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experiments typically rely on the alignment of reads to a reference sequence.
However, because of genetic diversity and the diploid nature of the human
genome, we hypothesized that using a generic reference could lead to incorrectly
mapped reads and bias downstream results.

Results: We show that accounting for genetic variation using a modified
reference genome (MPG) or a denovo assembled genome (DPG) can alter
histone H3K4mel and H3K27ac ChIP-seq peak calls by either creating new
personal peaks or by the loss of reference peaks. MPGs are found to alter
approximately 1% of peak calls while DPGs alter up to 5% of peaks. We also
show statistically significant differences in the amount of reads observed in
regions associated with the new, altered and unchanged peaks. We report that
short insertions and deletions (indels), followed by single nucleotide variants
(SNVs), have the highest probability of modifying peak calls. A counter-balancing
factor is peak width, with wider calls being less likely to be altered. Next, because
high-quality DPGs remain hard to obtain, we show that using a graph
personalized genome (GPG), represents a reasonable compromise between MPGs
and DPGs and alters about 2.5% of peak calls. Finally, we demonstrate that
altered peaks have a genomic distribution typical of other peaks. For instance, for
H3K4mel, 518 personal-only peaks were replicated using at least two of three
approaches, 394 of which were inside or within 10Kb of a gene.

Conclusions: Analysing epigenomic datasets with personalized and graph
genomes allows the recovery of new peaks enriched for indels and SNVs. These
altered peaks are more likely to differ between individuals and, as such, could be
relevant in the study of various human phenotypes.

Keywords: personalized genomes; genome graphs; denovo assembly; modified
reference; reference bias; ChlP-seq; epigenomics

Background

Standard ChIP-seq analysis relies on aligning reads to a reference sequence followed
by peak calling [1] [2]. While the reference genome is a good approximation of
the sequence under study, it does not account for the millions of small genetic
variants, the larger structural variants or the two haplotypes of the human genome
[3]. Instead, aligners cope with variation by allowing mismatches and indels in read
alignments [4]. For example, reads that align to the SNP shown in Fig la would

simply include a mismatch in their alignment to the reference sequence. Differences
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between the genome under study and the reference will shift the mapping of certain
reads and generate unmapped reads (Fig la), a phenomenon known as reference
bias [5]. Provided that the mapping of a number of reads is modified, an alignment
to a personalized genome could lead to the gain or the loss of a peak, or what we will
call an altered peak (AP). Actually, it has already been shown that just changing
the assembly version of the reference can affect epigenomic analyses [6].

In the current study, we wanted to evaluate the impact of using different types of
personalized genomes on ChIP-seq analysis (Fig 1b). One obvious way of generating
a personalized genome is to modify the reference genome using phased variant calls
obtained from whole-genome sequencing to generate a diploid pair of sequences [7].
We call this making a modified personalized genome (MPGs). Because we cannot
align reads to both MPGs simultaneously, analyses are done separately for each
haploid sequence and merged afterwards. The advantage is that aligned reads would
no longer feature the mismatch corresponding to the SNP mentioned above (Fig
1b). Epigenomic studies involving the use of MPGs are present in the literature. For
instance, Shi et al. modified the reference genome using phased single nucleotide
variant (SNV) calls and then realigned transcription factor and histone ChIP-seq
data to record allelic specific binding events [8]. However, that study did not consider
indels and was limited to understanding how SNVs affect standard analyses but not
the identification of APs. Additionally, although pipelines such as AlleleSeq [7] do
support indels and structural variations (SVs), they remain restricted to detecting
allellic specific events without providing a way to detect APs. Allim [9] is a similar
pipeline that attempts to detect instances of allelic imbalance in gene expression by
modifying the reference to construct parental haplotypes. Turro et al. also leveraged
genotypes, this time by modifying a reference transcriptome [10]. A study that did
look at the use of MPGs as compared to the reference genome was done in the
context of RNA-seq [11], where it was shown that personalized mouse genomes can
improve transcript abundance estimates.

Improving the reference using SNVs and indels can help account for variation
of small length, but not for larger SVs. For this reason, we also turn to denovo
assembled personal genomes (DPGs) to fully reconstruct the genome sequence under
study and to capture a broader range of genetic differences (Fig 1b). However,
high-quality DPGs remain challenging to obtain for epigenomic analyses, as they
typically require at least 50X sequencing depth and long-reads, which remain costly
[12]. Also, the computational time for DPGs is much higher than aligning to a
reference and calling variants [13]. Moreover, denovo assemblies may contain defects
and are often incomplete compared to the reference [14]. Despite this, they may still
provide a useful point of comparison.

Finally, the above trade-offs also motivate the exploration of graph personalized
genomes (GPG) as an additional strategy (Fig 1b). GPGs can leverage available
call sets that include a broad range of variants, from SNPs and indels to catalogues
of sequence resolved SVs and also capture the diploid nature of the human genome
[15]. Genome graphs abandon the flat structure of the standard reference genome.
Instead, the contigs of the genome are chunked into nodes and connected by edges
[16]. Different alleles are then represented as additional nodes, providing alternative
paths for read alignment. Well-defined rules about the semantics of nodes and edges
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allow graphs to express all kinds of genetic variants in a concise manner, from small
sequence differences to genomic rearrangements. Therefore, reads aligning to the
SNP would take the path through the node that represents it. Conveniently, genome
graph implementations such as vg [17] provide the proper utilities and semantics to
work with annotations spanning multiple coordinate systems. Moreover, there are
tools that can call ChIP-seq peaks directly from graph genomes [18] .

The objective of our study is to provide a comparison between alternative
personalized genomes (MPGs, DPGs and GPGs) for ChIP-seq analyses. Even if
only a fraction of peaks are observed to be altered, these regions will correspond to
biochemically active regions that are more likely to differ between individuals and,
as such, could be relevant in the study of various human phenotypes.

