bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

baRcodeR with PyTrackDat:
Open-source labelling and tracking
of biological samples

for repeatable science

PREPRINT

baRcodeR is now available for R: https://cran.r-project.org/package=baRcodeR
It can be installed directly in the R environment using the command: install.packages('baRcodeR")

PyTrackDat is still in development, as of October 29, 2018, but available on GitHub
https://github.com/ColauttiLab/PyTrackDat

Yihan Wu, David R. Lougheed, Stephen C. Lougheed, Kristy Moniz, Virginia K.
Walker, and Robert I. Colautti*

Biology Department
Queen’s University
116 Barrie St.
Kingston, ON K7L 3N6

*Corresponding Author Email: robert.colautti@queensu.ca

Keywords: Biological samples; asset tracking; inventory management; database; barcodes

https://cran.r-project.org/package=baRcodeR
https://github.com/ColauttiLab/PyTrackDat
mailto:robert.colautti@queensu.ca
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

Abstract

Repeatable experiments with accurate data collection and reproducible analyses are fundamental to the
scientific method but may be difficult to achieve in practice. Several flexible, open-source tools
developed for the R and Python coding environments aid the reproducibility of data wrangling and
analysis in scientific research. In contrast, analogous tools are generally lacking for earlier stages, such as
systematic labelling and processing of field samples with hierarchical structure (e.g. time points of
individuals from multiple lines or populations) or curating heterogenous data collected by different
researchers over several years. Such tools are critical for modern research given trends toward globally
distributed collaborators using higher-throughput technologies. As a step toward improving
repeatability of methods for the collection of biological samples, and curation of biological data, we
introduce the R package baRcodeR and the PyTrackDat pipeline in Python. The baRcodeR package
provides tools for generating biologically informative, hierarchical labels with digitally encoded 2D
barcodes that can be printed and scanned using low-cost commercial hardware. The PyTrackDat
pipeline integrates with baRcodeR output to build a web interface for sample management and tracking
along with data collection and curation. We briefly describe the application of principles from baRcodeR
and PyTrackDat in three large research projects, which demonstrate their value to (i) help document
sampling methods, (ii) facilitate collaboration and (iii) reduce opportunities for human errors and
omissions that could otherwise propagate through downstream data analysis to compromise biological
inference.

Introduction

The increasing use of high-throughput methods for data collection and popularity of large collaborative
research projects in biology poses challenges for researchers tracking samples and their associated data
across field and laboratory experiments. New standards and tools for documenting data analysis have
developed alongside rapid advancements in computation and global communication, aimed at
improving repeatability, reproducibility, accuracy and accountability of published scientific research.
These methods are likely to become more prevalent as major funding bodies move toward principles
and policies stressing well-developed data management plans (DMPs), as demonstrated in the Draft Tri-
Agency Research Data Management Policy (Government of Canada), Article 29 of the ERC Multi-Model
Grant Agreement (European Commission), and the NSF open data policy (National Science Foundation).

A push towards more transparent, reproducible data workflows for scraping, merging, cleaning, editing,
error checking, pre-processing and curating data for subsequent visualization and statistical analysis (i.e.
data wrangling) has inspired the rapid development of new tools. For example, R markdown and R
notebooks with R Studio (RStudio Team, 2016) are now common tools to facilitate careful
documentation of data visualization and statistical analysis in R (R Core Team, 2018). Jupyter Notebooks
and Jupyter Lab (Kluyver et al., 2016) serve similar functions for reproducible analysis in Python
(Oliphant, 2007). Such tools allow for fully reproducible data wrangling and analysis from a starting
dataset, which was difficult or impossible with previous generations of proprietary spreadsheet
databases and point-and-click statistical packages. In contrast, tools to improve transparency, accuracy,
repeatability, and reproducibility at the earlier stages of sampling, data collection and curation have
received relatively little attention, even though modern downstream management packages assume
accurate sample tracking and recording of raw data and sampling details.

In many of the biological sciences, samples are collected under arduous field conditions that pose
challenges for labelling, organizing, measuring and analyzing samples. A common approach is to quickly
collect and preserve samples for later analysis. This often requires transport of samples to different
locations, to different storage media or vessels, and/or subsampling for multiple analyses. An individual

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

biological sample is often tied to a variety of heterogenous data such as locations, images,
morphological measurements, behavioral assays, chemical analysis, as well as details about the
sampling method itself, such as the identities of individuals collecting, processing, and measuring the
samples. Heterogeneous data may be collected by different individuals or labs and stored in a variety of
formats but are inherently linked by details about their collection such as sampling method, date and
location, collector identity, and other metadata. Misinterpreted labels, cut-and-paste errors,
typographical and scribing errors, and other problems that arise when humans associate samples with
their downstream measurements and metadata can potentially go undetected and propagate through
statistical analysis to compromise biological inference.

Asset tracking using digital barcodes can significantly reduce opportunities for human error by
automating and/or acting as additional error checks on human tasks that are error prone (Copp et al.,
2014). Indeed, this ‘industrial approach’ has been successfully adopted to improve cataloguing of
natural history collections that may contain thousands to millions of specimens (Blagoderov et al.,
2012). Perhaps the strongest evidence for the value of digital barcodes is their ubiquitous use in
inventory tracking and sales in virtually every type of commerce on earth, ranging from perishable foods
with short turnaround times to inventories in long-term storage facilities. In addition to reducing human
error, digital barcoding technology can simplify data collection when combined with data collection
software and a dedicated barcode scanner or image recognition applications for smartphone, tablet, or
personal computers.

