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Abstract

Obstructive sleep apnea syndrome (OSAS) is a highly prevalent condition associated with con-
siderable metabolic, cardiovascular, and neurocognitive morbidity. Childhood OSAS is underdiagnosed
due to a limited number of sleep laboratories and the lack of a screening test, and the subtlety of
daytime symptoms in children compared to adults. A potential marker of OSAS is apnea-induced
sympathoexcitation, which is likely to be exacerbated during rapid-eyemovement (REM) sleep. However,
traditional methods of assessing sympathetic activity are either too invasive or insensitive/nonspecific for
clinical use, particularly as a screening test. Study population comprised pediatric patients with OSAS
(16 moderate/severe, 18 mild) and 18 normal non-snoring controls. We show that the chaotic dynamics
of heart rate variability (HRV) as assessed by a sensitive noise titration assay is significantly increased
during REM compared to non-REM sleep in children, particularly those with OSAS. The increase in
heart rate chaos prevails in the face of decreased parasympathetic-mediated high-frequency component
of the HRV power spectrum, indicating that the chaos was correlated to sympathetic instead of parasym-
pathetic activity. Receiver operating characteristic analysis shows that such non-high frequency chaos
reveals changing sympathetic—parasympathetic activities that are not discernible by conventional HRV
metrics such as low- to high-frequency power ratio or sample entropy, with sensitivity and specificity
sufficient to detect even mild OSAS in children. Results suggest a possible role for non-high frequency
heart rate chaos as a selective noninvasive marker of sympathoexcitation in REM sleep, OSAS and

potentially other cardiovascular abnormalities such as congestive heart failure.
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I. INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is characterized by intermittent episodes of dis-
rupted breathing due to pharyngeal narrowing or collapse, resulting in hypoxemia, hypercapnia,
and/or sleep disruption. OSAS reportedly affects at least 2% of children in the United States
and Europe, though about 10% habitually snore [1]. The etiology and clinical manifestations
of OSAS in children are quite different from adults [1HS]. In particular, children with OSAS
may have normal sleep stage distribution, few electrocortical arousals, and obstructive events
occurring predominantly during rapid eye movement (REM) sleep [6].

Airflow obstruction and REM sleep may both exert profound influences on autonomic regu-
lation. Sympathetic nerve activity typically increases during REM sleep [/] and with OSAS
in adults [8-10]. These effects are accompanied by concurrent parasympathetic withdrawal
as identified from power spectrum analysis of heart rate variability (HRV), a widely used
noninvasive method of assessing beat-to-beat cardiac-autonomic regulation [[11} [12]. It has been
reported that the HRV power spectrum in children has a significantly decreased high-frequency
(HF) component and increased low- to high-frequency power ratio (LF/HF) during REM
compared to non-REM (NREM) sleep and with moderate/severe OSAS compared to normal
controls, indicating downregulation of parasympathetic activity in these conditions [13H13].
However, since the LF power and LF/HF are nonspecific indicators of sympathetic outflow
(which is a major drawback of conventional HRV analyses [12} [16H18]), it remains uncertain
whether sympathetic activity is upregulated in children during REM sleep or with mild OSAS.
A noninvasive method with high sensitivity and specificity in detecting even mild OSAS and
associated autonomic abnormalities is critical in developing an effective home screening test for
early diagnosis [19, 20], as even mild OSAS may be associated with considerable neurocognitive
morbidity in children despite the subtlety of daytime symptoms [21].

An emerging approach to assess cardiac-autonomic modulation of HRV is based on methods
of nonlinear time series analysis. Nonlinear control of HRV has been demonstrated in infants [22,
23]. Recent studies using a sensitive noise titration assay of nonlinear dynamics [24, 25/ have
shown that HRV in healthy young and elderly subjects has distinct chaotic signatures as measured
by the noise limit (NL, see Methods and Supplementary Information), which can be correlated
positively with the HF component and negatively with LF/HF particularly during nighttime

(i.e., HF chaos) [26, [27]. Here, we show that a novel form of heart rate chaos called non-HF
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chaos (i.e., independent of the HF' component) provides a more robust measure of changing
cardiac sympathetic-parasympathetic activities than is possible with conventional HRV metrics,

with sensitivity and specificity sufficient to detect even mild OSAS in children.