Results

Modified personal genomes alter a small fraction of peaks that are enriched in indels
There are many high-confidence variant call sets and assemblies of the NA12878
genome, which makes it a good candidate for benchmarking [19] [20]. We created
a paternal and maternal MPG for NA12878 and aligned whole-genome sequencing
(WGS) reads to the standard human reference and to these MPGs (Methods). We
wanted to estimate the proportion of changed mappings and noted that 3.6% of
WGS reads move depending on the reference that is used (Table Sla). To measure
the impact of reads changing location on ChIP-seq calls, we aligned H3K4mel and
H3K27ac ENCODE datasets from NA12878, and counted the proportion of altered
peaks (Methods). We found that the fraction of personal-only and ref-only peaks
was consistent between the two histone marks (Table 1). Among the H3K4mel calls,
each MPG yielded roughly 1600 personal-only (1.1%) peaks and roughly 800 ref-only
peaks (0.6%). Among the H3K27ac calls, we called roughly 600 personal-only peaks
(1.0%) and 300 ref-only peaks (0.5%) in each MPG. Notably, personal-only peaks
were found at about double the rate of ref-only peaks. Ref-only peaks arise when
the reads forming a peak pileup in the reference map to different locations in the
personalized genome. In contrast, personal-only peaks emerge when reads shift their
mapping from the reference pileup to the new personalized pileup or when reads
that did not map to the reference become mapped to the personalized genome.
Consistent with this hypothesis, there was a net gain of mapped WGS reads in the
NA12878 MPG (Table Sla) and personal-only intervals are enriched in ChIP-seq
rescued reads relative to ref-only intervals (Fig Sla).

Aligning to a personalized genome may cause differences in read density that
do not necessarily lead to an AP call, especially in the strong peak regions. For
that reason, we also counted the reads in personal-only, ref-only and common peak
intervals and compared them between the reference and personalized alignments
(Methods). Ideally, peaks that have AP calls should also have a skewed coverage.
However, for most AP calls, we found that their coverage distribution remained
clustered within the distribution of the common and unaffected peaks calls (Fig
2a). Most affected peak calls fall into the no-skew category together with common
calls, with only around 30 peaks having a coverage skewed toward the reference or
the MPG (Fig 2b and Table S2). Comparing the g-value distribution of common
peaks against the distribution of APs revealed similar modes but a much shorter
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right tail for APs (Fig 2c). This means that personal-only peaks and ref-only peaks
are confined to a region of narrower width and lower confidence than most common
peaks (Fig S1b - Slc). Similar results were also observed for H3K27ac (Fig S2a and
S3a).

Finally, we wanted to explore the link between AP and variant calls, as we
expected the former to occur mainly in the presence of the latter. For this purpose,
we binned AP calls according to the overlapped combination of variants (Methods).
Reassuringly, we found that peak calls that do not contain variations have a near
zero chance of being altered, while peaks overlapping at least one indel are the
most likely to be altered followed by peaks overlapping at least one SNP (Fig 2d).
Interestingly, peaks containing at least one SNP and indel are the least likely to be
altered. A factor that could explain this trend is the peak width associated to each
peak category and histone mark. Indeed, we found that the mean width of peaks
overlapping both indels and SNPs is the highest among the four combinations of
variations, followed by peaks with at least one indel and peaks with at least one
SNP (Fig 2d). Using a regularized logistic regression model (Methods), we were also
able to show that peak width has an inverse relationship with AP calls (Fig S1d -
Sle). We estimated that the AP call log-odds ratio decreases by 0.19 per additional
100 basepairs in peak width, increases by 1.29 per additional SNP and by 2.0 per
additional indel.

Applying modified personal genomes to Blueprint samples
NA12878 is a deeply sequenced sample with high quality variant calls, meaning
that it is not representative of most datasets. We wanted to evaluate the proportion
of altered peaks on lower pass WGS datasets such as Blueprint, a cohort of
samples used in the study of haematopoietic epigenomes for which ChIP-seq data
is available [21] (Methods). In Blueprint samples, we called on average 130 and
47 thousand common peaks for H3K4mel and H3K27ac, respectively. Overall, the
total number of peaks is comparable to NA12878 (Table S3). In H3K4mel, there
are approximately 750 (0.6%) personal-only peaks and 450 (0.4%) ref-only peaks. In
H3K2T7ac, there are approximately 330 (0.7%) personal-only peaks and 190 (0.4%)
ref-only peaks. Among these samples, the number of APs is almost always below
the NA12878 benchmark (Fig 3a and S4a). Again, ref-only peaks are observed to
occur less often than personal-only peaks. A decrease is also observed with skewed
peaks. While not numerous in the benchmark to begin with (50 to 70), their number
in the typical Blueprint sample barely reaches double digits numbers (Fig 3b and
S4b). This is likely due to the difference in the whole genome sequencing depth,
as the NA12878 variant call set (3.5M SNPs, 0.5M indels) is richer than Blueprint
(approximately 3.25M SNPs and 375M indels per sample, Fig S4c). We confirmed
this by creating a NA12878 MPG by downsampling the original set to 2.6M SNVs
and 100K indels. As shown in Table 1, the downsampled MPG produces fewer AP
calls relative to the full set for both H3K4mel and H3K27ac marks. We should also
keep in mind that the phasing of NA12878 variant calls is better than for Blueprint,
which could also contribute to more AP calls.

In Blueprint, altered peaks remain enriched in variants, with peaks containing
indels being being altered most frequently (Fig 3c). Again, we found that the peaks
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of H3K4mel were slightly less likely to be altered than the peaks of H3K27ac. As
previously discussed, this is probably due to the inverse relationship between peak
width and altered calls. As to the quality of altered Blueprint peaks, the same
pattern of width, confidence and coverage observed in NA12878 were seen again
in Blueprint samples (Fig S5). The small differences in coverage together with the
weak confidence of APs, indicates that MPGs can only alter the calls of regions
that are very near the threshold of significance.

