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ABSTRACT

There is alack of biomarkers for pre-kidney transplant immune risk stratification to avoid over-
or under-immunosuppression. Since the circulating lipidome is integrally involved in
inflammation, we hypothesized that the lipidome may provide biomarkers that are helpful in the
prediction of antibody-mediated rejection. We used mass spectrometry to detect the plasma
lipidome in samples collected over 1 year post-kidney transplant from a prospective,
observational cohort of adult kidney transplant recipients (KTR), classified in two groups, one
with antibody mediated rejection (AMR) and the other with stable graft function (SC). We used
linear discriminant analysis to generate predictive models of rgection. A ‘lipid-only’ model
generated from samples taken on day of transplant (T1) revealed a seven lipid classifier
(lysophosphatidylethanolamine and phosphatidylcholine species) with misclassification rate of
8.9% [AUC = 0.95 (95% CI = 0.84-0.98), R” = 0.63]. A clinical model [(using donor specific
antibody (DSA) and pand reactive antibody (PRA)] was inferior with a misclassification rate of
15.6% [AUC = 0.82 (95% CI = 0.69-0.93), R? = 0.41]. A combined model using four lipid
classifiers and DSA improved the AUC further to 0.98 (95% CI = 0.89-1.0, R? = 0.83) with a
misclassification of only 2.2%. The polyunsaturated phospholipid subspecies that discriminated
the two groups were much lower in the AMR group when compared to the SC group. While the
lipidomic profile changed significantly among SC patients on serial sampling post-transplant,
such changes were not seen in AMR patients. After taking serial lipidomic changes overtime in
SC patients in to account, the AMR group still showed sustained decreased levels of specific
lipids at the time of AMR. These findings suggest that a lack of anti-inflammatory
polyunsaturated phospholipids could identify patients at a higher risk of AMR at the time of

transplant.
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INTRODUCTION

The complex biochemistry of human biological systems has been operationally separated
into a set of large molecular categories. The metabolome, asit istermed, includes four classes of
biologically active molecules that consist of proteins and amino acids, carbohydrates and sugars,
nucleic acids (both DNA and RNA), and lipids. The full lipid profile that encompasses the
complete set of lipid molecules in a human is termed the lipidome. The general term lipid
describes a very large, ubiquitous and diverse class of molecules that have a structural and
functional role in biological systems. Lipids are an integral structural component of cell
membranes, play a significant role in energy storage, are involved in a variety of signaling
pathways and intersect in the complex biochemistry of the other classes of compounds in the
metabolome(1). Furthermore, by altering the properties of cellular membranes, the lipidome also
has the ability to influence membrane mediated events such as enzyme association with
membranes required for some catalytic events. Since first characterized in 2002, aterations of
the lipidome have been intensely studied in avariety of conditions(2). Distinct lipid profiles have
been identified in the normal state and in a variety of pathologic conditions and in response to
specific therapeutic interventions(3-7).

Renal alograft transplantation is the treatment of choice for End Stage Renal Disease
(ESRD). In the United States, a shortage of suitable organ donors and resultant organs available
for transplant, creates a marked supply and demand discrepancy leaving many patients on the
waiting list for prolonged periods of time(8). If evidence based risk stratification could occur
pre-transplant then more effective and tailored immunosuppressive strategies could be designed
to minimize the risk of rgection and infection post-transplant. Current immunosuppression
protocols have resulted in a marked decrease in T-cell mediated rejection, at the cost of long