II. METHODS
A. Subjects

The subjects enrolled in this study underwent a comprehensive overnight polysomnogram eval-
uation of obstructive apnea as part of the research protocols approved by the Institutional Review
Boards and reported previously [28-H30]. Obstructive apnea is defined as cessation of oronasal
airflow in presence of respiratory efforts for at least two respiratory cycle times [2]. Obstructive
hypopnea is defined as a reduction in amplitude of oronasal airflow (> 50%) accompanied by
a 4% oxygen desaturation and/or arousal. The apnea-hypopnea index (AHI) is defined as the
number of obstructive apnea and hypopnea events per hour of sleep. OSAS was classified into
two severity levels: mild (AHI = 1 to 5/hour) and moderate/severe (AHI > 5/hour) [31]].

The study population comprised 52 children (age 1-16 yr), of which 16 were classified as
moderate/severe OSAS, 18 were mild/borderline OSAS, and 18 were normal; corresponding
demographic and polysomnographic data are given in Table[l] The normal group included 10
children recruited from the community for the study and had no history of sleep disorders, and
eight others who presented to the clinic with symptoms sufficient to warrant a sleep study, which
subsequently showed that they neither snored, nor had apnea. Informed consent was obtained
from the parent and assent from children more than 5 years of age. All subjects were free of

lung or neuromuscular disease, cardiac pathology or arrhythmia.

B. Sleep and ECG Data

Sleep stages were scored in 30-second epochs. For each subject, we selected for analysis a
continuous 3-hour ECG recording in the middle of the night that demonstrated minimal missing
data and movement artifacts. In preliminary analyses we found no significant difference between
NL values in stage 2 and slow-wave sleep. Accordingly, all data in these sleep stages were
combined as NREM sleep. The 3-hour recording included at least one continuous 10-minute
segment each of REM and NREM sleep. To minimize selection bias, the 3-hour recordings were
carefully selected to capture apnea/hypopnea events consistent with the all-night AHI of each

subject.
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Table 1: Demographic and polysomnographic data

Non-snoring Mild OSAS Moderate/severe OSAS
N 18 18 16
Male (N) 10 13 12
Age (years, range) 8.0+4.8 (2-16) 4.7+3.5 (1-13)* 4.84+22 (2-8)*
HR (bpm) 80.3 + 12.0 825+ 7.4 95.9 + 17.6
SWS (%TST) 26.3 + 11.5 24.8 +10.2 27.4+6.3
REM (%TST) 19.5 £5.8 20.6 +£5.8 20.5+6.7
AHI (Events/hr) 0.2+0.3 21+1.3%* 21.6 £20.5%*
SpO, Nadir (%) 94.2 + 3.8 91.8 + 3.6 79.6 = 15 *
Arousal index (Events/hr) 72+25 8.8+2.3 13.7+74%*

Data are presented as mean + SD. HR, mean heart rate; SWS, slow wave sleep; REM, rapid eye movement; %TST, percent
of total sleep time; AHI, apnea—hypopnea index; SpO2, arterial oxygen saturation; OSAS, obstructive sleep apnea syndrome.
* Indicates significant difference compared to non-snoring controls (p < 0.05).

The ECG was digitized at a sampling rate of 100 Hz. The R-waves’ fiducial points were
detected using a Hilbert transform-based peak extraction algorithm [32]]. The R-wave to R-wave
interval (RRI) time series was derived by calculating the sequential intervals between consecutive
QRS peaks. The RRI was visually inspected for artifacts, and ECG segments that were clearly
nonphysiological were removed. No further attempt was made to distinguish normal sinus beats
from ectopic beats as the latter are rare among children in this age range [33]] and the artificial
elimination of such suspected ectopic beats could itself introduce artifacts [34], particularly
during apnea events. The RRI time series was converted into equally-spaced samples in time
by cubic-spline interpolation with a sampling rate of 4 Hz. All data manipulation and analysis
algorithms were implemented in MATLAB (The MathWorks, Inc., Natick, MA). The RRI series
were analyzed within a 5-minute time window that slid at 30-second intervals. An example

patient sleep stages and RRI times series is illustrated in Figure[I]

C. HRV Analysis

1) Time-Domain Analysis: Five common time-domain HRV indices were evaluated [11]:
SDNN, SDANN, RMSSD, pNN50, and triangular index. Each index was calculated both over
the entire RRI series and over all the REM and NREM sub-segments in the RRI series.