Finally, in this initial analysis, we had trimmed every sample to a read length of 36
bp to make it comparable to the NA12878 datasets (Methods). To test the effect of
read length, we repeated the Blueprint analysis with the full 100 bp reads. We found,
as expected, that as the read length increases, APs become less likely (Fig 3d). We
repeated the NA12878 WGS alignment comparison with the longer 100bp reads to
gain some insight on why this happens (Table S4a). Compared to the shorter reads
(Table Sla), the longer reads show a proportionally small decrease in aligned reads
with unequal mappings. However, the proportion of reads that are mapped in one
genome but not in the other halves. This is accompanied by a greater mapping rate
of the whole WGS dataset. Therefore, the decrease in APs can be attributed to a
smaller proportion of reads that are rescued by the personalized genome.

Denovo personalized genomes create a larger number of altered peaks

If the moderate effect of using MPGs for ChIP-seq calls in NA12878 and Blueprint
is explained by the fact that larger scale variations had not been taken into account,
then denovo assemblies, or DPGs, could potentially have a broader impact. Support
for this hypothesis comes from the increased rate of read mapping changes when
using DPGs instead of MPGs (Table S1b). We opted to use the 10X Hapl denovo
assembly as a DPG for this comparison (Methods). In this DPG, 9.8% of reads
change their mapping, which is nearly a three fold increase from the equivalent
analysis with MPGs. When using full reads, we still get that 9.4% of reads alter
their mapping (Table S4b). As in MPGs, the number of rescued reads proportionally
changes the most.

In the context of ChIP-seq analysis, this should lead to a larger number of altered
peaks. Indeed, using the same datasets (Methods), we found that the altered peak
calls are roughly five times more numerous with a similar number of common
peaks when using the Hapl and Hap2 DPGs instead of an MPG (Table 1). For
H3K4mel, we obtained approximately 7.1 thousand (4.8%) personal-only peaks
and 6.7 thousand (4.6%) ref-only peaks. For H3K27ac, we called approximately 2.1
thousand (3.2%) personal-only peaks. For this mark, the number of ref-only peaks is
unusually large at 9.9 thousand (13.5%) peaks. We also repeated the analysis that
identifies peaks that have skewed read counts toward the DPG or the reference.
Notably, we found that many AP calls now have substantial differences in coverage
(Fig 4a and Fig S2¢ for H3K27ac). There are also many significantly skewed peaks,
which are more distinguished in terms of reference and personalized read counts
compared to their equivalents in MPGs (Fig 4b and Fig S2d for H3K27ac). Similar
results are also obtained using the Pendleton DPG (Methods and Table 1). Overall,
personal-skewed and ref-skewed peaks are one to two order of magnitude more
numerous in DPGs versus MPGs (Table S2). Although personal-only peaks do not
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reach an identical distribution to common peaks, there are considerable gains in
terms of width and quality (Fig S6a). DPG-only peaks are found to have a higher
mean SNP and indel density compared to common peaks (Fig S6d). As for ref-only
peaks, they are only slightly enriched in variation calls. This can be explained
by a group of ref-only calls that have no coverage in the DPG and are probably
completely missing from the denovo assembly (Fig 4a).

If SVs are the root of many AP calls, then many of these peaks should overlap
repeats or segmental duplications that are known to be underrepresented in denovo
assemblies [22]. We selected the most confident subset of H3K4mel AP calls to be
overlapped with SD and repeats annotations (Methods). This reduces the initial
set to 828 confident DPG-only and 2064 confident ref-only peaks. Among confident
DPG-only peaks, only 349 peaks are located in regions free of SDs (Fig 4c). Ref-only
peaks with positive DPG coverage register much fewer SDs (6.3%). However,
ref-only peaks without DPG coverage are highly associated with SDs (71.3%) (Table
S5). The lack of coverage suggests that these duplicated sequences are not present
in the DPG. Looking among the SD free peaks, we discovered peaks with large
differences between the reference alignment and the DPG alignment (Fig S7). We
also measured the enrichment in APs of the different repeat families (Methods).
Alus were found to be 2 times more frequent in DPG-only peaks and 1.5 times in
ref-only peaks (Fig 4d). The same is not true for repeat families such as L1, which
occur equally or less often in APs relative to the genome. There also exists a small
confident subset of 46 DPG-only and 115 ref-only peaks that are free of both SDs
and repeats. Despite the absence of known repeats or segmental duplications, these
peaks can still have large differences in coverage between the DPG and the reference
alignments (Fig S8). We obtained similar results for H3K27ac (Fig S9a - S9b).

Graph personalized genomes create more altered peaks than MPGs

Although DPGs are more effective than MPGs to recover APs, in practice they
are often difficult to obtain. Therefore, we were interested in GPGs due to their
ability to represent genetic variation and potentially approximate denovo assemblies
by exploiting structural variant catalogues. In addition, GPGs improve on MPGs
by allowing read alignment to a diploid genome instead of treating each haploid
individually. As before, we mapped the same WGS reads to the reference genome,
this time represented as a graph, and to the NA12878 GPG and then compared their
coordinates using built-in vg functionality (Methods). By properly representing the
diploid genome, we expected GPGs to shift the mapping of a greater proportion of
reads than an equivalent pair of MPGs. In fact, we found that the proportion of
unequal mappings between the reference graph and the NA12878 GPG (8.3%) is
more than twice the number between the reference and the NA12878 MPGs (3.43%)
given the same WGS dataset (Table Slc).

We found similar numbers of common peaks in GPGs as in MPGs and DPGs,
specifically 132 thousand H3K4mel calls and 75 thousand H3K27ac calls (Table 1
and Methods). Among the H3K4mel calls, 3068 (2.3%) are personal-only and 1178
(0.9%) are ref-only. Among the H3K27ac calls, 1847 (2.4%) are personal-only and
1206 (1.6%) are ref-only. Both sets of values are intermediate between MPGs and
DPGs (Table 1). Revisiting the peak read counts between the reference graph and
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the diploid graph shows greater dispersion, among both altered and common peaks
(Fig 5a). The same test for read count skew yields an order of magnitude more
peaks (279 to 411) than MPGs (Fig 5b, Table S2). See also Fig S2e - S2f for similar
results with H3K27ac. Next, we recalculated the association of indels and SNPs with
the personal-only peak calls in GPGs (Fig S10b). Again, indels have the strongest
association with APs for both H3K4mel and H3K27ac marks. Contrary to MPGs,
H3K27ac peaks containing both indels and SNPs are just as likely to be altered as
peaks containing only SNPs, despite being much wider. Similarly to MPGs, peaks
lacking variants are the least likely to be altered in both histone markers.

