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Abstract: Though discovered over 100 years ago, the molecular foundation of sporadic 

Alzheimer’s disease (AD) remains elusive. To elucidate its complex nature, we constructed 

multiscale causal network models on a large human AD multi-omics dataset, integrating clinical 

features of AD, DNA variation, and gene and protein expression into probabilistic causal models 

that enabled detection and prioritization of high-confidence key drivers of AD, including the top 

predicted key driver VGF. Overexpression of neuropeptide precursor VGF in 5xFAD mice 

partially rescued beta-amyloid-mediated memory impairment and neuropathology. Molecular 

validation of network predictions downstream of VGF was achieved, with significant enrichment 

for homologous genes identified as differentially expressed in 5xFAD brains overexpressing 

VGF versus controls. Our findings support a causal and/or protective role for VGF in AD 

pathogenesis and progression.  

 

One sentence summary: VGF protects against Alzheimer’s disease 
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Main text: Alzheimer’s disease (AD), the prevailing cause of dementia in the world, affects 

more than 28 million people worldwide, and its incidence is projected to double in the next 20 

years (1). AD results in the progressive loss of cognitive function, memory, and ability to think 

and reason. The brains of AD patients have hallmark senile plaques in the neuropil and around 

brain blood vessels, composed of accumulated amyloid beta (Ab), and neurofibrillary tangles 

(NFT) inside neurons, comprised of microtubule-associated hyperphosphorylated Tau protein 

(2). While therapeutic strategies to target Ab and tau pathologies have been aggressively pursued 

over the past two decades, the failure to date to deliver efficacious treatments from these efforts 

has increased the urgency to identify and pursue different mechanisms underlying AD, such as 

the immune system, through microglial cells, that has more recently been shown to play a key 

role in AD (3-9). Furthermore, with a handful of drugs lessening some of the symptoms of AD, 

no effective drugs are currently available that prevent, halt or reverse the onset or progression of 

this disease. 

 One class of approaches that have delivered novel insights into the causes of AD  are 

genome-wide association studies (GWAS), which have resulted in the identification of more than 

20 risk loci falling mainly in non-coding regions of the genome  (10, 11), revealing a complex 

neurobiology with no single genetic cause. However, for most AD risk loci, the target gene or 

genes are difficult to identify and validate, the pathways in which these target genes operate to 

impact AD are largely unknown, and the broader context in which the genes and corresponding 

pathways relating to AD interact and the networks they form, remain largely uncharacterized. 

Integrative biology approaches that combine large-scale, high-dimensional data (such as DNA 

variation and gene and protein expression) generated in disease and control cohorts, can well 

complement GWAS-like approaches by employing advanced computational modeling 
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techniques that incorporate multiple levels of data to construct probabilistic causal models of 

disease (or wellness) that in turn enable distinguishing between molecular traits that are simply 

correlated with disease, from those that are causally related (4, 5, 12-16). The power to infer 

causal relationships from large-scale data can be enhanced by systematically incorporating 

DNA-based variations such as expression quantitative trait loci (eQTL), as a systematic 

perturbation source (4, 5, 13, 15, 17-34). By integrating DNA variation data with additional 

types of molecular and clinical data, more complex, holistic models of disease can be constructed 

and then mined to elucidate regulatory and mechanistic drivers of disease, which in turn can lead 

to novel therapeutic points of intervention.  

Here, we employed probabilistic causal reasoning to organize DNA, RNA, protein, and 

clinical data we and others have generated as part of the Accelerating Medicines Partnership-

Alzheimer’s Disease (AMP-AD; https://www.synapse.org/#!Synapse:syn2580853/wiki/409840) 

on a population of late-onset AD individuals and controls, to construct a predictive network 

model of AD, providing a comprehensive characterization of the complex architecture of AD in 

the human brain. Because the networks that result from this process represent different scales of 

data (DNA, RNA, and protein expression), we refer to them as multiscale network models of 

disease. Given these multiscale networks, the causal links among the nodes comprising them can 

be mined to identify gene or protein expression traits that are predicted to modulate network 

states that in turn drive AD. The identification of these master drivers of the disease networks 

provides an objective, data driven way to uncover novel causal regulators of disease. Strikingly, 

among the key driver (KD) genes we identified was VGF, a nerve growth factor (NGF) and 

brain-derived neurotrophic factor (BDNF) inducible gene.  VGF encodes a protein and 

neuropeptide precursor the actions of which are in part BDNF/TrkB-dependent (35, 36). 
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Although VGF has been reported to regulate fear and spatial memories in mouse models (35, 37, 

38), and to be an AD biomarker, with VGF-derived peptides found to be reduced in the CSF of 

AD patients compared to healthy controls (39-46), VGF has not previously been causally 

associated with AD. We determined through our network models that VGF was the only 

downregulated KD for AD that was conserved across the RNA, protein, and combined RNA and 

protein networks we constructed. We replicated these findings in other brain regions (47) and in 

an independent dataset (48, 49), and observed evidence of genetic association in the largest AD 

GWAS to date (10). Given VGF’s status as the top KD we identified in our networks, we 

overexpressed VGF in the 5xFAD mouse model of familial AD and found that it not only 

lowered overall amyloid plaque and Tau-associated dystrophic neurite levels, but it significantly 

perturbed gene expression traits that were enriched for genes predicted by our networks to 

change in response to VGF modulation. Taken together, these results provide molecular and 

functional validation of our multiscale causal network analysis finding of VGF as a driver of AD 

pathophysiology. We conclude that the genes and clinical features linked to VGF provide novel 

insights into the mechanisms underlying AD risk and pathogenesis.  

 

Results: Our overall strategy for elucidating the complexity of AD is depicted in Fig. 1 (Fig. S1) 

and is centered on the objective, data-driven construction of predictive network models of AD 

that can then be queried to identify network components causally associated with AD. The 

master regulators that modulate the state of these AD-associated network components can then 

be readily identified from the network model. We have previously developed and applied the 

network reconstruction algorithm, RIMBANET, which statistically infers causal relationships 

between DNA variation, gene expression, protein expression and clinical features that are scored 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/458430doi: bioRxiv preprint 

https://doi.org/10.1101/458430
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

in hundreds of individuals or more (5, 13-15, 18, 19, 27, 29, 32, 34, 50, 51). The inputs required 

for this type of analysis are the molecular and clinical data generated in populations of 

individuals, as well as first order relationships between these data, such as QTL mapped for the 

molecular traits and causal relationships among traits inferred by causal mediation analysis that 

uses the mapped QTL as a source of perturbation. These relationships are input as structure 

priors to the network construction algorithm, boosting the power to infer causal relationships at 

the network level, as we and others have previously shown (5, 13, 15, 25, 27, 32-34, 51).  

In this study, the input data to construct predictive network models of AD were generated 

as part of the AMP-AD consortium, and included whole exome sequencing (WES), RNA 

sequencing (RNA-seq), and protein expression data from the anterior prefrontal cortex 

(Brodmann area 10, BM10) in a large cohort of post-mortem samples from the Mount Sinai 

Brain Bank (MSBB, n=315), across the complete spectrum of AD clinical and neuropathological 

traits (from controls to neuropathologically-proven AD, Fig. 1A) (47). To focus the input of 

molecular traits into the network reconstruction algorithm on those traits associated with AD, we 

examined the association between the molecular data and AD clinical and neuropathological 

features, and identified AD gene and protein expression signatures comprised of hundreds of 

gene and protein expression traits. These signatures were enriched for mitochondrial and 

immune processes. To identify gene and protein expression traits co-regulated with the AD 

signature genes, we constructed gene and protein co-expression networks, and from these 

networks identified highly interconnected sets of coregulated genes (modules) that were 

significantly enriched for the AD expression signatures as well as for pathways previously 

implicated in AD (Fig. 1B). To obtain a final set of genes for input into the causal network 

construction process, we combined genes in the AD expression signatures and genes in the co-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/458430doi: bioRxiv preprint 

https://doi.org/10.1101/458430
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

expression network modules enriched for these signatures (the seed set). We then expanded this 

seed set by incorporating prior pathway knowledge from the literature to ensure we did not miss 

important AD genes due to a lack of power in the differential expression analysis to identify 

them (Fig. 1B).  

With our AD-centered input set of genes for the network constructions defined, we 

mapped gene and protein quantitative trait loci (eQTLs and pQTLs, respectively) for expression 

traits in this set to incorporate the QTL as structure priors in the network reconstructions, given 

they provide a systematic perturbation source that can boost the power to infer causal 

relationships (Fig. 1C)(5, 13, 15, 25, 27, 32-34, 51). The input gene set, and eQTL/pQTL data 

from MSBB were then processed by RIMBANET to construct probabilistic causal networks of 

AD (Fig. 1D). An artificial intelligence algorithm to detect key driver genes from these network 

structures was then applied to identify and prioritize master regulators of the AD networks (Fig. 

1D). Our findings were then replicated in other datasets (Fig. 1E), and were supported by genetic 

associations to AD in the largest GWAS to date (Fig. 1F). For the top regulator we identified, 

VGF, we performed functional and molecular validation in the 5xFAD mouse model (Fig. 1G). 

The Mount Sinai Brain Bank Study Population and Data Quality Control 

The AD and control populations profiled in this study are a component of the MSBB (47). From 

the > 1,900 participants making up this brain bank, 117 definitive AD cases were selected for 

this study, along with 123 possible and probable AD cases and 75 non-demented controls. The 

selection criteria were neuropathological evidence of AD by CERAD (52) classification or no 

neuropathological evidence of AD. In addition, donors with neuropsychiatric disease and/or 

comorbid neurodegenerative diseases, and/or neuropathologically significant cerebrovascular 

disease, were excluded. A summary of the MSBB population demographics is provided in Data 
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S1. DNA, RNA, and protein were isolated from the BM10 region of study participants for 

molecular profiling (Fig. 1A).  

