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ABSTRACT

Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic
heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for
these phenotypes within each CNV have not been successful. Here, we posit using multiple lines
of evidence, including pathogenicity metrics, functional assays of model organisms, and gene
expression data, that multiple genes within each CNV region are likely responsible for the
observed phenotypes. We propose that candidate genes within each region likely interact with
each other through shared pathways to modulate the individual gene phenotypes, emphasizing

the genetic complexity of CNV-associated neuropsychiatric features.
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A case for a multi-genic model of CNV pathogenicity

Since the advent of large-scale sequencing studies, the number of genes associated with
neurodevelopmental disorders such as autism, intellectual disability, and schizophrenia has
increased dramatically. For example, nearly 200 genes have been identified with recurrent de
novo mutations in both individuals with autism and intellectual disability (1-8). In fact, complex
human disease phenotypes can be influenced by variation in both a small number of core genes
with large effect size and a large number of modifier genes with small effect size, accounting for
the large number of candidate neurodevelopmental genes (9,10). The application of a multi-genic
model for disease pathogenicity has not been fully expanded to cover copy-number variants
(CNVs), or large duplications and deletions in the genome. The prevailing notion of single
causative genes for CNV disorders is due to the paradigm of gene discoveries for CNVs
associated with genetic syndromes in individuals with specific constellations of clinical features,
such as Smith-Magenis syndrome (SMS). Although some variability in phenotypic expression
has been documented, these disorders usually occur de novo and are characterized by high
penetrance for the observed phenotypes (11,12) (Figure 1). In these cases, individuals
manifesting the characteristic features of the syndrome but with either atypical breakpoints or
mutations in individual genes within the CNV region were used to identify causative genes for
the major phenotypes (13-15). These causative genes, such as RAI1 for SMS, were then
confirmed by recapitulating conserved phenotypes of the deletion using functional evaluations in
animal models (16,17).

In contrast, another category of CNVs has been identified in individuals with
neurodevelopmental disorders, including duplications and deletions at proximal 16p11.2, 3929,
distal 16p11.2, and 1g21.1 (18-21). Although these CNVs are enriched in affected individuals
compared to population controls, they are primarily characterized by variable expressivity of
clinical features (12,22-26) (Figure 1B). For example, the 16p11.2 deletion has been implicated
in 1% of individuals with idiopathic autism (18,27), but only 25% of individuals with the
deletion exhibit an autism phenotype (28-31), while others may manifest intellectual disability,
obesity, or epilepsy at varying degrees of penetrance (28,32,33). In fact, certain CNVs, such as
the 16p12.1 deletion and the 15q11.2 deletion, have a high frequency of carriers who only
manifest mild neuropsychiatric features, in contrast to more severely affected individuals who

also carry other rare variants in the genetic background (12,22,23,26,34,35). As such, many
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variably expressive CNVs have a higher frequency of inherited compared to de novo occurrence
(12) (Figure 1A).

Based on the success of gene discovery in CNVs with syndromic features, such as SMS,
several studies have attempted to identify the causative genes in variably expressive CNVs (36—
52). Several individual genes within variably expressive CNV regions have been associated with
specific congenital or structural features of these disorders, including TBX6 for scoliosis in
16p11.2 deletion (53), TBX1 for cardiac phenotypes in 22911.2 deletion (38,54), GJAS for
cataracts and GJAS for heart defects in 1g21.1 deletion (55,56), and MYH11 for aortic aneurysms
in 16p13.11 duplication (57,58). However, approaches to identify single causative genes for the
more prominent neuropsychiatric features of these CNVs have not been successful (59). Here,
we show several lines of evidence from gene pathogenicity metrics, animal model studies, and
gene expression data that support the involvement of multiple genes towards the
neuropsychiatric features of variably expressive CNVs.