Numerous options are available for asset tracking using barcodes, many with integrated databases (e.g.
ManageEngine, Pulseway, Asset Panda, GoCodes, OpenlLab Framework). However, most of these
solutions are proprietary and can be expensive (but see List et al., 2014). These programs prioritize ease-
of-use, employing a graphical-user interface (GUI) that are relatively easy to learn but can limit options
for customization, automation and integration with downstream data wrangling and analysis. Whereas
numerous statistical packages exist that improve transparent and reproducible analysis (e.g. in R and
Python) compared to point-and-click statistical software, we know of no analogous options for sample
labelling and data collection. Integration of such options within the R and Python coding environments
would facilitate documentation of data management from initial collection through to final analysis for
more repeatable and reproducible research.

Here we introduce an integrated programming solution using the baRcodeR package in R with the
PyTrackDat pipeline for labelling and tracking biological samples as well as collecting and curating their
associated data. Our goal was to establish a workflow that is (i) open-source, (ii) based in R and Python,
(iii) flexible, (iv) inexpensive to implement at scale, and (v) developed specifically for integration within a
transparent and robust data management plan for repeatable and reproducible science. To demonstrate
the utility of the software and the implementation of the workflow, we include three current case-use
studies at different stages of development.

Methods & Results

Initial surveys of commercially available digital barcode systems suggested that they were expensive or
impractical for our needs. For example, although grocery store hand-held scanners are cheap and robust
enough for fieldwork, commercial inventory software could not be easily adapted to suit data collection
in the field. Our solution was to write the R package baRcodeR (Wu and Colautti, 2018a) and to extend
its functionality with PyTrackDat a Python data pipeline for sample tracking and data collect we call
(https://github.com/ColauttiLab/PyTrackDat).

https://cran.r-project.org/package=baRcodeR
https://github.com/ColauttiLab/PyTrackDat
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

1. baRcodeR
The baRcodeR package for R has a detailed tutorial-style vignette (Wu and Colautti, 2018b) and a 2-page
‘cheat-sheet’ summary on FigShare (Wu and Colautti, 2018c). The latest release can be installed directly
in R using the command:

> install.packages('baRcodeR")

A pre-release of the latest features can be installed from GitHub
(https://github.com/yihanwu/baRcodeR), either by manually downloading and installing the binaries or
using the devtools package:

> devtoools::install_github('baRcodeR")

Briefly, baRcodeR was developed as an open-source tool for creating digital 2D barcodes in R, making
several design choices based on our experiences collecting and managing biological samples. Three main
commands are available: (i) unigiD_maker() or (ii) uniqlD_hier_maker() are functions to generate unique
ID codes, followed by (iii) create_PDF() to output a portable document file (PDF) containing both text
labels and 2D barcode images laid out in a customizable format suitable for consumer-grade printers.
These functions can be run directly from the command line or via the baRcodeR graphical user interface
(GUI) available from the ‘Addins’ menu in R Studio. The command-line version also includes a more user-
friendly interactive mode implemented with the parameter user=T.

Unique identifier codes

To generate standardized and biologically informative ID codes for biological samples, uniqIlD_maker() or
uniqlD_hier_maker() are used for sequential or hierarchical text labels, respectively. The uniqID_maker()
command is particularly useful to quickly produce sequential labels with the same user-defined prefix
string (e.g. Ex-1, Ex-2, Ex-3,...). Additionally, it is possible to pass any sequence of numbers

into uniqID_maker(). For example, the user can specify alternating numbers (e.g. Ex-001, Ex-003, Ex-
005,...):

> uniqID_maker(string = 'Ex', level = seq(1, 6, 2))
or other custom sequences (e.g. Ex-010, Ex-014, Ex-018, Ex-020, Ex-040):

> uniqID_maker(string = 'Ex', level

c(seq(10, 20, 4), 20, 40))
or randomly ordered sequences:

> uniqID_maker(string = 'Ex', level

sample(1:10, replace = F))

The uniqlD_hier_maker() command expands on uniglD_maker(), allowing for the creation of hierarchical
labels with different user-defined strings and numeric sequences for each level of the hierarchy. This is
useful, for example, to generate labels for replicated populations, genetic lines nested within
populations, and repeated sampling or subsampling of individuals at different time points, with
randomly assigned treatment categories. For example, one can quickly define labels for ten replicate
individuals, each from one of three lines, with subsamples of two different tissue types with the
command:

> uniqID_hier_maker(hierarchy = list(c('line', 1, 3),

c('ind', 1, 10), c('sbsmpl', 1, 2)))

https://cran.r-project.org/package=baRcodeR/baRcodeR.pdf
https://figshare.com/articles/baRcodeR_Cheat_Sheet/7043309
https://github.com/yihanwu/baRcodeR
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

The examples of uniglD_maker() and uniqlD_hier_maker() use non-interactive mode by default, but can
also be run interactively in the command line with the user = T parameter. In this mode, the user is
prompted for input:

> uniqID_maker(user = T)

Please enter string for level: Ex
Enter the starting number for level: 1
Enter the ending number for level: 10
Number of digits to print for level: 3

Tlabel ind_string ind_number

1 Ex001 EX 1
2 Ex002 EX 2
3 Ex003 EX 3
4 Ex004 EX 4
5 Ex005 EX 5
6 Ex006 EX 6
7 Ex007 EX 7
8 Ex008 EX 8
9 Ex009 EX 9
10 Ex010 Ex 10

Regardless of mode (i.e. interactive or non-interactive), the output of unigID_maker() and
uniqlD_hier_maker() is a data.frame object containing (i) a vector of unique IDs and (ii) additional
columns corresponding to each level of the sampling hierarchy. Like any data.frame object in R, the
output can be renamed with names() function. The output object can also be saved to a standard text
file using the write.table() or write.csv() functions. These text files can then be imported into a
spreadsheet or database software, or integrated with PyTrackDat (see section 3, below) as part of a
documented research workflow.

