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Abstract

Cardiomyopathies are complex heart muscle diseases that can be inherited e.g. dilated
cardiomyopathy resulting from LMNA gene mutations, or acquired, e.g. cardiomyopathy associated
with HIV. In both cases the lamin A precursor, prelamin A, may play a central role: mutations in
LMNA and certain HIV protease inhibitors acting via the enzyme ZMPSTE24 both inhibit prelamin A
processing. Firstly, we show that myocardial prelamin A accumulation occurs in both these
cardiomyopathies in patients. Secondly, we developed a novel mouse model of cardiac specific
prelamin A accumulation which mimicked tissue and molecular features of HIV associated
cardiomyopathy, including inflammation. These findings: (1) confirm a central pathological role of
prelamin A common to genetic and acquired cardiomyopathies; (2) have implications for the
management of HIV patients with cardiac disease in whom protease inhibitors with low/no binding to
ZMPSTE24 may be preferred; and (3) suggest that targeting inflammation may be a useful treatment

strategy for some forms of inherited cardiomyopathy.
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Introduction

Mutations in the LMNA gene are commonly implicated in dilated cardiomyopathy (DCM) phenotypes
(1), accounting for approximately 6% of all cases (2). Investigation of in vivo mouse models
harbouring LMNA mutations associated with clinical DCM have identified a number of mechanisms
associated with disease (3). However, some questions remain unresolved, in particular, whether the
lamin A precursor, prelamin A is involved in the pathogenesis of cardiomyopathies (4-7).

The LMNA gene produces two distinct proteins, lamin A and lamin C, which together with the
B-type lamins form the nuclear lamina which sits adjacent to the inner nuclear membrane (INM) of
the nuclear envelope (NE), on the nucleoplasmic side (8). The primary role of the lamina is to provide
structural stability to the nuclear environment and to anchor heterochromatin, thereby facilitating
appropriate gene expression and efficient DNA damage repair (9, 10). Additionally, the lamina forms
part of the linker of nucleoskeleton to cytoskeleton (LINC) complex, which mediates physical
communication with the cytoplasmic environment enabling rapid responses to physical cues, a
process termed mechanotransduction (11).

To achieve lamin A maturation, its precursor prelamin A, requires step-wise proteolytic
processing (12). After translation, addition of farnesyl and carboxymethyl groups to a CAAX motif in
the C terminus occurs, followed by an upstream cleavage exclusively mediated by zinc
metalloroteinase STE24 homologue, ZMPSTE24, to yield mature lamin A (13-16). Retention of this
farnesylated C terminal domain by lamin A precursors is pathologic and mutations in both the LMNA
and ZMPSTE?24 genes that cause this retention are implicated in premature ageing disorders, such as
Hutchinson Gilford progeria syndrome (HGPS), as well as DCM. HGPS patients develop
cardiomegaly, atrial enlargement and age-dependent diastolic and systolic dysfunction and left
ventricle (LV) hypertrophy (17-19), while the DCM causing mutation LMNA-R89L has been shown
to result in aberrant processing and accumulation of prelamin A (5, 7). Moreover, a mutation in
LMNA postulated to inhibit prelamin A processing which causes Dunnigan-type familial
lipodystrophy, is also associated with cardiac dysfunction, with patients homozygous for this mutation

having worse LV function indicating a dose-dependent effect (4). Additionally a mutation in
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ZMPSTE24 known to confer a reduction in enzyme activity was found in a patient with metabolic
syndrome and cardiomyopathy (6).

Another cause of prelamin A accumulation is via the pharmacological inhibition of
ZMPSTE24 activity by Human Immunodeficiency Virus Protease Inhibitors (HIV Pls) used in the
treatment of HIV. HIV PIs result in prelamin A accumulation in cells and potentially contribute to
adverse effects (20). HIV patients have double the risk for developing cardiovascular disease than
non-carriers (21). Moreover, HIV patients can develop HIV-associated cardiomyopathy (22), though
the aetiology is complex (23). Previous studies have identified nucleoside reverse transcriptase
inhibitors (NRTIs) used in conjunction with HIV PIs as responsible for the development of
cardiomyopathy in HIV patients (24, 25). Presently, there is limited knowledge on the impact of HIV
PIs on the development of cardiomyopathy though there is an attempt to ‘characterise heart function
on antiretroviral therapy’ with the introduction of the CHART study (26). These points considered,
we sought to investigate the extent and effects of prelamin A accumulation in the setting of

cardiomyopathy.

