

1 **BACTERIAL ZOMBIES AND GHOSTS: PRODUCTION OF**
2 **INACTIVATED GRAM-POSITIVE AND GRAM-NEGATIVE**
3 **SPECIES WITH PRESERVED CELLULAR MORPHOLOGY**
4 **AND CYTOPLASMIC CONTENT**

5 Rahwa Taddese¹, Clara Belzer², Steven Aalvink², Marien I. de Jonge³, Iris D. Nagtegaal¹,
6 Bas E. Dutilh^{4,5,*}, Annemarie Boleij^{1,*#}

7 ¹Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands,

8 ²Laboratory of Microbiology, Wageningen University and Research, Wageningen, The

9 Netherlands, ³Laboratory of Pediatric Infectious Diseases, Radboud University Medical

10 Center, Nijmegen, The Netherlands, ⁴Centre for Molecular and Biomolecular Informatics,

11 Radboud University Medical Center, Nijmegen, The Netherlands, ⁵Theoretical Biology and

12 Bioinformatics, Utrecht University, Utrecht, The Netherlands.

13 *Equal contribution

14 #Correspondence:

15 Dr. Annemarie Boleij

16 annemarie.boleij@radboudumc.nl

17 Running title: Bacterial inactivation with intact surface structure

18 Keywords: Bacterial inactivation, high-throughput protocol, beta-propiolactone,
19 pasteurization, heat-treatment, scanning electron microscopy, bacterial zombies, bacterial
20 ghosts

21

25 **ABSTRACT**

26 There are many approaches available to inactivate bacteria, each with a different efficacy,
27 impact on cell integrity, and potential for application in high-throughput. The aim of this
28 study was to compare these approaches and develop a standardized protocol for generation of
29 intact Gram-positive as well as on Gram-negative “bacterial zombies”, i.e. cells that are
30 metabolically dead with retained cellular integrity. Here, we introduce the term “bacterial
31 zombies” in addition to “bacterial ghosts” to differentiate inactivated bacteria with preserved
32 cellular integrity from those with perforated membranes, where DNA and cytoplasmic
33 contents have been released. This differentiation of inactivated bacteria is important if the cell
34 content is the subject of study, or if cell contents in the media may cause unwanted effects in
35 downstream applications. We inactivated eight different bacterial species by treatment with
36 beta-propiolactone, ethanol, formalin, sodium hydroxide, and pasteurization. Inactivation
37 efficacy was determined by culturing, and cell wall integrity assessed by quantifying released
38 DNA and visualization by scanning electron microscopy. Based on these results, we discuss
39 the choice of bacterial inactivation methods, and conclude that beta-propiolactone and ethanol
40 are the most promising approaches for standardized generation of bacterial zombies.

41

42 **IMPORTANCE**

43 For applications such as vaccination or analyses that are sensitive to bacterial growth,
44 inactivated bacteria are preferred because they simplify the analyses and the interpretation of
45 results. This study compared various bacterial inactivation treatments that maintain cell
46 integrity and may be used in high-throughput. Our results demonstrated that beta-
47 propiolactone and 70% ethanol were the best techniques to achieve these goals.

48 INTRODUCTION

49 Bacterial inactivation refers to bactericidal methods that kill bacteria by damaging DNA or
50 protein synthesis, resulting in termination of growth. While several techniques are available to
51 achieve bacterial inactivation, most studies focus on single bacteria and there is no protocol
52 for standardized and high-throughput inactivation of bacteria in general. Experiments that are
53 sensitive to host-microbe interaction often involve inactivation of the bacteria before they are
54 applied. Examples include immunization of humans and animals (vaccinations), analysis of
55 cell response to bacterial outer-membrane structures, and the use of inactivated bacteria as
56 carriers for drugs or antigens [1].

57 One challenge for a standardized protocol for bacterial inactivation lies in the diversity of the
58 targeted bacteria. For example, the structurally different walls of Gram-positive and Gram-
59 negative bacteria may inhibit certain inactivation treatments. One example is the production
60 of bacterial ghosts by using a plasmid with an E gene insert derived from bacteriophage
61 ΦX174, that lyses Gram-negative bacteria by forming a lysis tunnel across the double
62 membrane, where the DNA and cytoplasmic contents escape [1]. Additionally, DNA is then
63 degraded by beta-propiolactone (BPL) and/or staphylococcal nuclease A. Finally, inactivated
64 bacteria are lyophilized to ensure inactivation. This procedure inactivates a range of Gram-
65 negative bacteria, but it is not compatible with Gram-positive bacteria. A double membrane
66 such as what Gram-negative bacteria have is necessary for the formation of a lysis tunnel [1;
67 2].

68 A second challenge lies in finding methods for application in high-throughput. Gram-positive
69 bacterial ghosts were created for *Listeria monocytogenes* (referred to as *L. monocytogenes*
70 ghosts or LMGs) using a combination of chemicals in a series of steps [3]. With these
71 chemicals, the minimum inhibitory concentrations had to be determined beforehand to
72 produce inactivated bacteria with preserved structure. The minimum inhibitory concentrations
73 may differ for individual bacteria, making certain inactivation treatments unsuitable for high-
74 throughput protocols.

75 A third challenge when standardizing the inactivation protocol lies in the methods to quantify
76 bacterial cells. Several protocols require that comparable amounts of bacteria are available to
77 ensure efficient inactivation. There are numerous methods to quantify bacteria with different
78 accuracy and different suitability for application in high-throughput, including plating and
79 counting colony forming units (CFU), 4,6-diamidino-2-phenylindole (DAPI)-staining,
80 fluorescent-activated cell sorting (FACS), and measuring optical density (OD) [4; 5]. DAPI
81 and FACS require further processing of bacteria which end up being time-consuming.
82 Measuring OD may be the quicker and easier option, albeit less accurate than plating and
83 counting CFUs. Therefore, next to the plating, OD may be measured to proceed with
84 experiments immediately while incubating bacteria on the plates.

85 “Bacterial ghosts” are inactivated bacteria whose cytoplasmic content including DNA have
86 been lost via perforated membranes [1; 3]. Here, we introduce the term bacterial zombies to
87 indicate intact inactivated bacteria whose DNA and cytoplasmic content remains within the
88 cell. We compared five protocols for their ability to effectively inactivate bacteria while

89 preserving the bacterial membrane structure, applicability to different bacterial strains, and the
90 possibility for standardization, including four chemical treatments beta-propiolactone (BPL),
91 ethanol, formaldehyde (further referred to as formalin), sodium hydroxide (NaOH), and one
92 physical treatment, i.e. pasteurization.

