

1
2 **Genome-wide association study of piscine myocarditis virus (PMCV)**
3
4 **robustness in Atlantic salmon (*Salmo salar*)**
5
6
7
8
9

10 Borghild Hillestad¹ and Hooman K. Moghadam^{1*}
11
12
13
14
15
16

17 ¹*SalmoBreed AS, Sandviksboder 3A, N-5035 Bergen, Norway;*
18
19
20
21
22
23

24 **Article type:**
25
26 Original Article
27
28
29
30
31
32

33 **Running title:**
34
35 Genomics of CMS robustness in Atlantic salmon
36
37
38
39
40
41
42

43 ***Corresponding author:**
44
45 Hooman K. Moghadam
46
47 E-mail: hooman@salmobreed.no
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2 **Abstract**
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Cardiomyopathy syndrome is a sever, viral disease of Atlantic salmon that mostly affects farmed animals during their late production stage at sea. Caused by piscine myocarditis virus (PMCV), over the past few years, the outbreaks due to this disease have resulted in significant losses to the aquaculture industry. However, there are currently no vaccine that has proven effective against this virus. In this study, using a challenge model, we investigate the genetic variation for robustness to PMCV, by screening large number of animals using a 55 K SNP array. In particular, we aimed to identify genetic markers that are tightly linked to higher disease resistance and can potentially be used in breeding programs. Using genomic information, we estimated heritability of 0.41 ± 0.05 , suggesting that robustness against this virus is largely controlled by genetic factors. Through association analysis, we identified a major QTL on chromosome 27, explaining approximately 57% of the total additive genetic variation. The region harbouring this putative QTL contains various immune related candidate genes, many of which have previously been shown to have a differential expression profile between the naïve and infected animals. We also identified a suggestive association on chromosome 12, where the QTL linked markers are located within two putatively immune related genes. These findings are important as they can be readily implemented into the breeding programs but also the results can further help in fine-mapping the causative mutation, in better understanding the biology of the disease and refine the mechanics of resistance against PMCV.

50
51 **Key words:**
52
53
54
55
56
57
58
59
60

Atlantic salmon, cardiomyopathy syndrome, piscine myocarditis virus, genome-wide association, single nucleotide polymorphism;

1
2 **Introduction**
3

4
5 Cardiomyopathy syndrome (CMS) is an emerging, severe inflammatory cardiac disease of Atlantic
6 salmon, with the farmed animals being the primary host, although the causative agent has also been
7 detected in wild populations (Brun *et al.*, 2003; Garseth *et al.*, 2012). The disease has been linked
8 to piscine myocarditis virus (PMCV), a double stranded RNA virus that resembles members of the
9 *Totiviridae* family (Løvoll *et al.*, 2010; Haugland *et al.*, 2011). First detected in farmed Atlantic
10 salmon in Norway in 1985 (Amin and Trasti, 1988), outbreaks have since been reported in other
11 geographical regions and countries including the Faroe Islands, Scotland, Ireland and possibly
12 Canada (Rodger and Turnbull, 2000; Brocklebank and Raverty, 2002; Garseth *et al.*, 2018). This
13 disease is of major concern since it can pose significant financial burden to both farmers and to the
14 industry, as it usually affects the brood fish or grow-out fish at their later life stages in sea
15 (Svendsen and Fritsvold, 2009; Garseth *et al.*, 2018), where considerable amount of recourses have
16 already been allocated for the rearing and husbandry of the animals. It seems however, that the
17 frequency of younger fish also being diagnosed by this virus might be on the rise (Svendsen and
18 Fritsvold, 2018). An initial assessment in 2003, indicated that the cost of CMS associated outbreaks
19 are responsible for direct annual financial loss of € 4.5 to 8.8 million to the Norwegian aquaculture
20 sector (Brun *et al.*, 2003). However, a subsequent study in 2011, published by The Norwegian
21 Seafood Research Fund (FHF), estimated that the overall CMS related losses in 2007 approximated
22 to more than € 25 million (FHF, 2011). These estimates suggest that the financial loss due to this
23 disease has increased by four- to five-fold in mere four years. According to a recent report by the
24 Norwegian Veterinary Institute (Svendsen and Fritsvold, 2018), the frequency of CMS outbreaks
25 has increased throughout Norway over the past few years. Currently, CMS is considered as one of
26 the most significant health related challenges to the aquaculture industry, ranking only after the
27 salmon-lice and gill-diseases (Svendsen and Fritsvold, 2018).
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 A few studies have so far investigated the virus at its genomic details. PMCV has a small genome
2 of 6,688 nucleotides, consisting of three open reading frames (ORF) (Løvoll *et al.*, 2010; Haugland
3 *et al.*, 2011). While the putative products of the ORF1 and ORF2 are likely to be involved in
4 encoding the protein coat and RNA-dependent RNA polymerase respectively, the exact functional
5 properties of ORF3 product is yet to be determined (Wiik-Nielsen *et al.*, 2013). Analysis of the
6 Norwegian PMCV isolates, collected from 36 farms, has revealed high similarity in the nucleotide
7 sequence information, with the most divergent isolate sharing more than 98% sequence similarity
8 (Wiik-Nielsen *et al.*, 2013). Sequence analysis of a few Irish (Rodger *et al.*, 2014) as well as wild
9 Atlantic salmon isolates from Norway (Garseth *et al.*, 2012) have also shown very high similarity
10 to the Norwegian variants. This suggest that all these subtypes, most likely belong to a single genus.
11 Although our understanding of the dynamics and biology of CMS is still very limited, a few studies
12 have started to shed light on the host transcriptomic response following infection with PMCV. In
13 particular, Timmerhaus *et al.* (2011), through comparative analysis of gene expression data and
14 assessment of histopathological lesions in different timepoints and tissues, have identified
15 alternative regulation of six different gene sets during the course of infection. These gene sets
16 included *i.* genes involved in early antiviral and interferon response; *ii.* complement response; *iii.*
17 B cell response; *iv.* MHC antigen presentation; *v.* T cell response and *vi.* apoptosis. Further, studies
18 have reported large, inter-individual variation in Atlantic salmon's response to PMCV, regarding
19 both the progression and the pathological outcomes of the disease (Timmerhaus *et al.*, 2012;
20 Garseth *et al.*, 2018). While some fish seemed to be able to clear or significantly reduce the level
21 of the virus from 6-10 weeks post infection and exhibit little evidence of disease pathology, other
22 fish retained high loads of virus and elevated heart tissue damage (Timmerhaus *et al.*, 2012). The
23 authors also noticed that at the final stages of the challenge, a broad range of immune related genes,
24 genes, mainly involved in adaptive immunity and particularly in T cell response, had altered their
25 profile of expression among more susceptible animals (Timmerhaus *et al.*, 2012). Therefore, one
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 might speculate that a significant part of the resistant machinery against this virus should be under
2 genetic control (Garseth *et al.*, 2018), with genes involved in adaptive immunity to most likely play
3 an important role in this process.