Results

Prelamin A accumulates in HIV associated cardiomyopathy and DCM samples

Western blotting of myocardial biopsy samples from HIV+ patients being treated with highly active
antiretroviral therapy and presenting with cardiomyopathy (Table 1) showed that prelamin A was
abundant in HIV+ patient myocardium but not in a selection of DCM samples and non-failing
controls (Fig. 1A). Immunohistochemistry showed focal expression of prelamin A in nuclei of
cardiomyocyte (CM) and non-CM populations within the hearts of HIV+ patients with a number of
CM nuclei showing highly aberrant morphologies (Fig. 1B). This was confirmed by analysis of the
myocardial ultrastructure using electron microscopy which showed evidence of nuclear morphology
defects and changes in the spatial organisation of heterochromatin in HIV+ myocardium (Fig. 1C,D).
Immunofluorescence staining for prelamin A was performed on human DCM patient left ventricle

(LV) samples (Supp. Table 3) and non-failing control samples (Supp. Table 4), and quantified (Fig.
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1E). Sporadic and focal expression of prelamin A was observable in CM nuclei in both non-failing
and DCM samples (Fig. 1F). However, in one DCM sample (DCMO05) consistent CM nuclear rim

staining was found in 71.5% of total CM nuclei.

Prelamin A accumulation in cardiomyocytes of mice causes cardiomyopathy and premature

death by heart failure

Cardiomyocyte specific prelamin A transgenic (csPLA-Tg) mice (Fig. 2A) were born in a normal
Mendelian ratio and were indistinguishable from floxed control (FLctrl) mice at birth.
Immunofluorescence confirmed that accumulation of prelamin A in csPLA-Tg mice was specific to
the nuclear rim of CMs (Fig. 2B) and was cardiac specific as shown by Western blot (Supp. Fig. 1).

After weaning (day 21) csPLA-Tg mice ceased to grow and died prematurely. By 32 days,
body weight was significantly lower in csPLA-Tg mice (Fig. 2C) and median survival was
significantly attenuated in male and female mice compared with FLctrl (Fig. 2D).

At two weeks csPLA-Tg mice showed no change in structural, dimensional or functional
parameters by echocardiography as compared to FLctrl controls (Fig. 2E). In contrast,
echocardiographic and MRI analysis of four-week mice showed that there was significant chamber
dilatation as evidenced by increases in LV end systolic and diastolic volumes, and significant
contractile impairment as evidenced by a marked reduction in ejection fraction. There was also
evidence of LV posterior wall thinning. Heart rates were similar in the two groups (Fig. 2E, Supp.
Fig. 2).

Quantitative (q)PCR analysis of csPLA-Tg myocardium showed that there was reduced
mRNA expression of Myh6 and increases in Myh7, Nppa and Nppb mRNA consistent with heart
failure (Fig. 2F). This was supported by post-mortem analysis which showed csPLA-Tg hearts were
enlarged at four weeks (Supp. Fig. 3A) whilst mass, based on heart weight relative to tibia length, was
comparable between csPLA-Tg and FLctrl mice at two and four weeks (Supp. Fig. 3B). Transudative
pleural effusions were evident upon opening the chest cavity in four-week old csPLA-Tg mice

symptomatic of heart failure (Supp. Fig. 3C).
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Enzyme linked immunosorbent assay (ELISA) of blood plasma identified a substantial
increase in the plasma concentration of cardiac troponin T in four-week csPLA-Tg mice, indicative of
significant CM damage or death (Supp. Fig. 4A). Increases in terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) positive nuclei indicated cell death occurred (Supp. Fig. 4B),
though there was no evidence of caspase 3 cleavage or lamin cleavage, indicators for apoptosis (Supp.