93 BPL is commonly used for the inactivation of viruses for vaccinations. It acts mainly by
94 damaging the DNA [6]. Previous research has found that BPL chemically modifies membrane
95 fusion proteins and antigen proteins on the surface of Influenza viruses whereas another study
96 showed that protein structures and foldings are not greatly affected in rabies viruses [7; 8; 9].
97 BPL has been previously applied on bacterial cells, but it is not known if BPL affects the
98 bacterial surface structure.

99 Ethanol is generally used for cleaning surfaces and sterilization due to its bactericidal effects.
100 It inactivates bacteria by disrupting the cell membrane, dehydrating the bacterial cells and
101 denaturing proteins. Interestingly, spores are not inactivated by ethanol [10; 11].

102 Formalin is applied as fixating agents for histological tissue samples. It also acts on bacteria
103 by interacting with nucleic acids and proteins and by dehydrating the cells while keeping the
104 structure intact [11]. However, cross-links with proteins could change epitopes for antibodies
105 on the cell surface [12].

106 NaOH has been previously used to create bacterial ghosts. The minimum inhibitory
107 concentration of NaOH was determined to create bacterial ghosts from *Staphylococcus aureus*
108 [13]. Using scanning electron microscopy (SEM), they demonstrated that NaOH perforates
109 the bacterial membrane where the bacterial DNA escapes and is degraded. Except for the
110 pores, the membrane and cell wall of the bacteria were shown to remain intact.

111 Pasteurization is a commonly used method in the food industry to extend shelf-life of
112 products without destroying essential nutrients. Common bacterial pasteurization works by
113 raising the temperature up to 70°C for a maximum of 30 minutes, denaturing proteins and cell
114 membranes of bacteria [14].

115 The techniques mentioned above demonstrate effective bacterial inactivation, but it is mostly
116 unknown whether the surface structures are preserved for both Gram-positive and Gram-
117 negative bacteria. The aim of this study is to evaluate the protocols for the efficacy of
118 bacterial inactivation while preserving the surface structure and for their potential to use them
119 in high-throughput inactivation.

120

121 MATERIALS AND METHODS

122 Bacterial strains and growth conditions

123 Eight strains of bacteria from five phyla were selected as representatives for the structural
124 differences in bacterial cell walls of Gram-positive and Gram-negative strains to evaluate the
125 inactivation efficacy of each method (Table 1). The anaerobic bacteria *Bacteroides fragilis*

126 9343 NTBF, *Parabacteroides distasonis* 3999B T(B)4, *Fusobacterium nucleatum* patient
127 isolate NTB17 (from the Radboudumc strain collection), *Akkermansia muciniphila* ATCC
128 BAA-835 were cultured in an anaerobic jar using sachets (Thermo Fisher Scientific, USA) in
129 Brain-Heart-Infusion (BHI) broth (Sigma-Aldrich, USA) supplemented with L-cysteine
130 (Sigma-Aldrich, USA), yeast extract (BD, USA), hemin (Sigma-Aldrich, USA), vitamin K₁
131 (Sigma-Aldrich, USA) for 48 hours at 37°C. Facultative aerobic strains such as *Salmonella*
132 *enteric* serovar Typhimurium NTB6 [15] (further designated as *S. typhimurium*),
133 *Streptococcus gallolyticus* subsp. *gallolyticus* UCN34 (further designated as *S. gallolyticus*),
134 *Escherichia coli* NC101 delta pks and *Lactococcus lactis* IL1403 were cultured aerobically in
135 BHI broth overnight at 37°C with 5% CO₂.

136 Following incubation, optical density at 620 nm was measured in the microplate reader
137 Infinite F50 (Tecan, Switzerland) and samples were centrifuged at maximum speed
138 (16,100 rcf) for 10 minutes. Supernatants were discarded and OD₆₂₀ was adjusted to 1.0 in
139 0.9% sodium chloride buffer (B Braun Melsungen AG, Germany) for treatments with BPL
140 (Acros Organics, Thermo Fisher Scientific, USA) and pasteurization. For NaOH, ethanol (all
141 from Merck, Germany) and formalin (formaldehyde solution about 37%, Merck, Germany)
142 treatments, pellets were resuspended at OD₆₂₀ of 1.0 in NaOH, ethanol and formalin,
143 respectively.

144 Inactivation treatments

145 **BPL treatment** Bacteria were dissolved in 0.9% sodium chloride buffer. BPL was added to
146 the buffer at concentration of 1:2,000 (v/v) and samples were incubated rotating at 150 rpm at
147 4°C overnight (modified protocol from Gonçalves et al. [16]). After incubation, samples were
148 placed at 37°C for 2 hours to inactivate BPL. No rinsing was required. **NaOH, ethanol and**
149 **formalin treatments** Bacterial pellets (Table 1) were resuspended in 6 mg/mL NaOH solution,
150 70% ethanol, and formalin, and incubated at room temperature for 5 minutes. **Pasteurization**
151 Bacteria were heat-treated in a dry block heater (Grant, UK) at 70°C for 30 minutes.
152 Hereafter, samples were immediately placed on ice.

153 Immediately after incubation, 15 µL of each treatment was transferred into the first serial
154 dilutions to obtain colony forming units. Bacteria were then centrifuged (16,100 rcf,
155 10 minutes) where the top part of the supernatants were transferred into a new eppendorf tube
156 to measure the DNA concentration. Using 0.9% sodium chloride buffer, bacteria were
157 resuspended for rinsing. This was repeated by centrifuging and resuspending bacteria in the
158 same buffer again.

159 Colony forming unit (CFU) determination

160 Following inactivation treatments, 10-fold serial dilutions were plated with treated and
161 untreated bacteria to determine the CFU and compare the inactivation efficacy. Three drops
162 (15 µL each) from each dilution were placed on BHI agar plates and incubated aerobically
163 (37°C, 5% CO₂, overnight) and anaerobically (37°C, 48 hours) for facultative aerobes and
164 anaerobes, respectively. After incubation, colonies were counted and CFU/mL were

165 calculated for each inactivation method. The CFU/mL also gives information on the amount
166 of bacteria prior to treatment at OD₆₂₀ of 1.

167 **Measurement of the concentration of extracellular DNA**

168 After treatments, bacteria were centrifuged at 16,100 rcf for 10 minutes and DNA
169 concentration was measured from the top fraction of the supernatants at 260 nm using
170 NanoDrop ND-1000 (Isolagen Technologies, USA).

