed
graph of causal connections across the MEA and identification of information exchange
centers. These results are consistent and carry a well-defined significance level.

Introduction

Micro-electrode arrays (MEAs) are tools which contain microscopic electrodes, allowing
for measurements of electrical activity across a variety of samples (such as cultures of
primary neurons). The resolution and capabilities of MEAs are growing, as
measurement electrodes become smaller, more numerous, and more sensitive ( [1]).
While this allows researchers to study the development and behavior of neuronal
networks in unprecedented detail, it also creates challenges in data analysis as the size
and complexity of experimental results grows. To develop a clearer understanding of the
connectivity of neuronal tissue, algorithms for data analysis must provide results with a
high confidence, and have common, efficient implementations available freely.

The focus of many MEA experiments is to determine the functional connectivity
between the neurons, and to investigate how this connectivity develops or changes under
differing conditions ( [2-6]). Many different mathematical methods have been applied to
infer functional connectivity from the spiking activity of neurons, including
cross-correlation (CC) and transfer entropy (TE) ( [7,8]).
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A challenge for both these algorithms is determining what value is significant, as
both methods have biases and can be fooled by coincidences in the dataset, producing
non-zero values even when a significant connection does not exist ( [9], [10]). As a
result, it is necessary to filter these data using estimates of their values under the null
hypothesis that no connection exists.

We present a novel Markov-chain Monte Carlo (MCMC) based method of detecting
significance from TE results, by sampling surrogate and experimental values. A
non-parametric statistical test, the Mann-Whitney U-test, is then applied to these
samples to determine the significance of each hypothesis regarding the connectivity.

We then apply this method to analyze the connectivity found within experimental
recordings of developing neuronal cultures created by Wagenaar et al. ( [11]). The TE
results provide a wealth of information, including the undirected graph of connectivity
during development, and the relative importance of different sites in exchanging
information.

Lastly, we briefly the performance of our software, written in the Julia language and
compatible with common Python tools for plotting, network analysis, and
browser-based interactivity [12-14]. As a result, our implementation is fully open-source,
portable, and can be quickly built from an image.

1 Methods

1.1 Transfer Entropy

Transfer entropy (TE) is an information-theory based measure which quantifies how
much one’s prediction of a signal changes based on the state of another signal ( [15]). It
is a measure which has been widely adopted in neuroscience ( [10,16]), as it has been
found to have give the most accurate results from several different methods applied to
simulated neural networks [17].

As detailed by Vicente et al. [10], TE may be calculated on discrete data (such as
spike trains) by creating a ‘delay vector.” Given an original, discrete spike train z(t)
which can indicate the presence or absence of a spike at ¢, let (w) be a vector counting
the number of spikes in each temporal bin of width w, with sufficient bins to span ().
The short-term behavior of @(w) at an index ¢ is then represented a single state, by
creating a delay vector X/, which captures x; from ¢ to the previous 7 — 1 values.

w 2w 3w

w(w) =Y _w(t), Y x(t), Y w(t), ] (1)
t=0 t=w t=2w

X7 (w) = [@i(w), ®i—1(w), ..., Birpa (w)] (2)

The combination of a signal x’s past state, its next value, and the past state of
another signal y are used to create a joint distribution (JD, Fig 1a). The objective of
this JD is to summarize the probability of each future state of z, given the delay vectors
representing the past of both signals. By summing this JD along its rows, a marginal
distribution (MD) is found, which predicts the future of  using only its own past state,
excluding the past of y. Often, the past state may be offset by an additional o bins,
inspecting for relationships which may have a delay.

