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ABSTRACT 18 

Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic 19 

heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for 20 

these phenotypes within each CNV have not been successful. Here, we posit using multiple lines 21 

of evidence, including pathogenicity metrics, functional assays of model organisms, and gene 22 

expression data, that multiple genes within each CNV region are likely responsible for the 23 

observed phenotypes. We propose that candidate genes within each region likely interact with 24 

each other through shared pathways to modulate the individual gene phenotypes, emphasizing 25 

the genetic complexity of CNV-associated neuropsychiatric features. 26 

 27 
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A case for a multi-genic model of CNV pathogenicity 29 

Since the advent of large-scale sequencing studies, the number of genes associated with 30 

neurodevelopmental disorders such as autism, intellectual disability, and schizophrenia has 31 

increased dramatically. For example, nearly 200 genes have been identified with recurrent de 32 

novo mutations in both individuals with autism and intellectual disability (1–8). In fact, complex 33 

human disease phenotypes can be influenced by variation in both a small number of core genes 34 

with large effect size and a large number of modifier genes with small effect size, accounting for 35 

the large number of candidate neurodevelopmental genes (9,10). The application of a multi-genic 36 

model for disease pathogenicity has not been fully expanded to cover copy-number variants 37 

(CNVs), or large duplications and deletions in the genome. The prevailing notion of single 38 

causative genes for CNV disorders is due to the paradigm of gene discoveries for CNVs 39 

associated with genetic syndromes in individuals with specific constellations of clinical features, 40 

such as Smith-Magenis syndrome (SMS). Although some variability in phenotypic expression 41 

has been documented, these disorders usually occur de novo and are characterized by high 42 

penetrance for the observed phenotypes (11,12) (Figure 1). In these cases, individuals 43 

manifesting the characteristic features of the syndrome but with either atypical breakpoints or 44 

mutations in individual genes within the CNV region were used to identify causative genes for 45 

the major phenotypes (13–15). These causative genes, such as RAI1 for SMS, were then 46 

confirmed by recapitulating conserved phenotypes of the deletion using functional evaluations in 47 

animal models (16,17).  48 

In contrast, another category of CNVs has been identified in individuals with 49 

neurodevelopmental disorders, including duplications and deletions at proximal 16p11.2, 3q29, 50 

distal 16p11.2, and 1q21.1 (18–21). Although these CNVs are enriched in affected individuals 51 

compared to population controls, they are primarily characterized by variable expressivity of 52 

clinical features (12,22–26) (Figure 1B). For example, the 16p11.2 deletion has been implicated 53 

in 1% of individuals with idiopathic autism (18,27), but only 25% of individuals with the 54 

deletion exhibit an autism phenotype (28–31), while others may manifest intellectual disability, 55 

obesity, or epilepsy at varying degrees of penetrance (28,32,33). In fact, certain CNVs, such as 56 

the 16p12.1 deletion and the 15q11.2 deletion, have a high frequency of carriers who only 57 

manifest mild neuropsychiatric features, in contrast to more severely affected individuals who 58 

also carry other rare variants in the genetic background (12,22,23,26,34,35). As such, many 59 
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variably expressive CNVs have a higher frequency of inherited compared to de novo occurrence 60 

(12) (Figure 1A). 61 

 Based on the success of gene discovery in CNVs with syndromic features, such as SMS, 62 

several studies have attempted to identify the causative genes in variably expressive CNVs (36–63 

52). Several individual genes within variably expressive CNV regions have been associated with 64 

specific congenital or structural features of these disorders, including TBX6 for scoliosis in 65 

16p11.2 deletion (53), TBX1 for cardiac phenotypes in 22q11.2 deletion (38,54), GJA8 for 66 

cataracts and GJA5 for heart defects in 1q21.1 deletion (55,56), and MYH11 for aortic aneurysms 67 

in 16p13.11 duplication (57,58). However, approaches to identify single causative genes for the 68 

more prominent neuropsychiatric features of these CNVs have not been successful (59). Here, 69 

we show several lines of evidence from gene pathogenicity metrics, animal model studies, and 70 

gene expression data that support the involvement of multiple genes towards the 71 

neuropsychiatric features of variably expressive CNVs.  72 

 First, genome-wide metrics of pathogenicity, including those that measure 73 

haploinsufficiency (HI score, gene essentiality, GHIS and EpiScore) (60–63) and resistance to 74 