4
5
6
7
8
9 In the absence of any effective vaccine or available treatment for CMS (Garseth *et al.*, 2018),
10 alternative strategies such as selective breeding and utilization of the latest genomic technologies
11 and genetic recourses can provide us with innovative ways to help in identifying resistant or more
12 tolerant animals, reduce the frequency of the disease outbreak, help to improve animal welfare and
13 increase the profit to the industry. With such goals in mind, in this study, we aimed to identify
14 chromosomal regions and genomic markers that are associated with resistance or higher tolerance
15 against PMCV. We further investigated the heritability of the trait and suggest a number of
16 candidate genes that might harbour the causative variation(s) and might be responsible for making
17 an animal to cope better with the pathological symptoms of this virus.

18
19
20
21
22
23
24
25
26
27
28
29
30 **Materials and Methods**

31
32 ***SalmoBreed population and challenge test***

33
34 In the Fall of 2017, 1,192 PIT-tagged (passive integrated transponder) smolts were transported
35 from the SalmoBreed breeding station in Lønningdal (<http://salmobreed.no/en/>) to the challenge
36 facility in VESO Vikan (<https://www.veso.no/about-us1>; Namsos, Norway). The group consisted
37 of 60 full-sib families, approximately 20 individuals per family, from the SalmoBreed nucleus
38 year-class 2017, with an average weight of 123 gr. After arrival, 1,186 fish were kept at 12 °C
39 brackish water (15-30‰) and 24:00 h light regime. After the initial acclimatization, the remaining
40 1,179 fish were challenged with PMCV in a full salinity water (>30‰). The fish were first
41 anaesthetized, scanned and then challenged through intraperitoneal injection (0.1 mL per fish), with
42 a virus containing tissue homogenate, cultured *in vivo* at VESO Vikan. The challenge was carried
43 out for nine weeks before the trial was terminated. At termination, the fish were weighted, and
44 heart tissue samples were collected for histopathology and quantitative real-time PCR (qRT-PCR)

1 analyses, and stored in formalin and RNALater, respectively. The adipose fin tissue was also
2 collected for DNA extraction and subsequent genotyping.
3
4

5 ***RNA extraction and qRT-PCR analysis***
6
7

8 Following the termination and collection of the heart tissues in RNALater, samples were shipped
9 to PatoGen AS (<http://www.patogen.com/>; Ålesund Norway) for RNA extraction and viral load
10 quantification using their established protocol. RNA was successfully extracted from 1,161 heart
11 tissue samples. Real-time qRT-PCR of the viral loads and calculations of normalized cycle
12 threshold (C_t) values were performed based on the optimized procedure for PMCV quantification
13 in PatoGen.
14
15

16 ***Histology assessment***
17
18

19 To estimate the correlation between C_t values of the viral loads from qRT-PCR and heart
20 histopathology, 40 fish were selected for histology assessment of both atrium and ventricle at the
21 Fish Vet Group Norway (<http://fishvetgroup.no/en/>; Skøyen, Norway). Formalin-fixed heart tissue
22 samples were embedded in paraffin and processed in accordance to the Fish Vet Group's routine
23 standard histological procedures (Bott, 2014). Histology analysis were performed on 20 fish with
24 the lowest and 20 fish with the highest C_t values. The lesions were scored 0, 1, 2 or 3 in accordance
25 with the scheme described previously (Timmerhaus *et al.*, 2011). A score of 0 indicates no lesions
26 at the heart, 1 refers to mild lesions, 2 states moderate lesions and 3 implies severe lesions.
27
28

29 ***Genotyping and genotype quality assessment***
30
31

32 The adipose fin-clip tissue from all the animals that survived the nine weeks duration of the
33 challenge (i.e., 1,182 individuals) were sent to IdentiGEN (<https://identigen.com/>; Dublin, Ireland)
34 for DNA extraction and genotyping. The genotyping was done on a custom made 55 K Affymetrix
35 Axiom array, called NOFSAL03, developed by Nofima AS in 2016 in collaboration with
36 SalmoBreed AS and Marine Harvest ASA. In total, 1,152 fish passed the initial quality control
37 during DNA extraction and the SNP calling steps of the Affymetrix Axiom analysis suite software.
38
39

1 Additional genotype quality measures were undertaken using SNP & Variation Suite v8.8.1 (SVS;
2 Golden Helix Inc., Bozeman, MT, USA www.goldenhelix.com). Samples and SNPs with call rates
3 < 90%, SNPs with Hardy-Weinberg *p*-value (Fishers exact test) < 10⁻¹⁰ or genetic markers with
4 minor allele frequency < 0.05% were excluded from downstream analysis. Further, we used SVS
5 for linkage-disequilibrium pruning, by setting window size to 40, window increment to 5 and *r*²
6 threshold to 0.5. We then used the pruned data to construct a distance matrix based on the identity
7 by descent (IBD). Using this pre-computed kinship matrix, we performed mixed model association
8 analysis by applying Efficient Mixed-Model Association eXpedited (EMMAX) (Kang *et al.*, 2010)
9 to correct for possible sample structures and relatedness between animals. An association was
10 considered to be genome-wide or chromosome-wide significant, if the Bonferroni threshold *p*-
11 value was less or equal than 1.004e-06 or 3.730e-05 respectively.
12

13 To estimate the proportion of total genetic variation that is explained by genomic loci harboring
14 QTL, we performed regional heritability analysis (Nagamine *et al.*, 2012) using DISSECT (Canela-
15 Xandri *et al.*, 2015). We first extracted the SNPs covering the QTL regions of interest and
16 computed a genetic relationship matrix between individuals *i* and *j* as:
17

$$18 \quad \text{!}^{* \#} = \frac{1}{\&} \cdot \frac{(\text{!}^{* \#} - 2\text{!}^{* \#})(\text{!}^{* \#} - 2\text{!}^{* \#})}{2\text{!}^{* \#}(1 - \text{!}^{* \#})}$$

19 where s_{ik} and s_{jk} are the number of copies of the reference allele for SNP *k* in individuals *i* and *j*, p_k
20 is the frequency of the reference allele for SNP *k* and *N* is the number of SNPs. We then fitted a
21 mixed linear model as follows:
22

$$23 \quad 2 = 34 + 67 + 68 + 9 \\ 24 \\ 25 \quad : ; \text{!}(7) = \text{!}^{\text{!}}_y; : ; \text{!}(8) = \text{!}^{\text{!}}_X; : ; \text{!}(9) = \text{!}^{\text{!}}_Z$$

26 where y is the vector of *Ct* values, X and Z are the design matrixes for fixed and random effects
27 respectively, u is the global genomic additive genetic effect, v is the regional genomic additive genetic
28 effect, e is the residuals and β is the fixed effect, adjusted for sex. Matrices G and I are a global
29

1 genomic relationship matrix using the entire quality control passed SNPs for estimating global
2 genomic additive effect and a unit matrix for estimating residuals, respectively. Q is the regional
3 genomic relationship matrix obtained from the SNPs covering the QTL region. The global and the
4 regional heritability are estimated as $h^2 = >_I >_H^2$ and $h^2 = >_C >_H^2$ respectively.