2) Frequency-Domain Analysis: Power spectrum of HRV was estimated by using the discrete
pseudo Wigner—Ville distribution (PWVD), which allows continuous tracking of the changes in

frequency and amplitude of each spectral component in nonstationary (apnea-prone) RRI se-
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Figure 1: Time series of selected HRV metrics during sleep for a patient with moderate/severe
OSAS. The rows are (from top to bottom): sleep stages, with REM sleep epochs shaded; time
stamps of respiratory events; RRI time series; low-frequency to high-frequency (LF/HF) power
ratio; noise limit (NL); and sample entropy (SampEn).

ries [35]]. The PWVD partially suppresses cross-term interference of the Wigner—Ville transform
through frequency smoothing. No additional time smoothing was performed in order to preserve
temporal resolution. Results of the pseudo Wigner—Ville algorithm were also verified against the
conventional Welch periodogram method. From each spectrum, we calculated the power in two
relevant frequency bands according to established guidelines [11]]: low frequency (LF), from
0.04Hz to 0.15Hz; and high frequency (HF), from 0.15Hz to 0.4 Hz. Because normalized LF
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and HF indices are mathematically redundant [[12} 36], only the absolute powers and the low- to
high-frequency power ratio (LF /HF) are presented in this study. We found that the LF and HF
powers demonstrated log-normal distributions; hence the log transformed values [In(LF) and
In(HF)] were analyzed instead.

3) Entropy Analysis: Sample entropy (SampEn), a refinement of approximate entropy [37],
was computed to assess the statistical complexity/regularity of the HRV data. The SampEn
algorithm computes the likelihood that epochs of length m that are similar within a tolerance
r remain similar for epochs of length m + 1. We chose m = 2 and r = 20% of the standard
deviation for the 5-minute segment.

4) Noise Titration Analysis: The noise titration technique [24} [25] was used to assess changes
in chaotic dynamics in noise-contaminated RRI time series (see Supplementary Information). The
resulting titration index, the noise limit (NL), provides a measure of the relative level of chaos

in HRV within each time window.

D. Statistical Analysis

Possible interactions of OSAS and sleep effects on the HRV metrics were assessed based
on a linear mixed-effects model with a random subject effect using OSAS severity (3 levels:
moderate/severe OSAS, mild OSAS, and non-snoring control) and sleep states (2 levels: REM
and NREM) as independent variables. The linear mixed-effects model was also used to account
for correlations between repeated measures of HRV metrics within the same individual [38]]. Post-
hoc pairwise comparisons between patient groups were performed using a Bonferroni correction.
Receiver operating characteristic (ROC) was used to assess the discriminatory power of selected
HRYV metrics in detecting OSAS based on heart rate data alone. The area under the ROC curve
(AUC) was used to assess test performance. All statistical analyses were performed using SAS 9.2

(SAS Institute, Inc., Cary, NC).

ITII. RESULTS
A. NL is Increased in REM Sleep and OSAS

The apnea—hypopnea index (AHI) for the three subject groups were: moderate/severe OSAS,
21.6 4= 20.5 events/hr (mean 4 SD); mild OSAS, 2.1 £ 1.3 events/hr; and normal subjects, 0.2 4
0.3 events/hr (Table[I)). Mean heart rate was not appreciably different between the control group

and mild OSAS group and was significantly increased in the moderate/severe OSAS group
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(Table[T)). NL was significantly increased during REM sleep compared to NREM sleep in ~ 88%
of children studied regardless of OSAS severity (Figure[2A). Importantly, not only did all subject
groups show increases in mean NL from NREM to REM sleep (p < 0.001), but the increases were
significantly larger in OSAS compared to the normal group (Figure[2A). Linear mixed-effects
model analysis of the data for all subject groups and sleep states revealed significant interaction
effects between OSAS severity and sleep state for NL (p = 0.039, Table[2). Thus, although the
changes in NL with OSAS levels were quite variable among subjects, NL was a significant
predictor for OSAS when interaction with sleep state was taken into account. Interestingly,
SampEN also showed significant difference between REM and NREM sleep and significant
interaction effects between OSAS severity and sleep state (Table[2). However, linear mixedeffects
model analysis showed that the interaction effects were caused by opposing influences of REM
sleep and OSAS levels on SampEN without consistent independent effects of OSAS levels per
se (Table]2).

