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Histological images are used to identify and to characterize complex phenotypes such as tu-
mor stage. Our goal is to associate histological image phenotypes with high-dimensional
genomic markers; the limitations to incorporating histological image phenotypes in genomic
studies are that the relevant image features are difficult to identify and extract in an auto-
mated way, and confounders are difficult to control in this high-dimensional setting. In this
paper, we use convolutional autoencoders and sparse canonical correlation analysis (CCA)
on histological images and gene expression levels from paired samples to find subsets of genes
whose expression values in a tissue sample correlate with subsets of morphological features
from the corresponding sample image. We apply our approach, ImageCCA, to three data
sets, two from TCGA and one from GTEx v6, and we find three types of biological associa-
tions. In TCGA, we find gene sets associated with the structure of the extracellular matrix
and cell wall infrastructure, implicating uncharacterized genes in extracellular processes.
Across studies, we find sets of genes associated with specific cell types, including muscle tis-
sue and neuronal cells, and with cell type proportions in heterogeneous tissues. In the GTEx
v6 data, we find image features that capture population variation in thyroid and in colon tis-
sues associated with genetic variants, suggesting that genetic variation regulates population
variation in tissue morphological traits. The software is publicly available at:
https://github.com/daniel-munro/imageCCA.
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Introduction

Histological and histopathological images—high-resolution microscopic images of healthy or dis-
eased tissue samples that have been sectioned and stained—are essential for identifying and char-
acterizing complex phenotypes. Pathologists study tissues using histological imaging techniques
for scientific research on cellular morphology and tissue structure and for medical practice. For
example, visual inspection of biopsied tissue is a major component of cancer diagnosis, since can-
cer is known to affect the morphological properties of tissues, including extracellular structure and
cell size, shape, and organization 1.

There has been considerable research in computationally analyzing pathological image data
to develop automated cancer diagnoses. Earlier approaches typically involved the extraction of
predetermined morphological, textural, and fractal image features from histological images 2. The
resulting image feature vectors then are used to classify the pathological status of the sample 3.
Because this feature extraction relies on human-defined features, challenges arise as a result of
cross-tumor heterogeneity and the variance inherent in histology and pathology 4.

Complementary to visual inspection of histological images, gene expression can be mea-
sured to study cellular activity on the molecular level. Bulk gene expression levels have been used
to characterize and understand cellular differences between sample tissues 5, disease phenotypes 6,
environments 7, or exposures 8. Current work has mainly focused on finding genotypes and gene
expression levels associated with disease phenotypes 5, 9. Single cell imaging studies have begun
to study the connection between expression and cellular morphology 10, 11, but throughput, number
of transcripts imaged, number of cells, and image analysis pose challenges to this technology as an
all-purpose solution currently. More generally, analyses to identify sets of genes whose expression
levels are correlated with cellular physiology and tissue phenotypes will enable investigation into
both basic cellular biology and drivers of cellular morphology associated with disease. Here, we
are interested in identifying genes and genotypes associated with quantitative phenotypes derived
from stained images of tissue sections (H&E stains), which may be used as informative endophe-
notypes.

Association studies, rather than predictive and diagnostic studies, involving histological im-
age data have not been broadly undertaken, despite their importance. This due to three difficulties.
First, histological samples paired with genomic observations on the same samples are rare outside
of cancer studies. Second, it is not clear how to identify biologically relevant features automati-
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cally from histological images. Previous work on this subject involved extracting hand-engineered
features from images and computing pairwise correlations with gene expression data 12. Methods
exist to analyze histological images automatically, but often these methods extract image features
that are not associated with genomic features 13. Third, assuming that image features are avail-
able, univariate tests for correlation between genomic and image features are often confounded by
technical and biological covariates including image scale and the time from sample collection to
processing. It is not clear how to control for large effect confounders when much of the biological
signal may also be reflected in many genes and image features.

In this work, we address the two technical difficulties in a framework called ImageCCA. We
automatically extract image features using a machine learning technique called a convolutional
autoencoder (CAE) 14. A CAE is an unsupervised deep learning method that produces a small
set of numeric features characterizing each input image that allows the reconstruction of the input
images with minimal loss 14. These image feature representations are intended to capture variance
in the image as a whole, but we can also produce image features that are predictive of class labels,
such as tumor versus healthy samples or tissue labels.

We address the issue of controlling for technical and biological confounding in these asso-
ciations by using sparse canonical correlation analysis to partition the variation in the samples by
identifying correlated sets of genes and histological image features. Canonical correlation anal-
ysis (CCA) finds linear mappings for two sets of observation from paired samples onto a shared
low-dimensional space; this low-dimensional space is the one for which the two observation types
are maximally correlated with each other 15. Because these linear mappings involve thousands of
genes when applied to genome-wide gene expression data, we use a sparse form of CCA to find
small subsets of genes and image features whose values correlate most strongly with each other 16.
CCA can be thought of as jointly modeling and partitioning the contributors to variance in the gene
expression levels and image features, including technical and biological covariates, and biological
signals. Thus, a single CCA component—capturing variation in the samples due to a subset of
genes and image features—implicitly removes variation from confounding and other signals cap-
tured in the other components. We interpret the variation captured in the CCA components by
examining the enriched molecular functions and tissue specificity of the genes in each component
and also the cellular morphology of the images differentiated by that component.

This paper proceeds as follows. First, we give a motivated overview of ImageCCA for the
joint analysis of paired gene expression and histological image data. Next, we apply this framework
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to three data sets with histological images and gene expression levels on paired samples. We
demonstrate the biological significance of the resulting associations using functional analyses of
the subsets of genes that correlate with image features. Finally, we present genotype associations
with specific image features—morphological QTLs—that drive population variation in histological
image morphology via specific genes.