11 Results and Discussion

12
13 Following the termination of the trial, no mortality or clinical symptoms associated with the disease
14 was observed. Using qRT-PCR, the load of the virus was successfully obtained from the heart tissues
15 of 1,169 animals. The standardized Ct values of the viral genetic material showed a normal
16 distribution when compared across individuals, with some animals exhibiting very low levels of the
17 pathogen while some others carrying high loads of PMCV (Supplementary Figure 1). This is an
18 indication of possible inter-individual biological differences in the ability of an animal to either
19 prevent the proliferation or subsequent clearance of the virus during later stages of infection
20 (Timmerhaus *et al.*, 2011, 2012). To test if these quantitative measures can be used as a proxy for
21 assessing the degree of the damage to the heart and therefore providing an indication of an animal's
22 resistance or tolerance against PMCV, histopathological assessments were performed on the atriums
23 and ventricles of 40 animals, 20 with the highest and 20 with the lowest Ct measurements. The heart
24 histopathological scores ranged from 0-2 (no score of 3 was observed), reflecting the degree of
25 severity of the lesions as described previously (Timmerhaus *et al.*, 2011). The Ct values were highly
26 correlated with the histology scores, for both atrium and ventricle (Pearson $r = 0.72$, p -value < 0.0001 ;
27 Figure 1). Similar, high estimates of correlation (i.e., 0.75-0.76) between the histopathological scores
28 and the loads of virus have also been previously reported for this disease (Haugland *et al.*, 2011;
29 Timmerhaus *et al.*, 2011).

30 To identify genetic markers that are associated to robustness against PMCV, we performed a genome-
31 wide association study (GWAS). The markers were first filtered for minor allele frequencies < 0.05
32 and call-rates $< 90\%$, leaving approximately 50 K SNPs for the subsequent analysis. The test was
33

1 preformed using EMMAX algorithm, in order to account for both animal relatedness as well as
2 population structure (Kang *et al.*, 2008). We obtained an inflation factor (λ) of 1.13, suggesting a
3 negligible population structuring effect in our data (Supplementary Figure 2). The heritability
4 estimate, using the genomic relationship matrix, was 0.41 ± 0.05 , indicating potentials for efficient
5 response in increased resistance against this pathogen through selection and breeding strategies.
6
7 Through GWAS analysis, we identified a significant association on chromosomes 27 ($-\log_{10} p\text{-value} > 6$) but also a suggestive evidence of genetic markers on chromosome 12 to be linked with higher
8 robustness against PMCV ($-\log_{10} p\text{-value} > 4.5$) (Figure 2). On chromosome 27, total of 44 SNPs
9 passed the genome-wide threshold $p\text{-value}$ of $1.004\text{e-}06$ (Supplementary Table 1). These markers
10 cover a large fragment on the chromosome, spanning from 3.9 Mbp up-to 25.5 Mbp region. However,
11 the top four SNPs, with a much stronger association compared to the remainder of the genetic
12 markers, cover only 2 Mbp segment of the chromosome, from 8.5 Mbp to 10.5 Mbp. The proportion
13 of phenotypic variance explained by each of these four markers were 5.13%, 5.03%, 4.81% and
14 4.05% respectively. Collectively, the markers within this 2 Mbp region explained about 57% of the
15 total additive genetic variation, according to the regional heritability estimate.
16
17 This region of chromosome 27 in Atlantic salmon harbors about 63 protein coding genes, with the
18 strongest associated SNP located on 10.4 Mbp (ssa27:10393267; Table 1). On the downstream of this
19 SNP, there are two putative immune related candidate genes, immunoglobulin V-set-like domain
20 (LOC106588384; ssa27:10,413,985-10,428,204) and the major histocompatibility complex class I-
21 related gene (LOC106588381; ssa27:10,464,840-10,482,970). These two genes have potential
22 functions in antigen binding and antigen presentation respectively. On the upstream of this SNP, there
23 are further a few genes with direct functional properties relevant to the immune system processes and
24 antigen presentation. Antigen peptide transporter 2 (*tap2b*; ssa27:10,176,035-10,180,872), class I
25 histocompatibility antigen F10 alpha chain-like (LOC106588401; ssa27:10,122,008-10,149,393),
26 major histocompatibility complex class I-related gene (LOC106588402; ssa27:10,037,565-
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10,054,429), TAP-binding protein (*tapbp*; ssa27:10,023,358-10,039,557) and proteasome subunit
beta type-7-like (LOC106588382; ssa27:10,580,776-10,585,552) are a few examples. All these latter
genes cover a region on chromosome 27 from 10 Mbp up-to 10.2 Mbp. Previously, Timmerhaus *et
al.* (2011), using a microarray platform, have identified a set of 34 transcripts that are involved in the
presentation of viral antigens through MHC class I and II genes and were differentially expressed
between the naïve and the CMS infected animals. In fact, we found that the genes associated with a
few of these transcripts are located within the CMS QTL genomic segment on chromosome 27
reported in this study. In particular, these genes included LOC106588401, LOC106588402 (as
indicated above), and to a lesser degree characterized gene, LOC106588388 (ssa27:10,583,372-
10,595,992), with possible functionality as a long non-coding RNA (lncRNA).

Further analysis of the 34 transcript set of the sequence data reported by Timmerhaus *et al.* (2011)
also showed that a subset of these transcripts further map to both chromosomes 14 and 27 in the
current Atlantic salmon genome assembly (GCA_000233375.4 ICSASG_v2). Examples of these
transcripts mapping to the two chromosomes include proteasome subunit beta and MHC class I. In
Atlantic salmon, the entire chromosome 27 is homeologous to chromosome 14, suggesting that these
chromosomes have originated from the whole genome duplication event that happened at the origin
of all salmonid fishes (Lien *et al.*, 2016). On chromosome 27, the duplicates reported by Timmerhaus
et al. (2011) mainly fall within the QTL associated genomic segment. While the exact functional
properties of many duplicated gene copies in Salmonids have yet to be studied in detail, we expect
that many genes to have either developed new functions (*neofunctionalization*) (Berthelot *et al.*, 2014)
or the ancestral function has been partitioned between the two newly derived daughter copies
(*subfunctionalization*) (Wolfe, 2001; Osborn *et al.*, 2003). In addition, it is possible that both copies
have remained equally functional within the genome, if the dosage effect provides an advantage and
increases the fitness of an individual (Wolfe, 2001). Therefore, it is of interest to find out if in some
other Atlantic salmon populations, the homeologous segment on chromosome 14, either by itself or

1 in addition to chromosome 27, to show association with higher PMCV robustness. Further, in the
2 future studies, targeting to investigate the expression and the exact genomic location of these
3 differentially expressed transcripts, whether it is on chromosome 14 or 27, between animals with
4 different levels of resistance to CMS, would be of great importance, particularly when we aim to fine-
5 map the causal mutation for this trait.
6
7