The divergence between conditional probabilities predicting the future of x using the
JD and MD is the transfer entropy between the signals. When the information from y is
useful to predict the future of x, the divergence between these distributions will increase,
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Fig 1. Illustration of calculating TE. a) Illustration of generating the joint
distribution (JD) which describes the future state of a signal given its past state, and
the past state of another signal. It can be reduced to the marginal distribution (MD,
left side), which predicts its future outcome based on only its own past state. The
divergence between each distribution’s predictions is used to calculate TE. b)
Markov-chain Monte Carlo (MCMC) method of generating spike count vectors
representing the null hypothesis (no connectivity). In this example, the embedding
length 7 is 2, and the maximum possible spike count in a bin is 1. This creates a simple
system which can transition through 4 states to generate a spike train. ¢) The MCMC
method of resampling experimental TE values. Two signals’ futures must be chosen
randomly using the conditional probabilities from their original JDs. This provides a
transition to the next joint state. If this state was not encountered in the original
recording, it must be rejected (bottom).

indicating the possibility of a causal relationship from y to x. The inverse is not true, as
TE is not commutative; the influence of x on y must be separately examined.

len(x)—(7+1)
- - P(QIIZ 1‘X7—_ ,YT_ )
TEy—mt(wa T, 0) = P(mi-i-lei—ov }/i—o) : lOg P{w’+1Z|AX?T l) 2
i=1 ? 1—o0

3)

While TE is a powerful informational method for investigating possible causality
between different signals, it is computationally expensive. To apply it to spiking data,
one must compute joint distributions of all spike embeddings between all combinations
of electrodes on the array. One must also select the dimension of the delay embedding
(1), and the period the delay embedding spans. The correct values for these parameters
are not obvious, and each has a significant impact on the algorithm’s end result.
Additionally, it has been shown that TE only achieves peak accuracy for spike trains
when it searches for causality at multiple time-offsets, as neurons influence one another
at differing time scales ( [18]).

1.2 Significance Testing

Both TE and other algorithms generally analyze entire MEA recordings as a single
sample. As a result, only one experimental value is calculated for each possible relation
between spiking sources. Due to coincidental behaviors, noise, and biases which may be
present in the recordings and algorithms, TE values are almost always non-zero.

To determine what level a potential relation must exceed in order to be significant, it
must be compared to the amount which could be expected under the null hypothesis
(there is no causal relationship between the sources). If a value exceeds this, the

alternative hypothesis (there exists a causal connection between the sources) is accepted.

1.2.1 Traditional Approaches

‘Surrogate’ datasets approximating each spike train operating under the null hypothesis
of no connectivity can be created by several methods. All of these methods must tread
a thin path between maintaining the overall properties of a recording (such as spike
count and inter-spike intervals), while obfuscating information that was created by
causal relationships between sources ( [9]).

Most often, this is done by shuffling data, exchanging spikes, or dithering times in
the original recording. This is done many times to create a sample of results under the
null hypothesis that there is no connectivity. For cross-correlation and other methods,

October 26, 2018

3/11

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85


https://doi.org/10.1101/460733
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/460733; this version posted November 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY 4.0 International license.

these values can be well-described by a normal distribution, allowing parametric
methods such as the Z-test to be applied. If the original experimental value exceeds a
certain sigma level (typically 3-60) of the distribution, it can be accepted as significant
with the well-defined risks corresponding to the test being used ( [19]).

However, the complex and non-linear behavior of TE complicates statistical testing
of its values’ significance. This can lead to assumptions of standard parametric tests

being violated, making appropriate application of these tests challenging or impossible.

Non-parametric techniques offer an alternative approach to calculating the
significance, while making fewer assumptions about the underlying distributions. If a
large enough sample of values can be found for each hypothesis, a variety of
non-parametric methods can be applied.

1.2.2 MCMC Approach for TE

The unique way in which TE captures the dynamics of signal pairs allows it to be
resampled under both the null and alternative hypotheses. Specifically, the joint and
marginal distributions calculated from a pair of signals in the recording can be used to
create Markov chains, which can be used in a manner similar to Gibbs sampling, to
calculate values under either hypothesis ( [20]).

Under the simpler case of the null hypothesis, only one MD for each source is needed.