The DNA and RNA sequencing data were processed using standard pipelines, including 

quantification of gene expression, variant detection and QC for the RNA-seq data (53) (see 

methods and materials for details). We identified 18 samples for which variants identified from 

the RNA-seq and DNA WES data did not achieve the level of concordance expected for samples 

derived from the same donor. In addition, for 6 samples the sex inferred by the DNA and RNA 

data did not match the sex reported for the corresponding participant in the clinical report. 

Finally, 13 of the RNA-seq samples mapped to more than one WES sample (the discordance rate 

with the best matching sample was > 10%). We removed from all further analyses 16 of these 

samples that could not be unambiguously corrected (Fig. S2A, S2B, Data S1), leaving 279 for 

detailed analyses.  

 To assess the integrity of these data and identify covariates that could impact our 

analyses, we carried out variance partition (54) and principal component (PC) analyses, and 

identified exonic mapping rate (fraction of reads mapping to exonic regions), RNA integrity 

number (RIN), and sequencing batch as covariates explaining the greatest variation in gene 

expression across samples. In order to minimize the impact of these covariates on detecting our 

primary signal of interest (association of molecular traits to AD), we adjusted the normalized 

RNA-seq count data by correcting for race, sex and the main drivers of technical variation using 

PC analysis (Fig. S2C, S2D, S2E, S2F) and linear mixed models, which included post-mortem 

interval (PMI), RIN and exonic mapping rate. Protein expression data were processed in a 

similar fashion and corrected for batch, PMI, race and sex to minimize unwanted variation.  
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Identifying an AD-centered gene set to construct a predictive model of AD  

To construct the AD-centered predictive network models, we constrained the number of inputs 

into the reconstruction process to those supported by the MSBB data as associating with AD, 

with this reduction in dimensionality also providing a more computational tractable path for the 

network constructions.  Our first step in this process was to identify gene and protein expression 

traits associated with AD (Fig. 1B). To cast the most comprehensive net for AD-associated 

features, we first examined the association between the molecular expression traits and 

clinical/neuropathological features used to characterize AD. Given the complexity of AD, 6 

clinical and neuropathologic characteristics were used to define the severity of disease in 

patients, including clinical staging with the clinical dementia rating (CDR), pathological staging 

of neurofibrillary tangles or Braak score (bbscore), clinical neuropathology diagnosis 

(PATH.Dx), CERAD neuropath criteria (CERJ), neuropathology category (NP-1) and mean 

cortical neuritic plaque density (PlaqueMean). We characterized the differences and similarities 

specific to each of these disease traits by examining their canonical correlation structure with one 

another in the MSBB population (Fig. 2A). While these cognitive and neuropathological 

measures of AD were highly correlated, visible variation among them highlights their 

complementary nature, with non-overlapping signals that may represent different aspects or 

subtypes of AD. Thus, we constructed DE signatures for each of these clinical AD features. 

As defined in Table S1, we computed differential expression (DE) signatures for AD by 

comparing controls against individuals with any level of dementia or pathology, and then 

controls against individuals with neuropathologically-proven AD (definite AD). In this way, we 

generate signatures across the range of disease. We detected significant DE signatures at a false 

discovery rate (FDR) < 0.05 for most traits across the disease spectrum (Fig. 2B, Fig. 1B). The 
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PlaqueMean feature generated the largest DE signature (Fig. 2C, 2D), with the Gene Ontology 

(GO) term ‘respiratory electron transport chain’ (fold enrichment, FE, = 4.9, FDR = 4.42e-5) 

identified as the most enriched pathway. From the log fold-change, log(FC), distribution (Fig. 

2C) of the PlaqueMean signature, the gene VGF, nerve growth factor inducible, is identified as 

the gene with the largest negative log(FC) (more highly expressed in controls than cases). VGF 

was previously shown to be downregulated in patients with familial AD (55), which is consistent 

with our findings here. The DE signatures for the other disease traits (Data S2) are depicted in 

Fig. S3A. 

We ran a similar DE analysis to identify AD signatures from the protein expression data 

(Fig. 2E, Fig. 1B, Fig. S3B), and found that significant DE protein signatures were identified for 

all AD clinical features, with PlaqueMean again giving rise to the most significant signature (Fig. 

2E). For each clinical or neuropathological trait, the protein with the highest log(FC) was Ab , 

followed by other known AD proteins such as MAPT, GFAP, HSPB1, RPH3A, SYT1 and 

PADI2 (56-60). Strikingly, as with the gene DE signature, the protein with the lowest log(FC) 

was VGF, highlighting the strong dysregulation of the gene/protein product in AD brains (Fig. 

2F). Several protein DE signatures were enriched for GO terms (Fig. 2D), with the GO term 

‘cellular respiration’ as the most significant in the PlaqueMean protein DE signature (FDR = 

8.3e-15, FE = 2.4). The electron transport chain pathway and AD KEGG pathway from the 

MsigDB and KEGG databases, respectively, were also significantly enriched in the PlaqueMean 

protein DE signature (Fig. 2G, Data S3).  

From the DE analysis we took the union of all genes across all signatures to form a 

preliminary set of AD-associated input features for the network reconstructions. This set was 

comprised of 788 genes identified from the gene expression signatures and 1016 genes from the 
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protein expression signatures at an FDR < 0.05, with 55 genes overlapping, demonstrating the 

highly complementary nature of the gene and protein expression data. These resulting sets of 788 

genes and 1018 proteins are referred to as the AD DE signature sets. 

 
DE analysis provides the most straightforward way to uncover patterns of expression that 

associate with AD. However, the power in such an analysis is limited with respect to expression 

differences that are moderate to small. To complement DE analysis to identify AD-associated 

genes, we clustered the genes and proteins into data-driven, meaningful functional biological 

groups by constructing co-expression networks, which have enhanced power to identify co-

regulated sets of genes (modules) that are likely to be involved in common biological processes.  

Co-expression modules that are enriched for genes associated with AD implicate all genes in the 

module as potentially AD-associated, even if they were not identified as DE.  

The gene co-expression network was comprised of 24,865 genes and 29 modules (Fig. 

1B, Data S5), while the protein co-expression network consisted of 2,692 proteins organized into 

9 modules (Fig. 1B, Data S4), with most modules (26 and 8 gene and protein modules 

respectively) having significant GO term associations at an FDR < 0.05 (Fig. 3A, 3C). To assess 

which sets of modules were associated with AD, we projected the DE signature set onto the co-

expression network modules (Fig. 1B, 3B, 3D). We identified 4 modules from the gene co-

expression network that were significantly enriched for the gene AD DE signature set (Fig. 3B). 

These modules were enriched for the GO terms ‘induction of positive chemotaxis’ (greenyellow, 

FDR = 3.0e-2), ‘histone modification’ (peru, FDR = 1.7e-3), ‘mitochondrion organization’ (pink, 

FDR = 1.9e-5) and ‘synaptic transmission’ (yellow, FDR = 1.6e-5) (Data S4). For the protein co-

expression network, we identified 3 protein modules as enriched for the protein AD DE signature 

set (Fig. 3D). These modules were enriched for ‘synaptic transmission’ (blue, FDR = 4.6e-15), 
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‘response to molecule of bacterial origin’ (green, FDR = 5.9e-3) and ‘energy derivation by 

oxidation of organic compounds’ (yellow, FDR = 2.8e-14) (Data S4).  

The construction of co-expression networks from the combined gene and protein 

expression traits resulted in modules comprised nearly exclusively of one type of data (either 

gene or protein expression) (Data S4). While technical components of variation specific to 

technologies used to score the gene and protein expression will partly explain this pattern of co-

expression, given traits of a particular type are more correlated to traits of that same type than 

traits of other types, the complementarity of the gene and protein expression plays a role as well.  

For example, while RNA measures generally reflect expression levels in cells local to the brain 

region assayed, select RNAs or RNA isoforms that are known to be transported into dendrites 

(e.g. BDNF long 3’ UTR mRNA) could potentially contribute to this signal as well (61-63). 

Similarly, protein measures may reflect proteins synthesized in the local brain region that was 

profiled, proteins that are transported in secretory vesicles via neural pathways from cell bodies 

in distal regions, and proteins that are locally translated from mRNAs transported from distal 

regions. Thus, simultaneous sampling of RNA and protein expression in a specific brain region 

provides complementary data sets that not only reflect linear DNA to RNA to protein synthesis, 

but that also capture dynamic changes in the flux of transported proteins and RNAs into the local 

region. Co-expression networks primarily capture linear relationships among traits, but largely 

ignore the nonlinear relationships that exist between gene and protein expression levels. As seen 

below, Bayesian networks address this issue given their ability to capture nonlinear interactions. 

We therefore expanded the DE signature set of input genes for the predictive network 

constructions by taking the union of the DE signature set and all genes across all gene co-
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expression modules enriched for genes in the DE signature set, resulting in a set of 3,918 genes, 

referred to here as the expanded DE signature set (Fig. 1 B).  

 

Genetic modulation of gene and protein expression in the prefrontal cortex 

Central to our approach to construct predictive network models is the integration of QTLs as a 

systematic source of perturbation to enhance causal inference among molecular traits, an 

approach we and others have demonstrated across a broad range of diseases and data types (5, 

13-15, 17, 19, 21, 24, 25, 27, 28, 30, 31, 33, 34, 51, 64-71). QTL mapping identifies DNA loci 

that associate with quantitative traits such as gene and protein expression, aiding in the 

identification of regulatory and mechanistic relationships among genes and proteins, which in 

turn can provide critical insights into biological processes related to the functioning of cells and 

their association to disease. Given we scored gene and protein expression traits in this study, we 

mapped eQTL and pQTL for all molecular traits to identify significant QTL as inputs along with 

the AD-associated expression traits into the network reconstruction process.  