Results

In order to study associations between cellular morphology and gene expression levels, we de-
veloped a framework, ImageCCA, to correlate automatically extracted image features from his-
tological images with paired gene expression levels. We applied two variants of our method, an
unsupervised and a supervised version, to three different studies that include histological images
and gene expression levels from paired tissue samples.

Tissue sample data sets. First, we applied our method to data from the Cancer Genome Atlas
(TCGA) Breast Invasive Carcinoma (BRCA) study 17. We used 1,541 histological images from
1,106 tissue biopsy samples, taken from 1,073 breast cancer patients. Of these, 1,502 images were
of 1,073 primary tumor samples, seven images were of 7 metastatic tumor samples, and 32 images
were of 26 normal tissue samples. The bulk RNA-seq gene expression data for paired samples
include quantifications of expression levels in transcripts per million (TPM) units for 20,501 genes.
The primary and metastatic tumor samples were grouped into a single tumor class label, in contrast
to a normal label, for the supervised version of our approach. Details of the data collection and
preparation can be found in the original study 17.

Next, we applied ImageCCA to samples from the TCGA Brain Lower Grade Glioma (LGG)
study data, which includes both primary and recurrent tumor types 18. These data include 484
histopathological images from 401 tissue biopsy samples taken from 392 lower grade glioma pa-
tients. Of these, 471 images were derived from 388 primary tumor samples, and 13 images were
derived from 13 recurrent tumor samples. The bulk RNA-seq gene expression data for these sam-
ples include quantifications of expression levels in transcripts per million (TPM) units for 20,501
genes. The class labels used for supervised training were primary tumor and recurrent tumor.

Finally, we ran our method on data from the Genotype-Tissue Expression (GTEx) project 5.
These data include bulk RNA-seq gene expression levels, genotypes, and histological images for
each sample, across 29 types of non-diseased tissues. We used histological images and bulk gene
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expression data in reads per kilobase per million reads (RPKM) units from 2,221 samples across
499 individuals. These bulk RNA-seq expression data included quantification of expression levels
in TPM for 18,659 genes. The supervised version of ImageCCA used the sample tissue type as the
class label.

Histological images and representation. Each of these three studies includes images of tissue
slices fixed to slides and stained with hematoxylin and eosin (H&E). Raw images were provided
in the proprietary SVS format and used inconsistent magnification, but in general images were
taken with either 20× apparent magnification, resulting in around 0.25 microns per pixel, or 40×
apparent magnification, resulting in around 0.50 microns per pixel.

One representative 1000× 1000 pixel section was first extracted from each tissue image (see
Methods). We used 100 randomly sampled 128 × 128 pixel windows from this section to train
the convolutional autoencoder (CAE). Specifically, the CAE embedded these images into a 1024-
dimensional space, as in the state-of-the-art image CAEs 19. In particular, the 1024 feature vector
was the mean encoded feature value across the 100 image windows of each image; additionally,
we whitened this space so that the 1024 features were orthogonal (Supplementary Fig 1). In
this feature space, images with similar morphological features tend to be closer to each other in
Euclidean space, while images with dissimilar features tend to be farther apart (Fig 1). Using the
CAE in an unsupervised approach, the embedding is estimated with the objective of reconstructing
the original image as accurately as possible, where the objective is minimizing the `2 distance
between the original and the reconstructed image, using only the estimated 1,024 features. This
low-dimensional representation encodes visual properties of the images without regard to cancer
status or tissue type.

Supervised feature extraction. The feature representation from the CAE quantifies many types
of histological variance, but we are often interested in the morphological differences between tis-
sue types or pathological states. To find these differences, we added a multilayer perceptron (MLP)
to the pre-trained encoding portion of the CAE, and trained the MLP to distinguish histological im-
ages according to the labels in the data set–tumor and normal tissue for BRCA, primary and recur-
rent tumor for LGG, and tissue type for GTEx. The MLP network adds supervision to the feature
extraction process: the encoder will identify image features that are useful for classification—for
example, distinguishing morphological features of tumors versus healthy tissues—rather than for
image reconstruction.
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Figure 1: The embeddings of GTEx histological images. The image feature representation esti-
mated by ImageCCA for each of the GTEx histological images may be visualized by embedding
the images based on their feature values into two dimensions using t-SNE 20. We plot each histo-
logical image in this two dimensional space. Images with similar morphological features are closer
together, with muscle tissues forming a noticeably distinct cluster from the remaining tissue types
in the upper left corner.

The supervised analysis results are shown as a proof of concept. However, because of the
small numbers of images and unbalanced label classes, the supervised analysis did not produce
results that differed from the unsupervised results substantially, and were harder to justify in the
context of the downstream CCA. Thus, unless stated explicitly, all of the results presented below
represent the unsupervised application of the CAE.

Sparse CCA. We used sparse canonical correlation analysis (CCA) to identify correlations among
the 1,024 image features and the high-dimensional observation of gene expression levels in the
paired samples. A consideration in the selection of a method for high-dimensional correlation
analyses was the ability to capture, partition, and control variation in the two sets of observations,
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and then use downstream analyses of the results to interpret the source and type of the variation.
To do this, we applied sparse canonical correlation analysis (CCA) to the extracted image features
and paired gene expression values as the two sets of observations. Canonical correlation analysis
is a linear projection of two sets of observations into a shared latent subspace that maximizes
correlation between the sets 21, 22. Sparse CCA performs this same projection into a shared latent
space, but zeros are encouraged in the projection matrix, identifying small numbers of genes and
image features responsible for the variation captured in that component 23.