Next, we were interested between in the concordance between the 3 approaches:
MGP, GPG and DPG (Methods). We found the overlap between the total peak
tracks to be substantial, with over 100 000 H3K4mel peak calls overlapping between
the three personalized genome implementations (Fig 5¢ and S9d for H3K27ac).
In contrast, when the AP calls are intersected, a small overlap is observed for
personal-only peaks and ref-only peaks (Fig 5d - 5e and S9e - S9f for H3K27ac).
Only 234 of 3068 (7.6%) of the NA12878 GPG personal-only calls are replicated
in the DPG. Similarly, only 79 GPG ref-only calls are replicated from a total of
1178 peaks (9.8%). Comparatively, the replication rates between MPGs and DPGs
are slightly higher, despite smaller absolute number of peaks. 186 of 1622 (14%)
personal-only peaks and 82 of 808 (10.1%) ref-only peaks are replicated in the DPG.
We wanted to know if chance alone could explain this small overlap of AP calls. We
did this by generating a distribution of peak overlaps by randomly and repeatedly
sampling the respective number of personal-only peaks in each genome from its
total number of peaks (Methods). The expected number of replicated personal-only
peaks is 140 peaks between the GPG and DPG and 80 peaks between the MPG
and DPG (Fig 5f). As such, albeit small, the number of replicated peaks cannot be
explained by chance alone.

Further characterizing the altered peaks
We were interested in comparing the quality of the APs found by the three different
approaches. We achieved this by comparing the g-values by rank in each genome
(Fig 6a). From this, we observed that the best DPG-only peaks surpass the best
GPG-only and MPG-only peaks by a wide margin. The top GPG APs only surpass
the top MPG APs by around one unit on the —log;,(¢q) scale. But on a linear scale,
this means that the most confident GPG APs are an order of magnitude more
confident than the most confident MPG APs. See Fig S3c - S3d for H3K27ac.
Finally, H3K4mel is a histone mark known to be associated with gene activation
that is present near transcription start sites and transcribed regions [23]. However,
this pattern may not necessarily be replicated in the AP calls, particularly if they
are caused by noisy signal. Therefore, we wanted to check whether APs maintain
the same genomic distribution as the rest of the calls, among all three genome
implementations. To this end, we computed the distances to the nearest gene for
MPG-only, DPG-only and GPG-only peaks as well as for personal-only and common
peaks that were replicated in at least two genomes (Methods). We distinguished
between peaks that overlap a gene and peaks that are within 10kb, between 10kb
and 100kb, or further than 100kb from a gene. Overall, the genomic profile of AP
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calls is very similar to that of replicated common calls across the board, regardless
of the genome or replication (Fig 6b and Fig S9c¢ for H3K27ac).

Given that more than half of APs are within genes, some may be of particular
interest. Indeed, Fig 6¢ shows a GPG-only example projected to the reference, while
Fig 6d shows the true graph rendering of the pileups. The personalized peak overlaps
four consecutive SNVs which are incorporated in the GPG but not the reference
graph. The graph rendering clearly shows a fair number of reads aligning to these
SNVs, forming a pileup that fails to appear in the reference graph. Moreover, this
interval is within the third intron of STON1-GTF2A1L, a gene that appears in two
GWAS studies linking it to neovascular age-related macular degeneration [24] and
polycystic ovary syndrome [25]. Examples like this suggest that GPGs may improve
our understanding of gene regulation in individual genomes.

Discussion

By moving from the reference sequence to a MPG, GPG, and DPG, the genome
representation became richer by incorporating SNVs and indels, variants in the form
of a diploid graph, and also larger structural variants. When reanalyzing ChIP-seq
datasets using these personalized genome implementations, we were able to identify
hundreds to thousands of APs. While most APs detected using MPGs had only
marginal changes in coverage, the GPGs and DPGs, yielded tens to thousands
of peaks with significant read count differences relative to the reference. Notably,
we observed that indels followed by SNVs were enriched in APs and that there
was an inverse correlation with peak width. We also observed that Alus were
overrepresented in APs, a transposable element known to be active in the human
genome [26] and with many polymporphic instances in the population. Although it is
tempting to think that some of these APs might be driven by these polymorphisms,
it would require additional validation as it could also be caused by errors in the
personalized genomes that were used for the analysis.

Although the vast majority of common peaks were identified consistently by the
3 methods, only a minority of APs were found by 2 or more methods. This limited
overlap might be a consequence of the fact that the genome implementations are
technically very different from each other. For instance, only DPGs at this stage took
into account SVs but, at the same time, some regions of the personal genome might
be missing for the current DPG. GPGs represent a promising compromise between
MPG and DPGs as they also have the ability to natively account for the diploid
nature of the human genome. A natural extension will be to try to incorporate
SVs into GPGs to see how it can further improve their performance. Furthermore,
as pangenome graphs are created to capture all known variations [16], it might be
possible to further improve on the current performance even without the need for
personalized graphs per say.

Finally, even though we primarily focused on APs, we also encountered peaks
that differed significantly in read counts. These skewed common peaks produced
by personalized genomes should not be ignored, particularly when performing
differential expression analysis between control and treatment groups. Even if the
number of skewed peaks is generally smaller than APs, they remain important
because such studies typically identify a small number of diferentially expressed
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regions. Therefore, the application of personalized genomes could reveal new data
points or correct false positives.

Conclusions

Analysing epigenomic datasets with personalized and graph genomes allows the
recovery of novel ChIP-seq peaks many of which fall within genic regions and
could differ between individuals. Although we focused this study on ChIP-seq,
it is likely that these results will extend to other epigenomic assays such as
ATAC-seq and whole-genome bisulfite sequencing. As we move towards profiling
the epigenome of large human cohorts to study various phenotypes, it is likely that
using personalized and graph genomes will reveal important loci that would have
been missed otherwise.