Printable barcodes

A data.frame containing a vector of ID labels is required input for the create_PDF() function. The input
data.frame may be created by one of the functions above or supplied by the user, for example by
entering ID codes manually into a spreadsheet, exporting to CSV, and then importing the CSV file into R
using the read.csv() command.

The output of create_PDF() is a printable PDF file containing human-readabile (i.e. plain text) IDs and 2-D
digital barcode images. These labels can be printed on consumer-grade printers and scanned with
standard barcode scanners or image recognition software for cellphones or other devices(Fig. 1). The
specific print layout can be customized using spacing parameters in create_PDF(), but default
parameters create a PDF output file that will fit S-19297 labels (ULINE.ca or ULINE.com). This layout was
chosen because the S-19297 labels are weatherproof vinyl labels (80 per page) that can be printed on a
standard laser printer. Our own tests demonstrate that printed labels do not fade or degrade even after
two years of storage at -80 °C or three years of exposure to sunlight in outdoor field experiments.
Standard laser printer toner is similarly robust to ultraviolet light and freezing to ultralow temperatures.
The label glue is less robust but transparent packing tape can be used to better secure the labels without
affecting their function.

The create_PDF() function can be run interactively with the user = T parameter or in default non-
interactive mode with user-defined parameters for custom label layouts and other parameters like file

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

name and font size. One parameter of particular note is the error correction level (L, M, Q or H), which
represent a trade-off between barcode size and redundancy, ranging from larger, high-redundancy (H)
to smaller low-redundancy (L) 2-D barcodes. H-codes can still be recognized by scanners after losing up
to 30% of their surface while L-codes labels are less robust but can be printed at a small size. Custom
page layout, label layout and printing options can be specified in by passing in arguments through
create_PDF() to custom_create_PDF(). See the baRcodeR vignette for details (Wu & Colautti 2018b).

Figure 1. Examples of conventional, hand-labelled tubes (top panel), compared with
tubes (mid panel) and petri dishes (lower panel) labelled with digital barcodes and
human-readable text labels created using the baRcodeR package.

Graphical user interface

In addition to the text commands reviewed above, a graphical-user interface (GUI) is available after
installing and loading the baRcodeR library (RStudio, 2015). Details of the GUI are provided as a quick-
start guide in the README file on the CRAN repository (Wu & Colautti 2018a; direct link: https://cran.r-
project.org/package=baRcodeR/readme/README.html). The GUI add-in is a shiny application (Chang et
al., 2018) that can be run directly from the baRcodeR GUI under the ‘Addins’ menu on the RStudio
toolbar. Three tabs in the GUI window correspond to three main functions: ‘Simple Label Creation’ calls
uniqlD_maker(), ‘Hierarchical Label Creation’ calls uniq/D_hier_maker(), and ‘Barcode Generation’ calls
create_PDF(). Labels generated from the first two tabs are previewed before final generation and will be
automatically saved in the R working directory upon creation. All advanced parameters for PDF layout
are similarly available under the “Barcode Generation” tab. Users can also preview the layout of
individual labels before creation. Code snippets are shown for user-specified parameters and can be
exported and archived as part of a repeatable experimental design and reproducible analysis.

https://cran.r-project.org/package=baRcodeR/readme/README.html
https://cran.r-project.org/package=baRcodeR/readme/README.html
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

In addition to using create_PDF() to generate printable barcodes, users can load saved labels into other
barcode printers, such as those that print directly on sample tubes, plant tags, and other material. For
example, the TubeWriter 360 (https://tubewriter.com/) and TubeMarker 2 (https://www.4ti.co.uk/) can
generate and print barcodes from standard text files, allowing users to create ID codes in
uniqlD_maker() or uniqlD_hier_maker() and saving the output to a text file using the write.table() or
write.csv() functions in base R.

Once a data.frame or CSV file is created, additional headings can be added for data entry. Manual data
entry is inherently susceptible to human error, but enforcing and restricting entry formats can help to
ensure repeatability of scientific inference. A variety of software is available to help reduce errors in
data entry, ranging from fully-featured propriety software suites with optical recognition of hand-
written data such as Viking Data Entry (http://vikingsoft.com), to open-access programs such as Epidata
(Lauritsen and Bruus, 2003) and OpenRefine (http://www.openrefine.org). Microsoft Excel, Libreoffice
Calc, and Google Sheets also have data form creators for restricting data entry types. Within RStudio,
interactive data entry can be performed using the editData add-in (Moon 2017), which can be appended
to the biological sample data.frame created from baRcodeR. Alternatively, users may wish to implement
the semi-automated PyTrackDat pipeline to build an online relational database as described in the next
two sections.

2. Data Standards

Perhaps the simplest implementation of a robust data collection workflow is a 2-dimensional
spreadsheet (i.e. data table) containing n rows by ¢ columns. This format has several important
properties and considerations, as shown in the example in Figure 2, outlined in Table 1, and discussed
below (see also Borer et al., 2009; British Ecological Society, 2014). In this format, each column is a
characteristic or measurement and each row is (usually) an individual, with each individual cell
containing a single value. To facilitate reproducible analysis, spreadsheet data should not contain empty
spaces or formatted text (e.g. colour, bold, italic, underline). Rather, individual values can be repeated,
and missing values can be encoded as needed (e.g. NA or NULL). Variable names should be chosen
carefully to be as short as possible but still informative. A good strategy for more complicated names is
to remove vowels or to use short forms separated by capital letters, underscore or period. For example,
a column containing height measurements on day 5 of an experiment might be named HtD5 or Hght.d5.
Quotation marks, spaces, commas, semicolons and other common separator characters should be
avoided as these are often used by programmers and software to parse data into separate rows or
columns. Where necessary, for example in a ‘notes’ column, these characters can be used in a phrase
denoted by quotation marks (e.g. “This is a note; it can be included, if needed, in a ‘notes’ cell”).