171 **Scanning electron microscopy (SEM)**

172 **Fixation** Following DNA measurements, remaining supernatants were completely removed
173 and bacterial pellets were fixed in 2% glutaraldehyde diluted in 0.1 M cacodylate buffer
174 overnight at 4°C. Samples were centrifuged, washed with 0.1 M cacodylate buffer and stored
175 at 4°C in same buffer until use. When ready for SEM visualization, post-fixation was
176 performed. For this, buffer was removed by centrifugation and bacteria were incubated in 1%
177 osmium tetroxide for 1 hour at room temperature. Samples were centrifuged and washed with
178 deionised water. **Dehydration** Bacteria were placed on filter papers with pore size of 5 to
179 13µm (Thermo Fisher Scientific, USA) that were cut to approximately 12 mm in diameter and
180 hydrated with few drops of water. Vacuum-suction was applied for bacteria to stick on the
181 filters. Dehydration was performed in ethanol series of 50%, 70%, 80%, 96% and 100%.
182 Filters must be kept wet at all times, so some ethanol was always left at the bottom every time
183 the solution was exchanged. **Drying** Hexamethyldisilazane (HMDS, Sigma-Aldrich, USA)
184 was used for drying bacterial samples. For drying the filters, three HMDS dilutions (2:1, 1:1
185 and 1:2) were prepared using 100% ethanol. Also here, filters must be kept wet by leaving
186 some solution during exchange. **Coating** Filters were attached to aluminum Zeiss pin stubs
187 with 12.7 mm diameter (MicrotoNano, The Netherlands) and coated with gold in HHV
188 Scancoat Six bench-top sputter coater (HHV Ltd., UK) 3 times for 30 seconds each. **SEM**
189 **visualization** Preservation and damage of bacterial surface structures of the bacteria after
190 inactivation treatments were compared to that of untreated bacteria at comparable
191 magnifications and settings using Zeiss Sigma 300 (Carl Zeiss, Germany).

192 **Quantification of dents and ECS in SEM pictures**

193 For quantification, pictures with a maximum of 50 bacteria were selected. The number of
194 dents and ECS on each cell were counted and the percentages of total dents or ECS were
195 calculated.

196 **Fluorescein isothiocyanate (FITC) and 4',6-diamidino-2-phenylindole (DAPI) labeling**

197 **FITC and DAPI labeling of live bacteria** Bacteria were grown overnight and OD₆₂₀ was
198 adjusted to 1.0. Bacteria were washed once with phosphate buffered saline (PBS) and
199 centrifuged at 16,100 rcf for 3 minutes. During centrifugation, FITC (Sigma-Aldrich, USA)
200 was dissolved in dimethyl sulfoxide (DMSO, PanReac AppliChem) at 5 mg/mL and diluted in
201 PBS at 0.5 mg/mL (FITC/PBS mixture). For each bacterium negative controls were live
202 bacteria, stained with FITC but not DAPI (ProlongTM Gold Antifade Mountant with DAPI,
203 Thermo Fisher Scientific, USA) (see Table 2). Positive controls are stained with both, DAPI

204 and FITC. Following centrifugation, bacterial pellets and positive controls were resuspended
205 in 1 mL FITC/PBS mixture. Bacteria were incubated rotating in the dark for 30 minutes for
206 labeling. Afterwards, they were washed with PBS 3 times to remove non-bound FITC
207 (centrifugations at 16,100 rcf for 3 minutes). **Inactivation treatments** Except for positive and
208 negative controls, bacteria were inactivated with various treatments. **Fixation** Inactivated
209 cells were centrifuged at 16,100 rcf for 3 minutes and pellets were resuspended in formalin
210 for 5 minutes. Formalin was washed out with PBS 3 times (centrifugations at 16,100 rcf for
211 3 minutes). **Staining with DAPI and preparation for microscopy** After washing out formalin,
212 bacteria were dissolved in PBS. 5 μ L of bacteria were placed on slides at a dilution of 10¹ or
213 10². Bacteria were air dried on the slides and then covered with 1-2 drops of ProlongTM Gold
214 Antifade Mountant with DAPI and cover slips. For negative controls, Quick-D mounting
215 medium (Klinipath, The Netherlands) was used. Finally, bacteria were visualized under the
216 fluorescence microscope at 100x magnification (with oil). Slides were stored in the fridge at
217 4°C in the dark until imaging for a maximum of 3 months.

218

219 **RESULTS**

220 The efficacy of the inactivation treatments; BPL, ethanol, formalin, NaOH, and pasteurization
221 was examined, aiming to obtain intact bacterial zombies. For this, eight anaerobic and
222 facultative aerobic bacterial strains from five phyla were selected based on their differences in
223 cell wall structures, including two Gram-positive and six Gram-negative strains (see Table 1).

224 **Efficacy of inactivation**

225 To assess the efficacy of inactivation treatments, CFU/mL prior (at OD₆₂₀ of 1.0) and post
226 treatments were calculated by counting colonies from agar plates (see Supplementary Table
227 S1). The inactivation efficacy of BPL, ethanol, formalin, and NaOH was 100%, with no
228 bacterial colonies observed on the plates. While 30 minutes of pasteurization inactivated
229 >99.65% bacteria for all strains, Figure 1 shows that some cells of *E. coli*, *S. typhimurium*,
230 *P. distasonis*, *L. lactis* and *A. muciniphila* survived the pasteurization process, rendering this
231 inactivation approach the least efficacious of all those tested.

232 **Maintenance of cellular integrity: Quantification of released extracellular DNA in 233 supernatants**

234 As defined above, bacterial zombies differ from bacterial ghosts in that they have retained
235 their cellular integrity. We applied several complementary methods to evaluate the effects of
236 the various inactivation treatments on cellular integrity of inactivated bacteria. We measured
237 the release of extracellular DNA (exDNA) in the supernatants, imaged the bacteria with SEM,
238 labeled surface proteins with FITC, and labeled intracellular DNA with DAPI.

239 Figure 2 reveals significant differences in exDNA of individual bacteria between the different
240 inactivation methods. Supernatants of untreated bacteria (served as negative control) generally
241 contained low amounts of exDNA (mean \pm standard deviation, 30.67 \pm 17.45 ng/ μ L). Striking
242 was the high exDNA (116.4 \pm 33.33 ng/ μ L) released in all NaOH-treated samples when

243 compared to the negative control. ExDNA in BPL-treated bacteria was consistently low. Here,
244 the mean value (29.74 ± 11.34 ng/ μ L) was similar to the negative control ($30.67 \pm$
245 17.45 ng/ μ L). When comparing pasteurization, ethanol and formalin with each other, the
246 standard deviations of pasteurization (60.96 ± 18.85 ng/ μ L) and ethanol ($42.50 \pm$
247 18.14 ng/ μ L) were smaller than that of formalin (57.88 ± 56.94 ng/ μ L). From all the
248 treatments, the mean released exDNA concentrations of ethanol (42.50 ± 18.14 ng/ μ L) and
249 BPL (29.74 ± 11.34 ng/ μ L) were closer to that of the negative control (30.67 ± 17.45 ng/ μ L),
250 and all their mean concentrations were under 50 ng/ μ L. The results of quantified exDNA in
251 supernatants indicate that BPL and ethanol inactivate bacteria while keeping the cells intact,
252 creating bacterial zombies. Pasteurization, NaOH and formalin break down cell walls
253 releasing the DNA and generating bacterial ghosts.