For results reported here, we used the SPC implementation of sparse CCA 24. Based on
our grid search, we set the sparsity parameter to 0.05 for gene expression observations for BRCA
and LGG, and to 0.1 for GTEx; we set the sparsity parameter to 0.15 for the image feature ob-
servations across all applications (Supplementary Figs 2,3). In this framework, CCA components
are iteratively identified conditional on the previous components, which encourages uncorrelated
components that explain sequentially and stochastically less variation in the original observations
(Supplementary Fig 4). We fix the number of components K = 100 for all three data sets because
i) this method is greedy and deterministic, so we can choose the appropriate K up to 100 without
affecting results for K < 100; ii) we see interesting biological signal in the later components; iii)
we observed heterogeneous levels of sparsity across the components, capturing different classes of
variation; and iv) because proportion of variance explained (PVE) decays in a non-monotone way,
thresholds on PVE or similar metrics are not meaningful.

CAE and sparse CCA to correlate image features and gene expression levels. We applied
sparse CCA to the image features from the unsupervised CAE and paired-sample gene expression
levels to find subsets of gene expression values that correlate to subsets of image features. Each
latent component estimated by the sparse CCA method includes i) non-zero weights on a subset of
image features, representing their contribution to the variance in the images; ii) non-zero weights
on a subset of genes correlated with those image features, representing the contribution of those
genes to the gene expression variance; and iii) a factor representing the contribution of these image
and gene features to each of the n paired samples.

We study and validate the patterns captured in each of these components in two ways. First,
we study the subsets of non-zero genes and non-zero image features in each component. We
perform Gene Ontology (GO) term enrichment tests, and find tissue types in which the set of genes
is expressed, to understand the biological signal captured in a component. Second, we explore
the images with the most extreme values in the CCA factor corresponding to each component.
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This allows us to characterize the component’s signal through exploring the visual differences
in the images with the most extreme factor values. We confirm the cross-observation signals by
permuting sample labels on one of the two observations and quantifying the difference in variance
explained by the permuted and true CCA components.

BRCA histological analysis. In the BRCA pathological image and gene expression data 17, we
extracted 100 CCA components. In the unsupervised setting, these components included an av-
erage of 255 nonzero genes and 90 nonzero image features. The PVE of the components shows
extremely non-monotone decay across the 100 components (Supplementary Fig 4a). In the super-
vised setting, these components included an average of 802 nonzero genes and 4 nonzero image
features. To validate the signal identified in CCA, we permuted the labels three different ways on
the gene expression values and reran CCA ten times; we found that the variance captured by the
true data was substantially larger than the variance captured by the permuted data, indicating that
the CCA components capture true latent structure among the observations (Supplementary Fig 5).

We performed Gene Ontology (GO) term enrichment tests with the subsets of genes for each
BRCA sparse CCA component to interpret the signals captured in each component (Supplemen-
tary Tables 1 and 2). The top BRCA component was enriched for genes involved in cell adhesion
(p ≤ 3×10−5) found in the proteinaceous extracellular matrix (p ≤ 3×10−5) with molecular func-
tions related to ion channel binding (p ≤ 1× 10−3) and collagen binding (p ≤ 2× 10−3). Looking
at the histological images associated with the most extreme values of the component, we see dra-
matic differences in the structure of the stained tissues (Fig 2a). In particular, images with extreme
high values have well-differentiated nuclei (dark purple spots) and minimal extracellular connec-
tive tissue, whereas images with extreme low values have few nuclei and a dramatic presence of
extracellular connective tissue (pink colors). Although we do not have access to the pathologi-
cal image preparation, it appears that these images contain substantial amounts of necrotic tissue.
Nonetheless, this component appears to capture differences in the extracellular connective tissue
structure, reflected in the extreme-valued histological images and the GO functional terms enriched
in the subset of non-zero genes.

The components estimated using supervised ImageCCA that includes an MLP are well cor-
related with those from unsupervised ImageCCA (Supplementary Figs 6,7). The third ImageCCA-
MLP component—which has genes sets corresponding closely to multiple components in the un-
supervised ImageCCA results—identifies a set of genes enriched for blood vessel development
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b

a

c CCA variable 1 CCA variable 24CCA variable 21

muscle system process             2.2e-16
muscle contraction                    2.2e-16

contractile fiber                    2.2e-16
sarcomere            2.2e-16

actin binding            2.2e-16
cytoskeletal protein binding           2.2e-16

sexual reproduction             2.2e-16
male gamete generation                   2.2e-16

cilium                               2.2e-16
microtubule cytoskeleton           2.2e-16

microtubule motor activity           5.5e-12
motor activity            9.3e-11

nervous system development         2.2e-16
chemical synaptic transmission      2.2e-16

neuron part                    2.2e-16
synapse             2.2e-16

gated channel activity           2.2e-16
ion channel activity           2.2e-16

Figure 2: Results using ImageCCA for three different data sets. We report images sampled
from those with the most extreme (top and bottom 10%) CCA variable values, and top two GO
terms that are most enriched with the corresponding genes with extreme loading values in the same
component. BP is Biological Process; CC is Cellular Component; MF is Molecular Function. The
p-values reported are uncorrected Fisher’s exact test. Panel a: the first component of the BRCA
ImageCCA results; Panel b: the first component of the LGG ImageCCA results; Panel c: the first
three components of the GTEx ImageCCA results.
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and vasculature development that are found in the extracellular matrix and are involved in growth
factor binding. The genes in this component are primarily expressed in testis, EBV-transformed
lymphocytes, fibroblasts, and whole blood in the GTEx data. This suggests that the differences in
the number or proportion of endothelial and hematopoietic cells—the cells responsible for vascu-
lature development—are captured in this component.