We found 4,224 genes with at least one eQTL (eGenes) and 158 proteins with at least one 

pQTL (eProteins), at a 0.05 FDR (Data S5). To assess the degree of conservation across the 

RNA and protein domains and to help illuminate AD genetics, we characterized the number of 

QTLs overlapping the expanded AD DE signatures (Fig. 1C, Fig. S4A). Of these, we identified 

83 proteins with pQTLs, 683 genes with eQTLs, 7 genes and proteins with both e- and pQTLs. 

Fig. S4B shows an example of a gene, GSTM3, whose cortical gene and protein expression levels 

are associated with a shared SNP, rs1332018 (72). Given the relationship between transcripts and 

the proteins they encode, we applied a causal mediation test (25, 73) to assess whether changes 

in gene expression induced by the eQTL were causal for the corresponding changes in protein 
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expression for the 33 product pairs under control of the same SNP. Interestingly, the causal 

mediation test supported 26 products of gene and protein expression as being independently 

regulated by the cis variation (Data S5), suggesting post-translational events may be impacted by 

the same cis variation that impacts transcription, albeit in an independent fashion, perhaps 

partially explaining the low correlation we and others have observed between gene and protein 

expression (as highlighted below). 

Of the eQTLs and pQTLs identified, 766 corresponded to genes and proteins overlapping 

the expanded AD DE signature and so were included as inputs into the network constructions.  

 

Identification and prioritization of key driver genes identified from predictive network 

models of AD  

To elucidate the structure of the complex interactions represented in the expanded AD DE 

signature set and associated QTL, we employed a Bayesian network (BN) modeling approach 

(Fig. 1D). BNs are graphical models that capture relationships (depicted as edges) among nodes 

(gene or protein expression traits) systematically across high-dimensional datasets. BNs not only 

capture linear correlations and higher order correlations among nodes (like co-expression 

networks), but can also capture nonlinear relationships and infer causal links that define 

information flow, thereby providing a richer, more informative context for discovery (5, 15, 18, 

25, 32, 34, 51). Because the number of possible networks to search to identify the network that 

best fits the data grows exponentially with the number of nodes in the network, a brute force 

search of all networks to find the best one is not feasible (51). Heuristics are used to constrain the 

size of the search space to efficiently search it (34). Towards that end, we constructed the AD-

focused seeding gene set to reduce the size of the search space, with the core of this set 
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comprised of the AD DE signatures (Data S2) that was then expanded to include all genes in the 

co-expression network modules significantly enriched for these core AD signature genes (Data 

S4).  

However, a limitation of this empirically determined gene set is that it may miss 

important genes due to nonlinear interactions not captured by co-expression networks, a lack of 

power to detect all relevant genes in the gene expression data, or genes active in tissues or stages 

of disease that were not as well captured in the MSBB population. To account for this, we further 

expanded the seeding gene set (3,918 genes) using the PEXA algorithm (74), which enables 

inclusion of genes from literature-derived pathways that are linked to the core genes or genes 

that interacted with coding products of the core gene set in protein-protein interaction (PPI) 

networks. The application of PEXA resulted in the identification of an additional 1,796 genes, 

bringing our final list of genes to use in the construction of the BNs to 5,714 genes (Fig. 1B, 

Data S5), compared to the 24,865 transcripts detected as expressed in the MSBB dataset.  

From the seeding gene set we constructed 3 BNs, one for each data type and one 

multiscale gene and protein expression BN (Fig. 1D, Fig. 4A, Data S4). The BN construction 

process integrated QTLs as structure priors to both reduce the size of the search space and 

enhance causal inference among nodes (25, 34). For the gene-only and the multiscale networks, 

we included all genes in the seeding gene list described above. However, given that the number 

of protein expression traits was smaller than the reduced gene expression-based set, we included 

all 2,692 proteins detected in the protein expression set in both the protein-only and multiscale 

networks. Finally, to further constrain the search space for the multiscale network construction, 

we added a second weaker structure prior that increased the likelihood for edges corresponding 

to genes and the proteins for which they code (motivated by the central dogma of biology). 
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While including such structure priors as a guide can result in more accurate networks, such priors 

are not absolute for any prior edge, but rather, any such edge must ultimately be supported by the 

data, an important feature given our finding from the causal mediation analysis described earlier 

that did not always support causal relationships between gene and protein expression traits. 

Given the resulting BNs infer the causal flow of information, they can be queried to 

identify major points of regulatory control. Thus, we analyzed each of the BNs to identify master 

causal regulators (referred to as key driver genes/proteins, or KD) that are predicted by the 

network to modulate its state. Key Driver Analysis (KDA) (75) was developed for this purpose 

to identify nodes in the network that are predicted to modulate a significantly enriched 

proportion of nodes comprising a subnetwork of interest. In the context of AD, KDs of interest 

are those predicted to modulate components of the network that are enriched for gene and protein 

AD DE signatures. Thus, to predict AD KDs, we projected the DE signatures for each AD 

clinical and neuropathological trait onto each of the 3 BNs. Each network projection consisted of 

overlapping gene and protein nodes from the DE signatures with all nodes in their respective 

BNs. We further extracted all nodes in each network within a path length of 6 (layers) in this 

overlap, and identified the largest connected graph from this set of nodes and all associated 

edges. KDA was then carried out on each of the subnetworks resulting from these projections, 

resulting in a list of 499 unique KDs at FDR < 0.05 across the 3 networks (Fig. 1D, Data S6).  

We next characterized the distribution of counts regarding the number of times a gene or 

protein was identified as a KD across all projections (Fig. 4B; Fig. 1D). The multiscale network 

structure was of particular interest, given it resulted from the integration of gene and protein 

expression data in the MSBB population (Fig. 4A). The KDs identified from this single coherent 

network structure are depicted in Fig. 4C. Only one KD, VGF, was found to be conserved across 
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all 3 networks, supporting its potential importance in AD. Other KDs that appeared in multiple 

networks included genes already known to be important for AD, including GFAP, MAOB and 

GSN (58, 76, 77).  

To complement prioritizing the importance of a KD by its replication across multiple 

networks as a key driver gene, we rank-ordered all KDs with respect to their importance in 

classifying AD cases and controls. We constructed 500 random forest classifiers for each of the 

11 AD clinical and neuropathological features to distinguish AD cases from controls, as defined 

by these clinical features, for each scale of data separately as well as combined. All protein and 

gene expression traits were used to construct the classifiers, and all traits were rank-ordered 

based on a weighted z-score measure that combined trait-specific information scores across all 

classifiers, which indicates the explanatory power a given trait has to distinguish AD cases from 

controls, weighted by the prediction power of that classifier (area under the curve) (Data S7, see 

methods). VGF was again consistently identified in the top ranked KDs that had not previously 

been causally implicated in AD (gene network rank: 10, protein network rank: 2, multiscale 

network rank: 2) (Data S6).  

Given VGF was the only KD gene identified across all AD networks, the top ranked KD 

gene in the AD classifiers that had not previously been causally associated with AD (VGF was 

ranked second overall), and was the top upregulated KD gene in controls (predicted to be the 

most protective against AD) in the multiscale network, we pursued VGF for extensive  

experimental validation (Fig. 1G). The causal networks identifying VGF also provide a context 

that can aid in understanding the mechanisms of action for genes such as VGF. If we identify the 

subnetwork across all three MSBB AD BNs comprised of nodes within a path length of 2 of 

VGF in each network (Fig. 7A), we see that Ab and other known AD genes, such as HSPB1, 
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CLU, MAOB, RPH3A, FOSB, and BDNF (56, 60, 77-80) are either directly connected to VGF 

or only one path length away. 

Validation of VGF as a Key Driver gene in AD 

To validate VGFs role as a key driver gene of AD, we attempted to replicate our finding across 

different brain regions and in independent datasets, we examined VGF for association to AD in 

genetic studies, and we directly tested VGF in an experimental model of AD to test prospectively 

our prediction of VGF as playing a causal and/or protective role in AD pathogenesis and 

progression. 

VGF replicates across different brain regions and in independent datasets. To further support 

VGF as a KD for AD and assess its regulatory role in different brain regions, we applied the 

same analysis pipeline (defined in Fig. 1A-1D), allowing for slight variations required to adapt 

our process to these data, to multiple brain regions in the AMP-AD MSBB dataset. We identified 

VGF as a KD in two of the three additional brain regions in the MSBB dataset, the superior 

temporal gyrus (BM22, Data S8) and the pars opercularis (BM44, Data S9). VGF did not 

reproduce as a KD in the brain region that seemed to be most affected by the disease (highest 

number of DE genes), the ectorhinal area (BM36, Data S10), potentially reflecting a complete 

disruption of the regulatory network in regions of the brain already badly damaged by the 

disease. We further applied the analysis pipeline defined in fig. 1A-1D on a completely 

independent dataset, the ROSMAP dataset (48, 49), using DNA and RNA data generated in the 

same brain region as our original result, the dorsolateral prefrontal cortex (PFC). In the 

ROSMAP PFC network that resulted, VGF was again identified as a key driver gene (ROSMAP, 

Data S11).  
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Genetic support for VGF association to AD. DNA variations in and around VGF have not 

previously been identified as associating with AD.  In addition, we did not identify any e- or 

pQTL for VGF, although one of the strengths of a more integrative, causal network-based 

approach is the ability to infer causality in a complementary way to more direct methods such as 

genome-wide association studies.  However, to assess whether there is genetic support for VGF 

associating with AD given larger genomic datasets, we tested DNA variations in the VGF gene 

region for association to AD in the largest AD GWAS to date (10). We defined a 125KB region 

around VGF and identified a peak characteristic of an AD-associated region, with the most 

significantly associated SNP in the region having a p = 0.00004, which was significant even after 

Bonferroni correction for the 727 SNPs tested in the region (corrected p = 6.8e-5) (Fig. S5). 

While such results are not genome-wide significant, given we targeted a single gene region with 

a specific hypothesis, the results do provide support for an association.  

