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ABSTRACT

Human DNA varies across geographic regions, with most variation observed so far reflecting distant
ancestry differences. Here, we investigate the geographic clustering of genetic variants that influence
complex traits and disease risk in a sample of ~450,000 individuals from Great Britain. Out of 30 traits
analyzed, 16 show significant geographic clustering at the genetic level after controlling for ancestry, likely
reflecting recent migration driven by socio-economic status (SES). Alleles associated with educational
attainment (EA) show most clustering, with EA-decreasing alleles clustering in lower SES areas such as
coal mining areas. Individuals that leave coal mining areas carry more EA-increasing alleles on average
than the rest of Great Britain. In addition, we leveraged the geographic clustering of complex trait
variation to further disentangle regional differences in socio-economic and cultural outcomes through
genome-wide association studies on publicly available regional measures, namely coal mining,
religiousness, 1970/2015 general election outcomes, and Brexit referendum results.

INTRODUCTION

The first law of geography states that “everything is related to everything else, but near things are more
related than distant things”.! Humans living near each other tend to share more ancestry with each other
than with humans that live further away, which is reflected in genome-wide patterns of genetic variation
on a global scale? and on finer scales.>> Regional differences in allele frequencies are driven by genetic
drift (i.e., the random fluctuations of allele frequency each generation), natural selection pressures,
migrations, or admixture (i.e., two previously isolated populations interbreeding). Out of these four
mechanisms, genetic drift is the only mechanism not expected to disproportionately affect genetic
variants that are associated with heritable human traits. Natural selection targets heritable traits over
extended periods of time, thereby affecting allele frequencies of the genetic variants that are associated
with the traits under selection. Earlier studies have identified natural selection pressures on many trait-
associated variants by looking for extreme allele frequency differences between different ancestries.>”
Migration is behavior, and since most behavioral traits have heritable components,® migration is likely to
be associated with genetic variants that influence behavior. Long-distance migratory events may in turn
result in admixture. Internal migrations (i.e., migrations within countries) may lead to geographic
clustering of trait-associated genetic variants beyond the clustering of ancestry and may occur for a variety
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of reasons. They may be driven by the search for specific neighborhood, housing, and inhabitant
characteristics, and/or socio-economic factors (e.g., education or job-related considerations),® such as the
mass migrations from rural to industrial areas during the industrialization.'® These geographic movements
may coincide with regional clustering of heritable social outcomes such as socio-economic status and
major group ideologies (e.g., religion! and political preference??).

Understanding what drives the geographic distribution of genome-wide complex trait variation is
important for a variety of reasons. Studying regional differences of genetic variants associated with
complex traits that reflect education, wealth, growth, health, and disease, may help understand why those
traits are unevenly distributed across Great Britain. Besides the known regional differences in income and
SES, significant regional differences have been reported for mental®® and physical'* health problems.
Regional differences in wealth and health are likely linked to each other,>” and have been shown to be
partly driven by migration.!*® If genome-wide complex trait variation is geographically clustered, this
should also be taken into account in certain genetically-informative study designs. Mendelian
randomization for example uses genetic variants as instrumental variables to identify causality, under the
assumption that the genetic instrument is not associated with confounders that influence the two traits
under investigation.'® Geographic clustering of genetic complex trait variation could introduce gene-
environment correlations that violate this assumption.?’ Such gene-environment correlations could also
introduce bias in heritability estimates in twin and family studies,? and could affect signals from genome-
wide association studies (GWASs). Furthermore, studying the genetics of migration and geographically
clustered cultural phenomena that are related to how society is organized, such as SES, political
preference, and religiosity, may help us to further understand regional differences beyond what can be
learned from standard observational data. For example, as we will show in this study using a novel regional
GWAS approach, we can compute genetic correlations between these clustered social phenomena and a
wide range of other traits for which GWASs have been conducted through their GWAS summary
statistics.?? This can teach us about how these regional differences are related to traits that have not been
measured in the same dataset.

In this study, we first investigate whether genome-wide complex trait variation is geographically
clustered after accounting for ancestry differences; if so, this may reflect the genetic consequences of
more recent (internal) migration events. In addition, we investigate whether genome-wide complex trait
variation is sufficiently clustered to capture the heritability of regional cultural outcomes such as coal
mining, religiousness, and political preference by conducting GWASs on publicly available regional
measures. We will then utilize the genetic signals from these GWASs to estimate genetic correlations
between the regional measures and a wide range of complex traits.

DATA AND ANALYSIS

We investigated the geographic clustering of ancestry and complex trait variation using genome-wide
single-nucleotide polymorphism (SNP) data from ~450,000 British individuals of European ancestry from
the UK Biobank project.?® Ancestry within Great Britain was captured by conducting a principal component
analysis (PCA)** on genome-wide SNPs, a method that has been shown to successfully capture ancestry
differences within relatively homogeneous populations.®> Genome-wide complex trait variation was
captured by polygenic scores, which are created by weighting an individual’s alleles by the estimated
allelic effects on the trait of interest and then summing the weights, resulting in predictive scores for each
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individual. We built polygenic scores for 456,426 individuals from 1,312,100 autosomal SNPs using effect
estimates from 30 published GWASs on traits related to psychiatric disease, substance use, personality,
body composition, cardiovascular disease, diabetes, reproduction, and educational attainment (see
Supplementary Table 1). Importantly, the 30 GWASs that produced the effect estimates did not include
UK Biobank participants.?®> Geographic clustering of genetic variation was then investigated using 320,940
unrelated individuals and their birthplace by testing whether the spatial autocorrelation (Moran’s /) is
significantly greater than zero for ancestry-informative principal components (PCs), polygenic scores, and
the residuals of polygenic scores after regressing out the first 100 PCs. The spatial autocorrelation
(Moran’s I) is the correlation in a measure among nearby locations in space, and its values range between
-1 (dispersed) to O (spatially random) to 1 (spatially clustered).?® Supplementary Figure 1 shows geographic
locations of UK Biobank participants. Furthermore, we test whether polygenic scores that showed
significant geographic clustering were associated with an index of economic deprivation of the
neighborhood (the Townsend index) and migration into or out of the most economically deprived regions
(coal mining areas), while accounting for ancestry differences (100 PCs).

We subsequently investigate whether geographic clustering of genome-wide complex trait
variation is associated with regional cultural outcomes by running genome-wide association analyses on
coal mining, regional estimates of the proportion of religious vs non-religious inhabitants, election
outcomes of the Brexit referendum and of the 1970 & 2015 general elections. We estimate the degree to
which these regional differences share genetic influences with a range of traits related to cognitive ability,
socio-economic status (SES), personality, behavior, substance use, mental and physical health, well-being,
reproduction, and body composition.

For more detailed descriptions of the data and analyses, see Online Methods.
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Figure 1: The geographic distributions (birthplace) of the first five PCs, Moran’s | and empirical p-values for Moran’s I. P-values
denoted in green are significant after Bonferroni correction.

GEOGRAPHIC CLUSTERING OF GENOME-WIDE ANCESTRY AND COMPLEX TRAIT VARIATION

In line with earlier studies,® British ancestry showed significant geographic clustering: the first 100 genetic
PCs all show Moran’s [ statistics that are greater than 0, with 72 PCs showing an empirical p-value < .0005,
the Bonferroni corrected threshold, and 95 PCs showing an empirical p-value < .05. Many PCs roughly
capture the differentiation between Scotland, England, and Wales (see Figure 1 for the first 5 PCs; see
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https://holtzyan.shinyapps.io/UKB geo/ for maps of all 100 PCs). The geographic distributions of the
ancestry differences captured by the PCs are likely to reflect consequences of historical demographic
events.” These include old population movements and settlements, followed by generations of relatively
isolated (sub)populations that went through genome-wide allele frequency differentiation through
genetic drift and, perhaps, differential natural selection pressures.

Without controlling for ancestry, 27 out of the 30 polygenic scores tested showed a Moran’s /
significantly greater than 0, indicating significant geographic clustering (Figures 2 & 3, see
https://holtzyan.shinyapps.io/UKB geo/ for maps of all polygenic scores). Only age at menarche,
agreeableness, and caffeine consumption were not significantly geographically clustered. Many clustered
polygenic scores showed geographic distributions that were similar to the ancestry differences captured
by the PCs. After regressing out the 100 ancestry-informative PCs, 16 polygenic scores remained
significantly geographically clustered with FDR correction, with educational attainment (EA) showing the
highest Moran’s I (before PC correction: Moran’s | = .57, empirical p < 10*%; after PC correction: Moran’s /
= .51, empirical p < 10%; see Figures 3 & 4).