8 On chromosome 12, while no marker passed the genome-wide, threshold *p*-value, eight markers
9 exceeded the chromosome-wide significance corrected threshold of 3.730e-05 (Supplementary Table
10 1). Seven of these markers span a region of only 320 Kbp, from position 61.39 Mbp to 61.71 Mbp.
11 The proportion of phenotypic variance explained by these markers range from 1.48% to 1.83%
12 (Supplementary Table 1). There are 15 annotated, protein-coding genes within 61.00 to 62.00 Mbp
13 segment of chromosome 12. However, probably the two most relevant and plausible candidate genes,
14 within this region, with a potential effect on an animal's robustness to PMCV are the two putative H-
15 2 class II histocompatibility antigen genes. One of these genes, LOC100136577, is homologous to
16 H-2 class II histocompatibility antigen, I-E beta chain in mouse, located at ssa12:61,693,946-
17 61,699,456. The other gene, LOC106565699 is most similar to H-2 class II histocompatibility
18 antigen, A-U alpha chain, again in mouse, located at ssa12:61,701,374-61,703,966. In fact, four of
19 the SNPs with the lowest associated *p*-values detected on this chromosome, are located within this
20 latter gene. Two of the SNPs fall within the intronic regions of the gene, while the other two have
21 been assigned as 3¢untranslated region (UTR) variants (Figure 3). Interestingly, this genes has also
22 been reported by Timmerhaus *et al.* (2011) as one of the key genes, within the MHC antigen
23 presentation set, that is differentially expressed between the PMCV infected and non-infected
24 animals. The 5th strongest SNP on chromosome 12, falls in the other histocompatibility gene (i.e.,
25 LOC100136577) and has also been identified as a 3¢UTR variant (Figure 3). These five SNPs are in
26 strong linkage disequilibrium and form a haplotype block.
27
28

29 In addition to the two histocompatibility genes however, there are also other putative candidate genes
30
31

1 with direct or indirect functional properties relevant to the immune system, within this approximately
2 320 Kbp segment of the chromosome. One example is the T cell transcription factor EB-like gene
3 (TFEB) (LOC106565694), which can be regarded as one of the key transcriptional regulators of
4 autophagy and lysosome biogenesis (Sardiello *et al.*, 2009; Settembre *et al.*, 2011). This gene is
5 located in close proximity to the two histocompatibility genes discussed above (ssa12:61,588,376-
6 61,651,838). The product of this gene is involved in a variety of functions which are related to the
7 host's defense mechanism, including elimination of intracellular pathogens, reducing inflammation,
8 antigen presentation and secretion of cytokines (Nabar and Kehrl, 2017).

9 The final, chromosome-wide significant SNP detected on chromosome 12, is located further apart
10 from the other associated markers, at approximately 33 Mbp location (Supplementary Table 1).
11 Interestingly, this marker is within a putative long-noncoding RNA (lncRNA, LOC106565045,
12 ssa12:33,241,465-33,247,235). Long-noncoding RNAs are known to be involved in gene
13 transcription, translation and regulation and their key roles in many disease progressions have
14 previously been suggested (Carrieri *et al.*, 2012).

15 In conclusion, this work provides an important first step towards unraveling the genetic architecture
16 of resistance against PMCV. Identification of a major QTL on chromosome 27 that explains a large
17 proportion of genetic variation and suggestive evidence of one or more genomic regions on
18 chromosome 12 that are associated with CMS robustness indicates that breeding can be a powerful
19 tool for reducing and managing outbreaks due to this virus. It is important however, to confirm the
20 same association of the QTL in different year-classes and in different populations. Further,
21 understanding the genes and the genetic networks that are differentially regulated between the
22 resistant and susceptible animals, particularly the expression profile of those genes that fall within
23 the QTL region will help in fine mapping and identifying the causative mutation. As obtaining the
24 whole-genome sequence information from an increasing number of animals is becoming more
25 affordable, this will be a key and a routine step in our future attempts in dissecting the genetic basis
26

1
2 of any complex trait.
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
of any complex trait.
Acknowledgments

The authors would like to thank Dr. Makoto Inami and other personnel at the VESO Vikan who helped in the development and optimization of the CMS challenge test. We would also like to extend our gratitude to the Fish Vet Group, Norway and specially Dr. Kai-Inge Lie for performing histology on the heart tissue samples.

References

Amin A, Trasti J (1988). Endomyocarditis in Atlantic salmon in Norwegian seafarms; A case report. *Bull Eur Assoc Fish Pathol* **8**: 70–71.

Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, *et al.* (2014). The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. *Nat Commun* **5**.

Bott R (2014). *Bancroft's Theory and Practice of Histological Techniques*.

Brocklebank J, Raverty S (2002). Sudden mortality caused by cardiac deformities following seining of preharvest farmed Atlantic salmon (*Salmo salar*) and by cardiomyopathy of postintraperitoneally vaccinated Atlantic salmon parr in British Columbia. *Can Vet J* **43**: 129–130.

Brun E, Poppe T, Skrudland A (2003). Cardiomyopathy syndrome in farmed Atlantic salmon *Salmo salar*: occurrence and direct financial losses for Norwegian aquaculture. *Dis Aquat Organ* **56**: 241–247.

Canela-Xandri O, Law A, Gray A, Woolliams JA, Tenesa A (2015). A new tool called DISSECT for analysing large genomic data sets using a Big Data approach. *Nat Commun*.

Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, *et al.* (2012). Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. *Nature*.

FHF (2011). *Cardiomyopathy Syndrome: A Multi-task Approach to Reduce Losses and Improve*

1
2 *Knowledge.*
3

4 Garseth ÅH, Biering E, Tengs T (2012). Piscine myocarditis virus (PMCV) in wild Atlantic salmon
5 *Salmo salar*. *Dis Aquat Organ* **102**: 157–161.
6
7 Garseth H, Fritsvold C, Svendsen JC, Bang Jensen B, Mikalsen AB (2018). Cardiomyopathy
8 syndrome in Atlantic salmon *Salmo salar* L.: A review of the current state of knowledge. *J Fish*
9 *Dis* **41**: 11–26.
10
11 Haugland O, Mikalsen AB, Nilsen P, Lindmo K, Thu BJ, Eliassen TM, *et al.* (2011). Cardiomyopathy
12 Syndrome of Atlantic Salmon (*Salmo salar* L.) Is Caused by a Double-Stranded RNA Virus of
13 the Totiviridae Family. *J Virol* **85**: 5275–5286.
14
15 Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, *et al.* (2010). Variance component
16 model to account for sample structure in genome-wide association studies. *Nat Genet* **42**: 348–
17 354.
18
19 Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, *et al.* (2008). Efficient Control
20 of Population Structure in Model Organism Association Mapping. *Genetics*.
21
22 Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, *et al.* (2016). The Atlantic salmon
23 genome provides insights into rediploidization. *Nature*.
24
25 Løvoll M, Wiik-Nielsen J, Grove S, Wiik-Nielsen CR, Kristoffersen AB, Faller R, *et al.* (2010). A
26 novel totivirus and piscine reovirus (PRV) in Atlantic salmon (*Salmo salar*) with
27 cardiomyopathy syndrome (CMS). *Virol J* **7**.
28
29 Nabar NR, Kehrl JH (2017). The transcription factor EB links cellular stress to the immune response.
30
31 *Yale J Biol Med* **90**: 301–315.
32
33 Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Rudan I, *et al.* (2012). Localising Loci
34 underlying Complex Trait Variation Using Regional Genomic Relationship Mapping. *PLoS*
35 *One*.
36
37 Osborn TC, Chris Pires J, Birchler JA, Auger DL, Chen ZJ, Lee HS, *et al.* (2003). Understanding
38