Table 2: Linear mixed-effects model (N = 52)

Sleep state OSAS level Interaction
HRYV metric .
REM — Mild OSAS Moderate/severe

NREM (%) p — control (%) OSAS — control (%) p p
SDNN (ms) -3.5 0.244 -7.6 —8.8 0.719 NS
SDANN (ms) -7.9 0.247 —-11.1 -0.9 0.702 NS
RMSSD (ms) —11.9 0.004 * —-10.4 —23.2 0.641 NS
pNN50 (%) —32.6 < 0.001 * —17.2 -32.3 0.373 NS
Triangular index —18.0 < 0.001 * —20.1 -3.3 0.273 NS
In(LF) (In ms?) 2.6 0.084 0.0 1.9 0.750 NS
In(LF) (In ms?) —5.1 < 0.001* —0.0 —6.7 0.510 NS
LF/HF 62.3 0.001 * —11.2 115.7 < 0.001 * NS
SampEn —5.4 0.017* -0.8 4.0 0.229 0.006 *
NL 202.6 < 0.001 * 136.7 113.5 0.314 0.039 *

Data are expressed as % change from control.
* Statistically significant at the 5% level. NS, not significant.

B. LF/HF is Increased in REM Sleep and OSAS

None of the HRV metrics except In(NL) and SampEn showed significant interaction effects
between OSAS severity and sleep state (Table. Adjusting for OSAS severity, LF/HF was
significantly increased in REM sleep compared with NREM sleep (p = 0.001; also see Fig-
ure2B). The increase in LF/HF reflects primarily a decrease in In(HF) (p < 0.001) indicating


https://doi.org/10.1101/457630
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457630; this version posted October 31, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.
DENG et al., HEART RATE CHAOS DURING SLEEP IN CHILDREN, NOVEMBER 2018 8

A

~@i— NREM
€0r @ REM

40 +
1
Z
T |8 T
20} L
- | i
0 g I -
Non-snoring Mild Moderate/severe
control OSAS OSAS
B 4.
3 -
L
T
2 -
o
_1
- [m]
1+ -
| ®mT =% B
Non-snoring Mild Moderate/severe
control OSAS OSAS
C D
25+ EHF chaos 25
20l B non-HF chaos 20|
1 15F 1 15F
Z Z
10 F 10 |
5k 5F
O
NREM REM Mild Moderate/

OSAS severe OSAS

Figure 2: Non-high frequency chaos revealed by combined noise titration and spectral analyses of HRV. (A) Noise limit (NL),
a measure of relative chaotic strength (see Supplementary Information); and (B) low- to high-frequency power ratio (LF/HF).
The boxes encompass the interquartile ranges with the medians indicated by horizontal divider lines. The whiskers delimit the
5" to 95" percentile of the data distributions. Square markers denote corresponding mean values. Increases in non-HF chaos
in REM sleep and OSAS are indicated by concomitant increases in both NL and LF/HF, with corresponding decreases or no
change in the HF component (Table[2). Data in Table[2] are summarized by the bar charts in the bottom panels depicting: (C)
relative increase in non-HF chaos from NREM to REM sleep in the normal group; and (D) relative increases in non-HF' chaos
during REM sleep in the mild and moderate/severe OSAS groups compared to the normal group in (c). As a first approximation,
non-HF contributions to NL in NREM sleep are assumed small in the normal group and HF chaos contributions to NL are
assumed proportional to mean In(HF') in all conditions.
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parasympathetic withdrawal, with no change in In(LF). LF/HF was also affected by OSAS al-
though corresponding effects on In(HF) and In(LF) were not discernible (Table[2] and Figure[2B);
thus LF/HF is a more sensitive indicator of cardiac-autonomic irregularity than the HF or LF
component alone. Adjusting for sleep states, LF/HF was significantly higher in moderate/severe
OSAS patients compared with normal subjects (p < 0.001), but not in mild OSAS patients
compared with normal subjects. None of the time-domain metrics (SDNN, SDANN, RMSSD,
pNN50, triangular index) were significant predictors for OSAS although some of them were

significantly affected by sleep states (Table[2).