 

In vivo molecular and physiologic validation of VGF as an AD key driver gene. To directly 

validate the role of VGF as a KD gene in AD pathogenesis and progression (Fig. 1F), we 

modulated VGF levels in the transgenic 5xFAD amyloidopathy mouse model that express human 

PS1 and APP containing five familial AD mutations (81).  5xFAD mice were crossbred to a 

VGF germline knock-in mouse model (VGFD/D (82)), in which insertion of a pgk-neo selection 

cassette into the Vgf 3’UTR leads to a VGF mRNA truncation in the 3’UTR region (D3’UTR), 

resulting in increased protein translation and elevated VGF protein levels in mouse brain (Fig. 

S6A).  

Levels of VGF protein in VGFD/D hippocampus are modulated in a similar ‘physiological 

range’ (increased to ~150-200% control) as VGF protein levels are altered in male mice 
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following chronic social defeat stress (decreased to ~50% control in hippocampus and increased 

to ~140% control in nucleus accumbens).  VGF mRNA levels are similarly regulated in human 

control subjects and patients with major depressive disorder (MDD), being reduced in 

hippocampus to ~50% control in male and female MDD patients and increased in male MDD 

nucleus accumbens to ~150% control (83).  

Using VGFD/D mice to increase germline VGF expression in this physiological range, we 

assessed whether elevated levels of VGF modulate Ab deposition in the brain of 10-month-old 

5xFAD mouse, quantifying Ab deposition by immunohistochemistry using 6E10 antibody. We 

found a dramatic decrease in 6E10 immunoreactive plaques in both cortical and hippocampal 

regions of 5xFAD,VGFD/D, compared to 5xFAD brains, while total brain transgenic APP protein 

levels remained unchanged (Fig. 5A, Fig. S6B). Microglial activation in AD patients (84-87) and 

increased microglial number and in some cases activation in 5xFAD (81, 86, 88) have been 

reported, suggesting a pathological connection between amyloid deposition and 

neuroinflammation. The number of Iba-1-positive cells, a microglial marker, was also 

significantly reduced in the cortex of 5xFAD,VGFD/D compared to 5xFAD with normal levels of 

VGF (Fig. 5A). In addition, rapid and aggressive amyloid pathology in 5xFAD was associated 

with reduced neuron numbers and neurogenesis in the subgranular zone of hippocampus (89), 

which was fully rescued by VGF germline overexpression (Fig. 5B). Increased levels of Tau 

phosphorylation (p-Tau) are observed in the clusters formed by dystrophic neurites around 

amyloid plaques in the brains of human patients and mouse AD models (90, 91), including 

5xFAD (Fig. S6C). These were reduced by germline VGF overexpression in 5xFAD,VGFD/D 

mice (Fig. 5C). Importantly, in association with reduced neuropathology, impaired spatial 
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learning and memory of 5xFAD mice in the Barnes maze was partially restored by germline 

VGF overexpression (Fig. 5D).  

To examine whether overexpression of VGF in the adult 5xFAD brain also reduces 

neuropathology resulting from Ab overexpression, adeno-associated virus (AAV)-VGF and 

AAV-GFP (control) were injected into the dorsal hippocampus (dHC) of adult 5xFAD mice at 2-

3 months of age. We chose this brain region based on the following observations: i) previous 

studies indicated pro-cognitive effects of VGF peptide administration in the dHC in wild-type 

mice (35); ii) local VGF ablation in the mouse dHc resulted in memory deficits (35); iii) dHc’s 

proximity to the ectorhinal area, that, as described above, sustained the most damage by AD, 

with VGF identified in this region as significantly downregulated for multiple AD features. 

Animals were sacrificed for histological analysis at 7 months of age or at 10 months of age 

following behavioral testing. Immunohistological examination showed robust VGF 

overexpression transduced by AAV-VGF administration to the dHC of 5xFAD mice (Fig. 6A). 

Reduced levels of 6E10-immunoreactive plaques were found in the hippocampal dentate gyrus 

and nearby cortical regions (Fig. 6A). Similar to germline VGF overexpression, dHc AAV-VGF 

administration also restored neurogenesis in 5xFAD hippocampus to the level of wild type 

controls, and significantly reduced the number of dystrophic neurite clusters in the hippocampus 

(Fig. 6B, C). At 10 months of age, AAV-VGF-administered 5xFAD had significantly improved 

spatial learning and memory performance in the Barnes maze compared to those administered 

AAV-GFP, while VGF overexpression in non-transgenic wild type mice didn’t enhance 

memory, indicating a critical role for VGF in the pathological progression and behavioral 

impairment of the 5xFAD mouse model (Fig. 6D). 

VGF is a neuropeptide precursor that is processed into a number of bioactive peptides, 
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including the C-terminal peptide TLQP-62 (named by the N-terminal 4 amino acids and length) 

(92).  TLQP-62 has pro-cognitive and antidepressant efficacy and regulates neurogenesis, each 

of which is BDNF-dependent when the peptide is administered icv or directly to rodent 

hippocampus (35, 36, 38, 83, 93).  Because BDNF is directly connected to VGF in our causal 

network, we investigated whether chronic 28-day icv administration of TLQP-62 to adult 3-4 

month old 5xFAD reduced neuropathology at ~ 4.5 months of age.  Significantly reduced levels 

of 6E10- immunoreactive plaques and Iba-1 immunostaining were found in hippocampal dentate 

gyrus and cortex of both TLQP-62-treated male and female 5xFAD (Fig. S7A, S7B), 

accompanied by significantly reduced numbers of Lamp1-immunoreactive dystrophic neurite 

clusters in hippocampus (Fig. S7C).   

The pathophysiologic validation of VGF establishes this gene as one that can induce and 

protect against AD-related pathologies, as we predicted from our models. However, the 

pathophysiologic validation does not on its own confirm the molecular regulatory architecture of 

VGF defined by our network models. To validate VGF at the molecular network level, the brain 

gene expression signature induced in the mouse model by directly perturbing VGF 

(overexpressing this gene) can be compared to the genes predicted to change by the network in 

response to perturbations of VGF, as we have shown for different KD genes identified across a 

number of diseases (5, 15, 18, 24, 25, 27). We sequenced RNA isolated from the prefrontal 

cortex of 89 mice with germline overexpression of VGF and corresponding controls, and from 

the hippocampus of 45 mice with AAV overexpression of VGF and corresponding controls. We 

found that genes downstream of VGF in the gene BN (predicted perturbation) were enriched for 

the AAV overexpression VGF DE signature (Data S12) at a threshold of FDR<0.05 (Fig. 7B, 

one-sided Fisher exact test OR=14.1, p-value=3.1e-6). We also found that while the germline 
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overexpression VGF DE signature (Data S12) did not achieve significance at an FDR<0.05, DE 

genes at p-value<0.1 were also enriched downstream of VGF in the gene BN (Fig. S8, one-sided 

Fisher exact test OR=3.9, p-value=2.6e-3).  

Discussion: The primary aim of this project was to discover novel critical genes and pathways 

central to AD that could be potentially pursued as therapeutic targets. We applied a multiscale 

causal network modeling approach towards this end on the AMP-AD dataset in the anterior 

prefrontal cortex, which resulted in the identification of VGF as a novel key driver gene of AD. 

VGF was not only the most significantly downregulated gene in the protein and gene expression 

data in cases versus controls (best gene DE FDR = 5.0e-4, best protein DE FDR = 3.4e-15), but 

it was the only gene identified as a key driver across all three Bayesian causal networks we 

constructed.  Further, VGF ranked as the top key driver gene not previously associated with AD, 

having the most explanatory power in distinguishing between AD cases and controls. We 

replicated VGF as a KD in an independent dataset as well as in 2 additional brain regions, 

demonstrated genetic support of its genomic locus associating with AD, and finally validated 

VGF in vivo at the physiologic and molecular levels as a driver of AD. 

The biological coherence of the protein expression, compared to gene expression data, 

with respect to association with AD clinical features, was noteworthy, suggesting proteomic data 

may be a more informative measure for identifying important dysregulated pathways. Ab, a 

hallmark of AD (6), was consistently the protein with the highest expression in cases relative to 

controls, whereas VGF was the most downregulated. DE proteins are annotated for energy 

metabolism and immune and nervous system related processes, all previously implicated in AD 

(8, 94-98); our co-expression network analyses based in part on these DE protein studies, have 

further identified novel, potentially druggable targets within these pathways. As protein 
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expression coverage increases and proteins with lower overall levels of expression are more 

reliably quantified, we can expect further improvements. 

In a previous study of AD integrating transcriptomic and genomic data, 

TYROBP/DAP12 was identified as a major driver for the complement subnetwork during AD 

pathogenesis (5). In this instance, genotype and microarray gene expression measurements were 

processed to construct predictive network models (5). In the present study, we extended this 

approach by taking advantage of three layers of information, integrating genomic, transcriptomic 

and proteomic data to characterize the molecular association to AD and build predictive network 

models in order to causally infer relationships among these molecular traits and AD. The 

proteomic data not only adds a new dimension to this type of analysis, but the RNA sequencing 

data (compared to microarray data) provides a more comprehensive characterization of the 

functional units of the cell, thus allowing for a deeper modeling of the actual biological processes 

occurring in the cell and associated with disease. Interestingly, the immune-related protein 

module (green) containing VGF was significantly enriched for DE proteins across all clinical and 

neuropathological traits, emphasizing the importance of the immune system in AD and again 

highlighting the importance of the proteomic data in providing a more comprehensive 

characterization of AD.  