1 mechanisms of novel gene expression in polyploids. *Trends Genet* **19**: 141–147.
2

3
4 Rodger HD, McCleary SJ, Ruane NM (2014). Clinical cardiomyopathy syndrome in Atlantic salmon,
5
6 *Salmo salar* L. *J Fish Dis* **37**: 935–939.
7

8
9 Rodger H, Turnbull T (2000). Cardiomyopathy syndrome in farmed Scottish salmon. *Vet Rec* **146**:
10
11 500–501.
12

13 Sardiello M, Palmieri M, Ronza A Di, Medina DL, Valenza M, Gennarino VA, *et al.* (2009). A gene
14
15 network regulating lysosomal biogenesis and function. *Science (80-)* **325**: 473–477.
16

17 Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, *et al.* (2011). TFEB links
18
19 autophagy to lysosomal biogenesis. *Science (80-)* **332**: 1429–1433.
20

21 Svendsen JC, Fritsvold C (2009). Experimental transmission of cardiomyopathy syndrome (CMS) in
22
23 Atlantic salmon *Salmo salar*. *Dis Aquat Organ* **87**: 225–234.
24

25 Svendsen JC, Fritsvold C (2018). *The health situation in Norwegian aquaculture*.
26

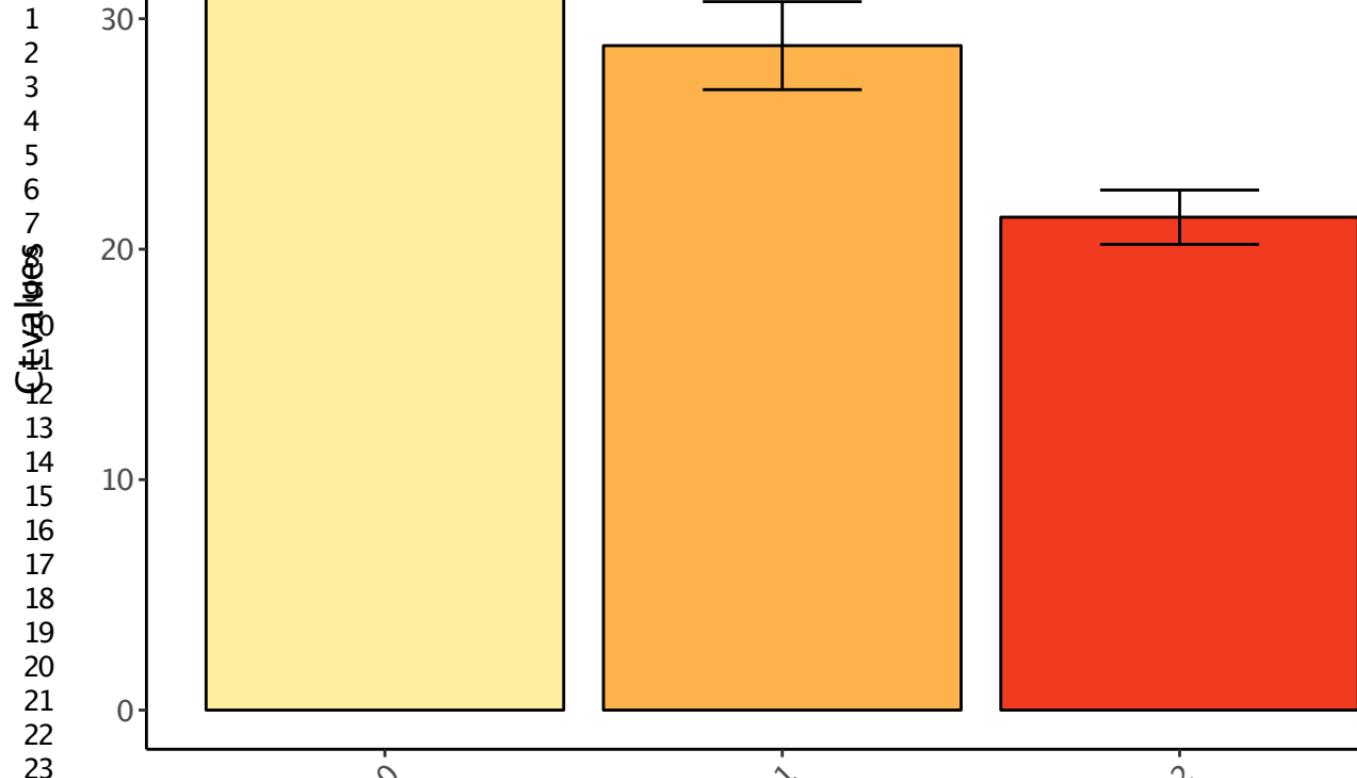
27 Timmerhaus G (2012). *Cardiomyopathy syndrome (CMS) in Atlantic salmon, Salmo salar* L.:
28
29 *functional genomics studies of host-pathogen responses and disease markers*.
30

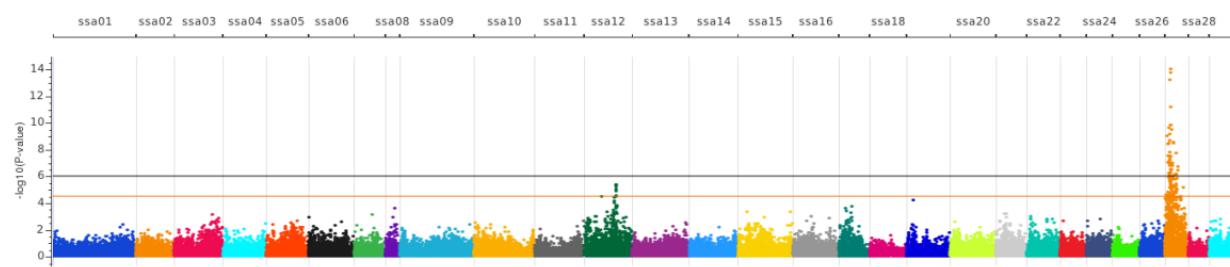
31 Timmerhaus G, Krasnov A, Nilsen P, Alarcon M, Afanasyev S, Rode M, *et al.* (2011). Transcriptome
32
33 profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon. *BMC*
34
35 *Genomics* **12**: 459.
36