Fig. 4C), suggesting necrosis rather than apoptosis was the mode of cell death.

c¢sPLA-Tg myocardium exhibits fibrotic remodelling via a senescence associated secretory

phenotype and mimics features of HIV associated cardiomyopathy

Consistent with the physiological data, haematoxylin and eosin (H&E) staining revealed that after
perfusion fixation in diastole, csPLA-Tg heart chambers were normal at two weeks but dilated at four
weeks (Supp. Fig. 3D, E). Inspection at higher magnification showed that csPLA-Tg heart tissue at
two weeks was mostly normal, with sporadic regions of mononuclear aggregation in the myocardial
interstitium. At four weeks however csPLA-Tg myocardium was in disarray and mononuclear
infiltration was observed (Fig. 3A). Similarly, picrosirius red staining was comparable between
csPLA-Tg and FLctrl at two weeks, but at four weeks csPLA-Tg myocardium showed substantial
fibrosis as detected by picrosirius red staining and increased relaxation time of a gadolinium contrast
agent in magnetic resonance imaging (MRI) of hearts (Fig. 3B,C). Observation of mononuclear
infiltration in the myocardium suggested that inflammatory cells are activated and present in csPLA-
Tg hearts and this was confirmed by immunofluorescence staining of myocardial sections for CD45
(Fig. 3A), which showed increased numbers of CD45+ cells in the myocardium of both two and four
week old mice (Fig. 3B). mRNA expression analysis of myocardium for pro-inflammatory cytokines
found that at four weeks Tnf, Icaml, Cxcll and Ccl2 were elevated (Fig. 3E). Myocardial
inflammation has not previously been reported in models of LMNA cardiomyopathy, so to test
whether this was unique to our model we performed immunostaining on Lmna” myocardium for
CD45 and observed no increase in CD45+ cells compared with wildtype suggesting this was a feature
unique to prelamin A accumulation (Supp. Fig. 5). HIV+ cardiac tissue sections subjected to H&E

staining and CD3+ immunohistochemistry confirmed inflammation within the myocardium (Figure
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3E). We also observed regions of mononuclear infiltration in the DCM sample with perinuclear
prelamin A which was not observed in other DCM samples (Fig. 3E). Moreover, electron microscopy
of csPLA-Tg myocardium showed that heterochromatin displacement in CM nuclei could be observed
as early as two weeks and nuclear morphology defects were present at 4 weeks (Fig. 3F).

Because disruption to the nuclear lamina is associated with premature senescence (27, 28) and
in turn senescence is associated with inflammation via the senescence-associated secretory phenotype
(SASP) (29), we postulated that csPLA-Tg myocardium may display traits of senescence.
Senescence-associated B-galactosidase assay showed that four-week csPLA-Tg myocardium
displayed intense B-galactosidase expression when compared with FLctrl (Fig 3F). In addition, q-PCR
showed expression of mRNA for the genes of senescence markers pl16 (Cdkn2a) and p21 (Cdknla),
were upregulated in four-week csPLA-Tg myocardium (Fig. 3E). Immunohistochemistry for p16

confirmed an increase at the protein level in four week csPLA-Tg myocardium (Fig. 6G).

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signalling was activated

in csPLA-Tg myocardium

NF-kB is a master regulator of inflammation (30). It is also known that prelamin A can activate NF-
kB via persistent DNA damage and non-canonical signalling pathway involving signalling partners
such as IxkBa (31). Persistent activation of the DNA damage response is also for activation of
senescence in laminopathies (9). We hypothesised this might be activated in csPLA-Tg mice. The p65
subunit of NF-«B is translocated to the nucleus upon activation so to investigate this we performed
quantitative immunofluorescence staining and showed that this was occurring at four weeks (Fig. 4A).
To substantiate this finding Western blot indicated elevated expression of p65 at four weeks but not
two weeks (Fig 4B). We then assessed DNA damage signalling by phosphorylated Histone 2AX (y-
H2AX)—a first responder and activator of DNA damage signalling. We found that y-H2AX staining
as a percentage of total nuclear stain was inconsistent in two week myocardium whilst in four-week
csPLA-Tg myocardium there was a trend towards an increase (P = 0.062) (Fig. 4C). To investigate
further we assessed the DNA damage transducer Ataxia Telangiectasia Mutated (ATM), which can

activate NF-«xB signalling via IkBa. Western blotting of myocardial lysates from four-week old mice
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showed ATM and IkBa were consistently phosphorylated in csPLA-Tg myocardium (Figs. 4D and E)
Taken together these data infer that activation of inflammatory NF-kB signalling via ATM is a

consequence of prelamin A accumulation in heart.