variation (RVIS, pLI and maximum CCR scores) (64–66), provide evidence for several 75 

candidate genes within CNV regions for developmental disorders (Figure 2). For example, 45 76 

out of 152 genes (30%) within 12 variably expressive CNV regions are intolerant to variation 77 

with RVIS metrics in the top 20th genome-wide percentile, similar to that of known 78 

neurodevelopmental genes such as CHD8, NRXN1 and SCN2A, as well as genes responsible for 79 

major features of syndromic CNVs, such as RAI1 and NSD1 (Figure 2A). These top-ranked 80 

genes include TAOK2, MVP, ALDOA and DOC2A on chromosome 16p11.2, BCL9 and GJA5 on 81 

chromosome 1q21.1, and ATXN2L, ATP2A1 and SH2B1 on distal 16p11.2. Similarly, 32/165 82 

genes (19%) are considered intolerant to loss-of-function mutations based on pLI scores (>0.9), 83 

and 36/160 genes (23%) have haploinsufficiency scores in the highest 20th percentile of the 84 

entire genome (Figure 2A). Further, the top 10% of all genes identified by a gene interaction-85 

based machine learning classifier to be associated with autism included eight genes within 86 

16p11.2 and four genes within 22q11.2 (67). 87 

Second, several recent studies using animal and cellular models have demonstrated the 88 

critical involvement of several genes within CNVs towards neurological, cellular and 89 

developmental functions (36,37,46,47,51,52) (Figure 2B). For example, Blaker-Lee et al. 90 
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screened 22 homologs of 16p11.2 genes in zebrafish morpholino knockdown models, and 91 

identified 20 homologs that contributed to morphological defects and abnormal behavior (37). 92 

Iyer et al. also screened homologs of 16p11.2 genes in Drosophila melaogaster using RNAi 93 

knockdown, and found that 10 out of 14 homologs contributed to global developmental defects 94 

as well as specific neuronal and cellular defects in the developing fly eye (46). Further, mouse 95 

models for 15 genes within the 16p11.2 region have been generated to test for defects in 96 

development and neuronal behavior (45,48–50,68–80). For example, Taok2-/- mice have 97 

increased brain size, behavioral defects, and impaired synapse development (50), Kcdt13+/- mice 98 

show defects in hippocampal synaptic transmission and decreased dendritic complexity (45), 99 

Mapk3+/- mice show behavior anomalies, abnormal synapse function and reduced cell 100 

proliferation during development (68,69), and Mvp+/- mice show decreased plasticity and 101 

synaptic defects in ocular neurons (48) (Figure 2B). Importantly, these models of individual 102 

genes do not fully recapitulate the phenotypes observed in models of the entire CNV (81–85). 103 

For example, the decreased body weight, abnormal brain morphology and coordination defects 104 

observed in 16p11.2 deletion mouse models have not been observed in any individual gene 105 

knockdown models (81–84) (Figure 2B). Similarly, Otud7a+/- mouse models have low body 106 

weight, reduced vocalization, abnormal dendritic spine morphology, and seizures, but the 107 

15q13.3 deletion mice also show learning and memory defects in addition to the above features  108 

(43,44,86). Further, mouse models for Chrna7+/-, another candidate gene on chromosome 109 

15q13.3, only show subtle behavioral phenotypes (87). These data suggest that 110 

haploinsufficiency of CHRNA7 or OTUD7A alone is not sufficient to account for the 111 

pathogenicity of the entire CNV. Overall, a catalog of functional data from mouse (88), zebrafish 112 

(89), and fruit fly studies (90) indicates that 80% (131/163) of homologs for genes within CNV 113 

regions present lethality, behavioral, developmental, or neuronal phenotypes when disrupted. 114 

These data suggest that disruption of multiple genes within each CNV region can affect 115 

important developmental or neuronal functions that could contribute to the phenotypes of the 116 

entire CNV.  117 

Third, patterns of gene expression in humans and model organisms have identified 118 

multiple genes within each CNV region that are co-expressed in the developing brain along with 119 

known neurodevelopmental genes. For example, Maynard and colleagues examined expression 120 

patterns of 22q11.2 gene homologs in the developing mouse brain, and found that 27 out of 32 121 
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genes were expressed in the embryonic forebrain, with six genes expressed in neuronal tissues 122 

related to schizophrenia (39). In fact, a genome-wide weighted gene correlation network analysis 123 