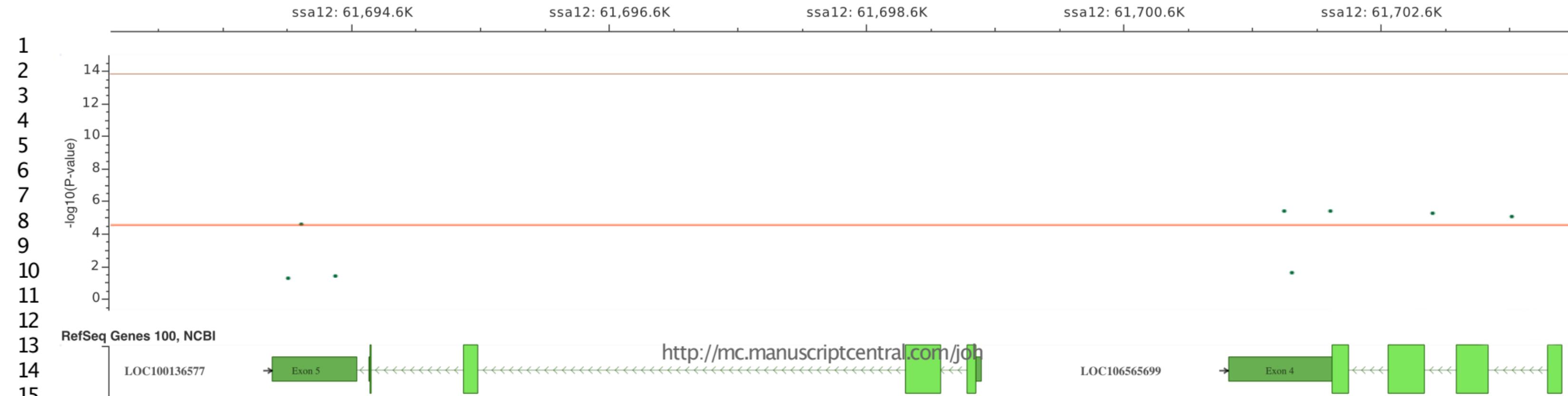
37 Timmerhaus G, Krasnov A, Takle H, Afanasyev S, Nilsen P, Rode M, *et al.* (2012). Comparison of
38
39 Atlantic salmon individuals with different outcomes of cardiomyopathy syndrome (CMS). *BMC*
40
41 *Genomics* **13**: 205.
42

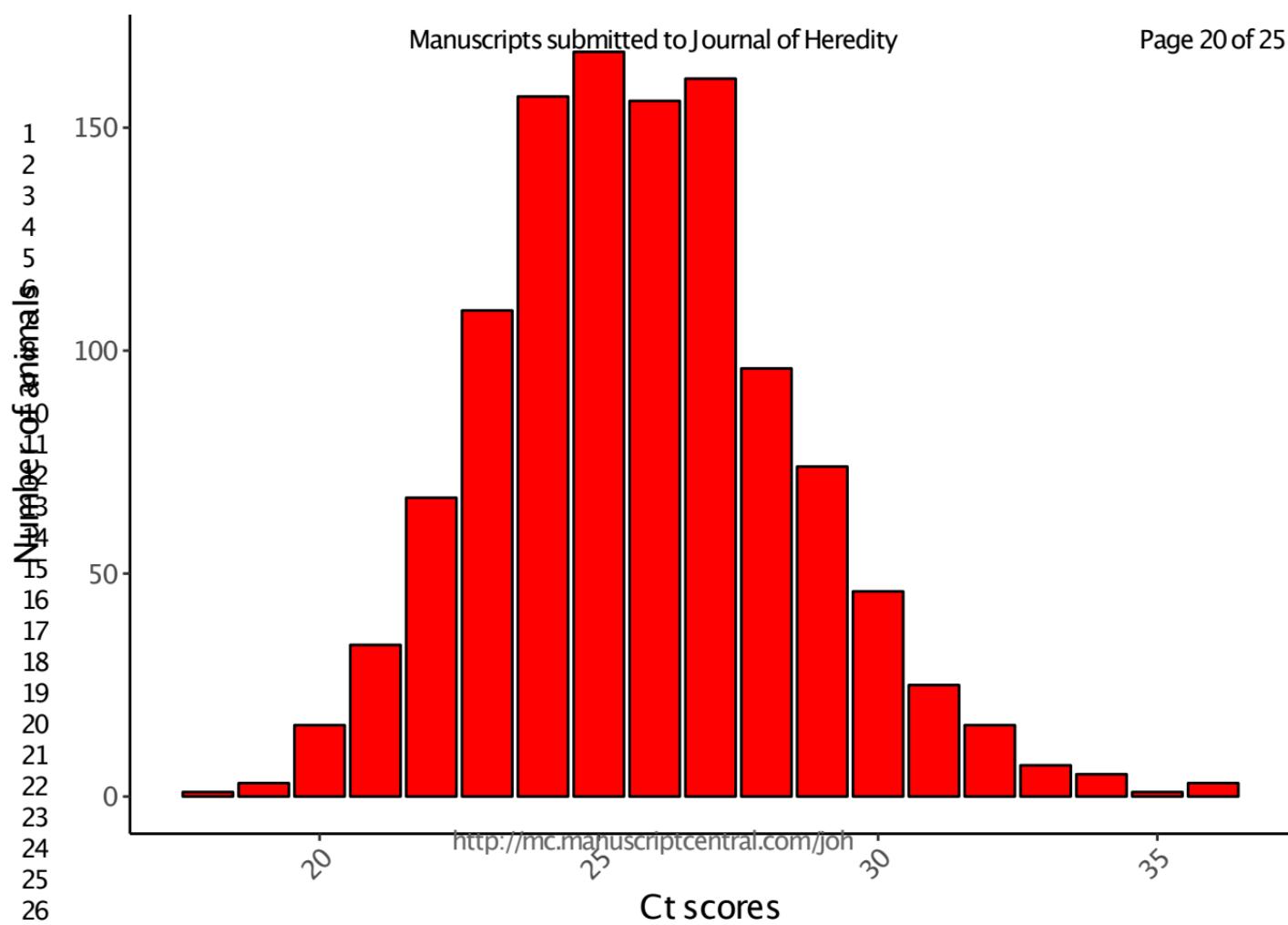
43 Wiik-Nielsen J, Alarcón M, Fineid B, Rode M, Haugland (2013). Genetic variation in Norwegian
44
45 piscine myocarditis virus in Atlantic salmon, *Salmo salar* L. *J Fish Dis* **36**: 129–139.
46