Disruption to the LINC complex and cytoskeleton was preceded by loss of histone marks in

csPLA-Tg myocardium

Inconsistencies between the activation of NF-kB and the onset of inflammation encouraged us to
explore other pathways consistently affected in two week myocardium. The structural hypothesis of
lamin dysfunction argues that nuclear envelope disruption can lead to increased susceptibility to
mechanical stress and structural instability of cells (3). EM of csPLA-Tg myocardium showed, similar
to HIV+ myocardium, that nuclear morphology defects could be observed at four weeks, though not at
two weeks. Western blotting of LINC complex proteins and the intermediate filament desmin showed
profound changes in expression at four weeks but not at two weeks (Fig 5SB). Another theory of lamin
dysfunction hypothesises that regulation of gene expression is affected by lamina disruption. EM
images showed a loss of chromocentres and heterochromatin bundles which did appear to occur at
two weeks in csPLA-Tg myocardium, again, supporting observations from HIV+ patient myocardium
(Fig. 5C). We decided therefore to assess the chromatin changes by investigating methylation of
lysine 9 of histone 3 (H3K9me3). We performed and quantified immunohistochemical staining for
H3K9me3 expression and discovered a profound loss of H3K9me3 in two week csPLA-Tg

myocardium (Fig. 5D, E).

Discussion

Accumulation of prelamin A occurs in genetic and HIV associated cardiomyopathy

To date the role of prelamin A in the setting of cardiomyopathy has been understudied. Here we
present compelling evidence suggesting that prelamin A accumulation occurs in HIV associated
cardiomyopathy, since all samples tested showed elevated prelamin A abundance, and nuclear
morphology defects were observed. We also investigated a cohort of patient samples, for which the

primary diagnosis was idiopathic DCM. We showed consistent prelamin A accumulation in one DCM


https://doi.org/10.1101/457044
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457044; this version posted November 28, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sample and sporadic accumulation in all other samples. Although sequencing of this sample could not
be performed, the consistent detection of prelamin A suggested there may be a genetic basis for the
disease in this patient. Additionally, this accumulation is likely to exacerbate cardiomyopathy as
evidenced by our study of a novel csPLA-Tg mouse line. A baseline phenotype of severe cardiac
dysfunction was observed. The inflammatory response we observed, which correlates with the HIV
associated cardiomyopathy phenotype, was also uniquely associated with myocardial senescence.
Mechanistically, we linked the inflammatory response to modulation of NF-kB signalling, via
activation of ATM. However, epigenetic changes may be more important when considering early

initiating mechanisms.

Prelamin A accumulation causes “Inflammageing” of the myocardium in mice

Though inflammation is known to occur during and after ischaemic events and later in heart failure
(32) it is less commonly described in the progression to DCM. However, HIV associated
cardiomyopathy is strongly associated with an inflammatory response in the myocardium (33, 34).
Recent reports show that HAART exposure in perinatal cases of HIV ultimately benefits heart
function compared with patients from the pre-HAART era (35) for whom opportunistic infections
(36) and potential incorporation and replication of HIV into CMs were problematic (37).
Nevertheless, a decline in cardiac function occurs when compared to the normal population and
HAART therapies may contribute to this. NRTI’s, which prevent replication of HIV, also inhibit
transcription of mitochondrial DNA and have been shown to cause cardiac dysfunction in mice (24,
25). Our study presents evidence that inflammation is the key outcome of prelamin A accumulation in
CMs, and this is also a relatively unique phenotype of HIV associated cardiomyopathy. Though not
subjected to rigorous interrogation of inflammatory pathways, global Zmpste24”~ mouse myocardium
also showed leukocyte infiltration further supporting a role for prelamin A toxicity in driving
inflammation (38). In contrast, inflammation has not been reported in other Lmna mouse models of
cardiomyopathy. Moreover, cardiomyocyte specific overexpression of wildtype lamin A in mice

showed no phenotypic effect or impact on survival implying that processing mechanisms are able to
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cope with an increase in prelamin A concentration (39). In this context, it appears that accumulation
prelamin A which cannot be processed, is pathogenic.