(WGCNA) (91) from different brain tissues during development (92) shows several large 124 

modules of genes with similar expression patterns (Figure 3). For example, the five largest 125 

modules are each enriched (p<0.05 with Benjamini-Hochberg correction) for biological 126 

functions related to neurodevelopment, including protein modification and transport in module 1 127 

(M1), nervous system development in M2, and cell communication and signal transduction in 128 

M5. Importantly, each of these modules contains multiple genes from the same CNV region, 129 

including 3q29 genes PAK2, NCBP2, and BDH1 in M1, 1q21.1 genes BCL9, CHD1L and FMO5 130 

in M2, and 16p11.2 genes MVP and QPRT in M5. Therefore, it is clear that multiple genes in the 131 

same CNV region are co-expressed with each other in the developing brain and could share 132 

similar functions or regulatory patterns.  133 

 134 

Dissecting the genetic complexity of CNV pathogenicity 135 

Several scenarios could explain how the haploinsufficiency of multiple genes can predict the 136 

variable phenotypes associated with the entire CNV (Figure 4A). The simplest such model is an 137 

additive model, where disruption of individual genes within a CNV may only impart a mild 138 

phenotype on their own, but additively contribute to more severe features (93) (Figure 4A). 139 

However, an additive model may not always explain the phenotypic features manifested by 140 

CNVs containing multiple candidate genes that could lead to severe defects or lethality on their 141 

own. For example, heterozygous Tbx1+/- (within the 22q11.2 region) and Mapk1+/- (within the 142 

distal 22q11.2 region) mice both lead to perinatal or neonatal lethality (94–96). In humans, 14% 143 

(24/172) of CNV genes are under evolutionary constraint in control populations (pLI score >0.9 144 

or maximum CCR score >99th percentile) and have no reported disease-associated variants (97–145 

99), suggesting that these genes could be under strong purifying selection (66). Further, 18% 146 

(22/125) of CNV genes show evolutionary constraint for loss-of-function mutations (pLI>0.9) 147 

but not for copy-number changes within a control population (100). We therefore hypothesize 148 

that the pathogenicity of variably expressive CNVs can also be explained by complex 149 

interactions among the constituent genes within shared biological pathways. These interactions 150 

can enhance or suppress the phenotypes caused by disruption of individual genes. Under this 151 

model, the haploinsufficiency of certain genes can be modulated by haploinsufficiency of other 152 
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interacting genes in the same region that may or may not lead to phenotypes on their own 153 

(Figure 4A). Further, variants in the genetic background that map within these shared pathways 154 

can simultaneously modulate the effects of multiple genes, ultimately defining the phenotypic 155 

trajectory in CNV carriers (Figure 4A). For example, Pizzo et al. found that the burden of rare 156 

deleterious mutations within genes in the genetic background correlated with variability of IQ 157 

scores and head circumference among 16p11.2 deletion carriers (35). The potential for complex 158 

interactions within a CNV region depends on the functional convergence of the constituent 159 

genes. For instance, both KCTD13 and TAOK2 within 16p11.2 participate in the RhoA signaling 160 

pathway (45,50) and therefore are more likely to interact with each other than genes located in 161 

different biological pathways. In fact, it has been shown that genes within pathogenic CNVs are 162 

more similar in function compared to genes within benign CNVs, suggesting that variably 163 

expressive CNVs are likely to contain interactions between functionally relevant genes (101). 164 

Further, Noh and colleagues found an over-representation of interactions among genes within 165 

autism-associated CNVs, and these interactions were enriched for synaptic transmission and 166 

regulatory signaling pathways (102). Because of this, therapeutic targets for pathways shared 167 

among CNV genes could be explored as potential treatments for CNV disorders.  168 

The possibility of additive, suppressor and enhancer interactions between pairs of genes 169 

underlies the potential for highly complex models of CNV pathogenicity. For instance, within a 170 

CNV region spanning three genes, seven combinations of gene knockdown experiments 171 