The VGF gene we identified and validated is a nerve growth factor and brain-derived 

neurotrophic factor (BDNF) inducible gene (99) that is expressed in neurons in many different 

brain regions, and encodes a 615 amino-acid (617 in mouse) long precursor polypeptide (100) 

that is processed into several bioactive peptides that regulate neuronal activity and survival, 

neurogenesis, energy balance and lipolysis, and behavior (35, 36, 100-105). Moreover, induction 

of adult hippocampal neurogenesis in combination with elevation of BDNF levels, which occurs 
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following exercise in rodents, has recently been shown to rescue cognitive deficits in 5xFAD 

mice (106). In this context it is important to note that VGF is robustly regulated in hippocampus 

by voluntary exercise (107) and by BDNF/TrkB signaling (108), and that in our studies, VGF 

overexpression rescued cognitive deficits and neurogenesis in 5xFAD mice (Fig. 5,6). The VGF-

derived peptide TLQP-62 (named by the four N-terminal amino acids and length), regulates 

neuronal activity, neural progenitor proliferation, memory formation, and depression-like 

behavior (35-38, 83, 99), via mechanisms that are largely dependent on BDNF/TrkB signaling 

(35, 36, 109) and was never showed to be causal to AD. In addition, TLQP-21, a sub-peptide of 

TLQP-62, activates the complement 3a receptor (C3aR1) (103, 104); C3a activation of C3aR1 

on microglia regulates amyloid uptake and microglial migration in primary microglia and/or 

mouse AD models (110-112). Lastly, the VGF1-617 proprotein, and secretogranin 2 (SCG2), 

identified in VGF gene and protein networks, are both granin genes and are linked through their 

functions in dense core vesicle (DCV) biogenesis and exocytosis, respectively (113). 

A number of trait studies have found that VGF levels are reduced in the cerebrospinal 

fluid (CSF) of patients with AD (40, 42-44, 46, 114, 115). This is in agreement with our 

findings, where VGF is the gene and protein product with the lowest expression in cases relative 

to controls. Longitudinal measurement in patients and controls previously showed that VGF 

levels decrease with time as the disease progresses (42). Interestingly, reduced VGF levels were 

detected prospectively in CSF from patients with mild cognitive impairment, selectively in those 

who develop AD (44). VGF has also been proposed as a biomarker of AD and its progression 

(42). Although CSF levels of VGF, a neuronal and neurosecretory protein, might be anticipated 

to decrease coincident with neuronal loss as AD progresses, it is important to note that in two 

biomarker studies, the CSF levels of a number of related neurosecretory and synaptic proteins, 
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including chromogranin A, secretogranin II, 7B2, proSAAS, clusterin, neurexins 1, 2 and 3, and 

neuropentraxin 1 were either increased or unchanged in patients with AD compared to controls, 

while VGF levels consistently were reduced in AD patient CSF (41, 44). Our systematic analysis 

of changes in gene expression and proteomic profiles in disease-free and AD brains identified 

VGF as not only strongly associated with AD, but as a key driver gene of our AD-associated 

network, a finding that is further supported by our direct perturbation of VGF in the 5xFAD 

mouse model. Notably, many genes that are one or two steps downstream of VGF in our network 

are CREB-responsive genes (FosB, Nptx2, Tac1, Scg2, SST, DUSP4, BDNF, CRH, PLCXD2, 

NPTX2), as is VGF, with one or more CREB-binding sites localized in the promoter region or 

gene expression induced by overexpression of constitutively active CREB (116). Previous 

studies have also shown that VGF-derived peptide TLQP-62 activates the CREB signaling 

pathway in both acutely treated hippocampal slices or chronically infused rodent hippocampus, 

supporting VGF’s role as a key driver of these CREB-responsive network genes (35, 109). 

The majority of VGF network genes regulate neuronal activity, synaptic plasticity, and 

cognitive function. Previous reports indicate that levels of proteins encoded by the SST, NPTX2, 

SCG2, BDNF, and DUSP6 genes are reduced in the AD brain (117-121). BDNF, CRH and SST 

modulate neuronal activity and synaptic function, while BDNF and CRH also show 

neuroprotective effect against Ab insults (122, 123). DUSP4 and DUSP6 belong to the dual 

specificity phosphatase family (DUSPs). DUSP4 knockout mice have spatial reference and 

working memory deficits (124), while DUSP6 is expressed in microglia and is regulated by 

BDNF gene ablation in PFC (125, 126). Both SCG2 and VGF are components of DCVs and their 

levels are critical to the biogenesis and regulated secretion of DCVs, therefore, their imbalance in 

the AD brain may cause dysregulation of neurotrophin, neuropeptide and/or catecholamine 
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secretion and function (113). Genes in the VGF network that have particular relevance to the 

regulation of neural activity include GRASP, a scaffold protein that is involved in intracellular 

mGluR trafficking (127), and NPTX2 (NARP), reduction of which results in GluA4 reduction 

and further disruption of hippocampal gamma oscillation in the AD/NPTX2 KO mouse model 

(118). 

The VGF-driven protein only network identified in our study reinforces the important 

role that homeostatic levels of VGF play in the regulation of neuronal integrity and plasticity. 

Among the proteins directly connected to and downstream of VGF in our network, critical roles 

for ANK2, PLXNB1, TAGLN3 and HSPB6 have been identified in the regulation of dendritic 

and axonal morphology as well as cytoskeletal reorganization (128-133). Other proteins directly 

connected downstream of VGF were SCG2,  required for neuronal differentiation and maturation 

(134), HOPX, modulates hippocampal neurogenesis (135), and STXBP5L and RPH3A, which 

are involved in the trafficking and release of neuronal synaptic or dense core vesicles (136, 137).  

Relevant to our analysis, previous protein crosslinking studies have identified a VGF interaction 

with amyloid precursor-like protein 1 (APLP1) (138).  Whether this interaction mechanistically 

impacts VGF or b-amyloid function in AD brain is unknown, but interestingly, preliminary 

immunohistochemical analysis has visualized VGF but not NPY immunoreactivity associated 

with amyloid plaques in 5xFAD hippocampus (Lin W.J., Hariharan S., unpublished data). 

While the determination of the precise mechanism(s) of action of VGF in AD requires 

additional study, constructing and validating models of AD that can serve as a more integrated 

and comprehensive repository of the regulatory frameworks of AD, provides a more informative 

and accessible path for others to leverage extensive sets of data from which they can validate 

links between known disease targets, generate hypotheses around novel targets, and derive 
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mechanistic insights that further our understanding of AD. Differences between specific 

molecular mechanisms and subsets of disease are of great interest for further exploration of AD 

networks, however the focus of this work was on constructing a predictive model of AD and 

validating the top master regulator identified of the networks. Indeed, the data presented here are 

consistent with causal roles for TLQP-62 and the VGF proprotein in Alzheimer’s disease 

pathogenesis and progression, but do not rule out contributions of other VGF-derived peptides 

including TLQP-21, an activator of the C3aR1 complement receptor (103, 104), that will require 

additional investigation. 
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Materials and Methods 
Data description: 

All MSBB discovery and replication datasets were previously described in Wang et al. (47). 

These consist of gene and protein expression and WES for a cohort of individuals across the 

entire spectrum of AD in the Mount Sinai Brain Bank. RNA-seq was performed for 1096 

samples from 315 individuals across 4 brain regions, and MS/MS for 266 samples from 266 

individuals in one of the brain regions to measure protein expression. Whole exome was 

sequenced for 309 individuals. The RNA for all samples was treated with Ribo-Zero to remove 

rRNA and keep other transcripts (139). The 4 brain regions assessed are the anterior prefrontal 

cortex (BM10), the superior temporal gyrus (BM22), the perirhinal cortex (BM36) and the pars 

opercularis (BM44). Protein expression was restricted to BM10. The disease was categorized in 

6 different ways, each representing different aspects of AD: clinical dementia rating (CDR), 

clinical neuropathology (Path Dx), CERAD neuropath criteria (CERJ), neuropathology category 

(NP-1), mean neocortical plaque density (PlaqueMean, number of plaques per mm2), and Braak 

score (bbscore) (140-145). The religious order study and memory aging project (48, 49) 

(ROSMAP) validation set consists of gene expression from the dorsolateral prefrontal cortex of 

724 subjects and whole genome sequencing (WGS) data from 1200 subjects. The ROSMAP 

RNA-seq count matrix and associated quality measurements were downloaded from 

https://www.synapse.org/#!Synapse:syn9702085, where their generation is described. The 

ROSMAP WGS data variant call format (VCF) file was downloaded from 

https://www.synapse.org/#!Synapse:syn10901595, where its generation and quality control are 

described.  

All data are available at https://www.synapse.org/#!Synapse:syn2580853/wiki/409853 
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RNA-seq processing: 

In order to ensure a reliable set of samples and genes for all analyses in the MSBB datasets, we 

performed quality control processing and filtering for lowly expressed genes on the whole 

dataset across all 4 brain regions. Starting with the raw RNA-seq reads, we aligned (STAR) to 

GRCh37 and counted the reads mapping to each gene (featureCounts) as well as created QC 

matrix and called variants (GATK) on the RNA-seq with the RAPiD pipeline (53, 146-148). For 

RNA-seq samples sequenced multiple times, we started by selecting the fastq file (raw reads) 

based on which had the largest number of mapped reads and less than 5% rRNA mapped reads. 

we then ran STAR alignment and featureCounts to generate the raw count matrix. we called 

variants on the RNA-seq data using GATK. Variants were also called for the WES using GATK. 

Using RNA expression and variants from the WES data, we imputed sex information for each 

sample. Comparing the heterozygous variants from the RNA-seq data to the variants in the WES 

data, enabled us to assign each RNA-seq sample to its corresponding DNA sequence. Using 

these multiple layers of information, we corrected, when necessary, mislabeling. For RNA-seq 

samples with documented matching WES, if the discordance rate between said sample and its 

best corresponding exome sequence was more than 10%, they were removed from further 

analyses. This left 958 RNA-seq samples in the MSBB dataset. In the ROSMAP gene expression 

data, we found one sample were gender was mislabeled and removed it from further analyses. 