It has been argued that geographic clustering of complex trait genetic variation in UK Biobank is
due to (subtle) ancestry differences or ascertainment bias.?”’ We discuss in more detail in the
Supplementary Material why these are unlikely to be the sole explanations of our observations
(paragraph: Population Stratification and Ascertainment Bias). In the next paragraph, we explore the more
likely explanation, namely recent internal SES-related migrations.
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Figure 2: Geographic distribution (birthplace) and Moran’s | values for polygenic scores of four major psychiatric disorders (based
on GWASs from the Psychiatric Genomics Consortium (PGC): schizophrenia?é, bipolar?®, MDD3%, and ADHD?3') and alcohol use3?
before (top row) and after (bottom row) regressing out 100 ancestry-informative PCs. Green p-values are significant after FDR
correction.
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Figure 3: Moran’s | of 30 SBLUP polygenic scores computed using the average polygenic score per region in 378 local authority
regions. A shows the Moran’s | of the polygenic scores unadjusted for PCs (red) and adjusted for 100 PCs (green), where orange
means a significant FDR corrected p-value < .05 (corrected for 30 tests). B shows the distribution of significant Moran’s | statistics
from 10,000 permutations that were conducted to obtain an empirical p-value for Moran’s I. The vertical line to the right of the
permutation distribution shows the observed Moran’s | of the actual data.
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Figure 4: Geographic distribution (birthplace) of the educational attainment (EA) polygenic scores before and after regressing out
100 PCs, and the geographic distribution of Townsend indices from 1971 and 2011. The black lines indicate coal mining areas.

CONSEQUENCES OF SES-RELATED MIGRATION

The geographic clustering of genome-wide trait-associated alleles after correcting for 100 PCs possibly
reflects migration events that occurred more recently than the pre-modern demographic events that
drove the regional ancestry differences captured by the PCs. Given the exceptionally strong geographic
clustering of the EA score, we investigate here whether it reflects relatively recent internal migrations due
to SES-related factors, which are known to especially motivate longer distance moves.>® Two types of
migration flows may have affected the geographic clustering of SES-related alleles: 1) laborers and farmers
leaving the country-side during the Industrial Revolution to work in the geographically clustered industrial
jobs,’® and 2) more recent migration of higher-educated people, or people seeking a higher education,
out of the more economically deprived industrial regions.


https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457515; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Much of the energy necessary for the mass-production that characterized the birth of the
Industrial Revolution came from coal mines. The presence of coal and iron ore attracted large numbers of
manual laborers. The Industrial Revolution and the later deindustrialization had a great impact on the
economy of the coal mining areas.?* The decline of the British coal industry began in the 1920s, and nearly
the whole industry has closed since the early 1980s, resulting in major job losses that still remain visible
in unemployment rates decades later.3> Economic deprivation is widespread in coal mining areas: 43% of
neighborhoods from coal mining areas fall into the 30% most economically deprived.?* In our analysis,
coal mining areas show more economic deprivation than the rest of Great Britain from 1971 to 2011 as
measured with the Townsend index®® (higher Townsend = more economic deprivation; all FDR corrected
p-values < 1073 see Figure 4 & Supplementary Figure 6). All regions have become less economically
deprived over time, but the difference between coal mining areas and the rest remains highly significant.

After correcting for ancestry differences (100 PCs), the Townsend index is significantly associated
with the 16 geographically clustered polygenic scores, with the strongest associations for EA (higher EA
polygenic score = lower Townsend index; see Supplementary Figures 7 & 8). These 16 polygenic scores
also all show significant differences between coal mining areas and the rest of the regions, both based on
birth place and current address (Supplementary Figure 9), with EA showing the strongest differences (FDR
corrected p-value < 102%), We further compared ancestry-corrected polygenic scores between four
groups of unrelated individuals: 1) people born in coal mining areas who moved out of coal mining areas
(N=35,024), 2) people born outside of coal mining areas and still live outside of coal mining areas
(N=129,298), 3) people born outside of coal mining areas who moved into coal mining areas (N=47,505),
and 4) people born in coal mining areas who still live in coal mining areas (N=111,838). ANOVAs for all 16
geographically clustered polygenic scores show significant differences between the four groups (Figure
5), with EA showing the largest and most significant differences (Fs 323651 = 687.3, FDR corrected p-value <
102%), The largest differences were between people born in coal mining areas who moved away versus
those who remained in the coal mining areas. The people that moved away have significantly higher EA
polygenic scores than all other groups combined (tssg23 = 19.8, p = 9 x 10%), while those that remained
have significantly lower EA polygenic scores than all other groups combined (tzz0220 = 44.6, p < 102%). The
degree of geographic clustering of polygenic scores, as measured by Moran’s /, is significantly correlated
with the strength of their associations with Townsend, coal mining areas, and migration groups; the
strongest correlations were between Moran’s / and the F statistic of the migration group differences: r =
.95, p =2 x 10® including EA and r = .73, p = .002 excluding EA (Supplementary Figure 10).

To get a better sense of the scale of regional differences in polygenic scores, and of how these
change due to migration, we computed how much of the individual differences are explained by regional
differences for both birthplace and current address (Supplementary Figure 15). The regional differences
are greatest for the EA polygenic score, with about ~0.6-2.6% of individual differences being explained by
regional differences, depending on how fine the regional scale is (the finer the scale, the more individual
differences explained) and by whether the calculations are based on the birthplace or the current address.
Regional differences are ~38-54% greater for the current address than for birthplace. The increase in
variation explained by regional differences for the EA score (i.e., difference between birthplace and
current address in % variance explained by region) is greater than the total variance explained by region
for any other polygenic score. As would be expected from recent migration events, ancestry shows the
opposite effect: comparing birthplace to current address, the variance explained by region has on average
decreased by 37-73% for the first 30 PCs (Supplementary Figure 16).
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Figure 5: The average and standard errors of the 16 geographically clustered polygenic scores (ordered by Moran’s 1) for four
migration groups: born in coal field area and moved out, born in coal mining area and stayed, born outside of coal mining area
and moved to coal mining area, born outside of coal mining area and stayed out. All polygenic scores shown are standardized
residuals after regressing out 100 ancestry-informative PCs. ANOVAs were conducted for every polygenic score to test the presence
of group differences, which were all significant with the least significant FDR corrected p-value of 1 x 10 for conscientiousness.

GENOME-WIDE ASSOCIATION STUDIES ON REGIONAL OUTCOMES

The geographic clustering of socio-economic resources and associated genetic variants may
coincide with a range of regional collective views and attitudes. We examined this by leveraging the
geographic clustering of genome-wide complex trait variation with GWASs on regional socio-economic
and cultural outcomes, whereby all participants from the same region were assigned the same regional
value as a phenotype (from here-on referred to as regional GWASs). The regional GWASs were run on the
>400,000 UK Biobank participants, corrected for relatedness, age, sex, and ancestry (100 PCs). We first
verified whether the approach works by running a regional GWAS on a regional measure of educational
attainment (EA), obtained from census data, which showed genetic signals almost identical to an
individual-level EA GWAS that excluded UK Biobank®” (see Supplementary Materials). We then ran
regional GWASs on the presence of coal in an area and regional measures of major ideological factors
known to cluster geographically, namely religiousness!! and political preference!?. The regional socio-
economic and cultural outcomes were defined as follows: whether the individual was born/lives in a coal
mining area, the proportion of religious vs non-religious inhabitants in their region (based on current
address), the proportion of “Leave” votes and non-voters in the 2016 Brexit referendum (current
address), the proportion of non-voters and votes in the individuals’ constituency for three major UK
parties in the UK 1970 general elections (based on birthplace) and the five major UK parties in the UK
2015 general elections (current address). We used the genome-wide summary statistics of the regional
GWASs to estimate genetic correlations with a wide range of complex traits using LD score regression, a
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method that computes genetic correlations based on GWAS summary statistics without bias from sample
overlap or ancestry differences.?> We summarize the main results on their (genetic) relationship with
other complex traits below, and additional results in the Supplementary Materials.