(haploinsufficiency of A, B, C, AB, BC, AC, and ABC) can be tested for the presence or absence 172 

of a specific phenotype (Figure 4B). This set of knockdown experiments can yield 128 possible 173 

experimental outcomes that can be used to further deduce 64 possible sets of pairwise 174 

interactions for AB, BC, and AC (no interaction, additive, suppression, or enhancement for each 175 

interaction) (Figure 4B). These possible combinations of interactions exponentially increase for 176 

larger CNVs with more genes, and the complexity further increases if quantitative phenotypes 177 

are used to determine the magnitude of interactions between genes or when interactions with 178 

variants in the genetic background are taken into account. However, testing even a small number 179 

of these interactions would still uncover the nature of the relationships among genes within a 180 

CNV region and potentially a common pathway shared by those genes. For example, Grice and 181 

colleagues used D. melanogaster RNAi models to identify six synergistic interactions out of 41 182 

tested pairwise interactions between genes within de novo CNVs from autism patients, including 183 
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partial 3q29 and 22q11.2 deletions (103). Iyer et al. also used fly models to identify 24 additive, 184 

enhancer and suppressor interactions out of 52 tested pairwise interactions among homologs of 185 

16p11.2 genes (46), providing further evidence for complex interactions within CNV regions. 186 

Further, these interaction models for CNV pathogenicity can be tested in cellular models of the 187 

entire CNV. For example, a more severe phenotype observed by restoring dosage of a candidate 188 

gene would suggest that disruption of this gene potentially suppresses the effects of other genes 189 

within the CNV. 190 

 191 

Complex genetic interactions in the context of genome sequencing 192 

In recent years, exome and whole-genome sequencing analysis has proven invaluable in 193 

identifying candidate genes for neurodevelopmental disorders (104). However, sequencing 194 

studies would not be able to capture the genetic complexity of a multi-genic CNV region. For 195 

example, genes that cause severe phenotypes or lethality on their own and are modulated by 196 

haploinsufficiency of other interacting genes within a CNV are less likely to have an enrichment 197 

of mutations in sequencing studies. Further, because of the strong phenotypic heterogeneity of 198 

these CNVs, it is not possible to determine whether the phenotypes of any individual candidate 199 

gene fully recapitulate the variable phenotypes of the entire CNV region. Candidate genes within 200 

CNVs identified through genome sequencing studies, such as TAOK2 on chromosome 16p11.2 201 

(50) or CHRNA7 on chromosome 15q13.3 (105), do not preclude the possibility of other 202 

candidate genes in the same region. Because of this, a thorough systems-based approach for each 203 

gene within a CNV and its interactions is necessary to identify candidate genes responsible for 204 

the neuropsychiatric features of each region (106). 205 

In summary, genomic and functional data have implicated multiple genes in variably 206 

expressive CNV regions towards neuropsychiatric phenotypes, suggesting that single causative 207 

genes are not responsible for the heterogeneous features of these CNVs. Here, we propose a 208 

complex interaction-based model for these CNVs, where candidate genes within each region 209 

interact with each other to influence the variable clinical outcome. The CNV phenotype is 210 

therefore distinct from the phenotype manifested by any individual gene, or in some cases, the 211 

additive effects of all genes in the region. This multi-genic model of CNVs agrees with a broader 212 

complex genetic view of neurodevelopmental disorders, where hundreds of genes with varying 213 

effect sizes and complex interactions influence developmental features (10). Further studies on 214 
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the role of individual genes in CNV regions towards neurodevelopment, especially those that 215 

identify key interactions between genes, will be useful in uncovering the cellular pathways and 216 

mechanisms responsible for the observed neuropsychiatric features.  217 
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FIGURE LEGENDS 233 

Figure 1. Phenotypic profiles of syndromic and variably expressive CNVs. (A) Table listing 234 

variably expressive (top) and syndromic (bottom) CNV regions is shown. The colored boxes 235 

indicate frequency of de novo versus inherited CNV cases for deletions (del) and duplications 236 

(dup) previously identified in a cohort of 2,312 children with developmental disorders (12). The 237 

twelve variably-expressive CNV regions highlighted in bold were selected for the analysis 238 

described in the manuscript. (B) Table listing average frequencies of neurodevelopmental 239 

phenotypes for select variably-expressive and syndromic CNVs, curated from GeneReviews 240 

reports on individual CNVs (107), is shown. White boxes represent no available data from 241 