254 Interesting was also that the exDNA values of Gram-positive bacteria was below the average
255 with all bacteria that were treated and untreated. This indicates that the cell walls of Gram-
256 positive bacteria may be more stable and not easily disrupted using the various inactivation
257 treatment procedures.

258 **Maintenance of cellular integrity: Imaging of inactivated bacteria by scanning electron
259 microscopy**

260 To visualize whether surface structures of inactivated bacteria were intact or damaged, SEM
261 imaging was carried out.

262 We investigated the BPL and ethanol treatments using SEM imaging because they had 100%
263 inactivation efficacy and little leakage of DNA. Since NaOH had a relatively high exDNA in
264 most bacterial supernatants (Figure 2), we included this treatment as a positive control of a
265 disrupted cell wall structure. The Gram-positive facultative aerobe *S. gallolyticus* and the
266 Gram-negative anaerobe *A. muciniphila* were selected for visualization with SEM because
267 their exDNA release was consistently below 100 ng/ μ L with all treatments. The effects of
268 inactivation treatments on the surface structures and shapes of treated and untreated cells were
269 compared (Figure 3).

270 As shown in Figures 3A and 3E, *A. muciniphila* grows in long rods whereas *S. gallolyticus*
271 forms diplococci. Normal untreated as well as treated bacteria clearly show the division ring.
272 Ethanol-treated *A. muciniphila* exhibit increased dents and extracellular surface structures
273 (ECS, arrows in Figure 3B) but most bacteria seem similar to untreated cells (Figure 3A).
274 *S. gallolyticus* also shows dents in the outer structure but the shape of bacterial cells is
275 preserved (Figure 3F). Figures 3C and 3G reveal that the structures of BPL-treated
276 *A. muciniphila* and *S. gallolyticus* are preserved. With *A. muciniphila* there is minimal
277 structural damage observed. *S. gallolyticus* appears to have more dents than ethanol-treated
278 *S. gallolyticus* (Figure 3F). Hence, BPL and 70% ethanol are demonstrated to generate
279 inactivated intact bacteria (Figures 3B-C, 3F-G). As expected, the NaOH-treated
280 *A. muciniphila* and *S. gallolyticus* bacteria displayed the most severe structural damage, even
281 though they had the lowest exDNA release with NaOH as measured using Nanodrop
282 (Figure 2). Studies have shown that using NaOH perforates the bacterial cell wall, allowing
283 the DNA and the cytoplasmic contents to spill out of the cell [3; 13]. Our SEM pictures

284 (Figures 3D and 3H) indicate the creation of structurally preserved inactivated *A. muciniphila*
285 and *S. gallolyticus* bacteria when using a very low NaOH concentration of 6 mg/mL.

286 Damage in SEM images was quantified (Tables 3 and 4) by assessing the percentages of cells
287 with dents and ECS. The controls exhibit some dents which might be due to preparations for
288 SEM imaging. Interestingly, the treatment NaOH seems to have caused most damage in both
289 bacteria (27.6% for Am, 64.9% for Sg) compared to the controls (9.1% for Am, 27.6 for Sg).
290 There are dents in all images except for BPL-treated *A. muciniphila* and untreated
291 *S. gallolyticus*, where NaOH presented most dents in both bacterial species. As for the ECS, it
292 looks to be specific for *A. muciniphila* since there was only 1 out of 81 *Streptococci* observed
293 with ECS. *Akkermansia* showed most ECS with the ethanol treatment. Further studies are
294 required to examine the ECS in *A. muciniphila*.

295 **FITC and DAPI labeling**

296 FITC and DAPI labeling was performed to examine the membrane integrity of *S. gallolyticus*
297 (Figure 4). FITC binds to outer surface proteins while DAPI binds to DNA. Positive controls
298 were labeled with both, FITC and DAPI to demonstrate functioning of both stains. Negative
299 controls were only stained with FITC but not DAPI to ensure that FITC stain does not appear
300 on DAPI channel.

301 In Figure 4, both controls with FITC showed intensely colored, intact cells. Treated bacteria
302 also seem to be intact since the green color is intense and comparable to both controls. DAPI
303 specifically stained the DNA in positive control, verifying the presence of DNA within intact
304 cells. As expected, bacteria in negative control were not DAPI stained so no staining is
305 visible. DAPI is intensely labeled in bacteria treated with ethanol, formalin, and pasteurization
306 which confirms that the DNA was retained in the nucleus. In contrast, NaOH did not exhibit
307 any staining, indicating that DNA escaped the bacterial cells. To conclude, while all
308 inactivation treatments preserved the cell structure (FITC staining), NaOH inflicted
309 considerable damage to the membrane integrity, releasing the DNA (DAPI staining).

310

311 **DISCUSSION**

312 We aimed to examine different methods for inactivation of bacteria while preserving the
313 membrane integrity, i.e. creating “bacterial zombies”. We chose eight bacteria from five phyla
314 with different Gram stains and oxygen requirements to inactivate with BPL, pasteurization,
315 ethanol, formalin, and NaOH. Our results demonstrate that BPL and ethanol showed 100%
316 inactivation efficacy and minimal leakage of DNA. These methods may be applied in a
317 standardized high-throughput inactivation protocol.

318 The techniques formalin and NaOH were not suitable for a protocol where preserved structure
319 is required because they did not fulfil the aforementioned criteria of minimal DNA leakage.
320 While pasteurization can be easily performed, not all bacteria were inactivated in our
321 experiments in contrast to previous reports [14]. This difference might be the result of a
322 different experimental setup, e.g. we used a heat block instead of a water bath and a larger

323 volume for pasteurization, possibly interfering with the conductivity. Perhaps the inactivation
324 efficacy might be improved by increasing the temperature and/or the incubation time, but this
325 was not further tested.

326 Furthermore, NaOH treatment inactivated all bacteria and the protocol was simple to carry
327 out, but it had highest DNA release and surface structures exhibited many dents. Therefore,
328 we suggest that NaOH is a good technique for generating “bacterial ghosts” whose cellular
329 content is released [1; 3].