Table 3: Group statistics for HRV metrics

. Non-snoring Mild Moderate/severe
HRV metric control OSAS OSAS
SDNN (ms) 101.5 +£47.1 93.7 £ 28.1 92.5 £50.3
SDANN (ms) 44.1+15.3 39.2+14.0 43.7+20.1
RMSSD (ms) 101.2 +70.0 90.7 £46.7 77.7£59.1
pNN50 (%) 43.3 £25.3 35.8+17.3 29.3 +£24.5
Triangular index 18.3£6.7 14.6 £ 3.5 17.7+£10.2
LF (ms?) 1629.0 + 1410.3  1208.9 £619.6  1600.6 £ 1277.1
HF (ms?) 6104.3 + 7388.4 4062.6 + 3387.4 4424.0 + 6368.6
In(LF) (In ms?) 70£1.1 7.0£0.5 7.1+0.8
In(HF) (In ms?) 8.0+14 8.0£0.9 74+14
LF/HF 0.50 £ 0.30 0.45 +0.23 1.1+£0.67*
SampEn 0.62 +0.07 0.61 £0.07 0.64 = 0.09
NL 6.0+4.5 14.3£9.3* 129+ 72%

Data (means 4= SD) are for full 3-hr recording with both REM and NREM sleep included.
* Indicates significant difference compared to non-snoring controls (p < 0.05).

C. Non-HF Chaos Detects Even Mild OSAS

The concomitant increases in NL and LF/HF in REM sleep and OSAS (Figure,B) with
corresponding decreases or no change in In(HF) (Table suggest that the increases in NL in
these conditions were not correlated to the parasympathetic-mediated HF component (HF chaos).
Accordingly, we hypothesized that such non-HF chaos (Figure[[C,D) may reveal changing
cardiac sympathetic-parasympathetic activities that are not discernible by conventional HRV
analyses. To determine whether such non-HF' chaos may detect OSAS independent of polysomno-

gram data, we re-evaluated the HRV metrics for all subjects over the full 3-hour segments
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without separating into different sleep stages (Table|3). Only NL and LF/HF calculated in this
manner showed significant differences between the moderate/severe OSAS group and the control
group. NL is the only metric that achieved statistical significance (p < 0.05) between the mild
OSAS group and the control group. ROC curves for the three subject groups showed that NL
had higher discriminatory power than LF/HF particularly between the normal and mild OSAS

groups (Figure[3| and Table[).
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Figure 3: Receiver operating characteristics (ROC) for discrimination between (A) mild OSAS
and non-snoring controls; (B) moderate/severe OSAS and non-snoring controls. Curves were
derived using noise limit (NL, solid line) and low- to high-frequency power ratio (LF/HF,
dotted line) as predictors.

Table 4: OSAS detection performance of NL and LF/HF

. . HRV Sensitivity ~ Specificity Positive Negative
Classification metric  2UC (%) (%) predictivity (%)  predictivity (%)
. NL 0.76 61.1 94.4 91.7 70.8
Mild OSAS vs. control LF/HF  0.46 55.6 50.0 50.0 50.0
NL 0.80 81.3 72.2 72.2 81.3
Moderate/severe OSAS vs. control LF/HF  0.75 68.8 778 733 737

AUC, area under the ROC curve.
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I'V. DISCUSSION

The present study provides the first evidence that non-HF chaos may reveal changes in
cardiac sympathetic-parasympathetic activities that are not discernible by conventional HRV
metrics alone. Specifically, the increases in NL with concomitant decreases (or no change) in
HF power and/or increases in LF /HF suggest that such non-HF chaos is not correlated with the
HF component or respiratory sinus arrhythmia. Furthermore, although NL and LF/HF were
both significantly elevated over mixed sleep stages in children with moderate/severe OSAS
(AHI > 5/hr), only NL was able to differentiate between mild OSAS (AHI < 5/hr) and
normal controls (AHI < 1/hr) with demonstrable sensitivity, specificity, positive predictivity,
and negative predictivity (Table[d). The univariate ROC performance of non-HF chaos in identi-
fying children with mild OSAS compares favorably to previous classifications of predominantly
moderate/severe OSAS patients based on HRV [39, 40] or pulse transit time analyses [29, 41, 42].
The unique ability of the present non-HF' heart rate chaos technique to identify children with
even mild OSAS paves the way for early screening and intervention of the condition.