GeneReviews, but do not necessarily indicate a lack of association between the CNV and the 242 

phenotype (for example, 1q21.1 deletion and schizophrenia). Data for this figure are available in 243 

the Supporting Information file. 244 

 245 

Figure 2. (A) Percentile-rank scores compared to the whole genome for intolerance to variation 246 

(RVIS, pLI and maximum CCR) and haploinsufficiency (HI, essentiality, GHIS and EpiScore) 247 

metrics for genes within select variably expressive CNV regions (60–66). Lower percentile 248 

scores indicate a gene is more likely to be haploinsufficient or intolerant to variation. Grey boxes 249 

indicate metrics were not available for a particular gene. (B) Developmental phenotypes in 250 

animal models for homologs of individual genes within the 16p11.2 region, as catalogued from 251 

animal model databases (MGI, ZFIN and FlyBase). Black boxes indicate presence of phenotype, 252 

white boxes indicate absence of phenotype, and grey boxes indicate no homolog is present for a 253 

particular gene in a model organism. The phenotypes observed in 16p11.2 deletion and 254 

duplication mice are distinct from those observed in the individual gene models (81–85). Data 255 

for this figure, including gene metrics and animal phenotypes for other CNV genes not shown in 256 

this figure, are available in the Supporting Information file. (Abbreviations: RVIS—Residual 257 

Variance to Intolerance Score; pLI—Probability of Loss-of-function Intolerance; CCR—258 

Constrained Coding Regions; HI—Haploinsufficiency score, GHIS—Genome-wide 259 

haploinsufficiency score; MGI—Mouse Genome Informatics; ZFIN—Zebrafish Information 260 

Network) 261 

 262 
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Figure 3. Modules of co-expressed genes derived from WGCNA analysis of BrainSpan Atlas 263 

RNA-Seq data (Gencode v10) (92) across 524 tissues and timepoints the developing brain. 264 

Networks of interactions among genes within three select top WGCNA modules (M1, M2 and 265 

M5) were obtained from the BioGrid interaction database (108) and visualized with Cytoscape 266 

(109). Genes within variably expressive CNV regions are highlighted as colored nodes in each 267 

network. Bar graphs show enrichment (p<0.05 with Benjamini-Hochsberg correction, 268 

represented by red dotted line) of genes within each module for Gene Ontology (GO) Biological 269 

Process terms, calculated using PantherDB (110). Data for this figure are available in the 270 

Supporting Information file. 271 

 272 

Figure 4. Models for genetic interactions within CNV regions. (A) Several models of 273 

interactions among CNV genes are shown. These models include (i) a single-gene model where 274 

one gene is sufficient to account for the phenotype; additive models where the phenotype is due 275 

to the additive effects of multiple CNV genes that (ii) may or (iii) may not account for 276 

phenotypes on their own; and (iv) a complex interaction model where additive, enhancer and 277 

suppressor interactions between genes in the CNV region modulate the phenotype, including 278 

when additive effects could lead to lethality. The size of the circles in the plot indicates the 279 

relative contribution of each gene to the overall neurodevelopmental phenotype. Thick circles 280 

indicate genes that contribute to the observed phenotypes on their own, while connector lines 281 

indicate the nature of interaction between pairs of genes. Connected modifier genes (M) can 282 

further modulate these interactions to ultimately define the phenotypic trajectory in individuals 283 

carrying the CNV. (B) For a hypothetical CNV region with three genes, there are seven 284 

combinations of gene knockdowns (A, B, C, AB, BC and ABC) that can be tested for the 285 

presence or absence of a specific phenotype. These knockdown experiments can yield 128 286 

potential outcomes for each phenotype tested, with each individual set of outcomes 287 

corresponding to one of 64 combinations of pairwise gene interactions (additive, enhancer, 288 

suppressor or no interaction). One possible outcome highlighted in orange shows presence of a 289 

particular phenotype for knockdowns of single genes A and B and two-hit knockdowns AB and 290 

BC. The single-gene knockdowns indicate that only genes A and B contribute to the phenotype, 291 

and that the phenotype of pairwise knockdown AB is due to the additive effects of the two genes. 292 
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While the phenotype is observed for BC, the phenotype is not observed for AC and ABC, 293 

suggesting that gene C suppresses the phenotype of gene A. 294 

  295 
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