330 With BPL, all tested bacteria were inactivated. A major advantage of the BPL treatment is
331 that the protocol does not include a washing step after inactivation, so there is minimal loss of
332 bacterial material. Thus, BPL inactivation can be used when dealing with low-input samples.
333 The disadvantage is that BPL must be handled very carefully when conducting experiments.
334 Mice experiments showed that BPL lead to formation of carcinoma upon skin exposure and
335 nasal cancer upon inhalation [17; 18; 19]. Thus, BPL should be used only under an air
336 replacement hood. After bacterial inactivation, BPL-treated samples are placed at 37°C for
337 2 hours to inactivate BPL. Then the samples are safe to use for further applications.

338 Ethanol and formalin completely inactivated all tested microbes within 5 minutes. Both these
339 protocols were readily executed and may be performed in high-throughput. The ethanol
340 treatment did not show exDNA concentrations higher than untreated samples. Note that here;
341 the absence of exDNA is not the result of DNA precipitation by ethanol, since no resuspended
342 DNA could be detected, even after centrifugation of any potential precipitate (Supplementary
343 Figure S1). Moreover, DAPI staining of ethanol treated cells showed that the DNA remained
344 concentrated inside the cells (Figure 4). A disadvantage of ethanol may be the washing out of
345 lipoproteins from the cell-surface, so this approach might be less suitable for antibody
346 production or immunization [20; 21].

347 ExDNA release of formalin was widely scattered (Figure 2). This may indicate that formalin
348 can disrupt the structures of certain bacteria more than others, potentially making this
349 treatment unreliable for generalized application.

350 Conclusion

351 This study for the first time compares different methods for bacterial inactivation, on a range
352 of microbiota members, with an outlook to their potential use in high-throughput. Our results
353 suggest that inactivation treatments with BPL or ethanol are best for standardized high-
354 throughput inactivation and creation of bacterial zombies with intact surface structures.

355

356 **LIST OF NON-STANDARD ABBREVIATIONS**

357 BHI: brain-heart-infusion
358 BPL: beta-propiolactone
359 CFU: colony forming units
360 DAPI: 4',6-diamidino-2-phenylindole
361 ECS: extracellular structures
362 FACS: fluorescent-activated cell sorting
363 FITC: fluorescein isothiocyanate
364 HMDS: hexamethyldisilazane
365 NaOH: sodium hydroxide
366 OD: optical density
367 PBS: phosphate buffered saline
368 SEM: scanning electron microscopy
369

370 **ACKNOWLEDGEMENTS**

371 RT was supported by Radboud Institute for Molecular Life Sciences (RIMLS 014-058). BED
372 was supported by the Netherlands Organization for Scientific Research (NWO) Vidi grant
373 864.14.004. AB was supported by the Netherlands Organization for Scientific Research
374 (NWO) Veni grant 016.166.089.

375

376 **AUTHOR CONTRIBUTIONS**

377 RT, BED and AB contributed conception and design of the study. RT performed experiments
378 and wrote the first draft of the manuscript. All authors supervised and discussed experiments,
379 contributed to manuscript revision, read and approved the submitted version.

380

381 **REFERENCES**

382 [1] T. Langemann, V.J. Koller, A. Muhammad, P. Kudela, U.B. Mayr, and W. Lubitz, The
383 Bacterial Ghost platform system: production and applications. *Bioengineered bugs* 1
384 (2010) 326-36.
385 [2] G. Halfmann, F. Gotz, and W. Lubitz, Expression of bacteriophage PhiX174 lysis gene E
386 in *Staphylococcus carnosus* TM300. *FEMS microbiology letters* 108 (1993) 139-43.

387 [3] X. Wu, X. Ju, L. Du, J. Yuan, L. Wang, R. He, and Z. Chen, Production of Bacterial
388 Ghosts from Gram-Positive Pathogen *Listeria monocytogenes*. *Foodborne pathogens*
389 and disease 14 (2017) 1-7.

390 [4] E.Y. Seo, T.S. Ahn, and Y.G. Zo, Agreement, precision, and accuracy of epifluorescence
391 microscopy methods for enumeration of total bacterial numbers. *Applied and*
392 *environmental microbiology* 76 (2010) 1981-91.

393 [5] C. Davis, Enumeration of probiotic strains: Review of culture-dependent and alternative
394 techniques to quantify viable bacteria. *Journal of microbiological methods* 103 (2014)
395 9-17.

396 [6] P. Perrin, and S. Morgeaux, Inactivation of DNA by beta-propiolactone. *Biologicals :*
397 *journal of the International Association of Biological Standardization* 23 (1995) 207-
398 11.

399 [7] P. Bonnafous, M.C. Nicolai, J.C. Taveau, M. Chevalier, F. Barriere, J. Medina, O. Le
400 Bihan, O. Adam, F. Ronzon, and O. Lambert, Treatment of influenza virus with beta-
401 propiolactone alters viral membrane fusion. *Biochimica et biophysica acta* 1838
402 (2014) 355-63.

403 [8] A.G. Toinon, F.; Moreno, N.; Nicolai, M.C.; Guinet-Morlot, F.; Manin, C.; Ronzon, F.,
404 Study of rabies virus by Differential Scanning Calorimetry. *Biochemistry and*
405 *Biophysics Reports* 4 (2015) 329-336.

406 [9] Y.M. She, K. Cheng, A. Farnsworth, X. Li, and T.D. Cyr, Surface modifications of
407 influenza proteins upon virus inactivation by beta-propiolactone. *Proteomics* 13
408 (2013) 3537-47.

409 [10] D.E. Otzen, P. Sehgal, and L.W. Nesgaard, Alternative membrane protein conformations
410 in alcohols. *Biochemistry* 46 (2007) 4348-59.

411 [11] G. McDonnell, and A.D. Russell, Antiseptics and disinfectants: activity, action, and
412 resistance. *Clinical microbiology reviews* 12 (1999) 147-79.

413 [12] K. Vani, S.A. Bogen, and S.R. Sompuram, A high throughput combinatorial library
414 technique for identifying formalin-sensitive epitopes. *Journal of immunological*
415 *methods* 317 (2006) 80-9.

416 [13] N. Vinod, S. Oh, H.J. Park, J.M. Koo, C.W. Choi, and S.C. Kim, Generation of a Novel
417 *Staphylococcus aureus* Ghost Vaccine and Examination of Its Immunogenicity against
418 Virulent Challenge in Rats. *Infection and immunity* 83 (2015) 2957-65.