LGG histopathological analysis. In the LGG histological image and gene expression data, we
extracted 100 CCA components. In the unsupervised setting, these components included an aver-
age of 228 genes and 31 image features. The PVE of the components shows fairly monotone decay
across the 100 components (Supplementary Fig 4b). In the supervised setting, these components
included an average of 399 genes and 5 image features.

We performed GO term enrichment tests with the subsets of non-zero genes for each LGG
unsupervised component. Among the enriched GO terms, we found a diversity of efunctional cat-
egories and cellular localization (Table 1). For example, the enriched terms for the first component
of the LGG data are indicative of RNA metabolism (Fig 2b); Supplementary Tables 3 and 4). In
particular, the top component included genes enriched for RNA processing (p ≤ 1.4× 10−5), lipid
particle organization (p ≤ 2.9×10−5), and regulation of DNA metabolic process (p ≤ 6.7×10−5).
Furthermore, necrotic tissue is visable in the extreme images (Fig 2)b; two smaller images in high
extreme). These results suggest that this component may reflect technical covariates, such as the
time between sample extraction and processing or the proportion of necrotic tissue, where genes
involved in RNA decay are correlated with image features that show the morphological effects of
time on the tissue sample.

The second component included genes enriched for synaptic transmission (p ≤ 1.3×10−23),
synaptic signaling (p ≤ 1.3 × 10−23), trans-synaptic signaling (p ≤ 1.3 × 10−23), and cell-cell
signaling (p ≤ 5.6 × 10−18). This second component included 77 genes and 38 image features.
Many of the genes in this list are only expressed in brain tissues. These clusters can also be used
to understand the role of clustered genes without brain-specific function. For example, SULT4A1
is a sulfotransferase that, in the GTEx data, is primarily expressed in brain samples; furthermore,
the Human Protein Atlas shows that the protein is localized to neuronal cells and, specifically, is in
cytosol 25, 26. While the brain-specific function of SULT4A1 is unclear, the clustering of this gene
with other genes involved in brain synaptic activity suggests that it may be involved in modulating
the function of hormones in neuronal cells 26.
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The ninth component includes 97 genes enriched for immune system function: immune re-
sponse (p ≤ 3.9 × 10−29), immune system process (p ≤ 1.9 × 10−27), defense response (p ≤
2×10−21). The genes in this component are most often expressed in whole blood in GTEx, instead
of brain; for example, pleckstrin (PLEK) is expressed primarily in whole blood and lymphoblastoid
cell lines (LCLs; Supplementary Fig 8). The extreme valued images for this component appear to
show differences in the proportion of cells from whole blood in the brain tissue section. Together,
these results suggest that this component identifies the cell type heterogeneity in brain tissues, and
specifically captures differences in morphology of brain tissues due to differences in the proportion
of whole blood in the sample.

The supervised image feature embedding allows another opportunity for exploratory data
analysis with the histological images. With a trained classifier, we can classify each 128×128 patch
of an image in terms of whether tumor tissue or healthy tissue is visible in that patch. Performing
this classification on the LGG images, we find that supervised ImageCCA is able to annotate the
image indicating where tumor tissue is visible (Fig 3). While not the primary goal of our analysis,
these results suggest that supervised ImageCCA can be used to segment histological images with
image-level labels that denote only whether or not tumor tissue is present in an image.

GTEx histological analysis. In the GTEx histological image and gene expression data, we iden-
tified 100 CCA components using ImageCCA. In the unsupervised setting, these components in-
cluded an average of 1054 genes and 148 image features. The PVE of the components shows
extremely non-monotone decay across the 100 components (Supplementary Fig 4c). We did not
run ImageCCA in the supervised setting for GTEx.

In the CAE used to identify image features in the GTEx data, we examined the convolutional
filters to examine the patterns identified in the features (Supplementary Fig 9). The first layer of
filters identifies corners and “blobs” that are indicative of cell nuclei (Supplementary Fig 9, L1, B
and D). The second layer identifies various resolutions and spacings of nuclei in a stained image
(Supplementary Fig 9, L2, A, B, and C). The third and fourth layer appear to identify different
patterns in cell shape and larger contrasting morphological features (Supplementary Fig 9, L3, A
and B). While these convolutional filters do not allow a precise interpretation of the image features
identified by the CAE, they suggest important patterns among the histological images.

In the GTEx study data, many of the unsupervised ImageCCA components capture image
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Table 1: Enriched GO terms for genes selected by sparse CCA in the LGG data. Enriched
Biological Process GO terms were found separately for each gene set contributing to the first nine
CCA components for the LGG data. Only the four most enriched terms per gene set are shown.
Uncorrected p-values for the Fisher’s exact test are reported.