term immunosuppression with its resultant adverse effects including susceptibility to
5
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92  opportunistic infections, graft damage, and metabolic complications such as hypertension,
93 diabetes, and lipid abnormalities which predispose to cardiovascular disease(9,10). However,
94  current immunosuppression protocols are not as effective in suppressing antibody mediated
95 regection (AMR), whichisamaor cause of graft 0ss(10).
96 At the present time standardized immunosuppression protocols rather than individualized
97 immunosuppression is the routine practice for kidney transplantation, because suitable pre-
98 trangplant risk stratification biomarkers that can predict future transplant reection are not
99 available for clinical practice. It was previously thought that donor specific antibodies and the
100 degree of senditization might serve as dratification tools, but they have been shown to be
101 inadequate predictors of future regection (11). Thus, there is an unmet need for biomarkers that
102 could alow for better initia risk dratification while enhancing the benefits/risks of
103  immunosuppression therapy for individual patients.
104
105 MATERIALSAND METHODS:
106  Patient Selection
107 The Virginia Commonwealth University Institutional Review Board (IRB) approved this
108  study. Patients were selected from a prospective observational cohort of a single-institution adult
109  kidney transplant center in the United States. The study population consisted of 16 consecutive
110  patients who developed antibody-mediated rejection within 2 years of kidney transplant and 29
111 stable control (SC) patients who did not develop rejection at any point of post-transplant follow-
112 up. Seria plasma samples were collected and stored at Time 1 (T1 - pre-transplant), Month 6
113 (T2) and Month 12 (T3) and then yearly for all patient’s post-transplant as part of an IRB
114  approved biobank protocol at our institution. For the AMR group, serum samples were drawn at

115  thetime of transplant (T1), at rejection (T2) and at the end of successful therapy (T3).
6
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116 The SC patients were selected based on the retrospective observation during the period of
117  the study for stable renal function, with no episodes of rejection, with known adherence to the
118  immunosuppressive regimen, and with a sufficient volume of samples at the appropriate time
119  points for lipid research assays. A minimum follow-up of 2 years was mandated to be a
120  candidate for incluson in the study. Pediatric kidney recipients and multi-organ transplant
121 recipients were excluded.

122 At our institution all patients received a standardized immunosuppression induction
123 protocol using anti-thymocyte globulin (Thymoglobulin, Genzyme, Cambridge, MA) with a
124  total of 6 mg/kg over four consecutive days beginning in the operating room. Maintenance
125 immunosuppression included a combination of tacrolimus, mycophenolate mofetil and
126  prednisone tapered to 5 mg/day. Highly sensitized patients received 6 sessions of pre-emptive
127  plasmapheresis with intravenous immunoglobulin (IVIG; 100mg/kg) based upon a pre-specified
128  protocol as reported by us previously (12).

129 Indication biopsies were performed for acute alograft dysfunction defined as a rise in
130  creatinine >20% above baseline, serum creatinine nadir >2.0 mg/dL post-transplant; or delayed
131 graft function >21 days post-transplant. Surveillance biopsies were performed in patients with a
132 positive flow-cytometric crossmatch (T or B >100 mean channel shifts) and/or presence of pre-
133  formed donor-specific antibody [DSA; >5000 mean fluorescence intensity (MFI)] at 1 month and
134  6-months post-transplant. Biopsies were graded based upon the Banff criteria (13). Patients with
135 AMR were treated with 6-9 sessions of plasmapheresis with intravenous immunoglobulin (IVIG;
136 100 mg/kg) in conjunction with intravenous methylprednisolone 500 mg administered once daily
137  for 3 days. In selected cases, additional drug therapy with rituximab or bortezomib was instituted

138  based upon clinical response.
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139 The details of antibody testing performed at our center have been described previously
140  (14). Briefly, pre-transplant complement-dependent cytotoxicity (CDC) assays and three-color
141 flow-cytometric cross matching (FCXM) were performed for all patients at the time of
142  transplant. Donor-specific antibodies (DSA) were analyzed using the Luminex platform
143 (Immucor Platform, San Diego, CA) with the use of an HLA phenotype panel (Lifematch Class|
144 and Class Il ID, Gen-Probe) and a single-antigen panel (Single Antigen Beads, Immucor
145  Platform). Results of bead assays were measured as MFI. For highly sensitized patients an MFI
146  of >5,000 and for de-novo kidney transplant recipients an MFI >10,000 was considered
147  unacceptable for routine transplantation. Calculated Panel Reactive Antibody (cPRA) was
148  determined using the OPTN calculator from the following url:

149  https://optn.transplant.hrsa.gov/resources/all ocation-cal cul ators/cpra-cal cul ator/