Methods

Data

We selected NA12878 as a benchmark dataset due to the availability of phased
variation calls from high coverage whole genome sequencing (200X) [19] in addition
to several denovo assemblies. FASTQs for H3K27ac, H3K4mel marks and a control
(input) were downloaded from the ENCODE project [27]. The accession numbers
for these samples are ENCFFO000ASM, ENCFF000ASU and ENCFF002ECP
respectively. To generate additional supporting results for ChIP-seq, we used a
low pass NA12878 WGS dataset from IGSR [28] (SRR622461).

Samples from the Blueprint project [29] were also selected due to the availability
of phased variation calls from low pass whole genome sequencing (8X) together
with ChIP-seq datasets for the H3K4mel and H3K27ac histone marks. In total,
151 H3K4mel samples and 111 H3K27ac samples were used in this analysis.

Preparing personalized genomes
Three different approaches were used to generate personalized genomes. First,
vef2diploid [7] was used to substitute the alternative sequence of the phased
variation calls into the hgl9 reference to create a MPG. The output are two
FASTA files for each contig, forming the conventionally named maternal and
paternal haplotypes. The contig FASTAs were concatenated according to their
haplotype, resulting in one maternal and one paternal FASTA. It is to be noted
that vef2diploid does not process unordered contigs. Therefore, unordered contigs
were removed from hgl9 to ensure the same set of contigs between the standard
and substituted versions. Also, vcf2diploid generates two chain files that allow
the lifting of annotation tracks with coordinates in hgl9 to the corresponding
personalized haplotype using liftOver. This is necessary since the incorporated
indels shift the coordinates of the maternal /paternal haplotype relative to hgl9.
The second approach, applied only to the NA12878 dataset, consisted of using
denovo assembled genomes from the Pendleton [30] and two 10X Genomics
assemblies [20] to create two DPGs. The 10X Genomics assembly includes two
pseudo-haps named Hapl and Hap2 that will be used as a denovo assembled diploid
genome. In the case of the denovo assemblies, the chain files had to be produced
from a BLAT [31] alignment between the denovo assembly and hgl9 with the UCSC
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tool set [32]. This allowed the lifting of annotation tracks from the denovo assembly
to the hgl9 reference. The performance of DPG and MPG chain files was compared
through the proportion peaks that failed to lift. Note that hgl9 contains alternative
contigs that represent some loci multiple times. In denovo assemblies, we expect loci
to be represented only once. Therefore, the above analysis was performed on a hgl9
version that was stripped of alternative contigs.

To allow alignment to personalized MPG or DPG FASTAs using bwa mem [33],
an index was created using bwa index. A FASTA index was also created using
samtools faidx [34] to compute the new chromosome sizes.

The third approach involved creating a reference graph genome by converting
the linear hgl9 reference to a graph format. A copy of this graph was then
augmented with NA12878 variant calls, which yields the GPG. This was done with
vg construct [17]. xg and GCSA2 graph indices were created with vg index to
allow mapping reads with vg map.

Aligning, peak calling and annotating

To remove any effect of read length, all reads were trimmed to 36bp using
trimmomatic [35]. The trimmed reads were aligned using bwa mem to hgl9 and each
personalized haplotype FASTAs. After marking duplicates with picard [36], peak
calling was done on the corresponding BAM files using MACS2 [37] with ~-nomodel
and the --gsize parameter set to 80% of the assembly length. In graph genomes,
peaks were called with Graph peak caller [18], a graph MACS2 implementation,
by using the same genome size and the same fragment length parameter that was
estimated by MACS2.

For each alignment, a coverage annotation was produced with bedtools bamtobed
[38]. The output was a BED file listing all the aligned reads and their coordinates.
Graph alignments (GAM) were surjected to BAM using vg surject and underwent
the same procedure.

Lifting annotations
In the case of DPGs, coverage and peak annotations were lifted from the DPG
to hgl9 using the tool 1iftOver [39]. In the case of MPGs, the annotations were
lifted from hgl9 to the MPG. Therefore, this required the lifting of variant call
annotations to the MPG in addition to the peak call and coverage annotations.

The variant call annotation was first converted from the VCF format to BED,
separated by phase and type (SNP vs indel) and then lifted to the personalized
haplotype. The outcome is a set of BED files listing the SNPs and indels separately
for each respective haplotype.

liftOver was called with default arguments in BP samples, which require
95% sequence identity between lifted regions and target regions. This stringent
-minMatch was not an issue since MPGs are almost identical to hgl9 and virtually
all peaks lift. In 10X and Pendleton samples, -minMatch was set 0.85 to reduce
the number of unlifted peaks and reduce the number of false ref-only peaks. To
evaluate lifting efficacy, the number of peaks that failed to lift was compiled for
every sample. Once tracks are lifted to a common coordinate system, it becomes
possible to overlap and compare the annotations from the personalized haplotype
and the hgl9 standard reference using bedtools [38].
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Graph annotations are readily surjected onto hgl9 using built-in functionality in
vg and Graph peak caller.

Overlapping annotations

The lifted or surjected peak call annotations were overlapped using bedtools
intersect and bedtools subtract [38]. Peaks resulting from the intersect of
the personalized and the hgl9 peak tracks were categorized as common. Peaks
resulting from subtracting the hgl9 track from the personalized track were
categorized as personal-only. Similarly, peaks resulting from subtracting the
personalized track from the hgl9 track were categorized as ref-only. The end result
is a set of three BED files for each personalized genome containing the common
peaks, the personal-only peaks and ref-only peaks.

The number of variation calls in each peak was calculated. The corresponding
indel and SNP tracks were intersected with the track of each category of peaks
using bedtools intersect -c to list the number of variations overlapping each
common, personal-only and ref-only peak.

Furthermore, the peak tracks were overlapped with the coverage tracks of the
personalized and hgl9 versions of the alignment using bedtools intersect -c.
The output is the original peak track with an additional field listing the number of
reads in each peak. As a result, the number of reads in regions corresponding to the
peaks is known in the reference alignment and the personalized alignment.