CCA var GO ID term p-value
GO:0006396 RNA processing 1.4e-5

1 GO:0034389 lipid particle organization 2.9e-5
GO:0051052 regulation of DNA metabolic process 6.7e-5
GO:0051054 positive regulation of DNA metabolic processes 8.6e-5
GO:0007268 synaptic transmission 1.3e-23

2 GO:0099536 synaptic signaling 1.3e-23
GO:0099537 trans-synaptic signaling 1.3e-23
GO:0007267 cell-cell signaling 5.6e-18
GO:0007272 ensheathment of neurons 5.4e-8

3 GO:0008366 axon ensheathment 5.4e-8
GO:0042552 myelination 8e-7
GO:0032060 bleb assembly 1.4e-5
GO:0006396 RNA processing 6.5e-11

4 GO:0090304 nucleic acid metabolic process 5.5e-10
GO:0034641 cellular nitrogen compound metabolic pro... 7.5e-9
GO:0006807 nitrogen compound metabolic process 1.1e-8
GO:0035589 G-protein coupled purinergic nucleotide ... 2.8e-7

5 GO:0035590 purinergic nucleotide receptor signaling... 2e-6
GO:0035588 G-protein coupled purinergic receptor si... 2.4e-6
GO:0035587 purinergic receptor signaling pathway 8.3e-6
GO:0044802 single-organism membrane organization 3.6e-6

6 GO:0006810 transport 7.3e-6
GO:1902578 single-organism localization 7.3e-6
GO:0044765 single-organism transport 7.4e-6
GO:0006811 ion transport 8.9e-7

7 GO:0030029 actin filament-based process 9.3e-7
GO:0044765 single-organism transport 1.5e-6
GO:0048771 tissue remodeling 2.5e-6
GO:0010001 glial cell differentiation 1.6e-5

8 GO:0048709 oligodendrocyte differentiation 3.1e-5
GO:0042063 gliogenesis 8.7e-5
GO:0042552 myelination 1.2e-4
GO:0006955 immune response 3.9e-29

9 GO:0002376 immune system process 1.9e-27
GO:0006952 defense response 2e-21
GO:0002682 regulation of immune system process 1.1e-20

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/458711doi: bioRxiv preprint 

https://doi.org/10.1101/458711
http://creativecommons.org/licenses/by-nc-nd/4.0/


A DCB

Figure 3: Classifying tumor locations in LGG histopathological images. For each overlapping
128 × 128 patch in a 1000 × 1000 pixel image, we classify the likelihood that the patch contains
tumor cells. We used these prediction to create a heatmap of tumor locations in the image. Columns
A and C are LGG histopathological images; columns B and D are the corresponding heatmaps
showing the locations in the images classified as tumor (darker colors) versus not tumor (lighter
colors).
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features and genes specific to a tissue (Supplementary Tables 5 and 6). For example, the first
component differentiates skeletal muscle tissue on one extreme from pancreatic tissues on the
other via muscle-specific genes (Fig 2c); the two tissue types have distinct morphology. The
genes that are non-zero in this component are highly enriched for respiratory electron transport
chain, ATP synthesis coupled electron transport, and small molecule metabolic process (all three
p ≤ 2.2× 10−16), catalytic activity (p ≤ 2.9× 10−12), oxidoreductase activity (p ≤ 3.2× 10−10),
and endoplasmic reticulum part (p ≤ 2.2 × 10−16),. We can validate this further by quantifying
expression of the genes across the GTEx tissues: the 1630 genes in this component have enriched
expression in skeletal muscle (Supplemental Fig 10). These genes and image features appear to be
somewhat affected by ischemic time and mode of death (Fig 4).

The twenty-first component in the unsupervised ImageCCA distinguishes cerebellum and
cerebral cortex tissues from other tissue types– the most extreme tissues are skeletal muscle and
pancreas (Fig 2c). The extreme valued cerebellum and cerebral cortex images include tissues with
uniform neurons and densely packed nuclei, while the other extreme is tissues large, long cells
(skeletal muscle) or heterogeneous cells (pancreas). The genes in this component are enriched
for terms related to synaptic function and localization, including gated channel activity, chemical
synaptic transmission, anterograde trans-synaptic signaling, and synaptic membrane (all p ≤ 2.2×
10−16). There are 1360 genes associated with this component, and these genes tend to be expressed
primarily in cerebellum and cerebral cortex (Supplementary Fig 10). This component appears to
have substantial correlation with ischemic time relative to earlier components (Fig 4); nonetheless,
the associations have a clear biological interpretation outside of ischemic time.

The twenty-fourth component in the unsupervised ImageCCA distinguishes testis tissue from
muscle tissue (Fig 2c). The genes in this component are enriched for terms related to spermato-
genesis, including sexual reproduction, male gamete generation, spermatogenesis, and gamete
generation (all p ≤ 2.2× 10−16). There are 1360 genes associated with this component, and these
genes tend to be expressed primarily in testis samples (Supplementary Fig 10). This component
appears to have minimal correlation with ischemic time relative to earlier components, but has
greater correlation with lupus and type 1 diabetes status relative to the other components (Fig 4).

Using CCA allows the exploration of components and their relationship to technical and
biological factors that confound association tests between single genes and image features. In
cis-eQTL mapping—or testing for the association of a genetic variant with expression levels of a
nearby gene—the variation in gene expression levels caused by a cis-eQTL is often minimal and
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local. It is standard in association testing to correct for the principal components (PCs) of the gene
expression matrix (or equivalent 27–29). These PCs are known to capture large effect confounding
on the gene expression levels due to batch, platform, donor age, sex, or ancestry. This approach
to association mapping controls false positives (spurious cis-eQTLs) while generally not creating
false negatives (missed eQTLs).

In our association of image features with gene expression levels, biological signal and tech-
nical or biological artifacts may explain a large proportion of the variation in the two observations;
thus, controlling naively for principal components of gene expression and image features may re-
move important shared latent signal. We instead model these confounders jointly with biological
signal within CCA, and add sparsity to CCA for interpretability of identified components. For
138 available covariates from the GTEx Consortium, we find substantial correlations with the 100
CCA components (Fig 4). Many of the components capture variation in features correlated with
the same subset of covariates, primarily surrounding type of death and sample ischemic time.