First, genome-wide metrics of pathogenicity, including those that measure
haploinsufficiency (HI score, gene essentiality, GHIS and EpiScore) (60-63) and resistance to
variation (RVIS, pLI and maximum CCR scores) (64-66), provide evidence for several
candidate genes within CNV regions for developmental disorders (Figure 2). For example, 45
out of 152 genes (30%) within 12 variably expressive CNV regions are intolerant to variation
with RVIS metrics in the top 20" genome-wide percentile, similar to that of known
neurodevelopmental genes such as CHD8, NRXN1 and SCN2A, as well as genes responsible for
major features of syndromic CNVs, such as RAI1 and NSD1 (Figure 2A). These top-ranked
genes include TAOK2, MVP, ALDOA and DOC2A on chromosome 16p11.2, BCL9 and GJA5 on
chromosome 1g21.1, and ATXN2L, ATP2A1 and SH2B1 on distal 16p11.2. Similarly, 32/165
genes (19%) are considered intolerant to loss-of-function mutations based on pLI scores (>0.9),
and 36/160 genes (23%) have haploinsufficiency scores in the highest 20" percentile of the
entire genome (Figure 2A). Further, the top 10% of all genes identified by a gene interaction-
based machine learning classifier to be associated with autism included eight genes within
16p11.2 and four genes within 22q11.2 (67).

Second, several recent studies using animal and cellular models have demonstrated the
critical involvement of several genes within CNVs towards neurological, cellular and
developmental functions (36,37,46,47,51,52) (Figure 2B). For example, Blaker-Lee et al.
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91  screened 22 homologs of 16p11.2 genes in zebrafish morpholino knockdown models, and
92 identified 20 homologs that contributed to morphological defects and abnormal behavior (37).
93  lyeretal. also screened homologs of 16p11.2 genes in Drosophila melaogaster using RNAI
94  knockdown, and found that 10 out of 14 homologs contributed to global developmental defects
95 as well as specific neuronal and cellular defects in the developing fly eye (46). Further, mouse
96  models for 15 genes within the 16p11.2 region have been generated to test for defects in
97  development and neuronal behavior (45,48-50,68-80). For example, Taok2”" mice have
98 increased brain size, behavioral defects, and impaired synapse development (50), Kcdt13* mice
99  show defects in hippocampal synaptic transmission and decreased dendritic complexity (45),
100  Mapk3*" mice show behavior anomalies, abnormal synapse function and reduced cell
101 proliferation during development (68,69), and Mvp* mice show decreased plasticity and
102 synaptic defects in ocular neurons (48) (Figure 2B). Importantly, these models of individual
103  genes do not fully recapitulate the phenotypes observed in models of the entire CNV (81-85).
104  For example, the decreased body weight, abnormal brain morphology and coordination defects
105  observed in 16p11.2 deletion mouse models have not been observed in any individual gene
106  knockdown models (81-84) (Figure 2B). Similarly, Otud7a*"- mouse models have low body
107  weight, reduced vocalization, abnormal dendritic spine morphology, and seizures, but the
108  15g13.3 deletion mice also show learning and memory defects in addition to the above features
109  (43,44,86). Further, mouse models for Chrna7*", another candidate gene on chromosome
110  159g13.3, only show subtle behavioral phenotypes (87). These data suggest that
111 haploinsufficiency of CHRNA7 or OTUD7A alone is not sufficient to account for the
112  pathogenicity of the entire CNV. Overall, a catalog of functional data from mouse (88), zebrafish
113 (89), and fruit fly studies (90) indicates that 80% (131/163) of homologs for genes within CNV
114  regions present lethality, behavioral, developmental, or neuronal phenotypes when disrupted.
115  These data suggest that disruption of multiple genes within each CNV region can affect
116  important developmental or neuronal functions that could contribute to the phenotypes of the
117  entire CNV.
118 Third, patterns of gene expression in humans and model organisms have identified
119  multiple genes within each CNV region that are co-expressed in the developing brain along with
120  known neurodevelopmental genes. For example, Maynard and colleagues examined expression

121 patterns of 22911.2 gene homologs in the developing mouse brain, and found that 27 out of 32
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122 genes were expressed in the embryonic forebrain, with six genes expressed in neuronal tissues
123 related to schizophrenia (39). In fact, a genome-wide weighted gene correlation network analysis
124  (WGCNA) (91) from different brain tissues during development (92) shows several large