The regional outcomes showed striking and often highly significant genetic correlations with a
wide range of other traits (Figure 6). EA, 1Q, and age at first birth showed significant genetic correlations
with every regional outcome. Overall, the strongest genetic correlations were observed for cognition &
SES-related traits (IQ, EA, income, and Townsend). These suggest that the election outcomes can be
divided roughly into higher SES and lower SES regions, with Green Party, Liberal Democrats, and
Conservative regions containing more alleles associated with higher SES trait values, and the Labour Party,
UKIP, “Leave” votes for Brexit, and non-voters reflecting regions with more alleles associated with lower
SES trait values. The election outcomes that are genetically associated with higher cognition and SES
outcomes generally also show negative genetic correlations with disease risk outcomes (ADHD, MDD,
smoking, alcohol dependence, heart disease, type-2 diabetes, BMI, longevity, and self-rated health),
except for alcohol consumption, cannabis use, autism, and psychiatric disorders that are characterized by
delusions (schizophrenia, bipolar, anorexia), for which the genetic association is the other way around
(higher SES = higher risk). The genetic correlations were largely similar between election outcomes and
the coal mining regions, likely due to the same systematic regional SES differences. A different pattern
was observed for the proportion of religious inhabitants, which showed weaker genetic correlations with
the SES related traits (cognition and health) and stronger associations with the two personality dimensions
that showed significant geographic clustering in our previous analyses, openness and conscientiousness
(more religious people = lower openness and higher conscientiousness). Risk taking, schizophrenia, and
autism also show the highest genetic correlations with being religious (more religious people = lower
genetic risk).

The signals were largely consistent within parties over time (1970 & 2015) with respect to SES,
but UKIP and Green Party did not yet exist in 1970. The genetic correlations between regional
religiousness and the 1970 & 2015 election outcomes suggest that UKIP regions include former Labour
Party regions with a more religious genetic profile (lower openness, higher conscientiousness), while the
Green Party regions include former Conservative regions with a more non-religious genetic profile (higher
openness, lower conscientiousness).

The genetic correlations between the regional outcomes were much stronger than the phenotypic
correlations, and in some instances in opposite directions: Labour Party 2015 & Green Party (negative
genetic, positive phenotypic correlation), Conservative Party 2015 & Green Party (positive genetic,
negative phenotypic correlation), Conservative Party 2015 & Brexit (negative genetic, positive phenotypic
correlation). A possible explanation is that the part of the regional variation that is explained by genetic
differences is mostly related to regional socio-economic status (lower SES associated alleles in Labour and
Brexit areas, higher SES in Conservative and Green areas), while environmental factors, which are
responsible for most of the regional variation, are more characterized by ideology (Labour and Green
areas being more left-wing, Conservative and Brexit more right-wing).
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DISCUSSION

Understanding the consequences of DNA variation in human populations is of major importance for
medical, biological, forensic, behavioral, and anthropological research. Since we have been able to
measure DNA at a sequence level, studies have shown that the geographic distributions of alleles are not
random and have mapped striking geographic patterns of ancestry.>*>3 Here, we investigated geographic
patterns of genome-wide complex trait variation and show that there are additional levels of genetic
geographic clustering beyond the geographic patterns that reflect older ancestry differences. We show
that the geographic clustering of genome-wide trait-associated alleles is related to recent geographic
movement of people and that the resulting regional genetic patterns are associated with regional socio-
economic and cultural outcomes.

Without controlling for ancestry, almost all traits we examined showed significant geographic
clustering, often resembling the geographic patterns of ancestry differences within Great Britain. This
indicates that either 1) the allele frequencies were differentiated between the different ancestries due to
genetic drift or natural selection, and/or 2) the GWASs that produced the SNP effect estimates did not
sufficiently control for ancestry differences, resulting in SNP effect estimates that are biased towards
certain ancestral backgrounds. When we control for ancestry, 16 polygenic scores remain significantly
clustered by geography. The strongest clustering was observed for EA. Among the rest of the
geographically clustered traits are body dimensions, personality dimensions, and physical and mental
health traits, which may reflect independent influences of them on non-random migration, and/or
clustering that is (partly) driven by a genetic overlap with EA. The geographic clustering of complex trait
variation seems to have increased due to relatively recent migration which is disrupting the older
geographic patterns of ancestry (Supplementary Figures 15 & 16).

The degree of geographic clustering of the polygenic scores is largely in line with the strength of
their relationship with regional economic deprivation and migration out of economically deprived regions
(Supplementary Figure 10). People are more likely to migrate to improve their skills or employment
prospects than for other area characteristics.” Many industrialized countries showed these types of
migration flows during the late 19" and early 20™ century, where poorer laborers and small farmers left
the country-side to work in industrial jobs that were often highly clustered in geographic space (e.g., coal
mining areas).!? After the deindustrialization, the dense, durable, and affordable working-class houses
and the public transportation networks from the industrial revolution remained in these neighborhoods
and continued to attract poorer immigrants.'? Our results show that people with a genetic predisposition
for higher cognitive abilities are leaving these regions, likely attracted by better educational or
occupational opportunities in other regions. In fact, the people who were born in coal mining areas and
migrated to better neighborhoods have higher average EA polygenic scores than people born outside of
these regions. The regional clustering of cognitive abilities that follows may further affect the economic
development of neighborhoods. These demographic processes may influence GWAS signals as well,
where alleles that increase the chances of living in the unhealthy circumstances of lower SES
neighborhoods may become part of the signal of a GWAS for a trait like BMI or body fat. There are for
example significantly more McDonald’s restaurants in lower SES neighborhoods in Great Britain.?® This
may be part of the explanation for why four out of the top five geographically clustered polygenic scores
are related to body weight.
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Selective migration has led to geographic clustering of social and economic needs, which can
coincide with collective attitudes towards how communities should be organized and governed. We
successfully captured heritability signals for regional religiousness and regional political attitudes, both of
which have been shown to be partly heritable on an individual level*>* and to cluster geographically'*2,
From a regional genetic perspective, the election outcomes can be roughly divided into lower SES and
higher SES electorates. Our findings suggest that the previously reported heritability estimates of these
traits on an individual level may contain genetic effects on traits, such as EA, that influence which socio-
economic strata and geographic regions people end up living in. Regional religiousness shows higher
genetic correlations with personality (openness and conscientiousness) and less with the SES and health
traits than the political parties do, which implies additional dimensions of geographic clustering beyond
high versus low SES.

Our findings may largely reflect genetic consequences of social stratification, a key characteristic
of human civilizations whereby society groups their people into strata based on SES. SES is generally based
on occupation, income, and educational attainment, which are influenced by many environmental and
genetic factors, and are associated with a wide range of physical and mental health outcomes.
Socioeconomic status is not distributed randomly across geographic space, which leads to geographic
clustering of alleles that are associated with SES-related traits such as educational attainment. Educational
attainment is known for its high levels of assortative mating,***’ which may be further induced by
geographic clustering. This may affect social inequalities across generations through expanding biological
inequalities in cognitive abilities and susceptibility to disease. It is possible that the combination of recent
increases in social mobility and an improved educational system accelerates this separation of higher and
lower genetic predisposition for traits related to cognition, SES, and health. Even though the genetic
effects we find explain only part of the observed regional differences, researchers and social policy makers
should keep these effects in mind, as they seem to be growing due to migration and can lead to detectable
regional differences in health and social and economic success. For example, the significant genetic
correlations between educational attainment and traits related to disease risk or body composition may
decrease in the presence of stronger social safety nets that are geared towards making inhabitants of
lower SES regions live more economically prosperous and healthier lives. Social policies that increase the
quality of life in lower SES regions may also help to decrease migration out of the currently more
economically deprived regions by people with genetic predispositions for higher SES outcomes, and
thereby possibly result in a less geographically stratified society.
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ONLINE METHODS

Participants

The participants of this study come from UK Biobank (UKB),% which has received ethical approval from
the National Health Service North West Centre for Research Ethics Committee (reference: 11/NW/0382).
A total of 502,655 participants aged between 37 and 73 years old were recruited in the UK between 2006
and 2010. They underwent a wide range of cognitive, health, and lifestyle assessments, provided blood,
urine, and saliva samples, and will have their health followed longitudinally.

Genotypes and QC

A total of 488,377 UKB participants had their genome-wide single nucleotide polymorphisms (SNPs)
genotyped on either the UK BIiLEVE array (N = 49,950) or the UK Biobank Axiom Array (N = 438,423). The
genotypes were imputed using the Haplotype Reference Consortium (HRC) panel as a reference set (pre-
imputation QC and imputation are described in more detail in Bycroft et al, 2018).%® To create polygenic
scores, we extracted a set of 1,312,100 autosomal HapMap 3 (HM3) SNPs with minor allele count (MAC)
> 5, info score > 0.3, puwe < 10, and missingness < .05. For the genome-wide association study, we used
5.8 million SNPs that survived QC and have a MAF > .01.