In the MSBB data, to filter out low expressed genes, we removed all genes that did not 

have at least 1 count per million (cpm) in at least 10% of the samples. we normalized the raw 

counts using the voom function from the limma R package (149-151). After exploration of the 

main drivers of variance using principal component (PC) analyses and using linear mixed 

models, we adjusted the normalized counts for batch effects using linear mixed models 
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(variancePartition) (54). The corrected residuals were further adjusted with the lmFit function of 

the limma package for post mortem interval (PMI), race, sex, RNA Integrity Number (RIN) and 

Exonic Mapping Rate (151). Outlier samples, further than 3 standard deviations from the 

centroid of PC1 and PC2, were removed from downstream analyses. From the remaining 

samples, samples with RIN<4 were removed from further analyses. The raw counts of the 886 

samples remaining were then subjected to the exact same protocol, to get normalized and 

adjusted gene expression for 24865 genes. 

In the ROSMAP data, we followed a similar protocol removing all genes that did not 

have at least 1 cpm in at least 10% of the samples, normalized using the voom function and after 

exploration of the main drivers of variance, adjusted the normalized counts for Batch, sex, race, 

PMI, RIN, median 5 prime to 3 prime bias, strand balance, and percent of intronic bases using 

the lmFit function. The output was a matrix of normalized and adjusted counts of 19452 genes 

for 633 samples.  

 

Protein expression processing and correction for other covariates: 
The protein expression data was taken through similar procedures to ensure that there would be 

no technical variance in the way of true biological signal. After correction for Batch on the 

protein expression data for 266 samples, we further adjusted for PMI, race and sex using the 

lmFit function of the limma package (151). The remaining 2692 protein expression residuals 

were used for downstream analyses. 

 

Differential Expression analyses: 
The DE analyses were performed for both gene and protein expression using the limma package 

after the adjustment for covariates described earlier (151). In order to capture all aspects of the 
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disease, the DE was performed for each AD trait. In addition, to capture signal corresponding to 

the entire spectrum of AD, DE analysis was performed in 2 ways: controls against any sample 

that had any level of cognitive impairment (and in the case of PlaqueMean using its quantitative 

level as a response), and definite controls against definite AD as defined by each trait (Table S1).  

 

QTL analyses: 

All QTL analyses were run using the fastQTL package (154). Starting from the variants from the 

WES (MSBB) or WGS (ROSMAP), using plink2, we removed markers with more than 5% 

missing rate, less than 1% major allele frequency and Hardy-Weinberg p-value lower than 10-6 

(155, 156). Following standard practice, only European individual were used to find QTLs (157). 

Non-European samples were identified through PCA analyses using smartPCA and mapping in 

PC space to the 1000 Genomes Project consortium (158, 159). VCF-liftover was used to lift over 

the ROSMAP WGS from hg19 to hg38 (160). The residuals described above were used for QTL 

analyses for both gene and protein expression after further correction for PEER surrogate (latent) 

variables variables (SVs) (161) as follows: (i) BM10 gene expression: 19 SVs; (ii) BM10 protein 

expression: 9 SVs; (iii) BM22 gene expression: 20 SVs; (iv) BM36 gene expression: 17 SVs; (v) 

BM44 gene expression: 17 SVs; (vi) ROSMAP gene expression: 25 SVs. We also included in 

the model the first 5 PCs of the genotype data to remove further population specific structures. 

The analyses looked for cis-eQTL as defined 1 Mb of the transcription start site of each gene and 

protein corresponding gene. FDR were computed following Benjamini-Hochberg (162). The 

causal inference testing was performed with the R package citpp 

(https://bitbucket.org/account/signin/?next=/multiscale/citpp). 
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Co-expression analyses: 

Two WGCNA co-expression networks were built on the adjusted data, one for the gene 

expression and one for the protein expression, using the coexpp R package (163) (Michael 

Linderman and Bin Zhang (2011). https://bitbucket.org/multiscale/coexpp). To identify modules 

of interest in the context of AD, we projected the union of all DE genes or proteins on the 

corresponding co-expression network. We calculated enrichment statistics using Fisher’s Exact 

Test, and corrected for multi-testing following Benjamini-Hochberg. 

 

Seeding gene list construction: 

Making the assumption that DE genes are important for AD, and that therefore these genes need 

to be included in the model, we started by adding the union of all DE genes to the seeding gene 

list. To include other important genes that co-vary with these DE genes, but that may not reach 

significance in the DE analyses, we included all gene in co-expression modules enriched for DE 

genes. Finally, for the discovery gene expression set only (BM10), to maximize the chances to 

not miss important genes, we added to the gene list of DE genes and modules of interest other 

genes known to be connected to our current gene list in the literature using PEXA (74). In order 

to build the extended network, PEXA used KEGG pathways, and to trim it, used a PPI network 

from CPDB (164, 165). We used the outputted discovery seeding gene list of 5714 genes for 

which we have gene expression for the purpose of Bayesian causal network construction. For the 

replication sets, the seeding gene lists were comprised of only the DE genes and the co-

expression modules enriched for the DE genes, and consisted of respectively 10585 genes for 

BM22, 16578 genes for BM36, 8086 genes for BM44 and 9682 genes for ROSMAP. For BM44, 

due to the small number of DE genes and to increase the number of genes in the AD DE gene set 
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with genes related to DE genes and find co-expression module enrichments, we added the top 10 

correlated genes to each of the DE genes before module enrichments. 

 

 

Bayesian Causal Networks: 

BNs were built using RIMBANET (32-34, 51) using gene expression, protein expression and 

both gene and protein expression (multiscale) for the discovery datasets, and using gene 

expression for the replication datasets. In each case, QTLs were used as priors (eQTLs for gene 

networks, pQTLs for protein network and both for multiscale network). To reduce the search 

space and increase the likelihood to reach a global maximum of the fit of the network, we 

reduced the gene space from entire expressed transcriptome (24865 genes) to the seeding gene 

list described earlier for the gene only and the multiscale networks. Because there was protein 

expression for only 2692 proteins, we included all the protein in both the protein and the 

multiscale networks. Because of the central dogma of biology and the results of the CIT analysis, 

we included strong weak edge priors (increasing the likelihood for that edge to be searched) to 

the multiscale network from the parent gene to its corresponding protein product. Representation 

of networks and subnetworks was achieved using the Cytoscape software version 3.5.1 (166). 

 

Key Driver Analyses: 

For both the discovery and the replication datasets, to do Key Driver Analysis, we used the R 

package KDA (75) (KDA R package version 0.1, available at 

http://research.mssm.edu/multiscalenetwork/Resources.html). This package defines a 

background sub-network by looking for a neighborhood K-step away from each node in the 
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target gene list in the network. Stemming from each node in this sub-network, it assesses the 

enrichment in its k-step (k varies from 1 to K) downstream neighborhood for the target gene list. 

In this analysis, we used K=6. KD analyses were performed by projecting multiple seeding target 

lists of interest on the networks: The DE lists of the corresponding omics for each disease trait to 

find KDs of the diseases. In the discovery dataset, KD were then prioritized by first how many 

networks they appear in (replication) and then how many times they appear across networks 

(importance). In the replication datasets, we looked for presence of VGF as a KD of the 

networks. 

 

Ranking of KDs using Machine Learning: 

For each classifier we performed a random split of the data, stratified by class, into 75% training 

set and 25% validation set (167). The training set was subjected to SMOTE (168, 169) to resolve 

any class imbalance for training the random forest (RF) classifier (python sklearn package (170, 

171)). Classifier performance was evaluated against the validation set and quantified using area 

under the curve (AUC) of the receiver operating characteristic (ROC) curve (172). RF randomly 

sub-sets the features into decision trees, selecting a feature from each subset that best separates 

the data into classes (170). Therefore, the choice of a feature to be included in the forest is an 

indication of the performance and stability of that feature. Features were ranked by importance, 

as based on information gain score (173). This process was performed 500 times to estimate the 

distribution of feature information gain across classifiers. Features were then organized into a 

meta-rank by a weighted z-score method across the 500 iterations per classifier (174, 175). 

There, a z-score was established from the features rank per iteration of the information gain and 

weighted by a factor accounting for the stability of features and the performance of the classifier. 
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The weight is the product of two components: (i) the ratio of the number of iterations each 

feature appeared in to the mean number of all features iteration appearances, both across the 500 

forests; (ii) the absolute value of the ROC AUC score of each classifier centered at 0, minimizing 

the impact of random classifiers.  

The classifiers were run independently, after normalization and adjustment for covariates, on 

each scale of expression data: the gene expression data, the protein expression data and the gene 

and protein expression data together. In each case, the 11 AD traits were used as classes to train 

and test the classifiers and a meta-rank for each feature across the 11 traits was computed using 

the weighted z-score approach described earlier across all 5,500 classifiers. To further prioritize 

the networks KD, all KDs were ordered according to the meta-rank of features across traits for 

their corresponding scale of data. 

 

Manhattan Plot of GWAS results: 

Summary statistics for the largest AD GWAS to date (17,008 and 37,154 controls,  I-GAP 

GWAS) results (10) around the VGF gene (+/- 125 KB) were plotted using LocusZoom (176). 

 

Other statistical analyses: 

R version 3.3.1 was used for statistical analyses unless specified otherwise (177). GO 

annotations enrichment was tested with, the R packages goseq (178), topGO (Alexa A and 

Rahnenfuhrer J (2010). topGO: topGO: Enrichment analysis for Gene Ontology. R package 

version 2.18.0.) and org.Hs.eg.db (Carlson M. org.Hs.eg.db: Genome wide annotation for 

Human. R package version 3.2.3.). To test MSigDB pathway enrichment, the R packages 

HTSanalyzeR (179), GSEABase (Morgan M, Falcon S and Gentleman R. GSEABase: Gene set 
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enrichment data structures and methods. R package version 1.32.0.), and gage (180) were used. 

Figures where generated using the R packages ggplot2 (181), scales (Hadley Wickham (2012). 

scales: Scale functions for graphics. R package version 0.2.3. http://CRAN.R-

project.org/package=scales), reshape2 (182) (http://www.jstatsoft.org/v21/i12/.) and grid (183). 