125  modules of genes with similar expression patterns (Figure 3). For example, the five largest

126 modules are each enriched (p<0.05 with Benjamini-Hochberg correction) for biological

127  functions related to neurodevelopment, including protein modification and transport in module 1
128 (M), nervous system development in M2, and cell communication and signal transduction in
129 M5, Importantly, each of these modules contains multiple genes from the same CNV region,

130 including 3929 genes PAK2, NCBP2, and BDH1 in M1, 1g21.1 genes BCL9, CHD1L and FMO5
131 in M2, and 16p11.2 genes MVP and QPRT in M5. Therefore, it is clear that multiple genes in the
132 same CNV region are co-expressed with each other in the developing brain and could share

133 similar functions or regulatory patterns.

134

135  Dissecting the genetic complexity of CNV pathogenicity

136 Several scenarios could explain how the haploinsufficiency of multiple genes can predict the

137  variable phenotypes associated with the entire CNV (Figure 4A). The simplest such model is an
138  additive model, where disruption of individual genes within a CNV may only impart a mild

139  phenotype on their own, but additively contribute to more severe features (93) (Figure 4A).

140  However, an additive model may not always explain the phenotypic features manifested by

141 CNVs containing multiple candidate genes that could lead to severe defects or lethality on their
142 own. For example, heterozygous Thx1*" (within the 22g11.2 region) and Mapk1*' (within the
143  distal 22q11.2 region) mice both lead to perinatal or neonatal lethality (94-96). In humans, 14%
144  (24/172) of CNV genes are under evolutionary constraint in control populations (pLI score >0.9
145  or maximum CCR score >99" percentile) and have no reported disease-associated variants (97—
146 99), suggesting that these genes could be under strong purifying selection (66). Further, 18%
147  (22/125) of CNV genes show evolutionary constraint for loss-of-function mutations (pL1>0.9)
148  but not for copy-number changes within a control population (100). We therefore hypothesize
149  that the pathogenicity of variably expressive CNVs can also be explained by complex

150 interactions among the constituent genes within shared biological pathways. These interactions
151  can enhance or suppress the phenotypes caused by disruption of individual genes. Under this

152 model, the haploinsufficiency of certain genes can be modulated by haploinsufficiency of other
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153  interacting genes in the same region that may or may not lead to phenotypes on their own

154  (Figure 4A). Further, variants in the genetic background that map within these shared pathways
155  can simultaneously modulate the effects of multiple genes, ultimately defining the phenotypic
156  trajectory in CNV carriers (Figure 4A). For example, Pizzo et al. found that the burden of rare
157  deleterious mutations within genes in the genetic background correlated with variability of 1Q
158  scores and head circumference among 16p11.2 deletion carriers (35). The potential for complex
159 interactions within a CNV region depends on the functional convergence of the constituent

160  genes. For instance, both KCTD13 and TAOK2 within 16p11.2 participate in the RhoA signaling
161  pathway (45,50) and therefore are more likely to interact with each other than genes located in
162  different biological pathways. In fact, it has been shown that genes within pathogenic CNVs are
163  more similar in function compared to genes within benign CNVs, suggesting that variably

164  expressive CNVs are likely to contain interactions between functionally relevant genes (101).
165  Further, Noh and colleagues found an over-representation of interactions among genes within
166  autism-associated CNVs, and these interactions were enriched for synaptic transmission and

167  regulatory signaling pathways (102). Because of this, therapeutic targets for pathways shared
168  among CNV genes could be explored as potential treatments for CNV disorders.

169 The possibility of additive, suppressor and enhancer interactions between pairs of genes
170  underlies the potential for highly complex models of CNV pathogenicity. For instance, within a
171 CNV region spanning three genes, seven combinations of gene knockdown experiments

172 (haploinsufficiency of A, B, C, AB, BC, AC, and ABC) can be tested for the presence or absence
173 of a specific phenotype (Figure 4B). This set of knockdown experiments can yield 128 possible
174  experimental outcomes that can be used to further deduce 64 possible sets of pairwise