150

151  Lipidomic Analyss

152 Serial serum samples were stored at -80°C prior to research use. Upon initiation of experiments,
153  samples were prepared for analysis using an HILIC-based UPLC ESI-MS/MS method. 50 pL of
154  plasma was added to 750 pL of MTBE (methyl-tertiary butyl ether), containing 20 uL of
155  SPLASH internal standards (SPLASH LIPIDOMIX Mass Spec Standard — Avanti 330707), and
156 160 pL of water. After centrifugation for 2 minutes at 12,300 rpm, 350 pL of supernatant was
157  transferred to auto sampler vials and dried under vacuum. Dried extracts were re-suspended
158 using 110 pL of a methanol:toluene (10:1, v/v) mixture containing CUDA (12-
159  [[(cyclohexylamino) carbonyl] amino]-dodecanoic acid) at afinal concentration of 50 ng/ml.

160 Samples were analyzed on a QTRAP 6500+, with Shimadzu Nexera UPLC. Analytes
161  were separated on a Waters BEH HILIC 1.7 um 2.1x150 mm column (column temperature =

162  30°C). Mobile phase A: 10 mM ammonium acetate (pH 8) in 95% ACN (acetonitrile). Mobile
8
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163  phase B: 10 mM ammonium acetate (pH 8) in 50% ACN. Gradient (B%) rampsfrom 0.1to 20 in
164 10 mins, risesto 98 at 11 min, keeps for 2 mins, then drops back to 0.1 and maintains for 3 mins.
165

166  Statistical Analysis

167 A comparison t-test analysis (FDR=0.05) was used to select group differences on the day
168  of transplant. Mean values for each lipids class were obtained by sum and average. Linear
169  Discriminant Analysis with regularized correction (RLDA) models for lipids and clinical
170  parameters were created with a stepwise forward method (Fig. 1). Regression performance was
171  estimated with R?, misclassification error and area under the ROC Curve (AUC). Estimates were
172 validated with bootstrap coefficient interval (Fig. 1). Predictors combined model was cross
173 validated with Random Forest method, and the misclassification out-of-bag error (OOB error)
174  was estimated and compared to the RLDA error for validation (Fig. 1). Changes over time were
175  aso estimated using the sparse partial least square method and separation of the groups was
176  validated with a permutation test. A t-test was used to compare two time points within a group
177  and for comparing different groups at matched time points. Data was analyzed with IMP Pro 13
178  and MetaboAnalyst 3.0. The statistical workflow is depicted in Fig. 1.

179

180 RESULTS:

181 Demographic comparison of the two groups prior to transplantation is shown in Table 1.
182  Patientsin the AMR group were more likely to be female, re-transplants and had a higher degree
183  of sensitization (higher cPRA) and presence of donor specific antibody (higher DSA) at the time
184  of transplant. They were also more likely to have hyperlipidemia. There were no differences
185 noted for age, race, weight, years on dialysis, type of dialysis, delayed graft function, or the

186  presence or absence of diabetes mdllitus.
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187 A comparison of phospholipid (PL) classes at T1 revealed relative concentration
188  differences between SC and AMR (Fig. 2). The concentration of phosphatidylcholine (PC) was
189  dignificantly diminished in AMR, while there was a trend for an increased concentration of
190 lysophosphatidylcholine (LPC). The AMR group aso showed a significantly lower
191  concentration of phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE),
192  plasmanylethanolamine (PE-O), and plasmenylethanolamine (PE-P). Although not statitically
193 sSignificant, there was aso lower concentration of  Phosphoglycerol  (PG),
194  lysophosphatidylglycerol (LPG), and sphingomyelin (SM). The activity of phospholipase A
195 (PLA;) asasignal of increased metabolism was assessed by the ratio of PL to lysophospholipids
196 (LPL). The AMR group showed decreased ratios of PC/LPC and PE/LPE indicating higher
197  activity of PLA; at T1. PL degradation, evident for PE, was higher in the AMR group compared
198  tothe SC group. .