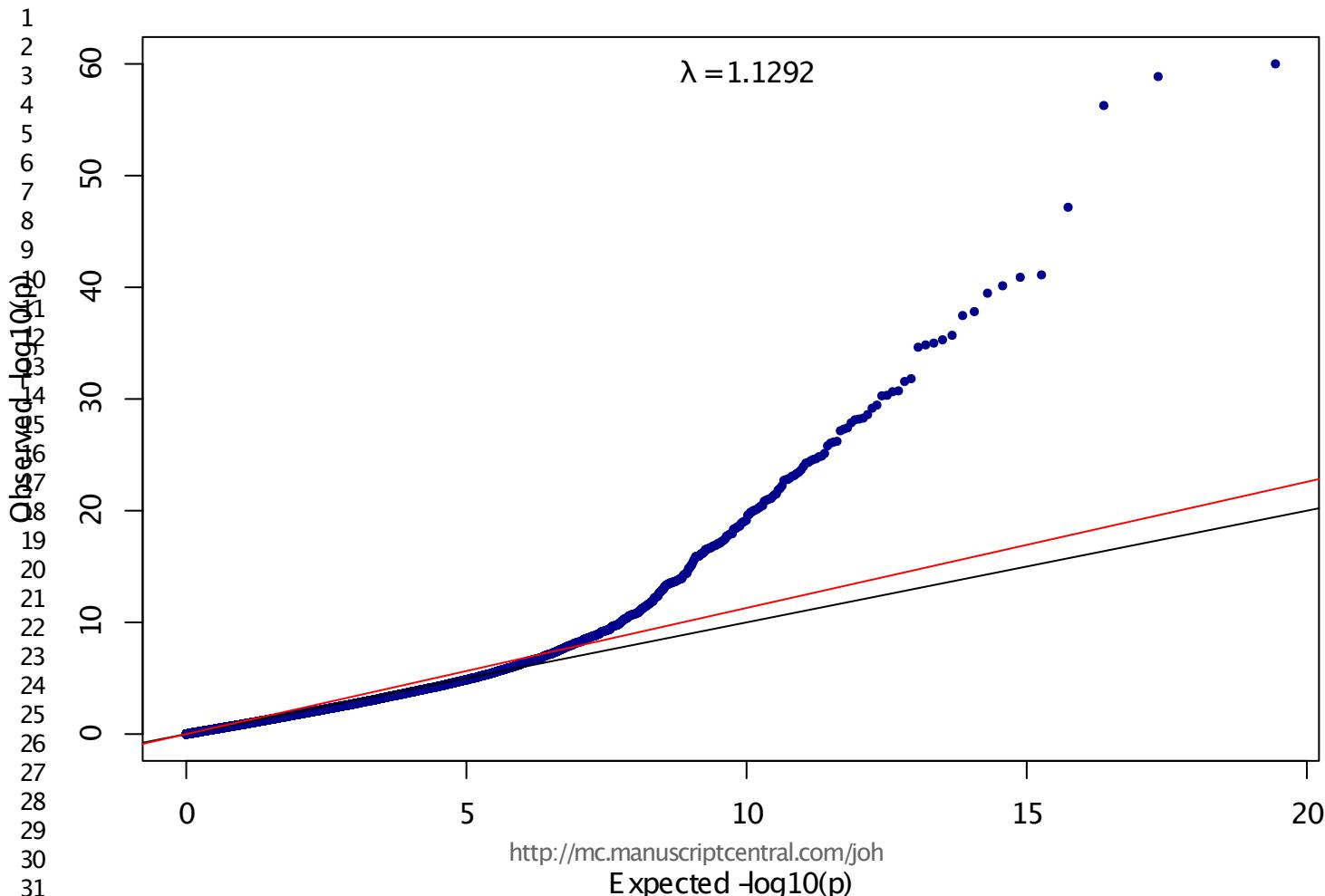
47 Wolfe KH (2001). Yesterday's polyploids and the mystery of diploidization. *Nat Rev Genet* **2**: 333–
48
49 341.
50


1
2
3 **Figure 1.** qRT-PCR *Ct* values and the associated standard errors of the PMCV viral-loads in
4 animals with ventricle histology scores of 0, 1 and 2.
5
6


7 **Figure 2.** Manhattan plot of association between genetic markers and cardiac viral-loads of
8 PMCV in Atlantic salmon. The black and the orange lines indicate the genome-wide and the
9 chromosome-wide significance threshold cut-off levels respectively.
10
11


12 **Figure 3.** Chromosome-wide significant genetic markers on chromosome 12, located on two
13 putative H-2 class II histocompatibility antigen genes, LOC100136577 and LOC106565699.
14 The darker green blocks represent the UTR regions of the gene while the light green blocks
15 represent the protein coding sequences. The arrowed lines show the intronic segments of the
16 gene.
17
18


19 **Supplementary Figure 1.** Bar-graph showing the distribution of the normalized viral-loads *Ct*
20 values from qRT-PCR across all challenged animals.
21
22


23 **Supplementary Figure 2.** Quantile-quantile plot for the genome-wide association analysis for
24 robustness to PMCV.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 **Supplementary Table 1.** List of genome-wide and chromosome-wide genetic markers associated with robustness against PMCV in
5
6 Atlantic salmon.
7
8

Marker	Chromosome	Position	p-value	-log ₁₀ p-value	Proportion of variance explained	Significance
AX-87431771	ssa27	2703017	2.32E-05	4.63	1.56%	Chromosome-wide
AX-88206216	ssa27	3921804	9.27E-10	9.03	3.23%	Genome-wide
AX-98319434	ssa27	3992934	3.62E-05	4.44	1.48%	Chromosome-wide
AX-88070502	ssa27	4706791	3.98E-09	8.40	2.99%	Genome-wide
AX-88113080	ssa27	5028120	8.89E-08	7.05	2.48%	Genome-wide
AX-87777813	ssa27	5747851	1.61E-05	4.79	1.62%	Chromosome-wide
AX-88060928	ssa27	6292856	3.09E-08	7.51	2.65%	Genome-wide
AX-96121015	ssa27	6912223	1.05E-07	6.98	2.45%	Genome-wide
AX-87957864	ssa27	7349971	1.29E-06	5.89	2.03%	Chromosome-wide
AX-87770393	ssa27	7558502	3.57E-09	8.45	3.01%	Genome-wide
AX-87810183	ssa27	7595841	2.37E-10	9.63	3.46%	Genome-wide
AX-88146773	ssa27	7778033	2.27E-05	4.64	1.56%	Chromosome-wide
AX-87543614	ssa27	7891594	6.09E-07	6.22	2.16%	Genome-wide
AX-88290504	ssa27	8039250	3.03E-05	4.52	1.51%	Chromosome-wide
AX-88223822	ssa27	8282588	9.85E-07	6.01	2.08%	Genome-wide
AX-87347259	ssa27	8356623	2.30E-09	8.64	3.08%	Genome-wide
AX-87353154	ssa27	8372617	1.68E-06	5.77	1.99%	Chromosome-wide
AX-98308488	ssa27	8374637	1.30E-07	6.89	2.41%	Genome-wide
AX-88285513	ssa27	8617575	2.97E-08	7.53	2.66%	Genome-wide
AX-88190840	ssa27	8642177	6.30E-14	13.20	4.81%	Genome-wide
AX-87513090	ssa27	8972988	6.61E-08	7.18	2.53%	Genome-wide
AX-88286284	ssa27	8979164	1.69E-08	7.77	2.75%	Genome-wide