Ancestry & Principal Component Analysis

To capture British ancestry, we first excluded individuals with non-European ancestry. Ancestry was
determined using Principal Component Analysis (PCA) in GCTA*. The UKB dataset was projected onto the
first two principal components (PCs) from the 2,504 participants of the 1000 Genomes Project,*® using
HM3 SNP with minor allele frequency (MAF) > 0.01 in both datasets. Next, participants from UKB were
assigned to one of five super-populations from the 1000 Genomes project: European, African, East-Asian,
South-Asian, or Admixed. Assignments for European, African, East-Asian, and South-Asian ancestries were
based on > 0.9 posterior-probability of belonging to the 1000 Genomes reference cluster, with the
remaining participants classified as Admixed. Posterior-probabilities were calculated under a bivariate
Gaussian distribution where this approach generalizes the k-means method to take account of the shape
of the reference cluster. We used a uniform prior and calculated the vectors of means and 2x2 variance-
covariance matrices for each super-population. A total of 456,426 subjects were identified to have a
European ancestry.

A PCA was then conducted on individuals of European ancestry in order to capture ancestry
differences within the British population. In order to capture ancestry differences in homogenous
populations, genotypes should be pruned for LD and long-range LD regions removed.? The LD pruned (r?
< .1) UKB dataset without long-range LD regions consisted of 137,102 genotyped SNPs. The PCA to
construct British ancestry-informative PCs was conducted on this SNP set for unrelated individuals using
flashPCA v2.°! PC SNP loadings were used to project the complete set of European individuals onto the
PCs.
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Polygenic Scores

Polygenic scores, the genome-wide sum of alleles weighted by their estimated effect sizes, were
computed for 30 traits. The effect size estimates were obtained from genome-wide association studies
(GWASs) that were chosen to not have included the UKB dataset to avoid over-estimation of the genetic
predisposition of a trait.”®> The polygenic scores were computed using the SBLUP approach,*® which
maximizes the predictive power by creating scores with best linear unbiased predictor (BLUP) properties
that account for linkage disequilibrium (LD) between SNPs. As a reference sample for the LD, we used the
arandom sample of 10,000 unrelated individuals from UK Biobank that were imputed using the Haplotype
Reference Consortium (HRC) reference panel.>? The traits included psychiatric disorders, substance use,
anthropomorphic traits, personality dimensions, educational attainment, reproduction, cardiovascular
disease, and type-2 diabetes. Supplementary Table 1 lists the 30 traits and the GWASs from which we
obtained the genome-wide effect sizes.

To further investigate the robustness of our results, we also created polygenic scores using only
independent SNPs that were associated with the trait with a p-value < .05. The SNPs were clumped using
PLINK®3, using an r? threshold of 0.1 and a window of 1 Mb as the physical distance threshold for clumping.

In order to examine the geographic clustering of polygenic scores beyond the clustering of
ancestry, we created additional sets of polygenic scores that had the first 100 British ancestry-informative
PCs regressed out.

Spatial autocorrelations (Moran’s 1)

The geographic clustering of ancestry and of genome-wide complex trait variation was investigated by
testing whether the spatial autocorrelation (Moran’s /) is significantly greater than zero for ancestry-
informative principal components (PCs), polygenic scores, and the residuals of polygenic scores after
regressing out 100 ancestry-informative PCs. The spatial autocorrelation (Moran’s /) is the correlation in
a measure among nearby locations in space, and its values range between -1 (dispersed) to O (spatially
random) to 1 (spatially clustered).?® Moran’s I's were computed using the average PCs or polygenic scores
per region based on the birthplace of the subjects (378 regions, see Figure 1), whereby the regions were
defined according to the local authorities division as provided by the UK Data Service InFuse database.>*
The empirical p-values of Moran’s / statistics were derived with 10,000 permutations in which the average
PCs or polygenic scores were permuted across regions (Figure 3B).

Regional genome-wide association studies (GWASs)

Genome-wide association studies (GWASs) were run on publicly available regional outcomes, whereby all
subjects from the same regions had the same regional phenotypic value assigned. Supplementary Figure
16 & 21 show the distributions of all phenotypes analyzed, except for the coal mining phenotypes, which
were binary traits (47% of the participants were born in a coal mining area, and 50% of the participants
currently live in a coal mining area). The regional phenotypes were obtained from the following public
resources:
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- The borders of a total of 208 coal mining regions were obtained from the Coal Authority:
https://data.gov.uk/dataset/coal-mining-reporting-area

- The regional educational attainment for 342 local districts and for 7,195 Middle Super Output
Areas (MSOA) was measured as the 2011 estimates of the highest qualification of residents of
England >16 years old (5 levels: level 1 qualifications, level 2 qualifications, apprenticeship, level
3 qualifications, level 4 qualifications) was obtained from the Nomis database of the Office of
National Statistics: https://www.nomisweb.co.uk/

- The proportion of religious vs non-religious inhabitants were obtained for 7,195 Middle Super
Output Areas (MSOA) regions from the Nomis database of the Office of National Statistics:
https://www.nomisweb.co.uk/

- The 2016 Brexit referendum results were obtained for 405 Local Authority Districts from The
Electoral Commision: https://www.electoralcommission.org.uk/find-information-by-
subject/elections-and-referendums/past-elections-and-referendums/eu-
referendum/electorate-and-count-information

- The 1970 general election outcomes were obtained for 630 constituencies from Political Science
Resources: http://www.politicsresources.net/area/uk/ge70/ge70index.htm

- The 2015 general election outcomes were obtained for 633 constituencies from
data.parliament.uk: http://www.data.parliament.uk/dataset/general-election-2015

All political parties were included that had a median proportion of votes > 0.

We ran linear mixed model (LMM) GWASs with BOLT-LMM?® on participants with European
ancestry, which controls for cryptic relatedness and population stratification by including a genetic
relatedness matrix (GRM) in the model.>® Sex and age were included as covariates, as were the first 100
PCs as an additional control for population stratification. The results revealed a considerable inflation of
test statistics that was not due to polygenic effects (this was captured by the LD score intercepts®’ shown
in Supplementary Table 2). This is likely due to the fact that participants that share regional environmental
influences, because they come from the same region, are all assigned the same phenotypic value. We
controlled for this inflation with an LD score intercept-based genomic control,*” i.e., we adjusted the

standard errors (SE) of the estimated effect sizes as follows: SE;- = \/LDSC intercept * SE? (see
Supplementary Table 2).

LD Score Regression

We partitioned the polygenic contributions to the heritability across genomic regions associated with
histone modifications specific to ten cell-type/tissue groups using stratified LD score regression®®
(Supplementary Figure 23). Genetic correlations were also computed using LD-score regression (Figure
6).°8 The genetic correlation between traits is based on the estimated slope from the regression of the
product of z-scores from two GWASs on the LD score and represents the genetic covariation between two
traits based on all polygenic effects captured by the included SNPs. The genome-wide LD information used
by these methods were based on European populations from the HapMap 3 reference panel.>”*® All LD
score regression analyses included the 1,290,028 million genome-wide HapMap SNPs used in the original
LD score regression studies.>”8
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Computing genetic correlations with LD score regression is robust to sample overlap, so we
included summary statistics from GWAS studies that also included UK Biobank (denoted with a blue star
in Figure 6). Where possible however, we decided to display results obtained from summary statistics
without UK Biobank, even if the GWASs from the original studies included UK Biobank participants. This
was the case for MDD?° and educational attainment®, for which we used the same summary statistics
that we used for the polygenic scores, namely from the GWASs that were re-run excluding UK Biobank.
The genetic correlations for MDD and educational attainment obtained with the summary statistics that
did include UK Biobank however were almost identical.
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GENOME-WIDE ASSOCIATION STUDIES ON REGIONAL OUTCOMES (ADDITIONAL RESULTS)

In order to empirically validate the approach, we first ran regional GWASs on regional measures of average
EA outcomes as obtained from census data, namely the weighted average of 2011 estimates of the highest
qualification of residents >16 years old, obtained from the Office for National Statistics (Supplementary
Figure 16). This resulted in genetic signals that were very close to those of an individual-level EA GWAS
that excluded UK Biobank.3” Most significant SNPs in the regional GWAS were at least nominally significant
in the individual level GWAS and their effect sizes correlate .93 (Supplementary Figure 18). The genetic
correlation between the regional EA GWAS and the individual level EA GWAS was .90, and the genetic
correlations with 64 other complex traits were almost identical between the regional and individual level
EA GWASs (r = .99, Supplementary Figures 19 & 20).