The GTEx v6 study includes genotype data for each donor, allowing us to discover genotypes
that are associated with histological image features. To do this, for a specific CCA component, we
considered cis-eQTLs in the GTEx data for each gene with a non-zero weight in that component.
We then tested for association of those cis-eQTLs with the image features with non-zero weights
in that component for each tissue. In particular, we subset our image samples by tissue and require
that each tested SNP be a cis-eQTL in that particular tissue. Thus, we strictly enforce, if our
genotype-image feature associations are indeed mediated through gene expression, that the non-
zero genes in a given CCA component have non-zero expression in the test tissue.

Specifically, for each component, we standardized the values of each non-zero image feature
across the n images, and we used a linear model to test for association of each feature with the
cis-eQTL genotype for the sample donor. While testing for associations within single tissue types
reduced the number of available samples to small numbers for many tissue types, limiting our
power to detect associations, we did not find image morphology QTLs that spanned heterogeneous
tissue types, so we chose to test within tissues. We only tested for associations in the 15 tissues
with at least 20 samples. We calculated false discovery rates (FDRs) of these associations using
the Benjamini-Hochberg procedure 30.

Performing association testing in the GTEx data, we found 509 genotype-image feature asso-
ciations (image morphology QTLs, or imQTLs) including 15 unique mediating gene-image feature
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pairs in five out of the 15 tissue types we tested (FDR≤ 0.1; Supplementary Table 9). No imQTLs
were shared across tissues, and no image features had more than one mediating gene. While the
interpretation of the image feature phenotypes in our model with respect to phenotypic differences
in tissue morphology is difficult due to the lack of interpretability of the CCA image features, we
describe two compelling image morphology QTLs here.

A cis-eQTL for lactate dehydrogenase D (LDHD), rs8059637, is associated with feature trait
799 (FDR ≤ 0.1) in transverse colon samples (Figs 5a,b). LDHD is an enzyme that converts pyru-
vate to D-lactate when oxygen is limited during the final step of glycolosis; high levels of lactate
reduce the rate of conversion. The Human Protein Atlas shows that the LDHD protein localizes
in the cytosol, and is expressed in endothelial and glandular cells in colon samples 31. Across
the GTEx tissues, LDHD is expressed in a number of tissues, including liver, skeletal muscle,
and transverse colon (Fig 5c). Visualizing the most extreme colon tissue samples for this image
morphology feature (Figs 5d,e) shows clear differences between the two image extremes. LDHD
is downregulated in colorectal cancer, and is also a hot spot for somatic mutations in colorectal
cancer 32, 33.

We also found an association between a cis-eQTL for death-associated protein 3 DAP3,
rs4601579, and histological image feature 820 in thyroid tissue (FDR ≤ 0.1; Supplementary
Figs 11a,b). DAP3 is a mitochondrial ribosomal protein that induces cell death; DAP3 may be
responsible for mitochondrial maintanence rather than protein translation 34. DAP3 is expressed
across most of the GTEx tissues (Supplementary Fig 11c). Visual inspection of the images with
image feature values at the extremes show differences in cell type composition, nucleation, and ex-
tracellular matrix patterns (Supplemental Figs 11d,e). Previous work surveyed the role of DAP3 in
thyroid oncocytoma, a tumour type enriched for mitochondria, in which mitochondrial biogenesis
is widespread, and found that DAP3 was upregulated in tumors undergoing mutochondrial biogen-
esis, suggesting that DAP3 may play a role in restricting mitochondrial growth in healthy thyroid
cells 34. Taken together, these results suggest that this imQTL may distinguish thyroid tissues with
larger and more numerous mitochondria from those with standard mitochondrial profiles.

Discussion

In this study, we developed an analysis framework for paired histological images and gene expres-
sion levels to identify the sets of genes that are correlated with specific features of tissue morphol-
ogy. We applied this framework to three sets of paired histological image and gene expression data:
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breast carcinoma samples, lower grade glioma samples, and GTEx v6 tissue samples. The choice
of the method to engineer histological image features that were concise and meaningful with re-
spect to genomic data was crucial both for finding associations and for biological interpretation of
those results. Applying the ImageCCA framework to these data, and interpreting the components,
we were able to find genes known to influence cellular morphology, including the extracellular
matrix and the cell wall, and involved in tissue-specific morphology, including neuronal, testis,
and muscle tissue.

On tumor sample data, we used ImageCCA with a multi-layer perceptron to segment the
pathology image in order to highlight the image locations with features predictive of tumor sample
morphology. We validated our ImageCCA findings using Gene Ontology term enrichment analy-
ses and correlations with held-out covariates, including information about the sample donors and
genotype data. Our results demonstrate that biologically meaningful correlations exist and can be
identified between gene expression levels and features extracted from histological images. It is
still uncertain whether the products of these genes are directly or even indirectly responsible for
the visible features, or whether they are jointly influenced by a shared latent component, such as
ischemic time or exposure. Additional analyses may be used to identify a causal effect of the gene
expression levels on image morphology, such as Mendelian randomization techniques with known
eQTLs 35.

We have shown that the framework introduced here can be applied to both pathological and
healthy tissue samples, and to both single tissue types and a mixture of types, to detect correlations
between gene expression and image features. We note that we identify correlations here and do not
make causal statements about the relationship between gene expression and cellular morphology;
exciting experiments that modify cell shape find changes in gene expression levels 36. Causal
inferences can me made using Mendelian randomization using cis-eQTLs as instruments, but this
is beyond the scope of this work. A number of observations—methylation levels or cis-regulatory
element information, for example—could be included in these analyses by using methods for group
factor analysis, which allow more than two sets of paired observations to be included in the same
type of sparse canonical correlation analysis 16, 23.