Finding peaks with skewed coverage

To find peak called regions that have significant differences between their hg19 and
personalized coverages, a statistical test was needed. This comparison is similar to
differential expression in that read counts are compared between two conditions:
the hgl9 reference and the personalized assembly. For the purpose of differential
expression, technical variation that occurs during the preparation of different
libraries is known to be underestimated by Poisson based tests (overdispersion) [40].
However, unlike differential expression, our read counts are not compared between
multiple sequencing experiments done under the two conditions. Instead, there is
only one dataset that was aligned to two different assemblies, which implies that
biological and technical variation is not present here in the same way. Therefore,
we simply used a x? test with a significance value a of 0.05 to detect peaks with
skewed coverage. We obtained an identical result with the edgeR package [41] by
setting the dispersion parameter to 1 x 1073 (near 0). Peaks with null coverage in
one of the alignment versions were artificially assigned one read to allow applying
the test. Peaks with insignificant differences were placed in the no-skew category.
An overview of the above steps can be found in figures S11a and S11b.

Peaks that had significant differences with a higher coverage in hgl9 than in the
personalized haplotype were categorized as ref-skewed. Similarly, peaks that had a
higher coverage in the personalized genome than in the reference were categorized
as personal-skewed.

Characterizing altered peak calls
To quantify the fraction of AP calls, the number of ref-only and personal-only peaks
was counted and then divided by the total number of peaks to obtain their frequency
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relative to the total number of peaks in their sample. For each sample, the set of all
peaks was divided into mutually exclusive categories according to the combination
of overlapping variation calls (SNPs only, indels only, SNPs and indels, none). The
same was repeated for ref-only and personal-only peaks. For any given variation
category, the counts of ref-only and personal-only peaks were divided by the sample
wide peak count of the given category to obtain the probability that the peak call
could be affected by that specific combination of variations. At the same time, the
mean peak widths were recorded.

For DPGs, we counted the number of hgl9-relative variant calls overlapping
common, ref-only and personal-only peaks. We did this to check whether ref-only
peaks and personal-only peaks remained enriched in hgl9-relative variation calls
compared to common peaks, despite the fact that they originate from peak calls in
a denovo assembly and not hgl9 itself.

We also counted the overlaps of altered peaks in DPGs with SDs and repeats
from the RepeatMasker annotation. Repeats were first grouped by family. Confident
peaks were selected by removing any peak with a log(MACS2 score) < 4.0. This
value was chosen because it excludes uncertain and uninteresting peak calls and
most APs generated by MPGs.

Logistic regression was performed on NA12878 H3K4mel peaks with AP /common
as a binary response variable and peak width, SNP count and indel count as
covariates using the glmnet [42] R package. Ref-only and personal-only peaks were
coded as AP=1 and common peaks were coded as AP=0. Lastly, common peaks
were downsampled to the number of AP calls to avoid unbalanced classes. Since the
fitting algorithm is non-deterministic, we ran cv.glmnet 1000 times and reported
the median coefficient values.

Comparing WGS alignments between genomes

If peak track differences occur between two assemblies, they should be corroborated
by differences in the mapping of a sufficient number of reads between their raw
alignments. That is, the proportion of reads with different mappings between the
reference and the personalized genome should be considerable. To show this, we
used Jvarkit cmpbamsandbuild [43] to compare the DPG and MPG alignments
of the low pass NA12878 whole genome dataset to hgl9. The same comparison
was done between the reference and the paternal NA12878 MPG. To compare
the GPG and the reference graph alignments, vg gamcompare was used instead.
For unequal mappings, we considered reads that are mapped more than 100bp
apart, reads that are mapped in one build but not the other, and reads that fail
to lift between assemblies. We add these proportions to obtain the final proportion
of changed mappings. The IGSR WGS dataset was chosen instead of a ChIP-seq

dataset because we expect a more uniform coverage of genomic regions.

Finding replicated peaks among MPGs, DPGs and GPGs

To get the replicated calls between the DPG and the MPG approaches, the
personalized tracks needed to be lifted to a common coordinate system in hgl9.
This is necessary because the MPG APs were computed in MPG coordinates, while
the DPG and GPG APs were computed in hgl9 coordinates. To do so, chain files
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were created through the previous BLAT method to lift the MPGs to hgl9. Once
the tracks of ref-only and personal-only peaks respective to the MPGs was lifted to
hgl9, GenomicRanges [44] was used to calculate the pairwise overlap of peak calls
between the three approaches and identify peaks that are replicated with at least
two of the three methods. This package was also used to characterize the position
of peaks relative to genes in the UCSC genes annotation. A Venn diagram was

produced for personal-only calls, ref-only calls and all peak calls using nVenn [45].
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Figure 1: a) Two instances of reference bias that could be corrected by a personalized

B
b

genome. One read is mapped to the incorrect location in the reference genome.
The other read is unmapped in the reference genome, but becomes mapped in the
personalized genome. b) Personalized genomes can be implemented in several ways.
The reference can be patched with called variants to create a modified personal
genome (MPG). Alternatively, a sequence graph genome could be augmented with|
an individual’s alleles (GPG). Finally, the entire personal genomic sequence can be
assembled denovo (DPG).



https://doi.org/10.1101/457101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457101; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Groza et al. Page 17 of 33

hg19 vs maternal coverage of peaks hg19 vs maternal coverage of peaks

Peak ¢ Common < Personal-only ¢ Ref-only Skew ¢ None ¢ Personal * Ref

log2(maternal/hg19 coverage)
o
log2(maternal/hg19 coverage)
o
i
"4
:

-10 10
0 5 10 0 5 10
Avg log2(maternal coverage, hg19 coverage) Avg log2(maternal coverage, hg19 coverage)
(a) (b)
Q-value distribution in altered peaks Personal-only peaks vs variants and width (trimmed)

e \ Fkamet

0050

0025

Peak

Common
hg19-only

[ Personal-only

0.000

Fraction personal-only
(da) yipm siead ueapy

-2000

0 10 20 ) Py Indel SN Indel + SNP Nvune ! \nie\ SNP  Indel +SNP  None
~log(q-value) /ariants in peaks