For the regional GWASs conducted on the presence of coal in the area, religiousness, and political
preference, there were a total of 12 independent SNPs with p <5 x 10®and 5 independent SNPs with p <
1 x 108 (Supplementary Figure 22 & Supplementary Table 3). The variance that could be accounted for by
all SNPs (i.e., SNP heritability) ranged from 0.3% to 2.4% (see Supplementary Table 2), with the highest
(22%) observed for Brexit, Green Party, UKIP, and non-voters in 2015. The heritability signals were
significantly enriched for genetic variants that are active in hormonal pathways for the Green Party, and
in the central nervous system for the Green Party, UKIP, 2015 non-voters, and Brexit (Supplementary
Figure 23).

Regions with more non-voters genetically show a lower SES profile (i.e., strong negative genetic
correlations with cognition and SES-related traits) and the largest positive genetic correlations with
regions with more Labour party votes, up to .96 between the 2015 non-voters and the 2015 Labour voters.
The 2015 non-voters regional GWAS shows the highest SNP heritability of the non-voters GWASs (2.2%).
The genetic correlations also imply that regions with more non-voters and Labour voters show more risk-
increasing alleles for mood-related traits (i.e., more MDD, higher neuroticism, more loneliness, and lower
wellbeing), and no significant genetic correlation with conscientiousness, as opposed the other lower SES
regions with more votes for UKIP and “Leave” votes for Brexit, which show a significant positive genetic
correlation with conscientiousness.

In order to further examine what differentiates the parties within the higher SES and lower SES
clusters from each other, we repeated the regional GWASs for the proportion of votes among only the
Green Party, Liberal Democrats, and Conservatives votes, and the proportion of votes among only Labour
Party and UKIP votes. The correlations with religiousness were consistently higher and more often
significant for the differences within the higher and lower SES voters than the differences between them
(Supplementary Figure 24). The genetic signals that differentiate Green Party regions from the other
higher SES votes show the highest genetic correlation with regional religiousness (more Green Party votes
= less religious: r; =-.82, SE = .06). What differentiates Liberal Democrats from the other higher SES parties
still seems to be largely SES-related, given the high positive genetic correlation with EA and income (both
.77). The lower SNP heritability estimates of the within SES differences (0.3% - 1.2%, compared to 1.1% -
2.4%, see Supplementary Table 2) suggest that the differences within the higher and lower SES voters are
less influenced by regional genetics than the differences between them.
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POPULATION STRATIFICATION AND ASCERTAINMENT BIAS

Population Stratification

The largest patterns of genome-wide variation between and within human populations are due to
differences in ancestry rather than trait variation. In genetic association studies, false positives due to
population stratification occur when these systematic ancestry differences get mistaken for associations
due to genetic variants that influence the trait that is being studied.>® False positives due to population
stratification can occur when trait differences are in line with ancestry differences, which could also occur
due to non-genetic factors, such as regional differences in environmental exposures. Geographic location
is known to strongly correlate with ancestry differences: the closer people live to each other, the more
likely it is that they share more ancestors. The main focus of this study is the relationship between
geographic location and genome-wide complex trait variation, which is why we had to be particularly
rigorous in accounting for population stratification. We summarize below why it is unlikely that our
observations are merely a result of ancestry differences or biased polygenic scores.

- The most widely used approach to account for ancestry differences is to quantify ancestry differences
with a principal component analysis (PCA) on genome-wide SNP data and then account for the resulting
principal components (PCs).2*>° Instead of using the standard 40 PCs provided by UK Biobank, which
capture both non-European and European ancestry differences,*”® we re-computed PCs to more
effectively capture population stratification within the more homogeneous group of British participants
with European ancestry (see Online Methods). While genome-wide association studies (GWASs) usually
control for 10 to 40 PCs, we controlled for the first 100 PCs in all our analyses.

- We validated the effectiveness of the 100 PCs in accounting for geographic clustering due to population
stratification using polygenic scores that reflect European ancestry differences as captured in an
independent European-American dataset: the GERA cohort.®® First, we conducted GWASs in GERA (N =
51,258) on the first 20 GERA PCs in order to get SNP effects that reflect genome-wide patterns of their
European-American ancestry differences. We then used these SNP effects to build polygenic scores in
UK Biobank. These all show significant geographic clustering as quantified with Moran’s I. After
controlling for 100 PCs from UKB all Moran’s I's dropped to being not significantly greater than 0 (see
Online Methods and Supplementary Figures 3 and 4).

- The polygenic scores we analyzed were constructed from 1,312,100 autosomal SNPs, regardless of how
significantly associated they are with the trait. The ensemble of non-significant SNPs contain a
substantial amount of signals due to true causal relationships, and thus meaningful effect sizes, which
increase the predictive power of polygenic scores.®! Increasing the number of non-associated SNPs
however may also increase the chances of including more stratified SNPs in the polygenic score. We
therefore created a set of additional polygenic scores using only independent SNPs (i.e., clumped) that
were at least nominally significantly associated with the trait at p < .05. This results in scores that are
based on fewer SNPs that are more reliably associated with the trait, but also results in less predictive
scores. With this approach, 8 out of 16 previously significant traits are significantly geographically
clustered after FDR correction (see Supplementary Figure 2). These geographically clustered clumped
scores also showed similar and significant associations with Townsend (Supplementary Figures 11 &
12), coal mining regions (Supplementary Figure 13) and migration out of coal fields (Supplementary
Figures 14), with educational attainment showing the strongest effects.
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- We show that the geographically clustered polygenic scores are significantly associated with regional
outcomes of economic deprivation and with migration out of the more economically deprived regions
in the UK (coal mining regions). The strength of the geographic clustering is in line with the strength of
the association with regional outcomes and, more importantly, migration (Supplementary Figure 10).
In other words, 1) the traits that show significant geographic clustering are the traits that cluster in
specific regions that are characterized by lower SES measures, and 2) we show that the processes that
would result in these regional differences are measurable in the current dataset, namely migration out
of the lower SES regions by individuals with a higher predisposition for SES-related traits such as higher
educational attainment and lower body weight. Although these observations do not directly prove that
ancestry differences cannot account for this geographic clustering, it does show that if subtle
population stratification would be the cause of these regional differences (which is unlikely given our
stringent control for ancestry differences), it would have to involve ancestry differences that are in line
with genome-wide complex trait variation.

- SNPs that are in LD with many SNPs are more likely to tag a causal SNP (i.e., be correlated with a causal
SNP), and are thus more likely to have a higher test-statistic in a GWAS. The amount of SNPs that is
tagged by a SNP is quantified by its LD Score. LD Score regression is an approach that leverages the
relationship between the LD score of a SNP and the GWAS test statistic to distinguish inflation of
genome-wide test statistics due to variants that influence the complex trait under study from inflation
due to confounding bias such as population stratification.>” LD Score regression analyses show that the
results from our regional GWASs all show an inflation of test statistics that is partly due to confounding
(likely shared environmental influences) but also contains a considerable inflation due to variants that
are associated with complex trait variation that is being captured with the regional measures. LD Score
regression was then used to compare the parts of the genetic signals that were due to causal variants
between our regional GWASs and GWASs from a wide range of other complex traits. Importantly, LD
Score regression showed that the signals from our regional GWAS on EA contained almost the same
signals as an individual level GWAS on EA that was conducted on non-UK Biobank datasets, which is in
line with the geographic clustering of genome-wide alleles that have a causal influence on EA.