199

200 Combined lipid and clinical parameters allow for the prediction of reection on the day of
201 transplant (T1).

202 Preliminary data demonstrated that there are significant differences in the pre-transplant
203  lipidome between SC and AMR. This led to the hypothesis that the T1 lipidome or some
204  combination of the lipidome and clinical parameters could provide insight into the risk of future
205 transplant regjection, enabling better risk stratification for kidney transplant recipients. To
206  investigate this possibility, a stepwise regularized linear regression was deployed using models
207  of lipids aone, clinical data alone, and a merged lipid and clinical data to test for prediction
208  accuracy (Table 2). The analysis identified seven distinct lipids that discriminated between AMR
209  and SC with 8.9% of the events misclassified [Area under receiver operating characteristic curve

210 (AUC) =0.95 (95%CI=0.84-0.98), R2=0.63 (95%CI=0.4-0.8)]. A clinical model using cPRA and
10
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211 DSA was inferior with 15.6% of the events misclassfied, AUC=0.80 (95%CI=0.66-0.90),
212 R2=0.36 (95%CI=0.16-0.57). Still using a stepwise selection approach, a combined model
213 determined with 4 lipids plus DSA further reduced the misclassification events to 2.2% (Fig. 3),
214  and the AUC improved to 0.97 (95% CI=0.88-1.0), R2=0.81 (95%CI=0.49-0.96).

215 Further comparison of the four lipids predictors of kidney rejection showed that these
216  lipids are significantly decreased in AMR compared to the SC group. In the PC (18:0 /20:4) plat,
217  itispossible to notice the presence of outliersin both groups (Fig. 4A). Random Forest method
218  was used for statigtical validation with 500 bootstrap samples, and the mean decrease accuracy
219  test was used estimate the importance of each predictor to the validation model (Fig. 4B). The
220  result revealed that DSA is the more important clinical biomarker of AMR at T1, and together
221 with LPE (16:0) and PC (18:0/20:4) can discriminate AMR with a very low error (2.2%). The
222  dSatistical validation also revealed that exclusion of LPE (22:6) and LPE (20:4) in the model
223 would have a minimal effect on the misclassification error. Although in the RLDA modeling
224  training, using the entire study population, the addition of these two lipids takes the model
225  estimation from R?=0.75 to R*=0.81.

226

227  Serial analyses of the lipidome over the course of one year identify time dependent lipid
228  changes among patients with a favorable transplant outcome, but no differences among
229  graft recipientswith non-favorable outcomes.

230 Following the identification of the lipid differences at T1 and their ability to predict graft
231  rejection in association with measured clinical parameters, we wished to investigate how the
232 lipidome changes over time in patients with a favorable transplant outcome (SC). To achieve this
233 end, serid lipid profiles were analyzed from samples collected at Day 0, 6 months and 12 months

234  post-transplant (Fig. 5). A sPLSDA analysis of the data revealed a statistically significant
11
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235  dlteration in the metabolic profile at 6 months post-transplant compared to the day of transplant
236  (Fig. 5A). However, for the subsequent times from 6 months to 12 months, there was no
237  significant change in the lipidomic profile. This finding suggests that stabilization of the lipid
238  changes after transplant is associated with the achievement of improved kidney function and
239  possibly areduced milieu of inflammation (Fig. 5B). The data was subjected to validation using
240  the permutation test (Fig. 5C) and showed a statistically significant metabolic difference (p=
241 0.034) from T1 to 6 months after transplantation.

242 Further investigation of the lipid differences between T1 and T2 identified 19 lipids that
243 represent the relevant time dependent alterations in the lipidome that had statistically significant
244  devations at T2 compared to T1 in the SC group. (Fig. 6). A maority of these lipids changes
245  are LPC, with afew PC, one PE-O, two PE-P, and one PG.