UpsetR plots were generated with the UpSetR R package (184). Heatmaps were produced with 

the function heatmap.2 of the R package gplots (185). Venn diagram were dawn using the 

VennDiagram R package (186). Circos (circular) plot of DE enrichments in modules were 

plotted using the NetWeaver R package (153, 187). Canonical Correlation analyses were 

performed with the canCorPairs function of the variancePartition R package (54). 

 

Animal models and stereotaxic surgery: 

The generation of 5xFAD mice was described previously (81). These transgenic mice 

overexpress both human APP (695) harboring the Swedish (K670N, M671L), Florida (I716V) 

and London (V717I) familial AD (FAD) mutations and human Presenilin1 (PS1) harboring the 

two FAD mutations M146L and L286V. Expression of both trans- genes is regulated by 

neuronal-specific elements of the mouse Thy1 promoter. The 5xFAD strain (B6/SJL genetic 

background) was maintained by crossing hemizygous transgenic mice with B6/SJL F1 breeders. 

The floxed VGF mouse line was generated as recently described (82). Homozygous floxed VGF 

mice that overexpress VGF mRNA and protein by virtue of the placement of the pgk-neo 

cassette in the 3’ UTR region of the Vgf gene.  This leads to premature mRNA termination and 

polyadenylation utilizing a cryptic poly-A addition site in the inverted pgk-neo cassette, 

truncating part of the 3’UTR sequence, and resulting in increased CNS expression of VGF (Fig. 

S5). All mouse studies were conducted in accordance with the U.S. National Institutes of Health 
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Guidelines for the Care and Use of Experimental Animals, using protocols approved by the 

Institutional Animal Care and Use Committee of the Icahn School of Medicine at Mount Sinai. 

Mice at 2 – 3 months of age were anesthetized with a mixture of ketamine (100mg/kg) and 

xylazine (10mg/kg). Thirty-three gauge syringe needles (Hamilton, Reno, Nevada) were used to 

bilaterally infuse 1.0 μl of AAV virus into mouse dorsal hippocampus (dHc) (AP = -2.0, ML = 

±1.5, and DV = -2.0 from Bregma (mm)) at a rate of 0.2 μl per min and the needle remained in 

place for 5 min before removal to prevent backflow. AAV5-GFP and AAV5-VGF (mouse VGF 

cDNA) were prepared by the Vector Core at the University of North Carolina at Chapel Hill. 

AAV-injected mice were used at 7~8-month old for immunohistochemical analysis or at 10-

month old for behavioral analysis.  Additional mice at 3 months of age were anesthetized with 

ketamine/xylazine and a cannula was implanted in the lateral ventricle [AP=−0.1, ML=±1.0 and 

DV: −3.0 from bregma (mm)] (188). TLQP-62 (2.5 mg/ml) dissolved in aCSF or aCSF alone 

was delivered icv by microosmotic pump (Alzet delivering 0.25 µl/h or 15 µg/day) for 28 days.  

Mice were used for immunohistochemical analysis at 4.5 months of age. 

 

Immunohistochemical and biochemical analysis: 

Immunohistochemical and biochemical characterization were performed as previously described 

(3, 189-192). For biochemical analysis, hemibrains were processed via differential detergent 

solubilization to produce TBS-soluble, Triton-X-soluble, and formic-acid soluble Aβ fractions. 

For analysis of native oligomeric Aβ peptides, 2 μl protein samples from the TBS-soluble 

fraction were spotted onto activated/pre-wetted PVDF membrane (0.22 μm; Millipore, Billerica, 

MA). Membranes were incubated with rabbit pAb A11 (anti-prefibrillar oligomers, 0.5 μg/ml), 

rabbit pAb OC (anti-fibrillar oligomers and fibrils; 0.25 μg/ml), and mouse mAb Nu-4(anti-
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oligomers; 1 μg/ml) (191, 192). Normalization to total APP/Aβ signal was achieved by detection 

of human APP transgene protein with the mouse pAb 6E10 antibody (1:1000; Covance, 

Princeton, NJ). To quantify total Aβ levels, human/rat Aβ 1–40/1–42 ELISA kits (Wako, 

Richmond, VA) were used according to the manufacturer’s instructions. For 

immunohistochemistry, 50 μm thick sagittal sections were incubated with the following 

antibodies: rabbit anti-Iba1 (1:500; Wako, Richmond, VA), mouse anti-6E10 (1:1000; Covance, 

Princeton, NJ), rabbit anti-doublecortin (1:500, Cell signaling Technology, MA). Sections were 

then incubated with appropriate secondary antibodies: anti-mouse Alexa Fluor 488 (1:500; 

Invitrogen, Carlsbad, CA), anti-rabbit Alexa Fluor 594 (1:500; Invitrogen, Carlsbad, CA). For 

non-fluorescent immunostaining, endogenous peroxidase was quenched with PBS containing 3% 

H2O2, followed by amplification using the ABC system (VECTASTAIN Elite ABC HRP Kit, 

Vector Laboratories, Burlingame, CA). Horseradish peroxidase conjugate and 3,3′-

diaminobenzidine were then used according to the manufacturer’s manual (Vector DAB, Vector 

Laboratories, Burlingame, CA). ThioflavinS (Sigma-Aldrich, T1892, 1% w/v stock solution) was 

used for labeling amyloid deposits. For immunoblotting, membranes were incubated with either 

anti-VGF C-terminal (1:1000; rabbit polyclonal), anti-6E10 antibody (1:1000; Covance, 

Princeton, NJ), anti-actin (1:1000; Sigma-Aldrich) antibodies. The membranes were washed, 

incubated with a secondary horseradish peroxidase-labeled donkey anti-rabbit or donkey anti-

mouse antibody (1/6000; GE Healthcare) for 1 h, washed again, and incubated with ECL 

detection reagents (Millipore). Densitometric analysis was performed using ImageJ software. 

 

RNA extraction and qPCR analysis: 
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RNA from mouse tissue specimens, obtained by dissection (prefrontal cortex), was extracted 

using miRNeasy Mini Kit (Qiagen) according to the manufacturer's protocol, and 0.25 µg was 

reverse transcribed using iScript reverse transcription supermix for RT-qPCR kit (Bio-Rad, 

Hercules, CA). One nanogram of first-strand cDNA was subjected to PCR amplification using a 

SYBR green real-time reverse transcription PCR (qPCR) master mix (PerfeCTa SYBR Green 

FastMix, Quanta Biosciences). ΔΔCt method was used to quantify relative gene expression and 

normalized to glyceraldehyde 3-phosphate dehydrogenase (Gapdh). 

 

Behavioral test and analysis: 

The Barnes Maze test was performed using a standard apparatus (193, 194). 10-month-old mice 

were transported from their cage to the center of the platform via a closed starting chamber 

where they remained for 10 s prior to exploring the maze for 3 min. Mice failing to enter the 

escape box within 3 min were guided to the escape box by the experimenter, and the latency was 

recorded as 180 s. Mice were allowed to remain in the escape box for 1 min before the next trial. 

Two trials per day during 4 consecutive days were performed. The platform and the escape box 

were wiped with 70% ethanol after each trial to eliminate the use of olfactory cues to locate the 

target hole. All trials were recorded by video camera and analyzed with ANY-maze video 