Ascertainment Bias

The UK Biobank ascertainment strategy was designed to capture sufficient variation in socioeconomic,
urban-—rural, and ethnic background.? The participation rate however was 5.45% and was biased towards
older, more healthy, and female residents.®? The UK Biobank sample does reflect nationally representative
data sources to a significant degree, making it likely that our observations would generalize to the
population at large. We tested at the MSOA level how EA measurements in UK Biobank compare to
nationally representative census data (the same EA census measurements that we used for the regional
EA GWAS). The average EA per MSOA region as measured in UK Biobank is strongly predictive of MSOA-
EA as measured from the nationally representative census data (p < 106, R* = 40%; Supplementary Figure
5). The average polygenic scores per MSOA region, with 100 PCs regressed out, are also highly predictive
of MSOA-EA according to nationally representative census data (p < 106, R? = 19%; Supplementary Figure
5). Since UK Biobank has sampled healthier individuals as well as fewer individuals from more
economically deprived areas as compared to the British population as a whole,® the regional differences
that we report may turn out to be stronger in the real population than in the UK Biobank sample.
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Supplementary Table 1: Overview of GWASs that provided the effect size estimates that were used to compute polygenic scores

Trait Name Ngwas Ncases Ncontrols Neffective hZsnp LDSC Intercept
Educational Attainment3’ 217,569 - - 217,569 .10 1.02
Personality:

Openness®3.64 76,551 - - 76,551 .10 .95
Conscientiousness®3:64 76,551 - - 76,551 .08 .96
Extraversion®3.64 76,600 - - 76,600 .14 .92
Agreeableness®3.64 76,548 - - 76,548 .07 .96
Neuroticism?63.64 76,581 - - 76,581 .09 .94
Psychiatric Traits:

Schizophrenia?8 150,064 36,989 113,075 111,486.6 .18 1.05
Bipolar?® 63,766 11,974 51,792 38,902.1 14 1.02
Anorexia®® 14,477 3,495 10,982 10,605 .22 1.01
Autism®® 46,350 18,381 27,969 44,366.62 11 1.01
Alzheimer®? 54,162 17,008 37,154 46,668.5 .08 1.04
ADHD3! 55,374 20,183 35,191 51,306.4 .21 1.03
MDD30 431,394 116,404 314,990 161,089.68 .08 1.01
Substance Use:

Alcohol Use3? 70,493 - - 70,493 .05 1.02
Smoking (ever vs never)®8 74,035 41,969 32,066 72,710.4 12 1.00
Smoking (cigs per day)t8 38,181 - - 38,181 .06 1.01
Smoking (current/former)®8 41,278 23,969 17,309 40,203.4 .09 1.01
Smoking (age at onset)®® 24,114 - - 24,114 .06 1.00
Cannabis (ever vs never)®? 32,330 14,387 17,943 31,938.9 13 1.00
Caffeine’® 91,462 - - 91,462 .04 1.01
CAD & Diabetes:

Coronary Artery Disease’! 86,995 22,233 64,762 66,204 .28 .87
Type-2 Diabetes’? 69,033 12,171 56,862 40,100.7 .18 1.01
Reproduction:

Age at Menarche’3 87,802 - - 87,802 .24 .98
Age at Menopauze’* 69,360 - - 69,360 13 .99
Antropomorphic traits:

Height’® 253,280 - - 253,280 31 1.33
BMI76 322,154 - - 322,154 .13 .67
Body Fat”’ 100,716 - - 100,716 .10 91
Waist Circumference’® 232,101 - - 232,101 13 .76
Hip Circumference’® 213,038 - - 213,038 14 .78
Waist-to-hip-ratio’8 212,248 - - 212,248 .10 .84
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Supplementary Table 2: Sample sizes and LD score regression results for the regional GWASs before and after LDSC-intercept based genomic control.

Before Genomic Control After Genomic Control (LDSC

intercept=1; ratio=0)

Regional Phenotype N SNP-h2 (SE)% lambda  LDSC intercept (SE) ratio SNP-h2 (SE) % lambda
2011 - Educational attainment (local authorities) 402,552 4.1(.25) 1.49 1.22 (.01) .39 (.02) 3.3(.20) 1.23
2011 - Educational attainment (MSOA) 416,061 7.5(.29) 1.63 1.14 (01) .18 (.01) 6.6 (.25) 1.44
Coal Fields (Birth Place) 422,757 1.5 (.20) 1.56 1.43(.01) .77 (.02) 1.0 (.12) 1.07
Coal Fields (Current Address) 449,972 2.1(.18) 1.43 1.25(.01) .55 (.02) 1.7 (.13) 1.14
2011 - Proportion of non-religious individuals 416,061 1.2 (.17) 1.31 1.19 (.01) .67 (.03) 1.0(.13) 1.08
2016 - Brexit 446,910 3.0(.22) 1.56 1.31(.01) .52 (.02) 2.3(.16) 1.19
2016 - Non-voters 446,910 1.3(.17) 1.20 1.12(01)  .50(.04) 1.2 (.14) 1.09
1970 - Labour Party (centre-left) 422,189 2.3(.22) 1.49 1.30(.01) .60 (.02) 1.8 (.15) 1.14
1970 - Liberal Democrats (centre) 207,045 0.9 (.30) 1.15 1.12 (.01) .75 (.05) 0.8 (.25) 1.04
1970 - Conservative and Unionist Party (centre-right) 421,940 1.6 (.18) 1.37 1.27 (.01) .66 (.02) 1.3(.13) 1.10
1970 - Non-voters 422,415 0.6 (.17) 1.31 1.28 (.01) .83 (.02) 0.5 (.12) 1.04
2015 - Green Party of England and Wales (left-wing) 449,553 2.2 (.16) 1.25 1.08 (.01) .27 (.03) 2.0(.14) 1.18
2015 - Labour Party (centre-left) 449,553 1.8(.19) 1.37 1.22 (.01) .57 (.02) 1.4 (.14) 1.13
2015 - Liberal Democrats (centre) 449,553 1.2 (.15) 1.20 1.08 (.01) .42 (.05) 1.1(.14) 1.09
2015 - Conservative and Unionist Party (centre-right) 449,553 1.5(.17) 1.31 1.17 (.01) .56 (.03) 1.2 (.14) 1.11
2015 - UKIP (right-wing) 449,553 3.1(.21) 1.56 1.29(.01)  .50(.02) 2.4 (.15) 1.20
2015 - Non-voters 449,553 2.6 (.19) 1.43 1.19(.01)  .43(.02) 2.2 (.15) 1.19
2015 - Green/(Green+Liberals+Conservative) 449,553 1.2 (.14) 1.15 1.06 (.01) .31(.04) 1.2(.13) 1.11
2015 - Liberals/(Green+Liberals+Conservative) 449,553 0.3 (.12) 1.10 1.08 (.01) .72 (.07) 0.3(.11) 1.03
2015 - Conservative /(Green+Liberals+Conservative) 449,553 0.9 (.13) 1.15 1.08 (.01) .51 (.05) 0.8 (.11) 1.07
2015 - Labour/(UKIP+Labour) 449,553 0.7 (.14) 1.20 1.15(.01)  .70(.04) 0.6 (.11) 1.05
2015 - UKIP/(UKIP+Labour) 449,553 0.7 (.14) 1.20 1.15(.01)  .70(.04) 0.6 (.11) 1.05
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Supplementary Table 3: Independent SNPs with p < 5 x 108, with independence based on an r? threshold of 0.1.

Election Phenotype SNP Chr BP (hg19) p-value MAF Gene
Coal Mining (Birth Place) rs143252507 17 19970702 2.5%x108 .01 SPECC1
2016 - Brexit rs7613360 3 49916710 9.3 x 1010 .40 ACTBP13
rs1050450 3 49394834 2.5x 108 31 GPX1
rs6130360 20 42010996 3.1x10% .15
1970 - Labour Party (centre-left) rs7159181 14 39229004 1.4x10% .44 LINCO0639
2015 - Green Party of England and Wales (left-wing) rs2624838 3 50205642 8.3 x 1010 .34 SEMAS3F
rs13135092 4 103198082 1.1x10° .08 SLC39A8
2015 - Conservative and Unionist Party (centre-right)  rs61278749 10 106577845 3.0x 108 13 SORCS3
2015 - UKIP (right-wing) rs9827708 3 49649989 2.4 x 10! .30 BSN
rs2624848 3 50165101 2.0x 108 44
2015 — Non-voters rs7548936 1 91207757 8.4x101 .37
rs79003713 5 138135234 3.6x 108 .06 CAP102

Bold: p<1x10%¢
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Supplementary Table 4: Overview of GWASs that provided the effect size estimates that were used to compute genetic
correlations with regional GWASs using LD score regression.