Assuming a source starts at a quiet state, its first state vector X7 is created. Using the
conditional probability P(x;1|X]), an outcome for the next state ;41 is randomly
selected. The state vector is then moved forward in time to include this outcome, and
this process is repeated until a sample of sufficient length is created (Fig 1b). In our
implementation, spike-count vectors for each channel are generated until the total
number of spikes is equal to that of the original recording. This surrogate recording is
then re-analyzed to calculate TE values for each possible connection. In this case, each
source is independently sampled from a conditional distribution dependent on only its
own past, and there is no causal behavior between sources. As a result, any detected
information transfer is a due to the TE algorithm’s biases.

The more challenging case is to re-sample the value of each possible connection
under the alternative hypothesis that sources do influence one another. In this case, the
joint distributions predicting the next state of the two relevant sources must be
simultaneously sampled. Similarly to the null case, this is done by starting at a quiet
state, and randomly choosing each signal’s next state based on the conditional
probability P(x;4+1|X],Y;"), given the joint state between both sources’ state vectors.
The occurrence of each new joint state is incremented in a JD, and the process is
repeated until the number of total joint states in this distribution equals the number
calculated using the original recording.

One complication arises, however: both signals are being generated at once, and they
can occasionally choose conflicting states for the next step. This represents a state
which was never encountered in the original recording (such as both channels spiking
simultaneously). When this rare situation occurs, outcomes are re-chosen until a new,
valid configuration is found. At least one such configuration always exists; given that
the signal entered one state in phase space, it also had to traverse out of it (the
trajectory of the signal is closed, given that the beginning and ending of each recording
corresponds to a quiescent state).

Additionally, these Markov chains can only be made from distributions which were
created at a zero offset. When the next outcome is delayed from the current state
vector, the next state vector is not immediately dependent on the previous spiking state,
and a Markov chain which gives appropriate state-changes cannot be constructed. As a
result, to re-sample TE values at a non-zero delay, the signal must be reconstructed
from the 0-delay distribution, and the delayed state measured from its generated signal.
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Once each possible connection has had its JD resampled, a new TE value for this
connection can be calculated. Essentially, the difference between this re-sampled TE
value and the original experimental value represents the result’s sensitivity to slight
perturbations to, or recombinations of the original signals. If the original value
depended solely on a handful of extraordinary events, the spread of resampled signals
will be large, indicating uncertainty.

The spread of this value is important when estimating the significance of the
alternative hypothesis compared to the null. A single experimental value may always
exceed the surrogate values under the null hypothesis, but re-sampling these
experimental values reveals that there may be significant overlap between the samples.

To test the null hypothesis, a direct Mann-Whitney U-test is applied. The U-test is
a standard, unpaired, non-parametric test which compares all possible matches between
the surrogate and experimental samples. It examines the proportion of matches in
which the experimental samples are lesser. If this proportion is below the risk level, the
null hypothesis is rejected, and the difference between these two samples indicates that
the experimental TE value is significant, and provides sufficient evidence to infer a
causal connection exists.

We denote this method as ‘resampling transfer entropy’ (R-TE), as it compares
surrogate data and resampled experimental values to determine if a causal connection is
significant.

1.3 Implementation

Julia ( [12]) is a recent programming language with a focus on usability, parallelism, and
numerical performance. This gives it number of advantages: interactivity, integration
with Python libraries, and parallel dispatch. Additionally, Julia is free and open-source
software, aiming to provide a common base for scientific computing. Because of these
strengths, we use it to implement R-TE and additional functions needed for data
handling, analysis, and statistical testing. As it is completely written on a free and
open-source base, our software can be easily downloaded, built, and executed inside a
container-based system ( [21]).