246 Following the identification of the longitudinal lipid trgectory among patients with
247  favorable transplant outcomes, we investigated the trgectory of the lipidome pre-transplant to
248  post transplant one year, among the patients with non-favorable outcomes (AMR) (Fig. 7).
249  sPLSDA analysis of the data reveal that there was no significant alteration in the lipid profile at
250  pre-rgection and post-rgection compared to T1 (Fig. 7a). While a dlight change was observed
251  from T1 to post-rgection (Fig. 7B), validation analysis using permutation testing demonstrated
252  thisdifference to be non-significant (p=0.869) (Fig. 7C). These findings indicate that in contrast
253  to patients with a favorable transplant outcome (SC), patients with non-favorable transplant
254  outcomes (AMR) demonstrated no changein the lipid profile observed pre-transplant over time.

255

256  Significant post-transplant lipid differences were observed between Stable Controls vs.

257  thosewith Antibody-mediated Rejection

12
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As our data revealed that there were significant T1 vs T2 lipid differences between SC,
but not in AMR, we further investigated the data to identify the exact differences in the lipidome
between SC and AMR at T2. Any differences identified would indicate an alteration in the lipid
metabolic environment at the time of rejection that would distinguish AMR from SC. Since there
were no significant differences between T2 and T3 for SC group we chose to use SC at T2 (6
months post-transplant) to compare with AMT at T2 (time of AMR). The analysis revealed a
panel of 13 lipids that were found to differentiate the two groups at T2 (Fig. 8). As noted
previoudly, these 13 lipids were again comprised of LPE and PC species containing
monounsaturated and polyunsaturated fatty acids, except for LPE (16:0). This data further
confirms the presence of a sustained lipid metabolic difference between SC and AMR over time

that distinguish these two groups of patients.

13
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271 DISCUSSION:

272 In thisfirst study, we report novel data that the lipidome could be used to identify kidney
273 transplant patients with a higher risk of antibody-mediated rejection at the time of transplant. In
274  addition, for the first time we demonstrate that combining lipidomic and clinical datato create a
275 model merging the presence of donor-specific antibody and lipids (a reduction of each of the
276  four identified lipid biomarkers, one PC and three LPE species) can discriminate AMR with
277  minimal error even at the time of transplant. Statistical validation suggests that DSA, LPE (16:0)
278  and PC (18:0/20:4) are putative biomarkers that should be further tested in a prospective clinical
279  study. These biomarkers could indicate a state of increased inflammation associated with chronic
280  kidney disease and hemodialysisin selected groups of patients compared with others(15).

281 Modulation of phospholipids (PL) in chronic kidney disease (CKD) is well described in
282  theliterature. In a study of CKD among rats, Zhao et al. identified that PC, PE, LPC, LPE and
283  triacyclglycerides (TG) steadily decreased as the pathology progressed over time (16). Braun
284 et al described that the aged kidney from adult wild-type mice expresses significant decreases
285 of PC, PE, PG, SM, phosphatidylserine (PS), and Ceramides, suggesting that change in PL
286  metabolism is associated with CKD (3). Kobayashi et al. reported an elevation of LPE 20:4 in
287  the plasma of adenine-induced CKD rats when comparing with control animals(17). In a human
288  study comparing healthy controls and CKD patients, Reis et al. found that the content of total
289  PC and Ceramides were decreased along with the ratio of LPC/LPE(18). In a study comparing
290 patients with CKD progression compared to control patients, Afshinnia et al. reported that
291  CKD progression was associated with lower Cholesteryl ester (CE), diacylglycerols (DG),
292  PC, plasmenylcholine (PC-P), PE-P, and phosphatidic acid (PA), and elevated PE and
293  monoacylglycerols (MAG)(19). This finding suggests that patients with CKD progression

294  with adecrease of longer acyl chains and polyunsaturated lipids might benefit from the effects

14
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295 of polyunsaturated fatty acid supplementation, as some previous studies have
296  suggested(20,21). In our study, athough both groups represent patients who had CKD
297  progression, the SC group had higher PC and LPE than the AMR group and a trend for lower
298  LPC suggesting that subpopulations with varying degrees of inflammatory milieu might exist
299  with the CKD population. This would be consistent with the real-life observation of patients who
300 havevarying degrees of risk of rejection.