1	AX-105314687	ssa27	9008115	3.73E-08	7.43	2.62%	Genome-wide
2	AX-87791679	ssa27	9056093	6.26E-07	6.20	2.15%	Genome-wide
3	AX-98308480	ssa27	9056598	7.52E-07	6.12	2.12%	Genome-wide
4	AX-87067374	ssa27	9056780	6.63E-06	5.18	1.76%	Chromosome-wide
5	AX-87003873	ssa27	9233208	5.74E-08	7.24	2.55%	Genome-wide
6	AX-87517328	ssa27	9287317	1.74E-07	6.76	2.37%	Genome-wide
7	AX-88202021	ssa27	9297577	2.43E-06	5.61	1.93%	Chromosome-wide
8	AX-98321803	ssa27	9308180	7.74E-10	9.11	3.26%	Genome-wide
9	AX-87879144	ssa27	9354950	7.10E-07	6.15	2.13%	Genome-wide
10	AX-87990259	ssa27	9602973	1.79E-05	4.75	1.60%	Chromosome-wide
11	AX-87107874	ssa27	9875472	6.52E-12	11.19	4.05%	Genome-wide
12	AX-87716791	ssa27	9885089	1.44E-10	9.84	3.54%	Genome-wide
13	AX-86960936	ssa27	9972373	3.64E-08	7.44	2.62%	Genome-wide
14	AX-98308473	ssa27	9974462	3.61E-05	4.44	1.49%	Chromosome-wide
15	AX-87784578	ssa27	10016847	4.63E-06	5.33	1.82%	Chromosome-wide
16	AX-87784944	ssa27	10025960	5.36E-07	6.27	2.18%	Genome-wide
17	AX-97869528	ssa27	10049322	7.69E-06	5.11	1.74%	Chromosome-wide
18	AX-87388881	ssa27	10176535	3.06E-07	6.51	2.27%	Genome-wide
19	AX-105314484	ssa27	10177750	1.38E-06	5.86	2.02%	Chromosome-wide
20	AX-87889461	ssa27	10192440	2.73E-06	5.56	1.91%	Chromosome-wide
21	AX-96309328	ssa27	10348407	1.69E-14	13.77	5.03%	Genome-wide
22	AX-97902757	ssa27	10393267	9.46E-15	14.02	5.13%	Genome-wide
23	AX-96395661	ssa27	10512101	1.88E-06	5.73	1.97%	Chromosome-wide
24	AX-87311210	ssa27	10654172	3.98E-06	5.40	1.85%	Chromosome-wide
25	AX-96197665	ssa27	10749982	6.97E-06	5.16	1.76%	Chromosome-wide
26	AX-96156161	ssa27	10750087	3.68E-06	5.43	1.86%	Chromosome-wide
27	AX-96395645	ssa27	10781997	6.14E-06	5.21	1.78%	Chromosome-wide
28	AX-98308452	ssa27	11167928	3.32E-07	6.48	2.26%	Genome-wide

AX-96309317	ssa27	11168090	1.13E-07	6.95	2.44%	Genome-wide
AX-96197662	ssa27	11185301	1.60E-10	9.79	3.52%	Genome-wide
AX-87474590	ssa27	11191489	2.94E-06	5.53	1.90%	Chromosome-wide
AX-88058440	ssa27	11681467	3.33E-10	9.48	3.40%	Genome-wide
AX-97886034	ssa27	11723737	2.56E-05	4.59	1.54%	Chromosome-wide
AX-87205708	ssa27	11973268	3.16E-07	6.50	2.27%	Genome-wide
AX-96420650	ssa27	12208504	2.51E-05	4.60	1.54%	Chromosome-wide
AX-87259442	ssa27	12499061	1.21E-05	4.92	1.67%	Chromosome-wide
AX-88275449	ssa27	13298889	8.33E-06	5.08	1.73%	Chromosome-wide
AX-87941659	ssa27	13563945	1.16E-06	5.94	2.05%	Chromosome-wide
AX-96156074	ssa27	13570032	1.80E-06	5.75	1.98%	Chromosome-wide
AX-88293442	ssa27	13627788	1.64E-07	6.78	2.37%	Genome-wide
AX-87649300	ssa27	13896277	1.09E-07	6.96	2.44%	Genome-wide
AX-87232521	ssa27	15079221	4.98E-06	5.30	1.81%	Chromosome-wide
AX-98317907	ssa27	15160212	1.50E-06	5.82	2.01%	Chromosome-wide
AX-88045505	ssa27	15161000	1.60E-05	4.80	1.62%	Chromosome-wide
AX-88266917	ssa27	15161002	3.34E-05	4.48	1.50%	Chromosome-wide
AX-98317904	ssa27	15161356	7.57E-06	5.12	1.74%	Chromosome-wide
AX-88093100	ssa27	15622000	3.29E-09	8.48	3.02%	Genome-wide
AX-87670213	ssa27	15923275	1.42E-05	4.85	1.64%	Chromosome-wide
AX-88138755	ssa27	15986838	2.29E-05	4.64	1.56%	Chromosome-wide
AX-96310740	ssa27	16179768	2.41E-05	4.62	1.55%	Chromosome-wide
AX-96231796	ssa27	16507964	2.83E-09	8.55	3.05%	Genome-wide
AX-97879918	ssa27	16528506	1.85E-05	4.73	1.59%	Chromosome-wide
AX-87140921	ssa27	17265465	8.14E-07	6.09	2.11%	Genome-wide
AX-87877297	ssa27	19804784	1.78E-05	4.75	1.60%	Chromosome-wide
AX-87336680	ssa27	20250601	1.81E-06	5.74	1.98%	Chromosome-wide
AX-96121176	ssa27	20445207	1.35E-05	4.87	1.65%	Chromosome-wide

1	AX-97902305	ssa27	21423070	8.44E-07	6.07	2.10%	Genome-wide
2	AX-87990446	ssa27	21428858	4.78E-06	5.32	1.82%	Chromosome-wide
3	AX-88140363	ssa27	21497459	6.86E-07	6.16	2.14%	Genome-wide
4	AX-87633714	ssa27	21528048	1.30E-05	4.89	1.65%	Chromosome-wide
5	AX-86925703	ssa27	21645190	8.19E-06	5.09	1.73%	Chromosome-wide
6	AX-96451141	ssa27	21646066	3.54E-06	5.45	1.87%	Chromosome-wide
7	AX-96438409	ssa27	21649877	1.92E-08	7.72	2.73%	Genome-wide
8	AX-87708412	ssa27	21914246	1.67E-05	4.78	1.61%	Chromosome-wide
9	AX-88309032	ssa27	22175059	1.55E-06	5.81	2.00%	Chromosome-wide
10	AX-97880155	ssa27	23148033	9.26E-06	5.03	1.71%	Chromosome-wide
11	AX-88244980	ssa27	25362000	3.77E-07	6.42	2.24%	Genome-wide
12	AX-86978244	ssa27	25448728	1.88E-07	6.73	2.35%	Genome-wide
13	AX-97877641	ssa27	29299825	3.12E-05	4.51	1.51%	Chromosome-wide
14	AX-88003719	ssa27	35744854	7.34E-06	5.13	1.75%	Chromosome-wide
15	AX-88277434	ssa12	33472000	3.25E-05	4.49	1.50%	Chromosome-wide
16	AX-87027775	ssa12	61391936	1.26E-05	4.90	1.66%	Chromosome-wide
17	AX-87253175	ssa12	61443087	3.55E-05	4.45	1.49%	Chromosome-wide
18	AX-87704824	ssa12	61694169	2.86E-05	4.54	1.52%	Chromosome-wide
19	AX-87796820	ssa12	61701806	4.46E-06	5.35	1.83%	Chromosome-wide
20	AX-98299923	ssa12	61702164	4.38E-06	5.36	1.83%	Chromosome-wide
21	AX-88191278	ssa12	61702955	6.19E-06	5.21	1.78%	Chromosome-wide
22	AX-87018640	ssa12	61703574	9.52E-06	5.02	1.70%	Chromosome-wide