The Jupyter notebook system ( [14]) supports Julia kernels, allowing analysis
commands to be carried out interactively through a browser. Results can then be
explored and displayed in-line, by utilities such as Matplotlib ( [22]), and this
methodology was used to generate most the figures which we present. One exception is
representations of graphs (Fig 5d-f), which were generated using the Gephi software
( [23)).

The Julia language is supported on all common operating systems (Windows,
Macintosh, Linux), and we execute our software on an Ubuntu 14.04-based system with
2 Xeon E5-2670 CPUs (2.6 GHz, 32 total threads). Runtime data was collected using
macros included in the Julia language.

1.4 Experimental Data Source

To test the viability and performance of R-TE on experimental data, we applied it to
MEA recordings created by Wagenaar et al., as they provide a large collection of
neuronal cultures which developed over several weeks [11]. These cultures were prepared
under differing conditions, including the source of the cortical material and the density
at which it was plated. Cortical material was collected from eight Wistar rat embryos,
giving rise to 8 ‘batches’ of source material. The material was then disassociated, and
plated into individual cultures on MEAs. After 3-4 days in vitro (DIV), daily recordings
were taken of the spiking activity as measured by the 59 recording electrodes on the
array.
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We sub-selected 4 cultures to investigate as a demonstration of R-TE’s capabilities.
The first two cultures, A and B, were densely plated (2.5 & 1.5210% cells/mm? - batch 1,
dense cultures 1 and 2). Culture C has a ‘small’ plating density, with 1.6 + 0.6210°
cells/mm? (batch 6, small culture 1), and culture D has a ‘sparse’ 0.6 & 0.242103
cells/mm? plating density (batch 6, sparse culture 1). It was reported that the sparser
cultures C and D developed more slowly than the dense cultures A and B, as the former
required more time to develop complex spiking features. This contrast provides an
interesting case to apply R-TE, and compare the developmental kinetics between
conditions.

2 Results & Discussion

2.1 Signal Dynamics

Obtaining meaningful results from TE is heavily dependent on selecting parameters
which allow it to accurately capture the dynamical behavior of the system being
investigated. For continuous signals, standard tests such as the Cao or Ragwitz criteria
can be applied to find the proper parameters ( [24]). However, these criteria do not
extend well to discrete systems, such as spike trains.

To find the appropriate bin width w, delay embedding length 7, and range of delay
offsets o, we first make a basic inspection of the signal dynamics. A correlogram shows
that many of the interactions between signals fall within a window of 20 ms (Fig 2a),
providing a relevant period which the series of offsets o should inspect. Next, the
minimum value of w is given by the sampling rate of the recording (25 kHz). At this
minimum of w = 40 us, no more than one spike can occur in each bin. As w increases,
more than one spike can fall in each bin. By changing w, the maximum number of
spikes within one bin increases. If the bin is too large, many spikes which could be
interacting or transferring information will fall into a single bin, improperly capturing
the signal. We see an inflection above 1 ms, where the maximum number of spikes
begins to rapidly increase - this suggests that w should not be larger than this value
(Fig 2b). With o and w selected from signal dynamics, 7 must be selected from its effect
on results. At larger values of 7 and w, the improper embedding of the signal causes the
JD to effectively begin ‘memorizing’ it, creating artificially high TE values. We find
that 7 = 3 is a good selection, as the results with a larger or smaller 7 do not differ
strongly (Fig 2c). When results are analyzed, the power of the test being applied also
depends on the number of resampled and surrogate values being sampled. Sampling the
variation in total number of significant connections detected by bootstrap, we find that
32 samples of each is more than sufficient to effectively eliminate the variation in a
tests’s outcome (Fig 2d). These parameters (w = 1 ms, 7 = 3, o = 0-20 bins, 32
resamples/surrogates) are used to analyze the recordings for cultures A-D.

2.2 Comparison to Standard Methods

Each culture originates from a sample of disassociated neurons, which have no
connections when they are first plated onto the MEA. This gives a reference starting
point for algorithms detecting connectivity; early in a culture’s development, the
number of detected causal connections should be either very small or zero.