https://tubewriter.com/
https://www.4ti.co.uk/
http://vikingsoft.com/
http://www.openrefine.org/
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

(A) (B)

Date: July 1, 1984
Observer: Walter Kovacs
1D Length |Yield

38681 80 |DNA: 100 ID Date Observer| Length| Len_metric| Nucleotide| Yield
RNA: ?? 38681|1984-07-01| Walter Kovacs 80 cm DNA| 100
10034 0.1|DNA: 122 38681|1984-07-01| Walter Kovacs 80 cm RNA| NA
RNA: none 10034 | 1984-07-01 | Walter Kovacs 0.1 m DNA| 122
80260 19 [DNA: 88 10034 | 1984-07-01 | Walter Kovacs 0.1 m RNA 0
RNA: 72 80260| 1984-07-01 | Walter Kovacs 19 cm DNA| 88
NOTE: italics=cm, bold=m 80260| 1984-07-01| Walter Kovacs 19 cm RNA| 72
10545[1992-10-01| Reggie Long 1 m DNA| 50
Date: Oct 1, 1992 10545(1992-10-01| Reggie Long 1 m RNA|[10
Observer: Reggie Long 75262|1992-10-01| Reggie Long 88 cm DNA| 61
1D Length |Yield 75262|1992-10-01| Reggie Long 88 cm RNA| 40
10545 1m|DNA: 50 21221|1992-10-01| Reggie Long 0.9 m DNA| 44
RNA: 10 21221{1992-10-01 Reggie Long 0.9 m RNA| 36

75262 88cm|DNA: 61

RNA: 40

21221 0.9m|DNA: 44

RNA: 36

Figure 2. Example of (A) common errors in data management and (B) corresponding
rearrangement of the same data to simplify reproducible data wrangling and analysis. Note
that colours are added to show link between data in A and B and do not appear in the final
text-based file (e.g. TXT, CSV, TSV).

In addition to eliminating empty spaces and conforming to the 1 cell = 1 characteristic rule, each column
should be homogenous; that is, a column should contain only a single type of data. Data types are
typically integers (whole numbers between -4324 and 10000002), floating point numbers (non-integer
numbers), boolean values (just two states: True or False; 1 or 0) or strings (alphanumeric characters). As
shown in Figure 2, each column should be homogeneous — that is, all entries contain the same type of
data. For example, if length measurements were made in cm and m, then the measurements ‘1m’ and
‘10cm’ should be separated into integer and string columns to avoid heterogenous data, as shown in
Figure 2. Using different values for the same entity also creates undesirable heterogeneity in a data
column, for example alternating between ‘F’, ‘f’, ‘Female’ and ‘female’, which are interpreted as
different values by analysis software. Notes about individual observations (i.e. rows) or the overall
dataset (i.e. metadata) should not be hard-coded as stand-alone rows in datasheets, as shown in Figure
2a, but instead encoded as columns or included in a separate file called readme.txt, notes.txt,
metadata.txt, or something analogous. A metadata file (e.g. metadata.txt) should include a list of each
column and all variable names, with brief descriptions and units of measurement. Similarly, associated
files such as images or DNA sequences (e.g. FASTA or FASTQ) can be indexed with reference columns
containing file names or ID codes that match to corresponding image file names or DNA sequence IDs.
Finally, data should be saved in a non-proprietary, human readable text file format to ensure longevity
(e.g. TXT, TAB or CSV file).

Table 1. Summary of recommended data standards

Standard Example

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

Consistent naming Use a single value for
representing a female
individual, rather than
inconsistent use of, for
example, ‘F’, ‘f’, ‘Female’
and ‘female’.

Appropriate data types Integer (42), Float (3.14),
String (‘cat’), Boolean
(True/False), or Date
(YYYY-MM-DD) where
appropriate.

Homogenous data types Don’t mix data typesin a
single column. For
example, if you measured
in cm and mm, use one
integer column for the
measurement and a
separate string column for
the unit of measurement.

Human readable, non- Data file can be opened

proprietary formats using a standard text
editor. For clarity, these
files are typically saved
with the suffix .txt, .csv
(comma-separated) or .tsv
(tab-separated).

Appropriate null coding Use 0O for observed zeros
(no empty cells) but NA!, NaN, or NULL for
missing data.
Appropriate variable Short but informative
names variable names, perhaps

combining multiple words
(e.g. flowering time) using
short-forms with a period
(flwr.t), underscore
(flwr_t) or capital letter
(FlwrT).

INA is the preferred value for missing data in R.

In addition to the basic standards outlined above, multiple schema are available to standardize and
share data. For example, Ecological Metadata Language (Fegraus et al. 2005) is a data schema which
puts no restraints on the kinds of data collected but requires comprehensive documentation of data
through metadata standards. Darwin Core (Wieczorek et al., 2012) is another schema that uses each
row as a record and has a variety of standardized column names. The resulting data package can then be
uploaded and shared on online repositories such as DataONE, Dryad, and the Knowledge Network for
Biocomplexity (Andelman et al., 2004; Greenberg, 2009; Michener et al., 2012). Biodiversity repositories
such as the Global Biodiversity Information Facility accept Darwin Core datasets with metadata files.