175  interactions for AB, BC, and AC (no interaction, additive, suppression, or enhancement for each
176  interaction) (Figure 4B). These possible combinations of interactions exponentially increase for
177 larger CNVs with more genes, and the complexity further increases if quantitative phenotypes
178  are used to determine the magnitude of interactions between genes or when interactions with
179  variants in the genetic background are taken into account. However, testing even a small number
180  of these interactions would still uncover the nature of the relationships among genes within a
181  CNV region and potentially a common pathway shared by those genes. For example, Grice and
182  colleagues used D. melanogaster RNAI models to identify six synergistic interactions out of 41

183  tested pairwise interactions between genes within de novo CNVs from autism patients, including
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184  partial 3929 and 22q11.2 deletions (103). lyer et al. also used fly models to identify 24 additive,
185  enhancer and suppressor interactions out of 52 tested pairwise interactions among homologs of
186  16p11.2 genes (46), providing further evidence for complex interactions within CNV regions.
187  Further, these interaction models for CNV pathogenicity can be tested in cellular models of the
188  entire CNV. For example, a more severe phenotype observed by restoring dosage of a candidate
189  gene would suggest that disruption of this gene potentially suppresses the effects of other genes
190  within the CNV.

191

192  Complex genetic interactions in the context of genome sequencing

193  Inrecent years, exome and whole-genome sequencing analysis has proven invaluable in

194 identifying candidate genes for neurodevelopmental disorders (104). However, sequencing

195  studies would not be able to capture the genetic complexity of a multi-genic CNV region. For
196  example, genes that cause severe phenotypes or lethality on their own and are modulated by

197  haploinsufficiency of other interacting genes within a CNV are less likely to have an enrichment
198  of mutations in sequencing studies. Further, because of the strong phenotypic heterogeneity of
199  these CNVs, it is not possible to determine whether the phenotypes of any individual candidate
200 gene fully recapitulate the variable phenotypes of the entire CNV region. Candidate genes within
201  CNVs identified through genome sequencing studies, such as TAOK2 on chromosome 16p11.2
202  (50) or CHRNAY on chromosome 15¢13.3 (105), do not preclude the possibility of other

203  candidate genes in the same region. Because of this, a thorough systems-based approach for each
204  gene within a CNV and its interactions is necessary to identify candidate genes responsible for
205  the neuropsychiatric features of each region (106).

206 In summary, genomic and functional data have implicated multiple genes in variably

207  expressive CNV regions towards neuropsychiatric phenotypes, suggesting that single causative
208  genes are not responsible for the heterogeneous features of these CNVs. Here, we propose a

209  complex interaction-based model for these CNVs, where candidate genes within each region

210 interact with each other to influence the variable clinical outcome. The CNV phenotype is

211 therefore distinct from the phenotype manifested by any individual gene, or in some cases, the
212 additive effects of all genes in the region. This multi-genic model of CNVs agrees with a broader
213 complex genetic view of neurodevelopmental disorders, where hundreds of genes with varying

214  effect sizes and complex interactions influence developmental features (10). Further studies on
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215  the role of individual genes in CNV regions towards neurodevelopment, especially those that
216 identify key interactions between genes, will be useful in uncovering the cellular pathways and
217  mechanisms responsible for the observed neuropsychiatric features.
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233 FIGURE LEGENDS

234  Figure 1. Phenotypic profiles of syndromic and variably expressive CNVs. (A) Table listing
235  variably expressive (top) and syndromic (bottom) CNV regions is shown. The colored boxes
236 indicate frequency of de novo versus inherited CNV cases for deletions (del) and duplications
237 (dup) previously identified in a cohort of 2,312 children with developmental disorders (12). The
238 twelve variably-expressive CNV regions highlighted in bold were selected for the analysis

239  described in the manuscript. (B) Table listing average frequencies of neurodevelopmental

240  phenotypes for select variably-expressive and syndromic CNVs, curated from GeneReviews

241  reports on individual CNVs (107), is shown. White boxes represent no available data from

242 GeneReviews, but do not necessarily indicate a lack of association between the CNV and the
243 phenotype (for example, 1g21.1 deletion and schizophrenia). Data for this figure are available in
244  the Supporting Information file.