This expected result, however, is not found when attempting to use a Z-test to
estimate significance of experimental TE values. Even when using what would be an
extremely high significance level if the test’s assumptions were met, the test fails to
reject hundreds or thousands of connections which must be insignificant, given the
known developmental status of the culture. In contrast, R-TE quickly begins to filter
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Fig 2. Parameter Selection for TE. a) Total correlation counts between pairs of
signals over a range of delays (Culture A, 25 days in vitro (DIV)). Many of the
strongest interactions occur within 20 ms. b) The maximum number of spike counts
found in a single bin, for recordings from 8-18 DIV for culture A. After a bin width of 1
ms, many events can begin falling within a single bin, indicating the signal is being
improperly embedded. c¢) The total number of significant connections inferred by R-TE
while varying w and 7, given a constant o which ranges from 0-20 bins offset (Culture C,
28 DIV). A region of parameters which leads to results that do not change greatly
indicates possible good values to use. The selected parameters w = 1 ms, 7 = 3 are
outlined in red. d) The standard deviation in number of significant connections for a
sample file (culture A, 10 DIV), by the number of resampled and surrogate values. The
selected parameter (32 of each) is highlighted in red.

out the majority of these insignificant connections when standard significance levels
(e <5%) are used (Fig 3a). But as the cultures develop, R-TE begins to detect
connections with a significance which cannot be reasonably rejected (Fig 3b).

Fig 3. Comparing the Z-test and U-test for TE. a) The number of significant
connections inferred by standard TE versus R-TE by significance level, early in the
development (4 DIV) of the sparse culture, D. At each level, the number of rejected
connections are above each line, and accepted are below. b) The same plot for a culture
D at a later stage of maturity (34 DIV).

Samples of TE values from surrogate and resampled experimental data show that
the Z-test’s lack of discriminative power here is a result of samples being poorly
described by Gaussians. This is particularly the case in early days where their values
are low (Fig 4a,b). As development progresses and values grow, Gaussians may become
suitable (Fig 4c), but it is not a safe assumption to make for all cases. This motivates
our non-parametric approach to testing significance.

Fig 4. The normality of TE values. a) Samples of TE values from surrogate and
re-sampled experimental data are shown with Gaussian distributions which attempt to
describe them. Slight perturbations to JDs at this stage can cause relatively large shifts
in TE values. b) The same plot after an additional 10 DIV. TE values have grown, but
are still not very well-described by a Gaussian. This does not occur until 25 DIV (c),
when the large number of joint events causes TE values to only slightly change under
perturbation.

2.3 Graphical Analysis of Development

All recordings of cultures A-D were analyzed using R-TE, with a significance threshold
of a=1%. This yields an adjacency matrix for each recording, representing the
connectivity of the neural network between the recording sites on the MEA (Fig 5a). As
expected, the two dense cultures A and B show similar development, reaching near full
connectivity after approximately two weeks in vitro. In contrast, cultures C and D
(with small and sparse densities, respectively) develop more slowly and have fewer
connections, as would be expected from their lower plating densities (Fig 5b).
Additionally, the number of detected connections for all cultures does not vary greatly
when standard significance levels (o < 5%) are used (Fig 5c).

This finding is consistent with those of Wagenaar et al., who reported that cultures
with lower plating densities developed more slowly and exhibited bursting behavior later
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Fig 5. The development of neuronal connections, as detected by R-TE. a)
The resulting adjacency matrix (with corresponding TE values) for culture A after 10
DIV. b) The total number of significant causal connections detected for each culture, by
DIV. Denser cultures develop more connections more quickly than the small and sparse

cultures. The blue point corresponds to the sum of all connectivity shown in subfigure a.

¢) The variation in number of accepted connections for this culture by significance level.

than dense cultures. One feature of note is that the onset of greater connectivity levels
in cultures A-D (Fig 5b) correlates to the onset of more consistent and complex
bursting activity, as described in their original work ( [11]).