419 [14] H. Plovier, A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N.
420 Ottman, T. Duparc, L. Lichtenstein, A. Myridakis, N.M. Delzenne, J. Klievink, A.
421 Bhattacharjee, K.C. van der Ark, S. Aalvink, L.O. Martinez, M.E. Dumas, D. Maiter,
422 A. Loumaye, M.P. Hermans, J.P. Thissen, C. Belzer, W.M. de Vos, and P.D. Cani, A
423 purified membrane protein from *Akkermansia muciniphila* or the pasteurized
424 bacterium improves metabolism in obese and diabetic mice. *Nature medicine* 23
425 (2017) 107-113.

426 [15] G.A. Kortman, R.W. Roelofs, D.W. Swinkels, M.I. de Jonge, S.A. Burt, and H. Tjalsma,
427 Iron-induced virulence of *Salmonella enterica* serovar *typhimurium* at the intestinal
428 epithelial interface can be suppressed by carvacrol. *Antimicrobial agents and*
429 *chemotherapy* 58 (2014) 1664-70.

430 [16] V.M. Goncalves, W.O. Dias, I.B. Campos, C. Liberman, M.E. Sbrogio-Almeida, E.P.
431 Silva, C.P. Cardoso, Jr., M. Alderson, G. Robertson, J.F. Maisonneuve, A. Tate, P.
432 Anderson, R. Malley, F. Fratelli, and L.C. Leite, Development of a whole cell
433 pneumococcal vaccine: BPL inactivation, cGMP production, and stability. *Vaccine* 32
434 (2014) 1113-20.

435 [17] N.H. Colburn, and R.K. Boutwell, The in vivo binding of beta-propiolactone to mouse
436 skin DNA, RNA, and protein. *Cancer research* 28 (1968) 642-52.

437 [18] A.R. Sellakumar, C.A. Snyder, and R.E. Albert, Inhalation carcinogenesis of various
438 alkylating agents. *Journal of the National Cancer Institute* 79 (1987) 285-9.
439 [19] S.J. Garte, A.T. Hood, A.E. Hochwalt, P. D'Eustachio, C.A. Snyder, A. Segal, and R.E.
440 Albert, Carcinogen specificity in the activation of transforming genes by direct-acting
441 alkylating agents. *Carcinogenesis* 6 (1985) 1709-12.
442 [20] Y. Chao, and T. Zhang, Optimization of fixation methods for observation of bacterial cell
443 morphology and surface ultrastructures by atomic force microscopy. *Applied
444 microbiology and biotechnology* 92 (2011) 381-92.
445 [21] A.K. Kniggendorf, T.W. Gaul, and M. Meinhardt-Wollweber, Effects of ethanol,
446 formaldehyde, and gentle heat fixation in confocal resonance Raman microscopy of
447 purple nonsulfur bacteria. *Microscopy research and technique* 74 (2011) 177-83.

448

449 **FIGURES AND TABLES**

450 **Table 1: Strains, their phyla and properties.**

Bacteria	Phyla	Oxygen requirements	Gram stain
<i>Akkermansia muciniphila</i>	Verrucomicrobia	Anaerobe	Negative
<i>Bacteroides fragilis</i>	Bacteroidetes	Anaerobe	Negative
<i>Fusobacterium nucleatum</i>	Fusobacteria	Anaerobe	Negative
<i>Parabacteroides distasonis</i>	Bacteroidetes	Anaerobe	Negative
<i>Escherichia coli</i>	Proteobacteria	Facultative aerobe	Negative
<i>Lactococcus lactis</i>	Firmicutes	Facultative aerobe	Positive
<i>Streptococcus galloyticus</i>	Firmicutes	Facultative aerobe	Positive
<i>Salmonella typhimurium</i>	Proteobacteria	Facultative aerobe	Negative

451

452

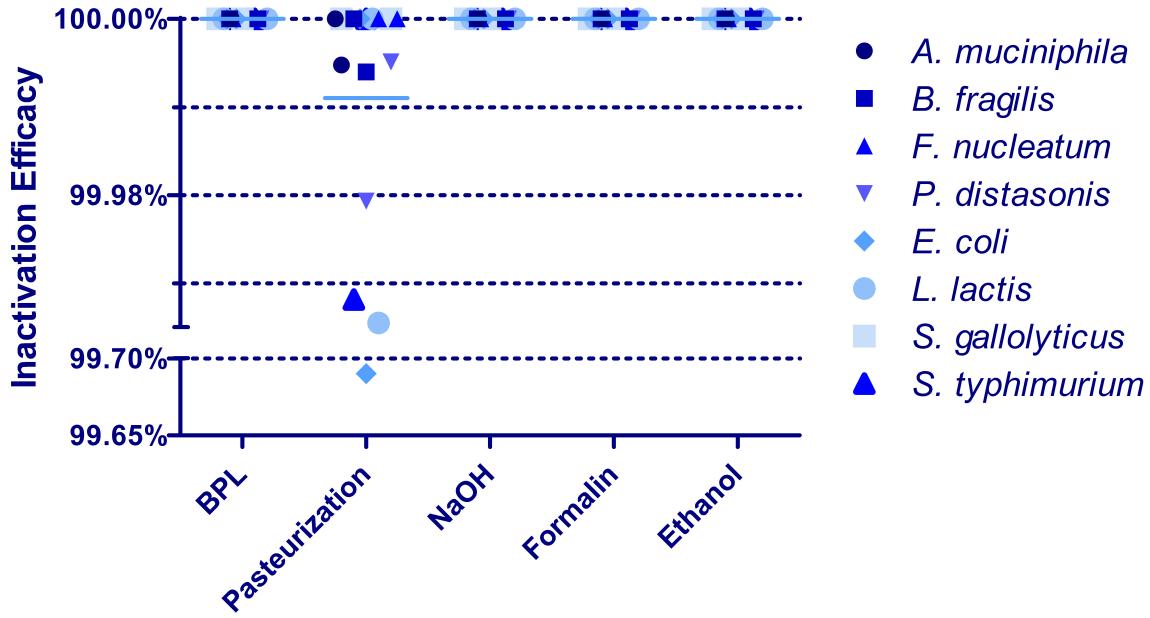
453 **Table 2: Overview of steps in FITC experiment.**

	Controls		Each Treatment (Ethanol, formalin, pasteurization, NaOH)
	Positive control	Negative control	Fixed
1. FITC staining	√	√	√
2. Fixation	√	√	√
3. DAPI staining	√	X	√
4. Visualization	10 ¹ and 10 ²	10 ¹ and 10 ²	10 ¹ and 10 ²