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

3. PyTrackDat Pipeline
The PyTrackDat pipeline (https://github.com/ColauttiLab/PyTrackDat) contains two main Python scripts:
The first script analyzes text-based data files, such as the data.frame object generated from baRcodeR,
to generate a design file as described below. The second script uses a design file to generate a web
application for sample tracking and data collection. Although designed to integrate with baRcodeR, both
scripts in PyTrackDat can be run independently on user-defined input files.

The first part of the PyTrackDat pipeline is an optional DataAnalyzer script that assists with
implementation of the data standards outline in the previous section. It can be run with a single CSV-
formatted input file, or a series of CSV files linked by one or more column names (e.g. samplelD). In the
latter case, the code will remap fields (i.e. columns) from multiple data tables into a single, more
detailed database format with associated metadata. This format specifies field properties such as data
type, acceptable values, and whether fields can contain NULL values (Fig. 3). The design file should be
inspected manually using a text editor to look for errors (e.g. inconsistent data types) and to add
descriptions about the data. The edited design file serves two main purposes: (i) archiving data types
and other metadata that isn’t easily stored in a spreadsheet format; (ii) rigidly defining fields and links
among data tables to create a relational database.

The second script is WebBuilder, which generates a web-app for data collection based on input from a
design file. The design file can be a completed version of the file generated from the DataAnalyzer script
or a de-novo design file written by the user using a text editor. Based on this input, the second script in
the PyTrackDat pipeline creates a zipped folder containing the packaged web application, ready to be
deployed (see README.md at https://github.com/ColauttiLab/PyTrackDat).

A B c D E E G H |] K L
1 |samples Inew field name datatype nullable? null values default description additional fields...
2 Date date integer FALSE Ifill me in!
3 Date2 date2 date FALSE Ifill me in!
4 vear year integer FALSE Ifill me in!
5 |Season season text FALSE Ifill me in! 12 fall; spring; winter
6 SiteID site_id integer TRUE Ifill me in!
7 Gear Type gear_type text TRUE Ifill me in! 14 CM; Jig; MM; SS; SS/CM ?; u
8 Sample#t sample unknown FALSE Ifill me in!
9 Spp. Code spp_code text FALSE Ifill me in! 18 arch; arch/Iktr; cod; cspp; fldr; Iktr; lkwh; sscu
10 Species ID by Geraint species_id_by_geraint text FALSE Ifill me in!
11 Species ID Confidence by Geraint species_id_confidence_by_geraint unknown FALSE Ifill me in!
12 AGE age integer TRUE Ifill me inl
13 Yearclass yearclass integer TRUE Ifill me inl
14 | Mesh size (mm) mesh_size_mm unknown FALSE Ifill me in!
15 | Caught Dead or Alive caught_dead_or_alive text TRUE Ifill me in! 2a;du
16 Photo photo boolean TRUE u Ifill me in!
17 |Length Type length_type text FALSE Ifill me in! 4 fl;m;tl
18 Length (mm) length_mm integer TRUE Ifill me in!
19 Round weight (g) round_weight_g unknown FALSE Ifill me in!
20 Sex sex text TRUE ifill me in! 2f;m;nu
21 Gonad wt.(g) gonad_wtg unknown FALSE Ifill me in!
22 Repr. Stat repr_stat text TRUE Ifill me in! 4i;m;mrmu
23 Oto. oto unknown FALSE Ifill me in!
24 Sc. sc boolean FALSE Ifill me in!
25 Fin fin boolean FALSE Ifill me in!
26 Fish kept separate to prevent slime cross contam. fish_kept_separate_to_prevent_slime_cross_contam text TRUE Ifill me in! 20 n; new method; u; y
27 Comments comments text FALSE Ifill me in!
28 Inuktitut ID inuktitut_id text FALSE Ifill me in!
29 'sample Type sample_type text TRUE Ifill me in!

Figure 3. A sample design file generated from the DataAnalyzer script in the PyTrackDat pipeline. Data
types are automatically inferred for each data column in the CSV file, with ‘unknown’ indicating fields
that should be investigated by the user. The number of different options for text variables are shown
under ‘additional fields’, along with some examples.

4. Implementation

To limit errors while improving repeatability of methods and facilitating reproducibility of downstream
analysis, we suggest two alternative strategies for data collection and curation. For small projects with
one or a few investigators working together, such as a student thesis project or for a focused technical

10

https://github.com/ColauttiLab/PyTrackDat
https://github.com/ColauttiLab/PyTrackDat
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

report, a basic data management framework proposed above may be appropriate. Further
considerations are needed for large, complex databases used by multiple investigators from different
research groups. Although it is theoretically possible to encode everything in a single spreadsheet
format, this may require frequent edits by multiple users, resulting in an unstable dataset. Instead, data
can be organized into separate files linked by identifying columns (e.g. sample, collector, location, date).
These are referred to as ‘relational databases’ and many software packages are available to handle such
data, including dBase (dBase LLC, Binghampton; http://www.dbase.com), FileMaker Pro (FileMaker,
Santa Clara; http://www.filemaker.com), Google Fusion Tables (Alphabet, Santa Clara,
http://drive.google.com), LibreOffice Base (The Document Foundation, Berlin,
http://www.libreoffice.org), and MySQL (Oracle, Redwood City, http://www.mysgl.com).

To facilitate creation and collection of both ‘basic’ and ‘relational’ data, baRcodeR and PyTrackDat were
designed to facilitate sample management and data collection according to the standards outlined in
Section 2, above. These standards include generation of code and text files to document sample ID, data
management decisions, and data characteristics as an important but underappreciated step in open,
repeatable, and reproducible science. The utility of our design philosophy can best be illustrated by
three case studies, outlined briefly below, which involve collaborative projects spanning large
geographical regions and involving dozens to hundreds of collaborators studying microbes, plants and
animals using a large variety of conventional and cutting-edge high-throughput technologies. These
projects are illustrative as they represent three different stages of development: Example 1 predates
baRcodeR and inspired many of its features, example 2 was co-developed baRcodeR and PyTrackDat,
and example 3 is a new project informed by these standards and inspiring further refinement.