Although the present subject populations spanned a wide pediatric age range (1-16 yr) with
control subjects being slightly older (by ~ 3.3 yr on average) than OSAS patients, we believe
this had little bearing on the study outcome for several reasons. Of note, established normal
ranges of HRV during infancy and childhood demonstrate significant decreases in LF/HF
during the first year of life but otherwise little changes between 1-15yr [43], an age range
similar to that used in the present study. Although maturation generally has greater effects on
other timeand frequency-domain HRV metrics than LF/HF [43] 44], none of these metrics
distinguished themoderate/severe OSAS group from the control group as did LF/HF (Tables
and [3). The time- and frequency-domain HRV measures presently reported in pediatric subjects
with mild and moderate/severe OSAS (average ages of 4.7 + 3.5 and 4.8 4+ 2.2 yr) are similar
to established population-based results for older children (average ages of 9.3, 9.8 and 8.9yr
for control, mild OSAS and moderate OSAS groups) [14, [15] that are comparable in age to our
control group (8.0 £4.8 yr). The consensus from those studies and the present study is that time-
and frequency-domain HRV metrics are insensitive to mild OSAS in children regardless of age.
These observations taken together suggest that age-dependent factors had little influences on
changes in HRV metrics both within and between groups in the present study. Indeed, any age-

dependent effects would have obscured the primary age-independent effects equally for all HRV
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metrics. It is therefore highly remarkable that changes in HRV with mild OSAS were discerned
by NL and not other HRV metrics in the face of possible age-dependent variations between
groups. Importantly, NL discriminated the OSAS groups mainly through their interaction with
REM sleep rather than the associated changes in age-dependent factors or OSAS level per se
(Table[2). As elaborated below, such synergistic effects of OSAS and REM sleep on NL most
likely reflect corresponding increases in sympathetic activity.

Recent studies in adult subjects have shown that normal heart rate chaos (with NL > 0)
during nighttime may be attributed in large part to HF chaos [27]. Nocturnal increases in
HF power and decreases in LF/HF have been reported in pediatric subjects mainly during
NREM sleep, particularly slow-wave sleep [[13} [14]. Therefore, the heart rate chaos presently
found in children during NREM sleep most likely reflects parasympathetic-mediated HF' chaos
(Figure[2IC), as with the previous model for adults [27]. In contrast, the present data show
that NL. was on average even higher during REM than NREM sleep. This was despite a
corresponding decrease in HF power and increase in LF/HF, in agreement with previous reports
in children based on conventional methods of HRV power spectrum analysis [13-15]]. Thus, it
may be reasonably concluded that such non-HF chaos during REM sleep had a predominantly
sympathetic instead of parasympathetic mediation. In support of this notion, REM sleep in adults
is known to be associated with intermittent, strong and variable sympathetic bursts [[7] causing
marked cardiorespiratory disturbances [45, 146]]. The latter may contribute to the non-HF chaos
in children.

Likewise, the present data show that NI was significantly increased over mixed sleep stages
while HEF' power was virtually unchanged (or decreased [14} [15]) in children with OSAS, a
pathological condition that is known to provoke persistent elevation of sympathetic activity
in adults [8, 9]. The increases in NL with mild and moderate/severe OSAS per se were not
statistically significant compared with control because of the variability of the NL values within
each subject group with considerable overlaps among different groups. However, the OSAS-
dependent increases in NL became significant when interaction with sleep state was taken into
account suggesting that the sympathoexcitation during REM sleep was probably exacerbated by
OSAS. The synergistic effects of OSAS and REM sleep on NL is consistent with the prepon-
derance of apnea episodes during REM sleep in children with OSAS [6]. Again, such OSAS-
dependent increase in non-HF chaos is consistent with a predominantly sympathetic instead