301 LPC has being associated with pro-inflammatory effects(22), but there is not much
302 information about the effects of LPE. Some studies suggest that LPE could have a possible
303  protective effect over inflammation. Schober et al. demonstrated that LPE generation from PE
304 oxidation is primarily due to PLA, activity rather than by hypochlorous acid generated by
305 myeloperoxidase, while LPC can be generated from both processes(23). The dual effect of PLA;
306 iswell known by its pro-inflammatory action in hydrolysis of PC to produce LPC promoting
307 atherogenesis, as well as its anti-inflammatory action in hydrolysis of platelet-activating factor
308 (PAF) and oxidized PLs(24). This suggest that processes that are not directly related to oxidative
309 stress generate LPE in CKD patients. The activity of PLAin our study was assessed by the ratio
310 of PL to LPL. The AMR group had a higher PLA; activity, especialy for degradation of PE to
311 produce LPE. The PC/LPC ratio, as an inflammatory marker is also indirectly represented by the
312 increased activity of PLA,in inflammatory diseases(25,26).

313 It has been reported that in vitro LPE induces activation of the mitogen-activated protein
314  kinase (MAPK) cascade, an intracellular signal transduction pathway that controls growth,
315  proliferation, differentiation, motility, stress response, and has a survival along with ananti-
316  apoptotic effects(27). Also LPE increases intracellular Ca®* through a Lysophosphatidic acid
317  (LPA) G-protein-coupled receptor (GPCR)(28). Oral administration of LPE in rats with zymosan

318  A-induced peritonitis demonstrated a vast anti-inflammatory action. In that study LPE-
15
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319  containing polyunsaturated fatty acids administration inhibited plasma leakage by diminishing
320 the formation of LTC,, inhibited the leukocyte extravasation into the peritoneum, decreased
321 formation of potent chemotactic factors such as LTB4 and 12-HETE, lowered IL-1p, IL-6, TNF-
322  a, and augmented IL-10(29).

323 Our results suggest that the lack of anti-inflammatory protection in patients on the day of
324  transplant is a risk for future rglection. No relevant changes occurred for the AMR group until
325 theonset of rgection, confirming that the metabolic profile at T1 predicting AMR persisted after
326  transplantation. Accordingly, over time comparison of SC and AMR showed that the difference
327 in LPE and PC levels were sustained after 6 months representing the metabolic difference
328  between reection and non-rejection. The presence of monounsaturated and polyunsaturated fatty
329 acidsin PL is aso an indication that their low plasma content is a risk factor for kidney health
330  (30). In contrast, the eevation of LPC, PC, PE-O, PE-P, and PG after 6 months in SC group
331  imply that restauration of PL content is the result of successful transplantation. Indeed, some
332 studies have shown that elevation of polyunsaturated fatty acids present a lower risk of
333 deveoping end-stage renal disease (31), as wel as higher survival rates after kidney
334  transplantation(32).

335 There are some limitations to our study. Demographic comparisons between the SC and
336 AMR groups at T1 revealed that female gender, re-transplant, cPRA, DSA, and hyperlipidemia
337  were statistically more likely to be present in the AMR group. Moreover, we found DSA as the
338  strongest predictor of AMR. These findings are consistent with Dunn et al. who reported that
339 DSA and female gender were risk factors for AMR (33). Thus, the two groups could have been
340 inherently different biochemically. Future larger studies with an increased sample size would be
341  need to confirm this preliminary study. Our finding of hyperlipidemiain AMR group could be

342  linked to the fact that hyperlipidemia is the most common form of dyslipidemia, a common

16
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343 complication in CKD patients, associated with the decline in kidney function,
344  hypertriglyceridemia, low HDL, and low or normal LDL (34).
345

346 CONCLUSION:

347 Our study for the first time identifies the pre-transplant, post-transplant, and pre-rejection
348 lipid differences that distinguish kidney transplant patients with favorable transplant outcomes
349  (SC) and a mgjor cause of non-favorable transplant outcomes (AMR). We further demonstrate
350 that unlike SC patients that demonstrate a dynamic longitudinal lipid change, AMR patients
351  maintain a relatively unchanging lipid profile over time with respect to the measured lipids. In
352  addition, we demonstrate for the first time the feasibility of risk stratification of kidney
353  transplant patients on the day of transplant about the possibility of prediction for future AMR.
354  Following prospective validation in alarger cohort, these findings have the potential to alter the
355  current paradigm of pre- and post-transplant monitoring. Treatment of these patients with an
356 evidenced based risk dtratification strategy could vastly improve the success of kidney
357  transplantation.
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368 FIGURE LEGENDS, TABLESAND FIGURES