tracking software (Stoelting Co, Wood Dale, USA). 
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Fig. 1. Pipeline Overview. Description of data followed by schematics highlighting analyses and 
validation workflows performed to identify and validate targets of AD, as described in the 
results. 
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Fig. 2. Characterization of AD traits and brain gene and protein expression. A) Canonical 
correlation heatmap of disease traits. The intensity of the red color indicates the strength of the 
correlation between traits. The x and y axes represent the traits: clinical dementia rating (CDR), 
Braak score (bbscore), clinical neuropathology (PATH.Dx), neuropathology category (NP.1), 
CERAD neuropath Criteria (CERJ), mean neocortical plaque density (number of plaques/mm2, 
PlaqueMean). B and E) Breakdown of DE genes (B) and proteins (E). Shown is the UpsetR plot 
(methods) of the DE genes or proteins overlapping across tests. The bars represent the set sizes 
and the points which category the set size represents. C and F) PlaqueMean DE genes (C) and 
proteins (F). The x and y axes are the mean normalized count for each gene or protein and their 
log fold change. Blue and red genes and proteins are representative of FDR larger and smaller 
than 0.05, respectively. The strongest DE genes are highlighted on the plot. D) GO term 
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enrichment across all signatures. The heatmap depicted represents the –log10(FDR) of the top 5 
significant GO terms associated to signatures across all traits. Rows are GO terms and columns 
signatures. G) MsigDB pathway enrichment for all signatures. The barplot represents the union 
of the top 10 significant MsigDB categories associated to signatures for all traits; x and y axes 
are MsigDB terms and the –log10(FDR); colors represent the traits. 
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Fig. 3. Co-expression analyses. A and C) Top GO annotations for gene (A) and protein (C) co-
expression modules. The x and y axis represent the best GO term associated with each module 
and the –log10(p value) of the enrichment, respectively. The color of the bars represents the 
module names. In bold are the 4 modules enriched for genes in the union of the DE signatures. B 
and D) Module enrichments for DE genes (B) and proteins (D). The circos plot depicts the 
enrichment of each module for DE genes or proteins; the “hotness” of the color represents the 
magnitude of the –log10(p value) of the enrichment for the corresponding signature list. The 
traits are defined as 1 through 12; in bold are the modules enriched for the union of the DE 
signatures. 
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Fig. 4. Bayesian Causal Networks and Key Drivers. A) Bayesian networks. Visualization of the 
3 AD networks described in the main text using an edge-weighted spring embedded layout. The 
red nodes are proteins and the blue nodes genes. B) Key driver (KD) genes and proteins of the 
DE signatures across all 3 networks. The x and y axes depict the different KDs appearing in at 
least 2 networks and the number of times they are identified as KDs for DE signatures across all 
3 networks. The colors of the bars are indicative of the network of origin of the KDs. C) KD of 
DE signatures in the multiscale network, as described for panel B. The color of the bars is 
indicative of KDs presence only in the gene expression, protein expression or in both.  
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Fig. 5. Characterization of AD pathophysiology in wildtype, 5xFAD, and 5xFAD mice 
overexpressing VGF. A) Immunohistochemical staining of Ab amyloid plaques and microglial 
cells in the mouse cortex of 5xFAD mice overexpressing VGF in the germline. Left panel, green: 
Ab (6E10), red: Iba-1, blue: DAPI; right panel, quantification of percent area of Ab and Iba-1 
staining. N=6~9 male mice/per group.  B) Doublecortin staining (DCX) of the subgranular zone 
(SGZ) in the dentate/hilus area of 5xFAD brains. Upper panel, red: DCX, blue: DAPI; lower 
panel, average number of DCX-positive cells per subgranular zone. N=4 male mice/per group. 
C) Reduced staining of phosphor-Tau and dystrophic neurite clusters in 5xFAD brains with 
germline VGF overexpression. Upper panel: phosphor-Tau staining; lower panel: Quantification 
results of dystrophic neurite clusters in the hippocampus and cortical area. N=4~7 male mice/per 
group. Data of panel A, B, and C were analyzed by one-way ANOVA with Newman-Keuls post 
hoc analysis. *: p<0.05, **: p<0.01, ***: p<0.001. D) Barnes maze test. Mice were trained daily 
and wild type mice learned the target quarter (TQ) of the hiding zone by increased distance 
traveled in the TQ (left panel) and increased time spent in the TQ (right panel). 5xFAD mice 
showed impaired spatial learning on day 4, while germline VGF overexpression 
(5xFAD,VGF+/D) partially restored memory performance. N=12~14 mice (male+female)/per 
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group. Data were analyzed by one-way ANOVA with Fisher’s LSD test. *: p<0.05, ***: 
p<0.001.  
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Fig. 6. Characterization of AD pathophysiology in 5xFAD mice with and without AAV5-VGF-
driven overexpression of VGF. A) Immunohistochemical staining of Ab amyloid plaques and 
VGF in the 5xFAD mouse brain 4 months after AAV5-VGF or AAV5-GFP infusion into dorsal 
hippocampus. Left panel, red: VGF, cyan: Ab, green: GFP; right panel, quantification of percent 
area of Ab amyloid plaque in different brain areas. N=4~5 male mice/per group. Data were 
analyzed by Student t-test. *: p<0.05, **: p<0.01. B) Doublecortin staining (DCX) in the 
dentate/hilus area. Upper panel, red: DCX, blue: DAPI; lower panel, average number of DCX-
positive cells/per subgranular zone. N=4~5 male mice/per group. Data were analyzed by one-
way ANOVA with Newman-Keuls post hoc analysis. *: p<0.05, **: p<0.01. C) Reduced 
staining of phosphor-Tau and reduction of dystrophic neurite cluster number and diameter in 
5xFAD brains with AAV5-VGF overexpression. Upper panel, phosphor-Tau staining; lower 
panel, quantification results of dystrophic neurite cluster number and diameter in the dorsal 
hippocampus. N=4~5 male mice/per group. Data were analyzed by Student t-test. *: p<0.05, **: 
p<0.01. D) Barnes maze test. Mice were trained daily and on Day 4 wild type mice learned the 
target quarter (TQ) of the hiding zone, as revealed by increased distance traveled in the TQ (left 
panel), and increased time spent in the TQ (right panel). 5xFAD mice with AAV5-GFP showed 
impaired spatial learning on day 4, while in 5xFAD with AAV5-VGF overexpression, memory 
performance was significantly rescued. N=7~12 mice (male+female)/per group. Data were 
analyzed by one-way ANOVA with Fisher’s LSD test. *, #: p<0.05, ***, $$$: p<0.001.  
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Fig. 7. Molecular validation of VGF. A) Consensus subnetwork within a path length of 2 of 
VGF. The consensus subnetworks around VGF, 2 steps away from VGF, across all 3 networks 
are depicted. The blue and red nodes are genes and proteins, respectively. The blue edges 
originate from the gene only network, the red edges from the protein only network, and the 
purple edges from the multiscale network. VGF and its known partners are in bold in the plot. B) 
Density plot of the distribution of differential expression nominal p-values for genes downstream 
and not downstream (causally independent of the expression levels) of VGF in the gene-only 
network for mouse DE genes (5xFAD, AAV5-GFP versus 5xFAD, AAV5-VGF brains). The x 
axis is the –log10(p-value) for differential expression, and the y axis represents the densities at 
the different -log10(p-value). The red and blue curves are for genes downstream and not 
downstream of VGF in the network, respectively. C) Summary of DE results of VGF network 
genes in the 5xFAD, AAV5-GFP versus 5xFAD, AAV5-VGF brains overlaid on the VGF gene-
only subnetwork. The nodes are colored by log fold change from green (negative) to orange 
(positive). The size of the node represents the DE FDR. Grey genes names are not significantly 
DE and white nodes have no orthologous genes in mice. 
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Fig. S1. 
Simplified Pipeline Overview. Simplified description of data and analyses workflows performed 
to identify and validate VGF as a target of AD.  
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Fig. S2. 
Data quality control. A and B) Imputed RNA-seq sex colored by sex clinical information: 
Normalized gene expression for XIST (female specific gene, y axis) and UTY (ubiquitously 
expressed Y-chromosome gene, male specific, x axis). (A) Obvious sex mislabeling is present in 
the dataset. (B) After fixing the mislabeling, ambiguous samples (removed from further 
analyses) are shown in green. C, D, E and F) Principal component analyses of important 
covariates: panels of this figure represent the same samples (one sample per point). The x axis is 
PC1 and explains 92.41% of the variance in the expression data. The y axis is PC2 and explains 
6.16% of the variance in the expression data. The samples are colored by different QC or clinical 
information associated to them. 
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Fig. S3. 
Other AD traits gene DE. A and B) Gene (A) and protein (B) differential expression: The x axis 
of this plot is the mean normalized count for each gene or protein, and the y axis the log(FC). In 
blue are the non-significantly DE genes or proteins and in red the significant ones. Each box 
corresponds to a trait  
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Fig. S4. 
QTL analyses. A) Venn diagram of QTL overlap with expanded DE signatures. B) Boxplots of 
QTL effects: GSTM3, gene that shares an eQTL and a pQTL at the same SNP position.  
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Fig. S5. 
Genetic association of VGF to AD. Manhattan plot of the VGF locus in the I-GAP AD GWAS. 
SNPs in the locus show significant association to AD after Bonferroni correction.  
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Fig. S6. 
A) Increased VGF expression in the brains of VGF germline overexpression mouse line 
(VGFD/D). Western blot and quantitative PCR analysis showed both increased VGF protein and 
mRNA level in the dorsal hippocampus of VGF germline overexpression mice (hippocampus 
VGF protein: VGFD/D: 208.6±18.4%; WT: 100.0±33.7%; hippocampus Vgf mRNA: VGFD/D: 
146.6±8.4%; WT: 100.1±3.0%, Student t-test, *, p<0.05; **, p<0.01. B) Similar levels of 
transgenic APP protein in both cortex and dorsal hippocampus of 5xFAD mouse brain with VGF 
germline overexpression. C) Amyloid plaques were surrounded by dystrophic neurite clusters. 
Upper panel: immunohistochemical staining of phospho-Tau (AT8) showed dystrophic neurite 
clusters. Lower panel: green, amyloid plaque (Thioflavin S staining); red, phosphor-Tau (AT8).  
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Fig. S7. 
Chronic icv administration of TLQP-62 peptide ameliorated pathophysiological changes in the 
5xFAD mouse brain. A) Immunohistochemical staining of Ab amyloid plaques and microglial 
cells in the 5xFAD mouse cortex and dentate gyrus after 28-day icv administration of TLQP-62 
peptide or vehicle control (aCSF). Red: Ab (6E10), green: Iba-1. B) Quantification of percent 
area of Ab and Iba-1 staining in both peptide-treated male and female 5xFAD mouse brains. 
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N=4~5 mice/per group (male), 5~7 mice/per group (female). Data were analyzed by Student t-
test (6E10 staining) or one-way ANOVA with Newman-Keuls post hoc analysis (Iba-1 staining). 
*: p<0.05, **: p<0.01, ***: p<0.001. C) Reduced staining of Lamp1-immunoreactive dystrophic 
neurite cluster number in 5xFAD brains after 28-day TLQP-62 icv infusion. Red: Lamp1, green: 
6E10, blue: DAPI. N= 5~6 male mice/per group. Data were analyzed by Student t-test. *: 
p<0.05. 
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Fig. S8. 
Density plot of the distribution of differential expression nominal p-values for genes downstream 
and not downstream (causally independent of the expression levels) of VGF in the gene-only 
network for mouse DE genes (5xFAD, WT versus 5xFAD, VGF∆/∆ brains): The x axis is the –
log10(p-value) and the y axis the densities. The red and blue curves are for genes downstream 
and not downstream of VGF in the network respectively. 
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Table S1. 
Classification of AD: This table defines the classification of samples in disease 
categories (152, 153) (for ROSMAP details, see 
https://www.synapse.org/#!Synapse:syn3191090). 

 
Dataset 

classifier controls AD 
definite 
controls 

definite AD 
(dAD) 

MSBB PlaqueMean continuous continuous < 6 >= 12 
MSBB CDR < 1 >= 1 0 >= 1 
MSBB CERJ < 2 >= 2 1 2 
MSBB Path DX controls non-controls controls dAD 
MSBB bbscore < 3 >= 3 < 3 >= 3 
MSBB NP-1 < 2 >= 2 1 2 

ROSMAP Braaksc < 3 >= 3 < 3 >= 3 
ROSMAP Ceradsc >= 4 < 4 4 1 
ROSMAP Cogdx < 4 >= 4 1 [4, 5] 
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