Example 1: GGMFS

The ‘Global garlic mustard field survey’ (GGMFS) is a coordinated, distributed experiment in
evolutionary ecology involving >150 collaborators from 16 countries spanning Europe and North
America (www.garlicmustard.org). The overall goal of the project is to focus research effort on a single
focal species, Alliaria petiolata (garlic mustard), to better understand how natural and anthropogenic
processes affect genotype, environment and genotype-by-environment effects on phenotypic traits and
ecological interactions at local (< 10 m) to global spatial scales. Details of the project, including protocols
and design philosophy are discussed elsewhere (Colautti et al., 2014). Here we elaborate on the
logistical challenges that arose from this large collaborative project and how it informed the design
philosophy applied to baRcodeR and PyTrackDat.

The project began with a relatively simple field sampling protocol to collect seeds and to measure plant
size and fecundity, population density, herbivory and pathogen damage, as well as characteristics of the
surrounding environment (protocol https://doi.org/10.6084/m9.figshare.729274). To link seed
collections with their associated data, we implemented a sample naming standard using the general
format:

2010 JDNYC1-3-20

Where 2010 is the year of collection, JD are the initials of the collector, NYC is a 3-letter location code
provided by the collector, 1 is the first population sampled at that location, and 3-20 denotes a sample
from 3m and 20cm along a 10m transect. Participants also took canopy photos at 3 points along the
transect, and the resulting image files were saved with file names incorporating the population code and
transect location. Although a standard protocol was implemented, minor differences among the >150

11

http://www.dbase.com/
http://www.filemaker.com/
http://drive.google.com/
http://www.libreoffice.org/
http://www.mysql.com/
https://doi.org/10.6084/m9.figshare.729274
https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

different academic participants posed challenges to collect and curate standardized data. To facilitate
data entry, we used an online survey service (surveymonkey.org). A web-based portal simplified data
aggregation but in several cases the participants deviated from established protocol in their choice of
measurement format. This led to a variety of ambiguous entries that took three years to correct.
Perhaps the most problematic issue was the entry of GPS coordinates, which were entered in every
format available: DMS: 41°24'12.2"N 2°10'26.5"E, DMM: 41 24.2028, 2 10.4418, DD: 41.40338, 2.17403,
and several confusing hybrids (e.g. 41.24.2028). To correct these issues, we wrote custom code in R
using regular expressions and sent hundreds of emails to clarify contributed data. Enforcing
homogeneous data standards from the beginning would have saved hundreds of hours of work.

Current studies associated with the project use the archived seed collections for laboratory and field
experiments measuring a variety of phenotypic traits, genotyping using high-throughput sequencing
methods, and soil microbial feedbacks. The use of a standard ID code allows a quick link back to any of
the original field measurements. Once published, data from current and future studies can be linked via
the biologically-informed ID format and quickly accessed for further analysis using the relational
database framework described above.

Example 2: TSFN

From the inception of the Genome Canada project, “Towards a sustainable fishery for Nunavummiut”
(TSFN) it was understood that this collaborative effort between more than half a dozen research labs
would be necessary to successfully track thousands of samples collected over an area of 2500 km? under
the challenging conditions of the high Arctic in all seasons. Selected data must be accurate, repeatable
and reliable for upload to a digital geographic Atlas, providing a rich and accessible resource for other
researchers and Inuit community members. We posited that digital barcoding would provide the only
reliable means to track each and every fish sample (fin clips, right and left otoliths, organ biopsies,
gonads, skin mucous, intestinal sections, parasites, scales, muscle for contaminant assays and genetics),
as well as the metadata associated with each sample (e.g. geographic location, date, name of fisher, net
size, net set hours, species, sex, weight, length, photograph). Efforts to purchase software were
abandoned as we could not find an affordable solution that was flexible enough to quickly generate
biologically meaningful sample ID tags and to accommodate a diverse range of label sizes for various
sub-sampling containers.

Using baRcodeR, we created fish-specific ID codes with 2D barcodes printed on waterproof paper and
vinyl labels in convenient sizes such as 10 x 5 cm and 4.5 x 1.3 cm; Uline, Milton, ON). These were used
to label cryotubes, centrifuge tubes, and a range of sizes of re-sealable plastic bags and manila
envelopes (Fig. 4). These sample containers were aggregated into a large plastic bag (27 x 27 cm), affixed
with the fish-specific barcode mounted on a white sheet bearing a 9.5 cm-scale line beneath the lower
barcodes. The container with scale bar was included in photographs of the fish as a redundant check on
the accuracy of the reported length measurements. Barcodes were initially hand-scanned (reader
CR1421-PKU, Code Corp.) directly into a spreadsheet in Microsoft Excel (ver. 16.16.1) with descriptors
added manually. However, data heterogeneity resulting from project participants who were not familiar
with the recommended data guidelines (Table 1) prompted development of PyTrackDat. For example,
although the length of each fish is routinely measured from the head to the center of the tail fork (fork
length), some lengths were reported as head to the end of the squeezed tail (total length); this
necessitated the addition of a separate column for total or fork length designations to avoid
heterogenous data (see Section 3 guidelines on data standards). The use of the PyTrackDat pipeline to

12

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

create an online data collection and tracking system facilitated data entry according to above standards
by multiple users. Data are currently curated by a small number of experienced users before sharing
with other collaborators.