of parasympathetic mediation. Adding to this notion, a similar trend of paradoxical intermittent
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increases in NL in the face of decreased HF power has been reported in patients with congestive
heart failure [27]], another pathological condition that is characterized by sympathoexcitation
and parasympathetic impairment [47, 48]]. The strikingly consistent pattern of increases in NL
concomitant with attenuated or unchanged HF power in REM sleep, OSAS and congestive
heart failure, when taken together, strongly suggest that non-HF chaos is a selective marker of
sympathoexcitation in these conditions. By contrast, none of the conventional time- or frequency-
domain HRV metrics demonstrated interaction effects of OSAS and REM sleep, and none of
them was able to detect mild OSAS in children.

These observations underscore the increasing evidence that HRV is intrinsically a nonlinear
phenomenon and cannot be fully deciphered by using conventional time- or frequencydomain
linear analyses [49,50]. On the other hand, current approaches to studying the nonlinear behavior
of HRV using classical nonlinear dynamics methods (such as Lyapunov exponent, correlation
dimension, surrogate data method, etc.) or statistical physics methods (such as 1/f scaling,
entropy, mono- or multifractal analysis, etc.) suffer from the lack of sensitivity, specificity,
and robustness in discriminating the nonlinearity or complexity of HRV from measurement
noise and dynamic noise/intrinsic process disturbance (for a critique of these methods see [31]
and Appendix S1 in [27]). The present study showed that a popular statistical physics method
(SampEn) was insensitive to OSAS in children, consistent with the reported lack of accuracy
of this method in detecting adult OSAS [52]. To circumvent these difficulties, the noise titration
technique originally proposed to overcome the effect of measurement noise has been extended
to the detection of noise-induced chaos in the presence of dynamic noise (see section “Nonau-
tonomous Nonlinear Dynamical Systems” in [24] and Appendix S1 in [27] and Figure 2 in [S1])).
This generalized framework [S53] has led to the previous identification of HF' chaos [27]) and
the present identification of non-HF chaos as potential noninvasive markers of state-dependent
changes in cardiac parasympathetic—sympathetic activities during REM sleep, non-REM sleep
and wakefulness in health and in OSAS.

A potential limitation of the present study is that sympathoexcitation was inferred indirectly
from increases in NL assuming unchanged or decreased parasympathetic activity as assessed
by In(HF) and LF/HF. Such non-HF chaos provides only a relative measure of the predicted
sympathoexcitation, as the resultant increase in NL may be offset by any concurrent decrease in
HF chaos in a nonlinear fashion. This may explain why NL was lower in the moderate/severe

OSAS group than the mild OSAS group, as the correspondingly higher LF/HF and mean heart
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rate (and lower HF power [14, [15]) indicate concurrent parasympathetic withdrawal. Further,
the HF component and LF/HF are known to be influenced also by changes in breathing
pattern, which may potentially confound their interpretation as indices of parasympathetic activity
during obstructive apnea episodes [54, 55]]. Although the effect of apnea on respiratory—cardiac
coupling can in theory be compensated to some extent through nonlinear multivariate modeling
involving simultaneous ventilatory and blood pressure measurements [56] (ideally also end-
tidal pCO,, blood oximetry and esophageal pleural pressure or diaphragmatic EMG recordings),
such elaborate cardiorespiratory recordings are beyond the scope of clinical polysomnography
and are impracticable for the purpose of home screening test. Despite this, it is important to
note that respiratory activity and respiratory sinus arrhythmia typically persist during obstructive
apnea episodes even when respiratory airflow is nil, unlike the abolition of both during central
apnea [57]. This may explain why In(HF') remained unchanged or only minimally decreased in
the moderate/severe OSAS group despite the presence of pronounced obstructive apnea hypopnea
events (see also [14, [15]). In contrast, the effect of apnea episodes on NL is likely to involve
more than a direct respiratory—cardiac coupling. Our previous studies in awake subjects have
shown that NL is increased during breath-holding even though respiratory sinus arrhythmia is
abolished by the ensuing apnea [38,, 59]. Such an increase in NL absent HF chaos again likely
reflects apnea-induced sympathoexcitation, as demonstrated recently by corresponding increases
in muscle sympathetic nerve activity secondary to baroreflex and chemoreflex activations during
breath-holding maneuvers [60]. This suggests that non-HEF chaos is a reliable index of sympa-
thoexcitation in these conditions despite possible disruption of the HF component during apnea
episodes. Further studies are needed to elucidate the independent effects of breathing pattern
and other factors on HF chaos and non-HF chaos during REM sleep, non-REM sleep and
wakefulness in health and in OSAS.