(c) (d)

Figure 2: a) A comparison of the coverage of H3K4mel peak called regions in
hgl9 and the maternal MPG. b) Identification of peak called regions that have &
significant difference in coverage. ¢) Q-value distributions of the same H3K4mel
peaks. d) NA12878 MPG estimate of the probability that each combination of
variation calls present in a region may cause a personal-only peak call compared to

their average widths.
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Figure 3: a) Proportion of peaks that are called only in personalized MPGs.

b) Number of peaks with higher coverage in the personalized MPG than in the
reference. ¢) Blueprint MPGs estimates of the probability that each combination of
variation calls present in a region may cause a personal-only peak call compared to
their relative average widths. d) The probability that a variant affects a peak called
on full reads is lower compared to trimmed reads.
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Figure 4: a) A comparison of the coverage of peak called regions in the reference and
the Hapl DPG. The smear represents ref-only peaks with no coverage in Hapl. b)
Tdentification of peak called regions that have a significant difference in coverage.
¢) Summary of the overlap between altered peaks, confident peaks, repeats and
segmental duplications [46]. d) The repeats that overlap altered peaks are enriched
in Alu elements relative to their frequency in the RepeatMasker. The categories are
chosen by grouping repeats by name prefix, summing their frequencies per group
and taking the largest groups. Remaining groups are labeled as “other”. The control

Other

regions are random genomic intervals with a width distribution identical to altered

peaks.
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Figure 5: a) A comparison of the coverage of H3K4mel peak called regions in|
the reference and the graph genome. Pairwise overlaps between MPG, DPG and
GPG H3K4mel peak tracks. b) Identification of peak called regions that have
a significant difference in coverage. ¢) Overlap of all peak calls. d) Overlap of
altered personal-only peak calls. e) Overlap of ref-only peak calls. f) Empirical
null distributions for the overlap of personal-only peaks between personal genome

implementations.
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Figure 6: a) Comparison of altered peak g-values between MPG, GPG and DPG
implementations by rank. The top n peak subset was increased by 5 peak increments.
b) Distribution of gene relative positions of personal-only peaks among all genomes.
Personal-only and common peaks replicated in at least two genomes are also
featured. ¢) The pileup of a GPG-only peak projected to the hgl9 linear reference.

d) The true graph rendering of the above AP in the NA12878 GPG and reference
genome graph.
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Tables

Table 1: Number of altered peak calls in MPGs, DPGs and GPGs for the NA12878

aCC-BY-NC-ND 4.0 International license.

Version

Mark

common

personal-only

ref-only

MPG, Paternal
MPG, Maternal
DPG, Hapl
DPG, Hap2
DPG, Pendleton
GPG

H3K4mel
H3K4mel
H3K4mel
H3K4mel
H3K4mel
H3K4mel

146520
146570
141444
141442
142347
132668

1636 (1.1%)
1622 (1.1%)
7176 (4.8%)
7130 (4.8%)
16245 (10.2%)
3068 (2.3%)

854 (0.6%)
808 (0.6%)
6755 (4.6%)
6774 (4.6%)
8912 (5.8%)
1178 (0.9%)

MPG, Paternal
MPG, Maternal
DPG, Hapl
DPG, Hap2
DPG, Pendleton
GPG

H3K27ac
H3K27ac
H3K27ac
H3K27ac
H3K27ac
H3K27ac

68888
68909
63419
63441
66811
75538

660 (1.0%)
688 (1.0%)
2078 (3.2%)
2001 (3.2%)
5208 (7.2%)
1847 (2.4%)

351 (0.5%)
335 (0.5%)
9901 (13.5%)
9899 (13.5%)
4980 (6.9%)
1206 (1.6%)

H3K4mel and H3K27ac marks.
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Supporting figures

Quantile comparison of rescued reads in altered peaks
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Figure S1: a) Quantile-quantile comparison between the distribution of rescued
reads in ref-only and personal-only distributions. b) Confidence and width of the
NA12878 maternal MPG altered peak calls (H3K4mel). Peaks called only in the
maternal MPG against the common peak background. c¢) Peaks called only in hgl19
against the common peak background. d) Distributions of converged coefficients
for the width, SNP count and indel count terms in the glmnet logistic regression|
model. Median coefficients are 0.19 for width, 1.29 for SNP 1.9 for indels. e) The
chosen regularization parameter corresponds to the minimum misclassificaton error

during k-fold cross-validation. This model achieves a 0.15 misclassificaton error.
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Figure S2: MA plots for H3K27ac analogous to H3K4mel.
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Figure S3: Q-value distributions for H3K27ac analogous to H3K4mel. a) In MPGs.
b) In DPGs. ¢) In GPGs. d) Comparison by rank.
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Figure S4: Comparison between NA12878 and Blueprint samples. a) Proportion of
peaks that are called only in the reference. b) Number of peaks with higher coverage
in the reference than the MPG. ¢) Difference in number of variation calls (SNPs
and indels) between Blueprint samples and NA12878.
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Figure S5: Characterization of AP calls in the maternal MPG of a typical Blueprint
sample (H3K4mel).
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Figure S6: Confidence and width of the Hapl DPG altered peak calls (H3K4mel).
a) Peaks called only in Hapl against the common peak background. b) Peaks called
only in hgl9 against the common peak background. ¢) Q-value distributions of the
same peaks. d) Hapl-only peaks are enriched in hgl9-relative variant calls relative
to common peaks.
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(b)
Figure ST: a) Typical personal-only peak in a NA12878 MPG. The small variations

have a visible effect on only a few reads. (b) SD-free personal-only peak in the Hap1
DPG. Large scale changes in coverage become apparent with this approach.