454

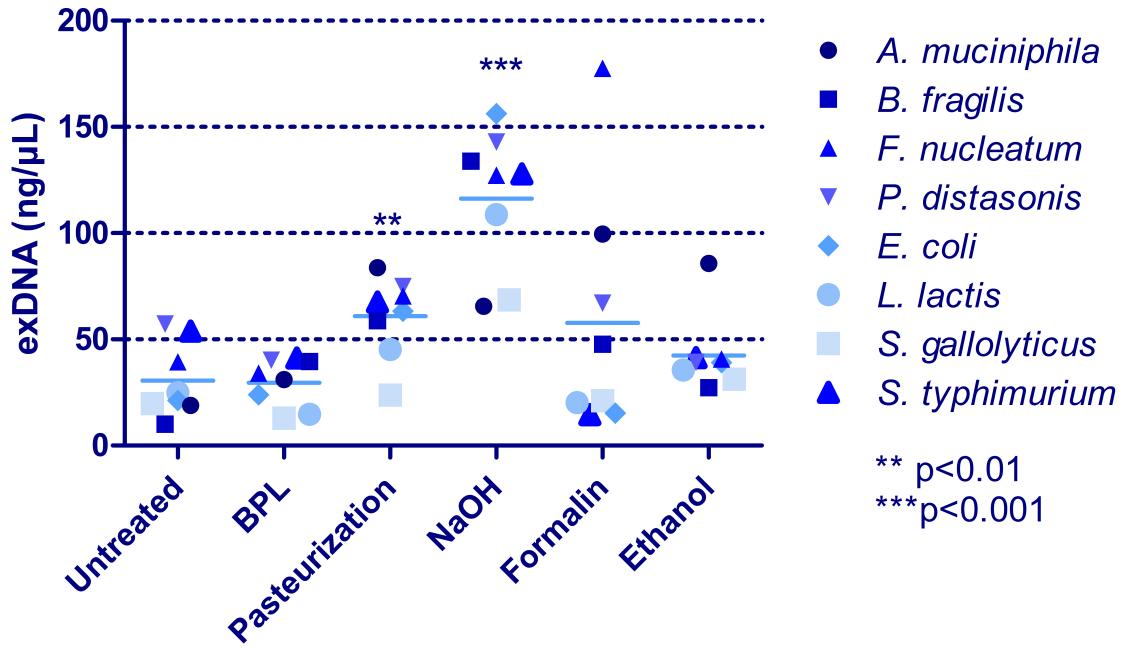
455 **Table 3: Quantification of dents in SEM pictures.**

	Number of cells with # dents						Total cells	% of cells with dents
	0 dents	1 dents	2 dents	3 dents	4 dents	≥ 5 dents		
Am Untreated	20	2	-	-	-	-	22	9.1
Am Ethanol	20	2	-	-	-	1	23	13.0
Am BPL	12	-	-	-	-	-	12	0
Am NaOH	21	4	1	1	2	-	29	27.6
Sg Untreated	6	-	-	-	-	-	6	0
Sg Ethanol	21	4	4	1	-	-	30	30
Sg BPL	4	1	-	2	-	1	8	50
Sg NaOH	14	14	9	1	-	-	37	64.9