Figure 4. Sampling kit demonstrating the use of baRcodeR to improve data integrity and repeatability of
sampling methods. A sample bag for each fish is shipped to the field; each bag contains labelled
containers for various tissue subsamples. In this example, separate labels were created with barRcodeR
to encode the same fish ID #2711 into the bag containing the fish, as well as all subsamples associated
with it. Inset shows a cropped archival picture of fish #1018, which visually links a fish ID code to its
collection date and time, fish length and species ID.

Example 3: BEARWATCH

The BEARWATCH project seeks to develop a community-driven program to facilitate ongoing monitoring
of polar bears across the Canadian Arctic, combining Inuit traditional knowledge with a toolkit for
characterizing key aspects of population health. In addition to extensive consultation with northern
communities and collation of existing traditional knowledge, Phase 1 of the project involves creating a
baseline map of genetic structure by genotyping thousands of individuals harvested by indigenous
hunters or biopsied by territorial governments over several decades. Subsamples from archived tissue
arrived either fixed with 95% ethanol in Eppendorf vials, dried in an envelope (skeletal muscle), or as a
preserved biopsy plug (with associated fat, skin, hair, and muscle). All have either a NT (Northwest
Territories) or NU (Nunavut) field sample number previously assigned by territorial governments (e.g.
NT_100177, NT_100178, NU_L26303, NU_L35160). Associated metadata include geographical
coordinates (decimal degree latitude and longitude), management unit (one of 19 worldwide indicated
by a 2-letter code; e.g. Gulf of Boothia=GB, Lancaster Sound=LS; see Obbard et al., 2010), collection date
(Year-Month-Day), sex (M, F), and age (Adult, Subadult, 2Yearling). Upon receiving samples to our
Biosafety Level 2 laboratory, each is assigned a barcode generated using uniq/D_maker() (Um-000001,
Um-000002, Um-000003). The prefix ‘Um’ is for Ursus maritimus, followed by 6 digits anticipating a
continuous monitoring system that can accommodate continued influx of samples for the foreseeable
future.

We are using a reduced-representation genotype-by-sequencing approach (double-digest RAD-Seg;
Peterson et al., 2012) to generate large panels of Single Nucleotide Polymorphism (SNP) data that will be

13

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

used for quantifying population structure and forensic genotyping. From Illumina sequencing runs, each
individual bear will have an associated FASTQ file containing millions of individual sequence short reads,
with details on instrument, run date, read quality, etc. As these data are too extensive to store in our
master database, unique FASTQ file names (barcode_FASTQ.txt) will be listed as a string within one
variable field for each bear referencing the pertinent FASTQ files stored elsewhere on our servers.

Phase 2 of the project will analyze contaminant loads, stable isotope profiles, and diet using DNA
barcoding of polar bear scat collected across the Canadian Arctic (an area larger than Western Europe)
by Inuit hunters and other agencies. Polar bear DNA from each scat sample will also be analyzed using a
genetic toolkit we are developing to determine the sex and genetic identity from a subset of 182 bi-
allelic SNPs identified in Phase 1. Each scat sample will again have associated metadata that includes
geographical coordinates, management unit, and collection date. Each scat will be subsampled four
times for separate genomic, contaminant, stable isotope, and contaminants analyses to be done in
laboratories at three different institutions. We will use uniqlD_hier_maker() to generate unique
identifiers for tracking individual subsamples based on a pre-defined numbering system (1-genomics, 2-
contaminants, 3-stable isotopes, 4-diet) — e.g. Um-000113-1, Um-000113-2, Um-000113-3, Um-000113-
4).

As this project ultimately envisions continued community-based scat sampling over decades, we
anticipate receiving multiple scat samples belonging to the same individuals obtained in distinct
seasons, years, and locations — the range of individual polar bears can encompass areas > 100,000 km?.
(Ferguson et al., 1999). This will allow us to assess movement patterns and changes in contaminant load,
diet, and trophic level for individual bears over time and space. However, we will not know initially
whether we have sampled the same individual or close relatives until we have created the SNP profile,
and either tested for genotype matches (e.g., Jin et al., 2017) or estimated relatedness using a program
like SNPRelate Version 1.14.0 (Zheng et al., 2012). A separate data table will contain a pairwise-
relatedness matrix of all scat samples, which will allow for later grouping of barcodes linking individuals
based on a threshold similarity in the relatedness matrix, as well as samples representing likely relatives
(e.g. full-sibs, half-sibs, parent-offspring). Overall, this project demonstrates the utility of baRcodeR with
PyTrackDat when designing sampling strategies that must link heterogeneous data across researchers
and collection dates, with the flexibility to add new data fields based on analyses that occur long after
samples have been collected and processed.

Conclusion

The rigour of scientific theories in the biological sciences rest on fundamental concepts of repeatable
experimental methods coupled with reproducible data analysis. Many key and fundamental results of
published research in the sciences and social sciences are not reproducible (Baker, 2016), due at least
partly to insufficient published detail about experimental methods, data collection and statistical
analysis (loannidis, 2005). The use of open-source tools for documenting data wrangling and analysis in
scientific studies are important steps towards improving reproducibility and transparency of data
published research. To complement these tools, we have introduced baRcodeR and PyTrackDat to
improve transparency and repeatability upstream of data wrangling and analysis. This includes
documentation of sampling design, data collection, and dataset curation. Using examples, we have
demonstrated how these tools are particularly useful to large-scale collaborative research projects in

14

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

biology, studies using high-throughput methods for data collection, and more generally for researchers
striving to improve the documentation, repeatability and reproducibility of their scientific endeavours.