V. CONCLUSION

We have provided strong evidence in support of the hypothesis that non-HF chaos is a selective
noninvasive marker of the sympathoexcitation associated with REM sleep, OSAS and other
conditions. The presently demonstrated sensitivity and specificity of non-HF chaos in tracking
REM sleep- and OSAS-dependent autonomic abnormalities open the possibility of a home
screening test of sympathetic-parasympathetic imbalance for early diagnosis of pediatric and

adult OSAS [5} 20] and a spectrum of cardiovascular diseases [61]. Because autonomic function
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is influenced by many factors and could vary considerably with time and between subjects,
rigorous experimental designs and data analyses are critical for optimal test performance. Future
studies will further evaluate and refine this new technique as a noninvasive probe of changing
sympathetic—parasympathetic activities in a larger cohort of pediatric and adult patients with

OSAS and other autonomic disorders in the home and laboratory environments.
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SUPPLEMENTAL INFORMATION
Noise Titration Technique

The heart of the noise-titration algorithm [24] is the Volterra autoregressive series (VAR) non-
linearity detection algorithm. Given an N-point time series z(n) = [z(1),x(2),...,z(N)] , the
Volterra series expansion formulates the input/output relationship as a polynomial combination
of input delays. Within this framework, we analyze the univariate time series by using a discrete

VAR series of degree d, and memory x, as a model to calculate the predicted time series [25]:

x;llonhnear(/i, d) =g+ 1Tp_1 + Q2Tp_2 + ** + Qelp_s
9 d
+ Q1T 4 + Ap2Tn—1Tn—2 +eet AMTp_y

M-1

= mzm(n), (1)

m=0

where the functional basis {z,,(n)} is composed of all the distinct combinations of the embedding
(k+d)!

kld!
and {a,,(n)} is the set of Volterra kernel functions, characterizing the autoregressive behavior

space coordinates (x,_1,%,_2,...,%,_,) up to degree d, with a total dimension M =

of the dynamical system. Each model is parameterized by x, the embedding dimension, and d,
the degree of the nonlinearity of the model (i.e. d = 1 for linear model and d > 1 for nonlinear
model). The coefficients a,, are recursively estimated by using the Korenberg fast orthogonal
algorithm [65]].

The goodness of fit of a model (linear vs. nonlinear) is measured by the normalized residual

sum-of- square errors

nonhnear /€ d) xn)Q

Mz

2 _ n:l
D (-
n=1
where j1, = Z z(i) and £(k, d)? is in effect a normalized variance of the residual error. The

optimal model {/-iopnmdl, doptimal } 1S the one that minimizes the Akaike cost function

O(r) = log(r) + -, 3)

where r € [1, M] is the number of polynomial terms of the truncated Volterra expansion. The
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Akaike information criterion measures the balance between the goodness of fit of a model and the
model complexity (parsimony principle). In addition to linear vs. nonlinear hypothesis testing,
the VAR method provides a sufficient test for chaotic dynamics when used in conjunction with
a numerical “noise titration” procedure: the dynamics of nonlinearity are tested on the time
series. If linearity is detected, then the noise titration method rejects the null hypothesis of no
chaotic behavior. If nonlinearity is detected, small amounts of Gaussian noise (1% of signal
power) are successively added until nonlinearity is no longer detected (within a prescribed level
of statistical confidence). The maximum noise added before nonlinearity goes undetected is
known as the noise limit (NL). Under the noise titration scheme, a noise limit greater than zero
represents the detection of chaotic dynamics. In addition, the noise limit mirrors the maximal

Lyapunov exponent of the system dynamics [24].
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