245

246 Figure 2. (A) Percentile-rank scores compared to the whole genome for intolerance to variation
247  (RVIS, pLI and maximum CCR) and haploinsufficiency (HI, essentiality, GHIS and EpiScore)
248  metrics for genes within select variably expressive CNV regions (60-66). Lower percentile

249  scores indicate a gene is more likely to be haploinsufficient or intolerant to variation. Grey boxes
250 indicate metrics were not available for a particular gene. (B) Developmental phenotypes in

251 animal models for homologs of individual genes within the 16p11.2 region, as catalogued from
252 animal model databases (MGI, ZFIN and FlyBase). Black boxes indicate presence of phenotype,
253  white boxes indicate absence of phenotype, and grey boxes indicate no homolog is present for a
254  particular gene in a model organism. The phenotypes observed in 16p11.2 deletion and

255  duplication mice are distinct from those observed in the individual gene models (81-85). Data
256  for this figure, including gene metrics and animal phenotypes for other CNV genes not shown in
257  this figure, are available in the Supporting Information file. (Abbreviations: RVIS—Residual
258  Variance to Intolerance Score; pLI—Probability of Loss-of-function Intolerance; CCR—

259  Constrained Coding Regions; HI—Haploinsufficiency score, GHIS—Genome-wide

260 haploinsufficiency score; MGl—Mouse Genome Informatics; ZFIN—Zebrafish Information
261  Network)

262

10
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263  Figure 3. Modules of co-expressed genes derived from WGCNA analysis of BrainSpan Atlas
264  RNA-Seq data (Gencode v10) (92) across 524 tissues and timepoints the developing brain.

265  Networks of interactions among genes within three select top WGCNA modules (M1, M2 and
266 M5) were obtained from the BioGrid interaction database (108) and visualized with Cytoscape
267  (109). Genes within variably expressive CNV regions are highlighted as colored nodes in each
268  network. Bar graphs show enrichment (p<0.05 with Benjamini-Hochsberg correction,

269  represented by red dotted line) of genes within each module for Gene Ontology (GO) Biological
270  Process terms, calculated using PantherDB (110). Data for this figure are available in the

271 Supporting Information file.

272

273 Figure 4. Models for genetic interactions within CNV regions. (A) Several models of

274  interactions among CNV genes are shown. These models include (i) a single-gene model where
275  one gene is sufficient to account for the phenotype; additive models where the phenotype is due
276  to the additive effects of multiple CNV genes that (ii) may or (iii) may not account for

277  phenotypes on their own; and (iv) a complex interaction model where additive, enhancer and
278  suppressor interactions between genes in the CNV region modulate the phenotype, including
279  when additive effects could lead to lethality. The size of the circles in the plot indicates the

280 relative contribution of each gene to the overall neurodevelopmental phenotype. Thick circles
281 indicate genes that contribute to the observed phenotypes on their own, while connector lines
282 indicate the nature of interaction between pairs of genes. Connected modifier genes (M) can
283  further modulate these interactions to ultimately define the phenotypic trajectory in individuals
284  carrying the CNV. (B) For a hypothetical CNV region with three genes, there are seven

285  combinations of gene knockdowns (A, B, C, AB, BC and ABC) that can be tested for the

286  presence or absence of a specific phenotype. These knockdown experiments can yield 128

287  potential outcomes for each phenotype tested, with each individual set of outcomes

288  corresponding to one of 64 combinations of pairwise gene interactions (additive, enhancer,

289  suppressor or no interaction). One possible outcome highlighted in orange shows presence of a
290  particular phenotype for knockdowns of single genes A and B and two-hit knockdowns AB and
291 BC. The single-gene knockdowns indicate that only genes A and B contribute to the phenotype,
292  and that the phenotype of pairwise knockdown AB is due to the additive effects of the two genes.

11


https://doi.org/10.1101/459958
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/459958; this version posted November 2, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

293  While the phenotype is observed for BC, the phenotype is not observed for AC and ABC,
294  suggesting that gene C suppresses the phenotype of gene A.
295

12
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Figure 1
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Figure 2
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Figure 4

A CNV gene interaction models
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