Acknowledgements

We thank E. Bao for contributions to baRcodeR code, Dr. P. V.C. de Groot for his efforts in the
TSFN fish and BEARWATCH sampling as well as E. Jensen, R. Clemente-Carvalho, K. Flock, the Gjoa
Haven, NU community residents, the Hunters and Trappers Association (HTA), the Government
of Nunavut, Natural Sciences and Engineering Research Council (Canada) and large-scale
Genome-Canada Projects, and these projects' associated supporters. We would like to thank all
sampling personnel that provided invaluable help in the field, along with our Inuit guides who
were integral to the Arctic sampling efforts. We also thank. We further acknowledge that
Queen’s University is situated on traditional Anishinaabe and Haudenosaunee territory and we
are grateful to be able to be live and learn on these lands.

Literature Cited

Andelman, S.J., Bowles, C.M., Willig, M.R., and Waide, R.B. (2004). Understanding environmental
complexity through a distributed knowledge network. BioScience 54, 240-246.

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nat. News 533, 452.

Blagoderov, V., Kitching, I.J., Livermore, L., Simonsen, T.J., and Smith, V.S. (2012). No specimen left
behind: industrial scale digitization of natural history collections. ZooKeys 133—-146.

Borer, E.T., Seabloom, E.W., Jones, M.B., and Schildhauer, M. (2009). Some simple guidelines for
effective data management. Bull. Ecol. Soc. Am. 90, 205-214.

British Ecological Society (2014). A Guide to Data Management in Ecology and Evolution.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2018). Shiny: Web Application Framework for
R.

Colautti, R., Franks, S.J., Hufbauer, R.A., Kotanen, P.M., Torchin, M., Byers, J.E., PySek, P., and Bossdorf,
0. (2014). The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique,
large-scale collaboration for invasion biology. NeoBiota 21, 29-47.

Copp, A.J.,, Kennedy, T.A., and Muehlbauer, J.D. (2014). Barcodes are a useful tool for labeling and
tracking ecological samples. Bull. Ecol. Soc. Am. 95, 293-300.

European Commission European Research Council (ERC) Frontier Research Grants Information for
Applicants to the Advanced Grant 2017 Call.

Ferguson, S.H., Taylor, M.K., Born, E.W., Rosing-Asvid, A., and Messier, F. (1999). Determinants of home
range size for polar bears (Ursus maritimus). Ecol. Lett. 2, 311-318.

Government of Canada, I. DRAFT Tri-Agency Research Data Management Policy For Consultation -
Science.gc.ca.

15

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

Greenberg, J. (2009). Theoretical considerations of lifecycle modeling: An analysis of the Dryad
Repository demonstrating automatic metadata propagation, inheritance, and value system adoption.
Cat. Classif. Q. 47, 380—-402.

loannidis, J.P.A. (2005). Why most published research findings are false. PLOS Med. 2, e124.

lin, Y., Schaffer, A.A., Sherry, S.T., and Feolo, M. (2017). Quickly identifying identical and closely related
subjects in large databases using genotype data. PLOS ONE 12, e0179106.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J.,
Grout, J., Corlay, S., et al. (2016). Jupyter Notebooks — a publishing format for reproducible
computational workflows. Stand Alone 87-90.

List, M., Schmidt, S., Trojnar, J., Thomas, J., Thomassen, M., Kruse, T.A., Tan, Q., Baumbach, J., and
Mollenhauer, J. (2014). Efficient sample tracking with OpenLabFramework. Sci. Rep. 4, 4278.

Michener, W.K., Allard, S., Budden, A., Cook, R.B., Douglass, K., Frame, M., Kelling, S., Koskela, R.,
Tenopir, C., and Vieglais, D.A. (2012). Participatory design of DataONE—Enabling cyberinfrastructure for
the biological and environmental sciences. Ecol. Inform. 11, 5-15.

National Science Foundation Open Government Plan 3.5.

Obbard, M.E., Thiemann, G.W., Peacock, E., and DeBruyn, T.D. (2010). Polar Bears: Proceedings of the
15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 29 June-3 July 2009, Copenhagen,
Denmark (IUCN).

Oliphant, T.E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10-20.

Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S., and Hoekstra, H.E. (2012). Double digest RADseq: An
inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLOS
ONE 7, e37135.

R Core Team (2018). R: A Language and Environment for Statistical Computing (Vienna, Austria: R
Foundation for Statistical Computing).

RStudio Team (2016). RStudio: Integrated Development Environment for R (Boston, MA: RStudio, Inc.).

Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Déring, M., Giovanni, R., Robertson, T., and Vieglais, D.
(2012). Darwin Core: An evolving community-developed biodiversity data standard. PLOS ONE 7,
€29715.

Wu, Y., and Colautti, R.l. (2018a). baRcodeR: Labelling, Tracking, and Collecting Data from Biological
Samples. Comprehensive R Archive Network (CRAN). https://cran.r-project.org/package=baRcodeR

Wu, Y., and Colautti, R.l. (2018b). baRcodeR Vignette. Comprehensive R Archive Network (CRAN).
https://cran.r-project.org/package=baRcodeR/baRcodeR.pdf

Wu, Y., and Colautti, R.l. (2018c). baRcodeR Cheat-Sheet. FigShare.
https://doi.org/10.6084/m9.figshare.7043309.v4

16

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457051; this version posted October 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

baRcodeR with PyTrackDat

Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., and Weir, B.S. (2012). A high-performance
computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28,
3326-3328.

17

https://doi.org/10.1101/457051
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Methods & Results
	1. baRcodeR
	Unique identifier codes
	Printable barcodes
	Graphical user interface

	2. Data Standards
	3. PyTrackDat Pipeline
	4. Implementation
	Example 1: GGMFS
	Example 2: TSFN
	Example 3: BEARWATCH

	Conclusion
	Acknowledgements
	Literature Cited