369

370 Fig. 1. Statistical analysis workflow for the study. After data filtering and normalization, a
371  datistical workflow based on Regularized Linear Discriminant Analysis (RLDA) and Sparse
372  Partia Least Square Discriminant Analysis (SPLSDA) was applied. Candidate variables were
373 sdected by t-test with a False Discover Rate (FDR) =0.05. RLDA at T1 identified lipid
374  biomarkers that predicted AMR. Predictive models using lipids, clinica parameters, and the
375 combination of both markers were analyzed using a forward stepwise regression. . Bootstrap and
376  Random Forest were used as internal validation. SPLSDA at three different time points was used
377  toidentify and compare metabolic changes indicative of AMR. A permutation test was then used
378  for validation.

379

380 Fig. 2: Significant differences are observed among phospholipids at T1 between SC and
381 AMR. A) The AMR group showed a significantly lower concentration of PC, PE, and LPE
382  (phospholipids). There was a trend towards higher levels of LPC (lipophopholipids) in AMR. B)
383  PLA; activity, an indicator of phospholipid degradation to produce LPL was assessed by the
384 ratio of PL to LPL. A lower value suggests higher activity as shown by PC/LPC and PE/LPE
385 ratiosin AMR. Suspected outliers are indicated by open circles in the box plots. Green rectangles
386  represent AMR and the red rectangles represent SC. * indicates significant differences with
387 p<0.05.

388

3839 Fig. 3: The RLDA model generated using four lipids and DSA demonstrate good
390 separation between AMR and SC groups. The RLDA plot shows the clear separation of the

391  patients in the two groups based on the Mahalanobis distance. This method determines whether
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392  the selected predictors can separate the distinct categories and reveals the presence of outliersin
393 the AMR and SC groups. Blue dots among the red dots indicates the one misclassified patient
394 identified in the predictive mode. Internal elipse indicates the 95% confidence region
395  containing the true mean of the group. External elipse indicates the region estimated to contain
396  50% of group’ population.

397

398 Fig. 4. Predictors of AMR on the day of transplant and Random Forest statistical
399 validation. A) Box plot of normalized concentrations shows that the AMR group has lower
400 concentrations of the lipids predictors. Suspected outliers are represented as open circles that
401  appear outside the whiskers. The validation method showed that the prediction model could
402  discriminate SC and AMR at T1 with 0.022 OOB error. The mean Decrease Accuracy method
403  showsthat DSA isthe more important predictor, followed by LPE (16:0) and PC (18:0/20:4) and
404  they independently could be used as biomarkers. The analysis also reveals that when considering
405  these predictors as biomarkers, the inclusion of LPE (20:4) and LPE (22:6) does not add any
406  predictive power, and rather must be used to compose the RLDA model. * indicates significant
407  differences with p<0.01.

408

409 Fig. 5. The lipidome of SC demonstrate clear differences between T1 and T2 but no
410 differences between T2 and T3. A) The graphical distribution of T1 (shown in red), T2 (shown
411  ingreen), and T3 (shown in blue) indicates that there is no difference between 6 months and 1-
412  year post-transplant, after a metabolic shift from T1 to T2. B) The lipid difference is highlighted
413 by the change in the first 6 months. C) Permutation test was performed as a validation test to
414  evaluate the statistical significance of the PLS-DA model separation from T1 to T2 (p=0.034).

415  Ellipses represent the 95%CI for each time point.
20
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416

417  Fig. 6: Specific lipids characterize the difference between T1 and T2 among SC patients.
418 Thelevels of the 19 different lipids that are significantly elevated 6 months after transplantation
419  are mostly comprised from the LPC class containing both unsaturated and saturated fatty acids.
420 PCs, PE-O, PE-P and PG are also elevated after 6 months. * indicates significant differences
421 with p<0.01.