Trait Name Newas Necases Ncontrols Neffective h2snp LDSC Intercept
Cognition and SES:

Childhood 1Q7° 12,441 - - 12,441 .28 1.00
Adult 1Q8° 78,308 - - 78,308 .19 1.02
Educational Attainment3’ 217,569 - - 217,569 .10 1.02
Income?! 112,151 - - 112,151 .06 1.03
Townsend?! 112,151 - - 112,151 .04 1.01
Personality:

Openness®3.64 76,551 - - 76,551 .10 .95
Conscientiousness®3.64 76,551 - - 76,551 .08 .96
Extraversion®3.64 76,600 - - 76,600 .14 .92
Agreeableness®3.64 76,548 - - 76,548 .07 .96
Neuroticism?63.64 76,581 - - 76,581 .09 .94
Other Psychology:

Subjective Well-being8? 298,420 - - 298,420 .03 1.00
Tiredness83 108,976 - - 108,976 .07 .99
Loneliness8* 332,991 - - 332,991 .08 1.01
Risk Taking8* 332,991 - - 332,991

Psychiatric Traits:

Schizophrenia?8 150,064 36,989 113,075 111,486.6 .18 1.05
Bipolar?® 63,766 11,974 51,792 38,902.1 .14 1.02
Anorexia®® 14,477 3,495 10,982 10,605 .22 1.01
Autism®® 46,350 18,381 27,969 44,366.62 11 1.01
Alzheimer®? 54,162 17,008 37,154 46,668.5 .08 1.04
ADHD3! 55,374 20,183 35,191 51,306.4 .21 1.03
MDD30 431,394 116,404 314,990 161,089.68 .08 1.01
Substance Use:

Alcohol Consumption8> 112,117 - - 112,117 .08 1.01
Alcohol Dependence®® 46,568 11,569 34,999 34,779.54 .18 1.02
Smoking (ever vs never)%8 74,035 41,969 32,066 72,710.4 12 1.00
Smoking (cigs per day)®8 38,181 - - 38,181 .06 1.01
Smoking (current/former)®8 41,278 23,969 17,309 40,203.4 .09 1.01
Smoking (age at onset)%8 24,114 - - 24,114 .06 1.00
Cannabis (ever vs never)®® 32,330 14,387 17,943 31,9389 13 1.00
Caffeine’® 91,462 - - 91,462 .04 1.01
Health & Longevity:

Self-rated health®’ 111,749 - - 111,749

Coronary Artery Disease”! 86,995 22,233 64,762 66,204 .28 .87
Type-2 Diabetes’? 69,033 12,171 56,862 40,100.7 .18 1.01
Age of Parents Death?8 45,627 - - 45,627 .05 1.02
Age of Fathers Death88 63,775 - - 63,775 .05 1.02
Age of Mothers Death88 52,776 - - 52,776 .05 1.01
Reproduction:

Age at First Birth8° 251,151 - - 251,151 .05 .96
Nr of Children Ever Born®® 343,072 - - 343,072 .02 .97
Age at Menarche’3 87,802 - - 87,802 .24 .98
Age at Menopauze’* 69,360 - - 69,360 .13 .99
Antropomorphic:

BMI76 322,154 - - 322,154 .13 .67
Height”> 253,280 - - 253,280 31 1.33
Body Fat”” 100,716 - - 100,716 .10 91
Waist Circumference’® 232,101 - - 232,101 13 .76
Hip Circumference’® 213,038 - - 213,038 .14 .78
Waist-to-hip-ratio’8 212,248 - - 212,248 .10 .84
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Supplementary Figure 1: The geographic locations of the UK Biobank participants (each dot represents a participant). The left map
shows the current living address (N=497,673). The right plot shows the birth places (N=444,992).
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Supplementary Figure 2: Moran’s | of 30 polygenic scores based on independent SNPs with p <.05. Moran’s | were computed using
the average polygenic score per region in 378 local authority regions. A shows the Moran’s | of the polygenic scores uncorrected
for PCs (red) and corrected for 100 PCs (green), where orange means a significant FDR corrected p-value < .05 (corrected for 30
tests). B shows the permutation distributions for the SBLUP polygenic scores that have an FDR corrected p-value < .05 compared

to the observed Moran’s | (vertical line to the right of the permutation distribution).
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Supplementary Figure 3: Geographic distribution and Moran’s | values for polygenic scores (PS) based on GWASs on the first 5
ancestry-informative PCs from the GERA dataset. The upper five maps display uncorrected polygenic score, while the five maps
below display the residuals of the polygenic scores after regressing out 100 PCs. Green p-values are significant after FDR correction.
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Supplementary Figure 4: Moran’s | of polygenic scores based on GWASs on the first 5 ancestry-informative PCs from the GERA
dataset computed using the average polygenic score per region in 378 local authority regions. The Figure shows the Moran’s | of
the polygenic scores uncorrected for PCs (red) and corrected for 100 PCs (green), where orange means a significant FDR corrected
p-value < .05 (corrected for 20 tests).
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Supplementary Figure 5: Regional educational attainment (EA) on MSOA level obtained from census data (Office of National
Statistics) plotted against the average EA in UK Biobank corrected for age, year of birth, and sex (left plot; R? = 40%) and EA
polygenic scores corrected for 100 PCs (right plot; R? = 20%). All measures have been standardized to have mean 0 and SD 1.
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Supplementary Figure 6: The average Townsend indices from 1971 to 2011 for coal fields and regions without coal.
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Supplementary Figure 7: The standardized regression coefficients and standard errors for the 16 geographically clustered
polygenic scores (ordered by Moran’s ) of the associations with the Townsend indices of 1971 to 2011 of the birth places of the
subjects (N = 349,982 unrelated subjects). All polygenic scores shown are standardized residuals after regressing out 100 PCs. * =

p< 05 kok —

=p<.01, ***=p<.001.
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Supplementary Figure 8: The standardized regression coefficients and standard errors for the 16 geographically clustered
polygenic scores (ordered by Moran’s 1) of the associations with the Townsend indices of 1971 to 2011 of the current address of
the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are standardized residuals after regressing out 100 PCs.
*=p<.05 **=p<.01, ***=p<.001.
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Supplementary Figure 9: The average and standard errors for the 16 geographically clustered polygenic scores (ordered by
Moran’s 1) within coal mining regions vs the rest of Great Britain based on the birth place of the participants and on the current
addresses separately. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative PCs.
The differences between Coal Fields and No Coal are all significant with an FDR corrected p-value < .05.
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Supplementary Figure 10: Scatterplots showing the relationships between Moran’s | of the significantly clustering polygenic scores
and their association with indicators of economic deprivation (Townsend and the presence of coal fields) and migration. A shows
on the y-axis the absolute regression coefficients of the regressions with birthplace Townsend shown in Supplementary Figure 3.
The correlations between the absolute regression coefficients and Moran’s | are .82 for 1971 (p = 9 x 10°), .82 for 1981 (p = 9 x
107%), .78 for 1991 (p =4 x 104), .75 for 2001 (p = 7 x 10#), .77 for 2011 (p = 5 x 10*). Excluding the outlier educational attainment,
the correlations between the absolute regression coefficients and Moran’s | are .57 for 1971 (p =.03), .52 for 1981 (p = .04), .47
for 1991 (p =.08), .42 for 2001 (p = .12), .46 for 2011 (p = .08). B shows on the y-axis the absolute test statistic of the t-test for
group differences between coal fields and the rest of Great Britain (based on birth place) from Supplementary Figure 5. The
correlation between the absolute test statistic and Moran’s I is 89(p = 9 x 1012). Excluding the outlier educational attainment, the
correlations between the absolute test statistic and Moran’s | is .65 (p = 1 x 104). C shows on the y-axis the absolute test statistic
of the ANOVA for group differences between the four migration groups from Figure 5. The correlation between the absolute test
statistic and Moran’s | is .95 (p = 2 x 108). Excluding the outlier educational attainment, the correlations between the absolute
test statistic and Moran’s |l is .73 (p =.002).
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Supplementary Figure 11: The standardized regression coefficients and standard errors for the 8 significantly clustering polygenic
scores (clumped, i.e., based on independent SNPs with p-values <.05; ordered by Moran’s |) of the associations with the Townsend
indices of 1971 to 2011 of the birth places of the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are
standardized residuals after regressing out 100 PCs.
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Supplementary Figure 12: The standardized regression coefficients and standard errors for the 8 significantly clustering polygenic
scores (clumped, i.e., based on independent SNPs with p-values <.05; ordered by Moran’s |) of the associations with the Townsend
indices of 1971 to 2011 of the current address of the subjects (N = 349,982 unrelated subjects). All polygenic scores shown are
standardized residuals after regressing out 100 PCs.
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Supplementary Figure 13: The average and standard errors for 8 significantly clustering polygenic scores (clumped, i.e., based on
independent SNPs with p-values <.05; ordered by Moran’s I) within coal mining regions vs the rest of Great Britain for the birth
place and the current address. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative
PCs. The differences between Coal Fields and No Coal are significant for all scores except conscientiousness for both current
address and birth place with an FDR corrected p-value < .05.
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Supplementary Figure 14: The average and standard errors for 8 significantly clustering polygenic scores (clumped, i.e., based on
independent SNPs with p-values <.05; ordered by Moran’s 1) for four migration groups: born in coal field area and moved out, born
in coal field area and stayed, born outside of coal field area and moved to coal field area, born outside of coal field area and stayed
out. All polygenic scores shown are standardized residuals after regressing out 100 ancestry-informative PCs. All polygenic scores
show significant group differences after (FDR corrected p < .05), except conscientiousness.