i
H

,,,,,, - = TR A T AT T e T T e

Figure S8: Hapl-only peak free of repeats and segmental duplications. Viewing this

region in the UCSC genome browser shows overlaps with the hgl9 self chain.
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oo Repeat frequency in altered peaks vs genome wide
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Figure S9: Plots for the H3K27ac mark that are analogous to H3K4mel. a)
Summary of the overlap between altered peaks, confident peaks, repeats and
segmental duplications. b) Frequency of repeat families within altered peaks
compared to genome wide. The control is random intervals with the same
width distribution as altered peaks. c¢) Distribution of gene relative positions of
personal-only peaks among all genomes. The DPG is the Pendleton assembly. d)
Overlap of all peak calls. e) Overlap of altered personal-only peak calls. f) Overlap

of ref-only peak calls.
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Q-value distribution in altered peaks Personal-only peaks vs variants and width (trimmed)
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Figure S10: a) Q-value distribution of H3K4mel altered peaks in GPGs. b)
Replicated estimates of the probability that variants will cause an altered peak

in GPGs.
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Figure S11: Flow chart of analysis for a) modified personal genomes and b) denovo

personal genomes.
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Supporting tables

Case (NA12878 MPG) 36bp reads Different
Failed liftover 1947562 1.1% Yes
Lifted coordinates 167201030  90.4% -
< Equal in hgl9, MPG 162854003 88.0% No
< Unequal in hgl9, MPG 4347027 2.4% Yes
Unmapped in hgl9, mapped in MPG 122163  0.07% Yes
Mapped in hgl9, unmapped in MPG 46565 0.03% Yes
Unmapped in hgl9, unmapped in MPG 15601588 8.4% No
Total 184918908 100% 3.6%
(a)
Case (NA12878 DPG) 36bp reads Different
Failed liftover 8968154 4.8% Yes
Lifted coordinates 160169017  86.6% -
— Equal in hgl9, Hapl 152748687 82.6% No
< Unequal in hgl9, Hapl 7420330 4.0% Yes
Unmapped in hgl9, mapped in Hapl 156895 0.08% Yes
Mapped in hgl9, unmapped in Hapl 1683155 0.91% Yes
Unmapped in hgl9, unmapped in Hapl 13941687 7.54% No
Total 184918908 100% 9.79%

(b)

Case (NA12878 GPG) | 36bp reads

Unequal mapping 15378825 8.3%

Equal mapping 169540083 91.7%

Total 184918908 100
(c)

Table S1: a) Breakdown of WGS 36bp read alignment comparison between the
reference and the NA12878 paternal MPG. The proportion of failed liftover,
mapped/unmapped differences and unequal coordinate reads is 3.6%. This result is
near identical in the both NA12878 MPGs. b) In the same comparison between the
Hapl DPG and the reference, the proportion is 9.79%. ¢) Comparing the alignments
to the graph reference and the augmented NA12878 graph yields a proportion of
8.3% of reads with unequal mapping.

Genome (NA12878) | Personal-skewed | Ref-skewed | Mark

MPG, Maternal 30 23 | H3K4mel
MPG, Paternal 32 20 | H3K4mel
DPG, Hapl 2216 3152 | H3K4mel
DPG, Hap2 2221 3162 | H3K4mel
DPG, Pendleton 1518 4320 | H3K4mel
GPG 279 244 | H3K4mel
MPG, Maternal 42 16 | H3K27ac
MPG, Paternal 50 16 | H3K27ac
DPG, Hapl 1497 1416 | H3K27ac
DPG, Hap2 1456 1422 | H3K27ac
DPG, Pendleton 781 1882 H3K27ac
GPG 411 127 | H3K27ac

Table S2: Number of peaks with skewed coverage in NA12878 MPGs and DPGs for
H3K4mel and H3K27ac marks. The read length across all rows was kept at 36bp.
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Version Mark common | personal-only | ref-only

MPG, Paternal | H3K4mel | 129496 746 (0.6%) 456 (0.4%)
MPG, Maternal | H3K4mel | 129497 747 (0.6%) 455 (0.4%)
MPG, Paternal H3K27ac | 46830 336 (0.7%) 196 (0.4%)
MPG, Maternal | H3K27ac | 46831 335 (0.7%) 195 (0.4%)

for the same marks.

Table S3: Average number of altered peak calls in MPGs for the Blueprint samples

Case (NA12878 MPG) 100b reads Different
Failed liftover 2030979 1.1% Yes
Lifted coordinates 175123570 94.7% -
< Equal in hgl9, MPG 170876933  92.4% No
< Unequal in hgl9, MPG 4246637 2.3% Yes
Unmapped in hgl9, mapped in MPG 39169 0.02% Yes
Mapped in hgl9, unmapped in MPG 19307 0.01% Yes
Unmapped in hgl9, unmapped in MPG 9632679 5.2% No
Total 184918908  100% 3.43%
(a)
Case (NA12878 DPG) 100bp reads Different
Failed liftover 9769845 5.3% Yes
Lifted coordinates 165311184 89.4% -
— Equal in hgl9, Hapl 158400964 85.7% No
< Unequal in hgl9, Hapl 6910220 3.7% Yes
Unmapped in hgl9, mapped in Hapl 49997 0.03% Yes
Mapped in hgl9, unmapped in Hapl 749507 0.4% Yes
Unmapped in hgl9, unmapped in Hapl 9038375 4.9% No
Total 184918908  100% 9.43%
(b)

Case (NA12878 GPG) | 100bp reads

Unequal mapping 11776234 6.4%

Equal mapping 173142674  93.6%

Total 184918908 100

(c)
Table S4: a) Breakdown of WGS 100bp read alignment comparison between the
reference and the NA12878 paternal MPG. The proportion of failed liftover,
mapped/unmapped differences and unequal coordinate reads is 3.43%. This result
is near identical in both NA12878 MPGs. b) In the same experiment with the Hapl
DPG and the reference, the proportion is 9.43%%. ¢) Comparing the alignments to
the graph reference and the augmented NA12878 graph yields a proportion of 6.4%

of reads with unequal mapping.

Ref-only peaks Number | Contain segmental duplications | Percent
Null coverage in Hapl 2547 1781 69.9
— Confident 1490 1062 71.3
Positive coverage in Hapl 4208 267 6.3
— Confident 574 98 17.1

Table S5: Ref-only peaks with null coverage in the Hapl DPG are extremely enriched

in segmental duplications.
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