422

423  Fig. 7. Contrary to SC patients, no statistically significant difference was observed in the
424 T1land T2 lipidome of AMR patients. A) The graphical distribution of T1 (shown in red), T2
425  (shownin green), and T3 (shown in blue) indicates that there is no difference over time, although
426  a dlight metabolic shift could be detected from T1 to post-rgection. B) The plot of the dlight
427  metabolic difference from T1 to T2 highlights the overlap of the 95% CI of the two time points.
428  C) Permutation test was performed as a validation test and shows that this differencein the PLS-
429 DA model separation from T1to T2 isnot statistically significant (p=0.869). Ellipses represent

430 the 95% CI of each time point.

431  Fig. 8: Specific lipids demonstrate significant differ ences between SC and AMR at T2. The
432  metabolic changes observed at T1 were sustained 6 months after transplant with lower LPE and
433  PC species in AMR group. Except for LPE (16:0) all lipids contained monounsaturated and
434  polyunsaturated fatty acids. SC group shown in red. AMR group shown in green. * indicates
435  gignificant differences with p<0.01.

436

437

438
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441  Table 1— Demographic Characteristics of the Patient Cohort - Categorical variables were
442  analyzed with the Fisher’s exact test; Continuous data is presented as a mean of the group +
443  standard deviation and is analyzed by t-test. SD: Standard deviation; cPRA: calculated panel

444  reactive antibody; DSA: donor specific antibody; GRF: glomerular filtration rate.

Characteristic SC AMR p-value
N 29 (100%) 16 (100%)

Female Gender 4 (14%) 11 (69%)  0.005*
Age, years (Mean+SD) 47+11 50+9 0.45
African-American Race 17 (59%) 13 (81%) 0.19
Pre-transplant Diabetes 10 (34%) 8 (50%) 0.35
Pre-transplant hyperlipidemia 7 (29%) 16 (100%) 0.04*
Weight at Transplant, kg (M ean+SD) 85+21 82+14 0.6
Yearson dialysis (Mean+SD) 29+19 4.3+4.1 0.26

Mode of dialysis
Hemodialysis 19 (65%) 13 (81%)
Peritoneal Dialysis 4 (14%) 2 (12%) 0.49

Preemptive transplant 6 (21%) 1 (7%)

Re-transplant 4 (14%) 9 (56%) 0.001*
cPRA, % (MeantSD) 9.8(x29.4) 40.8(x45.8) 0.023*
DSA 1 (3%) 8(50%)  <0.001*
Kidney Donor Profile Index, % 52+27 54 +32 0.89
Delayed Graft Function 13 (45%) 7 (44%) 1.00
GFR at 6 months post-transplant* 67+22 61+23 0.37
GFR at 12 months post-transplant* 68+19 58+22 0.11

445

446

447
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Table 2 — Predictors of Rejection at the Time of Transplant - Bootstrap validation with 95%

Confidence intervals is included for RLDA estimates and area under the curve (AUC). cPRA:

Calculated Panel Reactive Antibody; DSA: donor specific antibodies, GFR: Estimated

glomerular filtration rate (mL/min/1.73m2); SC: Stable Controls, AMR: Antibody-mediated

Reection; *datistically significant.

PC (16:0/22:6)
PC (18:0/20:4)
PC (18:1/20:4)
LPE (16:0)
LPE (16:1)
LPE (20:4)
LPE (22:6)
cPRA

DSA

PC (18:0/20:4)
LPE (16:0)
LPE (20:4)
LPE (22:6)
DSA

0.63
(0.40 — 0.80)

0.36
(0.16 — 0.57)

0.81
(0.49 - 0.96)

24

8.9%
(3.3-18.6)

15.9%
(7.4-29.2)

2.3%
(0.1-12.1)

0.95
(0.84—0.98)

0.80
(0.66 -0.90)

0.97
(0.88 - 1.00)
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