The TE values of each connection also provide insight into the structure of the
neuronal network. Each connection’s TE value approximates the exchange of
information from one site to the other, adding a meaningful weight to each edge between
nodes in the graph describing connectivity. By summing the TE values on edges incident
on a node, the relative importance of this node in processing information can be seen.

We find that stable rankings of nodes, sorted by the sum of incoming TE, emerge
alongside connectivity for all cultures (Fig 6a). In other words, connections which
develop early remain important, and often grow in strength as the neuronal network’s
connectivity increases. (6d,e,f) Incoming TE also correlates well with a coarse
description of centrality, the in-degree (Fig 5e,f). However, it provides more granular

detail and does not saturate to the total number of nodes if the graph is fully connected.

This suggests that incoming TE provides a metric for determining the relative
importance of nodes, and identifying centers of information processing.

Fig 6. Stability of electrode ranking in R-TE results. a) The correlation of
rankings of electrodes by their total incoming TE. A high, consistent correlation
suggests this ranking is stable. b,c) The rank correlation of total incoming TE to
graphical in-degree, for cultures A and C (respectively). d,e,f) Representations of the
connectivity graphs inferred by applying R-TE to recordings of culture D at 21 (d), 25
(e), and 31 (f) DIV. Edge color is proportional to TE value, and node size is
proportional to the electrode’s rank of total incoming TE. Nodes which establish
connections early (e.g. 1, 34, 46) tend to remain important in the network.

2.4 Software Features and Performance

By taking advantage of the sparsity of data cross time and space in MEA recordings,
calculation of TE can be greatly sped up. Additionally, surrogate data generation and
resampling are independent, and can thus be trivially parallelized. We take advantage
of these features to greatly speed up the computation of discrete TE, distributing work
across all available resources. As a result, computation times are quite tractable on a
modern multi-core machine. Fully analyzing a 60-channel recording, including creating
surrogates and resampling values, rarely took more than an hour (Fig 7a).

Fig 7. Performance of R-TE. a) An overview of R-TE’s runtime on the MEA
recordings, using the specified parameters (w = 1 ms, 7 = 3, 0-20 offsets, 32 resamples,
32 surrogates). b) Runtime scales linearly with spike count, and roughly linearly with
delay. ¢) R-TE’s execution time is dominated by the MCMC resampling process, which
must inspect every possible connection separately.

Runtime scales linearly with the number of spikes in the recording, and the length of
the delay embedding used (Fig 7b). It is also linearly dependent on the number of
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surrogates, though this can be offset by parallelizing their generation. Lastly, runtime
depends on the number of channels squared. As a consequence, the procedure which
dominates the time used is the resampling process (Fig 7¢), which must inspect the
variability of every possible connection in the recording.

3 Conclusion

By applying Markov-chain Monte Carlo (MCMC) methods to inspect the variability of
a joint distribution (JD) used to calculate transfer entropy (TE) values, we have
developed a method which can capture samples of experimental and surrogate TE
values. Non-parametric statistics directly applied to these samples are used as a basis
for significance testing, instead of assuming that these values follow a distribution. This
creates a more solid basis for statistical significance testing to determine whether a TE
value corresponds to a significant connection.

We find that this makes a marked and significant improvement in inferring the

connectivity of a neuronal network from its discrete spike train (as recored by an MEA).

TE also provides insights into the organization of information flow within this biological
network, providing a view into development and identifying the emergence of hubs.

In future work, exporting the resampling algorithm to a GPU computation platform
could dramatically increase the speed of computation, as it is a massively parallel
problem. Additionally, other methods of determining the optimal TE parameters would
be useful to increase confidence the signal is being properly captured.

In conclusion, we believe this work provides a novel basis to infer the functional
connectivity of a large neuronal network via transfer entropy, and yields insights into its
operation.
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