While we have tried to interpret the image features extracted from the CAE, the interpre-
tations are not straightforward. One option is to extend the image feature extraction process to
include features identified by tools designed for quantitative analyses of these histology images 37.
A second caveat is that the supervised labels (tissue label; cancer status) do not capture the im-
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age features that are associated with gene expression and genotype. Instead, we would like to use
the high-dimensional gene expression and genotype values themselves to supervise the automatic
extraction of image features, ensuring that the image features will represent characteristics of the
images that are best correlated with the high-dimensional genomic observations.

The connection between variation in gene expression levels and in the corresponding tissue
image suggests that one can be used to aid in the analysis and prediction of the other. A pathologist
who visually inspects tissue images for diagnostic purposes could confirm each observation using
predicted expression values of the genes linked to the visible feature of interest. Conversely, in
some cases clinically significant values in a patient’s gene expression profile could be used to
generate an encoding of the visual properties of the associated histological image. This study
begins to address the question of how regulation of gene expression in tissues relates to tissue
morphology and downstream organismal phenotypes.

Methods

Tissue slide images for the BRCA and LGG samples were downloaded from the TCGA Data
Portal (now available at the GDC Legacy Archive: https://portal.gdc.cancer.gov/
legacy-archive/). Tissue slide images for the GTEx samples were downloaded from the NCI
Biospecimen Research Database (https://brd.nci.nih.gov/brd/image-search/searchhome).

Processing the image data. Image processing was performed using the ImageJ software pack-
age 38. The images, which were in SVS format, were imported using the Bio-Formats plugin 39

and then split into 1000 × 1000 pixel tiles. A tile was considered for selection if the mean gray
values of itself and the tiles above, below, left, and right of it were each below (darker than) 180 out
of 255. Because of the intractable file size of the full-resolution images, tile selection was actually
performed on the 16x lower resolution version of the image, and the region in the full-resolution
image corresponding to the selected tile was extracted.

At each layer in the encoding section of the CAE, convolution followed by max pooling
results in halving incoming data in the length and width dimensions. We double the number of
convolutional filters at each successive layer (Fig 6). The decoding section of the CAE mirrors
the encoding section. To train the autoencoder, we fed randomly cropped and rotated 128 × 128

windows of the processed images into the network and trained it to minimize the mean squared
error between its output and input. The advantage of this sampling procedure is two-fold; we are
able to overcome the challenges of reconstructing large images while also synthetically increasing

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/458711doi: bioRxiv preprint 

https://doi.org/10.1101/458711
http://creativecommons.org/licenses/by-nc-nd/4.0/


the size of our training data.

Once the network was trained, each image was represented by randomly sampling a hundred
128×128 windows from it, embedding each using the encoding section of the CAE, and averaging
those feature encodings (form = 100, i ∈ {1, . . . , n} samples, and j ∈ {1, . . . , p} image features):

yi,j =
1

m

m∑
`=1

xi,j,`.

Because the CAE is trained to reconstruct images as accurately as possible, some variance of
the encoded samples are inevitably used to represent the locations of structures in image, while the
remainder is used to represent the physical properties of those structures. This averaged “bag of
features” representation allows us to essentially integrate away the location-based variance, while
keeping information about the image properties in which we are most interested. The last step in
the image processing pipeline is a whitening of the averaged image representations using PCA 40.
We use the 1,024 whitened features to represent the images in CCA. This procedure decorrelates
each dimension of the feature space, which is helpful for interpreting the results of CCA.

Supervised feature extraction using a multi-layer perceptron. In supervised ImageCCA, we
added a multilayer perceptron (MLP) to the encoding pipeline of the CAE. We trained the MLP to
identify features that distinguish histological images according to the image labels. In particular,
we used the activations at the last hidden layer of the aggregate network as the supervised image
features in the downstream CCA in place of the image features from the unsupervised CAE. As
with the CAE, we took the average of the 100 windows of the MLP, and we whitened the supervised
image features using principal components analysis.

Cancer and tissue classification. To capture variance that corresponds to the presence of cancer
(BRCA, LGG) or to the tissue type (GTEx), we simply created a new network consisting of the
pre-trained encoding section of the CAE and two fully-connected layers for classification (Fig 7).
After retraining this network to minimize the log loss between the predicted label and the true
label, the encoding module learns to represent images in terms of features useful for cancer or
tissue classification rather than image reconstruction.

We then performed the same averaging and whitening steps with the newly-trained encoder
in order to obtain a final image representation.

Gene expression level preparation. The RNA-Seq sample libraries had been prepared using the
Illumina TruSeq Kit and paired-end sequencing was performed on the Illumina HiSeq2000. For
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the BRCA and LGG data sets, the RSEM algorithm was used within the SeqWare framework to
estimate the fraction of transcripts in the sample belonging to each gene 41, while RPKM values
were calculated for the GTEx data set. These values were log transformed and then scaled such that
the values for each gene have mean zero and standard deviation one so that the CCA coefficients
for these variables are comparable. Genes with zero variance were removed.

Sparse canonical correlation analysis. Sparse CCA was performed using the CCA function in
the PMA R package 42 with gene expression values and image representations as the two sets of
variables to be correlated. We calculated the first 100 CCA variables for each data set.

Sparse CCA was then performed with the same gene expression values, but now with the
classification-transformed image representations, using the same parameters.

Hyperparameter tuning. Sparse CCA requires setting three hyperparameters: λ1, and λ2, the
amount of sparsity regularization applied to the image feature and gene expression matrix respec-
tively, and K, the number of CCA components. To select values, we performed a hyperparameter
search for both λ values (Supplementary Fig 2) in the LGG data set. We evaluated the quality
of the parameter settings using Pearson’s correlation between the image reconstructed using CCA
and the true image, and between the gene expression levels reconstructed using CCA and the true
gene expression levels. These results imply that greater sparsity is more important when predicting
genes, likely because there are many more features in this space.