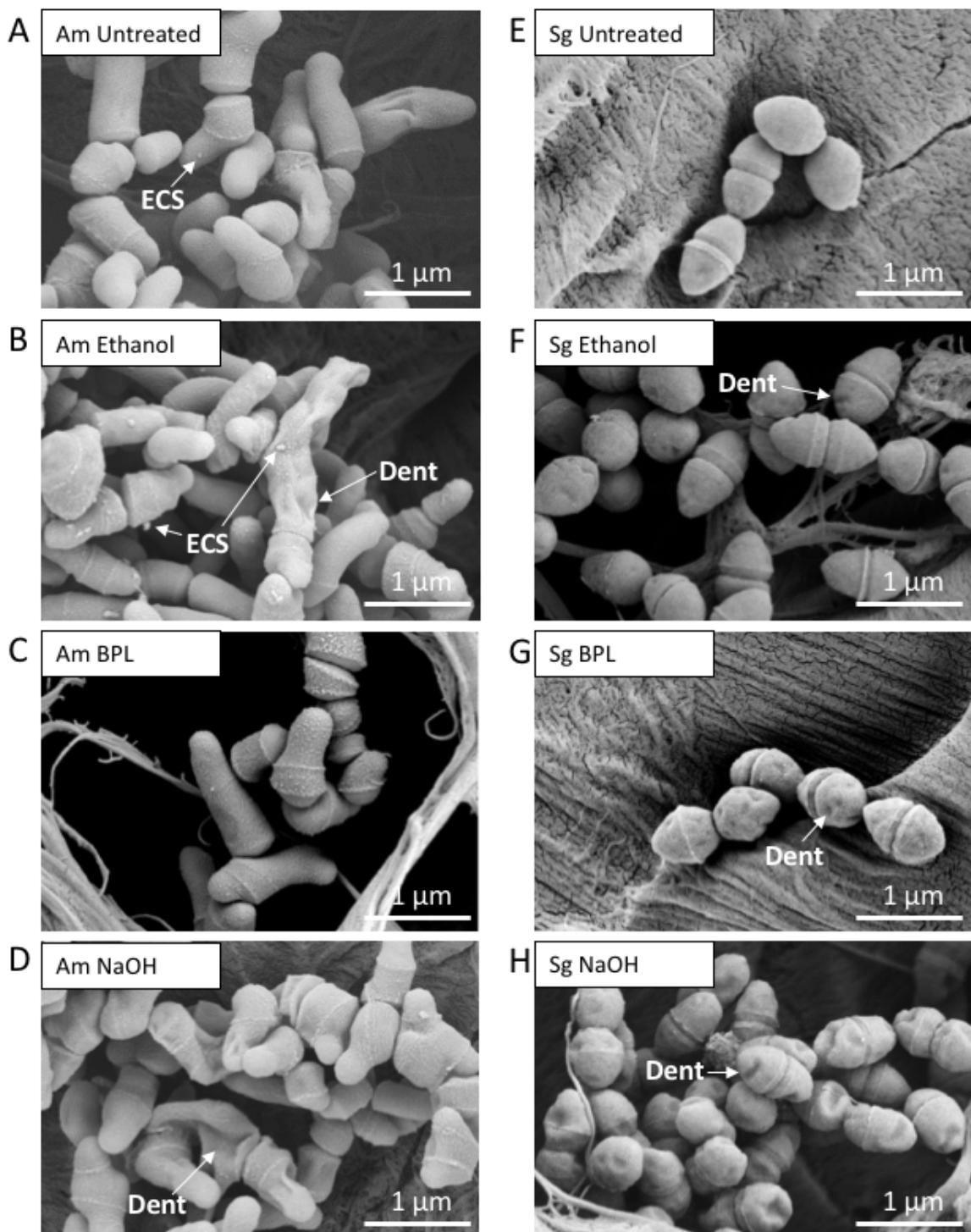

456

457

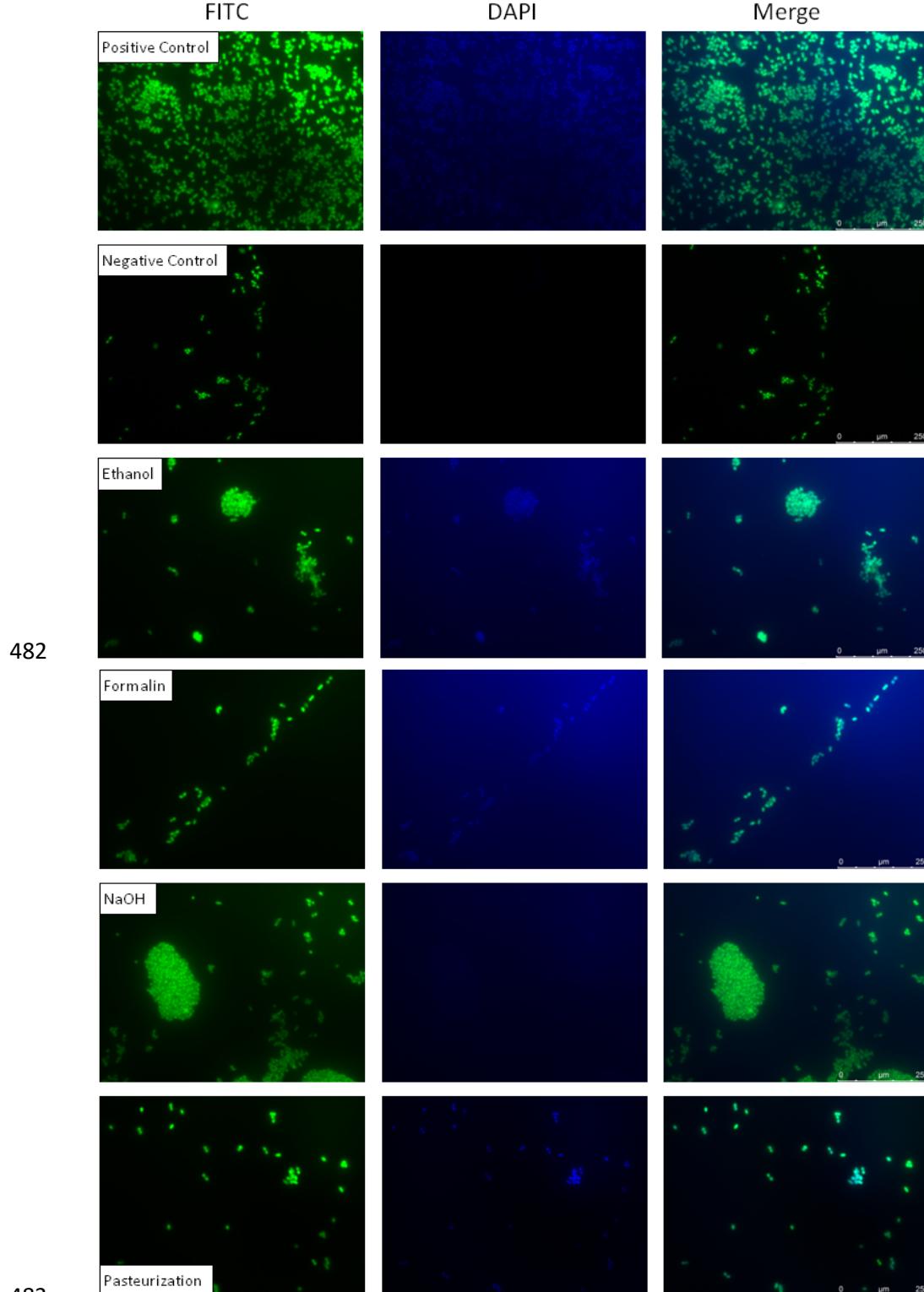
458 **Table 4: Quantification of ECS in SEM pictures.**


	Number of cells with # ECS					Total cells	% of cells with ECS
	0 ECS	1 ECS	2 ECS	3 ECS	≥ 4 ECS		
Am Untreated	21	1	-	-	-	22	4.5
Am Ethanol	16	5	1	1	-	23	30.4
Am BPL	11	1	-	-	-	12	8.3
Am NaOH	28	1	-	-	-	29	3.4
Sg Untreated	6	-	-	-	-	6	0
Sg Ethanol	30	-	-	-	-	30	0
Sg BPL	8	-	-	-	-	8	0
Sg NaOH	36	1	-	-	-	37	2.7

459


460
461 **Figure 1: Efficacy of inactivation treatments for individual bacteria.** Complete
462 inactivation of bacteria, i.e. 0 CFU/mL, was taken as 100%. Mean values calculated across all
463 bacteria (displayed by horizontal blue line): Pasteurization 99.97±0.07%, and 100% for
464 untreated bacteria, BPL, NaOH, Formalin and Ethanol. Pasteurization displayed colonies for
465 *E. coli*, *S. typhimurium*, *P. distasonis*, *L. lactis* and *A. muciniphila* compared to untreated
466 control.

467



468
469 **Figure 2: Extracellular DNA (exDNA) of supernatants from inactivated and untreated**
470 **individual bacteria.** Values were measured by Nanodrop, of which the mean was calculated
471 across all bacteria (displayed by horizontal blue line): Untreated bacteria 30.67 ± 17.45 ng/µL,
472 BPL 29.74 ± 11.34 ng/µL, Pasteurization 60.96 ± 18.85 ng/µL, NaOH 116.4 ± 33.33 ng/µL,
473 Formalin 57.88 ± 56.94 ng/µL, Ethanol 42.50 ± 18.14 ng/µL. NaOH and pasteurization
474 displayed significantly higher exDNA release than untreated control.

475

476
477 **Figure 3: SEM images of untreated and inactivated *A. muciniphila* (Am) and**
478 ***S. gallolyticus* (Sg).** Shown are untreated Am (A) and Sg (E), ethanol-treated Am (B) and Sg
479 (F), BPL-treated Am (C) and Sg (G), and NaOH-treated Am (D) and Sg (H). Dent-arrows
480 point at damages on treated bacteria. Extracellular structures (ECS)-arrows points at
481 extracellular structures on Am.

484 **Figure 4: FITC and DAPI labeling of untreated and inactivated *S. gallolyticus*.** The first
485 and second rows are positive and negative control (only FITC labeled), respectively. The next
486 rows show *S. gallolyticus* treated with ethanol, formalin, NaOH and pasteurization, and
487 labeled with FITC and DAPI. Note that no DAPI stain was used in negative control.