40


https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/

Local Authority Regions
Educational Attainment . &
ADHD- ]
BMI- [ ]
Waist~to-Hip Rafio- .
Coronary Artery Disease - ®
Waist Circumference -
Height- [ ]
Smoking (ever vs never)- (I
Body Fat-— (i
Openness- @)
moD- i@
Bipolar- @
Schizophrenia - .
Smoking {current vs former) - .
‘Smoking (ecigs per day)- .
autism- @
Age at Menopauze - @B
Anorexia-—
Neuroticism -
Smoking (age of onset)- @
Hip Circumierence - @)
Type-2 Diabetes - @
Cannabis—
Alcohol Use - @
Extraversion- ()
Conscientiousness — @)
Alzheimer- @)
Agreeableness- @
Age at Menarche- @
Caffeine- @
00 05 10 15

% Wariance Explained by Region

MSOA Regions
E = —
ADHD- e
BMI- -

Waist-to-Hip Ratio— =8
Waist Circumierence——— (@=0)
Height- @
Coronary Artery Disease— @0
Smoking (ever vs never)— @
Openness— @
Body Fat—— @)
MoD- @
Schizophrenia— @)
Bipolar— @)
Anorexia— .
Age at Menopauze—
Hip Circumierence (@)
Smoking (age of onset)— B
Smoking {current vs former)— (@
Smoking (cigs per day) - .
Autism——
Extraversion— @)
-
|

Meuroticism —

Cannabis—
Conscientiousness— .
Type-2 Diabetes— @B
Agreeableness— @0
Age at Menarche— @
Alcohol Use— @
Alzheimer— @B
Caffeine— @
0 1 2
% Variance Explained by Region

Coal Mining Regions

Educational Attainment —0
ADHD - [ ]
BMI - .
Waist-to-Hip Ratio - (=%
Coronary Artery Disease - ®
Height - .
Waist Circumference - [ o ]
Body Fat-—— @)
Smoking {ever vs never) - .
Smoking (cigs per day) - (@)
Openness - @
Smoking (current vs former) - @
woo-— @
Bipolar-— @
Age at Menopauze - @
Hip Circumference - (@)
‘Smoking (age of onset) - @
Neuroticism - ()
Anorexia-— @
Schizophrenia - @
Alzheimer - ()
Type—2 Diabetes - .
Conscientiousness - ()
Agreeableness - @
Autism - @)
Alcohol Use - @
Cannabis — .
Age at Menarche - @
Extraversion - .
Caffeine - @
0.0 02 04 06 D8

% Variance Explained by Region

Supplementary Figure 15: Linear Mixed Model results, with polygenic score (after regressing out 100 PCs) as a dependent variable and region as random effect (N = 320,940

unrelated individuals). Left: Local Authorities (~380 regions); Middle: MSOA (~5,300 regions), Right: Coal mining Regions (fitted as a binary variable). Red: Birth Place; Green:

Current Address; Yellow = significant after FDR correction.
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Supplementary Figure 16: Linear Mixed Model results, with PCs as a dependent variable and region as random effect (N = 320,940 unrelated individuals). Left: Local Authorities
(~380 regions); Middle: MSOA (~5,300 regions), Right: Coal mining Regions (fitted as a binary variable). Red: Birth Place; Green: Current Address; Yellow = significant after FDR

correction.
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Supplementary Figure 17: Distributions of the regional-level educational attainment (EA) phenotypes. The distributions show all
subjects included in the GWASs, where all subjects from the same region were assigned the same phenotypic value.
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Supplementary Figure 20: Scatterplots of the genetic correlations with 64 complex traits from Supplementary Figure 16. Each dot
represents a complex trait. The correlations between the rg’s from the regional EA GWAS at local authority level and the individual
EA GWAS (plot to the left) is .99. The correlations between the rg’s from the regional EA GWAS at MSOA level and the individual
EA GWAS (plot to the right) is also .99.
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Supplementary Figure 21: Genetic correlations (rg) and their standard errors (SE) based on LD score regression, for regional EA outcomes based on census data and the individual-
level EA GWAS excluding UK Biobank. Colored is significant after FDR correction. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.
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Supplementary Figure 22: Distributions of regional-level phenotypes. The distributions show all subjects included in the GWASs,
where all subjects from the same region were assigned the same phenotypic value.

46


https://doi.org/10.1101/457515
http://creativecommons.org/licenses/by-nc-nd/4.0/

Coalfields (birth place)

8
—_ [
B Fiodsh g ol Loy
& 4 " R
K-}

0= T rT T

1 3 5 9 12 16 22
Chromosome
Labour Party (centre-left) - 1970
8 ¥
v 1

—~ 6
3
s 4]
K-
[} 2 -

0

1 3 5 7 9 12 16 22
Chromosome
Labour Party (centre-left) - 2015

7

6
= 5
< 4
g 3
T2

1

0

1 3 5 7 9 12 16 22

Chromosome

Green Party / (Green Party+Liberals+Conservative)

-logolp)
orRNWaUO N

1 3 5 7 9 12 16 22

Chromosome

~logia(p)

~logo(p)

~logalp)

~logia(p)

O NWRUO N

OFENWRUO N

Coalfields (current address)

i i :
' i ‘ | | ll Ill
1 |iw |'|I| 1 || ||1
1 3 5 7 9

Chromosome

Liberal Democrats (centre) - 1970

1 3 5 7 9 12

Chromosome

Liberal Democrats (centre) - 2015

1 3 5 7 9 12

Chromosome

Liberals / (Green Party+Liberals+C:

Religious
7
6 . .
3 5 Ly 2o
52 4 P J - Wt A
g 3
[ 2
1
0 T T e e
12 16 22 1 3 5 7 9 12 16 22
Chromosome
Conservative and Unionist Party (centre-right) - 1970
7
6
= 5
= 4
g 3
| 2
1
]
16 22 1 3 5 7 9 12 16 22
Chromosome
Conservative and Unionist Party (centre-right) - 2015
8 .
_ 6
3
.
°
o2
0
16 22 1 3 5 7 9 12 16 22
Chromosome
< / (Green Party+Liberals+Canservative)
7 .
3
= 5
s ;
g 3
T2
1
o]

16 22

Chromosome

1 3 5 7 9 12

16 22

Chromosome

~logio(p)

-10910(p)

-logyelp)

~logye(p)

Brexit - 2016

16 22

Chromosome

Non-voters - 1970

OHENWA VO~

1 3 5 7 9 12

16 22

Chromosome

UKIP (right-wing) - 2015

1 3 5 7 9 12 16 22

Chromosome

Labour / (UKIP+Labour)

R NWEWLO

1 3 5 7 9 12

16 22

Chromosome

~logyo(p)

~logyolp)

~logelp)

~logyo(p)

Non-voters (Brexit) - 2016

ORNWBRUO

1 3 5 7 9 12 16 22

Chromosome

Green Party of England and Wales (left-wing) - 2015

Chromosome

Non-voters - 2015

Chromosome

UKIP / (UKIP+Labour)

O NWSEUO

1 3 5 7 9 12

16 22

Chromosome

Supplementary Figure 23: Manhattan plots of the GC-corrected GWAS on the presence of coal fields in the birthplace and the current address, the proportion of religious vs non-
religious inhabitants, the Brexit referendum of 2016, and the regional outcomes on general election results of 1970 and 2015. The suggestive significance threshold (blue line) is set
at 5 x 108, and the genome-wide significance threshold (red line) is set at 1 x 10,
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Supplementary Figure 25: Standard errors of the genetic correlations based on LD score regression from Figure 6. Colored is significant after FDR correction. The green numbers in
the left part of the Figure below the diagonal of 1’s are the standard errors of the phenotypic correlations between the regional outcomes of coal mining, religiousness, and regional
political preference. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.
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Supplementary Figure 26: Genetic correlations (rg) and their standard errors (SE) based on LD score regression between regional political outcomes, within higher and lower SES
groups. Colored is significant after FDR correction. The blue stars next to the trait names indicate that UK Biobank was part of the GWAS of the trait.
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