In this work, we are primarily interested in selecting sparsity parameters that allow optimal
reconstructions of images and gene expression levels, that produce a small number of genes and
image features per component, and that produce interpretable subsets of genes as quantified by
GO term enrichment. Using a grid search, we fix λ1 (for image features) to 0.15 and λ2 (for
gene expression) to 0.05 for BRCA and LGG and to 0.10 for GTEx (Supplementary Fig 2). We
validated the robustness to selection of these hyperparameters by looking at correlations among
the components from two different hyperparameter settings (Supplementary Fig 3).

Gene Set Enrichment Analysis. The gene sets selected by sparse CCA were tested for enriched
Gene Ontology (GO) 43 terms using the topGO 44, org.Hs.eg.db 45 and GO.db 46 R packages.

Tissue-specificity of gene expression. We investigate the gene-tissue specificity of the top 100
CCA components by plotting a heat map of the normalized gene expression level across each of the
tissues with images in the GTEx dataset. For a given CCA component, we consider only the genes
with a non-zero loading in that component. For each gene, we compute an average gene expression
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value in that tissue by averaging the gene expression level across all samples present in that tissue.
We normalize the average gene expression value for each gene across all tissues by the `1 norm of
that gene, such that the values for each gene across all tissues sum to one, and the maximum value
per gene is one. For comparison purposes we append another column of expression values for
whole blood despite not having any image samples of whole blood. A tissue with high normalized
gene expression values across all the genes in a given CCA component implies that the component
is largely tissue-specific.

GTEx histological image association mapping. To identify genotype-image feature associations
between the GTEx genotype data and GTEx histological images, we perform association mapping
between the SNPs and image features relevant to the top CCA components. Each latent component
(in gene expression space or image feature space) that the sparse CCA method aims to estimate is
a linear combination of the original expression or image features; thus, for each CCA component,
there are weights on the original features that are either zero or non-zero. For downstream associ-
ation analysis, we consider only the top 100 CCA components with the strongest correlations, and
within those components only the genes and image features with non-zero weights. For associa-
tion mapping, we use the 1,289,112 SNPs that are a known cis-eQTL for at least one of the 18,204
genes in the top 100 CCA components with a non-zero weight, and we use 926 out of 1024 image
features in the top 100 CCA components with a non-zero weight. We normalize the image features
by projecting each feature onto the quantiles of the empirical distribution over all features.

Association mapping is conducted by performing all pairwise univariate linear regressions
between those remaining SNPs and image features, using MatrixEQTL 47. Since each image is
only of one tissue, we test for putative associations only between those SNPs that are previously
identified cis-eQTL for a gene in the same tissue that corresponds to the sample image. For each
association test, we compared the null hypothesis of no association (β = 0) versus a non-zero
association between genotype and image feature (β 6= 0), and calculated the p-value of the T-
statistic corresponding to the value of β and the standard error of the regression. From these
association statistics, the false discovery rate (FDR) was computed via the Benjamini-Hochberg
procedure 30 using the multipletests function in the statsmodels Python package 48. We
chose to threshold at FDR < 0.1 based on prior work 5, meaning that 10% of the discoveries will
be false positives in expectation.
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Figure 4: Absolute value Pearson’s correlation of 100 components of GTEx CCA with GTEx
covariates. The 100 GTEx CCA components are ordered on the x-axis; 138 available GTEx
covariates are on the y-axis. The legend on the left refers to the absolute value Pearson’s correlation
between each component and the GTEx covariates. The CCA components are identifiable up to
sign, so we cannot distinguish positive or negative correlations, and instead consider the absolute
value Pearson’s correlation. The colors correspond to covariates in one of the following categories:
Autoimmune, Degenerative, Neurological (red), Blood Donation (orange), Death Circumstances
(yellow), Demography (yellow green), Evidence of HIV (light green), General Medical History
(green), History at Time of Death (sea green), Information (light blue), Medical History (blue),
Potential Exposure: Physical Contact (royal blue), Potential Exposure: Sexual Activity (purple),
Serology Results (fuchsia), Tissue Recovery (pink), and Tissue Transplant (pink red).
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Figure 5: Genotype and image feature association for an eQTL targeting lactate dehydroge-
nase D (LDHD) in colon samples. a) boxplot of association between genotype rs8059637 (x-axis)
and image feature 799 values for all samples (y-axis); b) same axes as a, but points are the colon
images with jitter added to separate the images; c) relative abundance of LDHD expression across
GTEx tissues, with colon - traverse showing substantial expression levels; d) images in the top
10% of values for image feature 799; e) images in the bottom 10% of values for image feature 799.
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Figure 6: Architecture of the CAE. Each convolutional layer of the encoder includes 5× 5 filters
followed by 2 × 2 max pooling and rectified linear (ReLU) activations. The final convolutional
layer of the encoder is fully connected to a layer of 1,024 units to produce our embedding. Each
convolutional layer in the decoder is upsampled 2× before again applying ReLU nonlinearities.
The first convolutional layer of the decoder is linearly projected and reshaped from the bottleneck
layer.
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Figure 7: Architecture of the CAE including a multilayer perceptrom. The pre-trained encoder
is attached to two fully-connected layers to allow label classification. The first classification layer
features 128 ReLU units, and the second has as many neurons as there are classes with softmax
activation (for multi-class problems) or a single sigmoid unit (for binary classification problems).
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