We provide evidence that the trigger for inflammation is likely linked to myocardial
senescence. Whilst expression of y-H2AX, the most commonly used marker for DNA damage, was
inconsistent in csPLA-Tg myocardium, ataxia telangiectasia mutated (ATM) which signals down-
stream of y-H2AX, was persistently phosphorylated at four weeks. We observed that p16 and p21
mRNA was increased, along with mRNA of pro-inflammatory cytokines Tnf-a, Icam1, Cxcll, Ccl2,
suggesting that myocardium in these mice exhibit the SASP. We were able to further substantiate this
by the detection of senescence associated B galactosidase (SA-B-Gal) in csPLA-Tg myocardium.
Furthermore, these data concur with previous work showing that when prelamin A accumulates in

vascular smooth muscle cells activation of the SASP occurs (40).

Early loss of repressive histone marks indicates gene expression pathways are initiators of

pathogenesis

Global Zmpste24”" mice suffer from systemic inflammation arising from non-canonical ATM-
dependent NF-«xB signalling (31) and we showed that this pathway was activated locally in csPLA-Tg
hearts at four-weeks making it likely that increases in SASP factors are caused by activation of NF-
kB. However, the absence of NF-«kB signalling at two weeks suggests that this inflammatory pathway
propagates rather than initiates disease mechanisms. Therefore, we speculated to other mechanisms
for disease genesis. One of these was based on the mechanical hypothesis of lamin dysfunction. We
reasoned that susceptibility to mechanical stress, which is continual and repetitive in the heart, might
lead to structural defects in the nuclear envelope and cytoskeleton. However, these were not observed
until four weeks, meaning this was unlikely. Therefore we speculate to the existence of a priming
mechanism for the initiation of disease remodelling related to epigenetic changes, since chromatin
displacement and loss of H3K9me3 were observed in two week mouse hearts. The mechanisms
downstream of this remain to be determined but may involve misregulation of the polycomb
repressive complexes (41), known to control senescent genes such as those encoding p16 and p21 and

potentially induce SASP independently of DNA damage pathways (42).
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Conclusions

In summary we have identified a novel role for prelamin A in HIV associated and dilated
cardiomyopathies. Accumulation of prelamin A has catastrophic consequences for the integrity of the
myocardium resulting in an “inflammageing” phenotype and subsequent loss of contractility. Whilst
targeting inflammation potentially via ATM activity may prove a useful for patients with established
DCM owing to prelamin A accumulation, the immediate translational aspect of this study lies in the
implications for the treatment of HIV associated cardiomyopathy patients, for whom, a change of
therapy may have a beneficial outcome in the clinic. Elegant biochemistry performed by Robinson
and colleagues provided compelling evidence that HIV PIs bind and block activity of ZMPSTE24
(43). Moreover they were also able to show a rank order of affinity to ZMPSTE24 of HIV PIs
currently available for use- lopinavir > ritonavir > amprenavir > darunavir. Of these, darunavir was
shown not to bind ZMPSTE24 at all, which confirms earlier work (44). Many HIV+ patients suffering
from cardiac symptoms are not currently using darunavir in their HAART regimes (Table 1).
Adjusting HAART regimes to incorporate darunavir and other HIV protease inhibitors with low
affinity to ZPMSTE24 may reduce prelamin A accumulation and provide therapeutic benefit for

patients suffering from symptoms of HIV associated cardiomyopathy.

Materials and Methods

Human studies

This study complies with the declaration of Helsinki. Human DCM specimens were obtained from the
Sydney Heart Bank (Hospital Research Ethical Committee approval #H03/118; University of Sydney
ethical approval #12146) and from Papworth tissue bank in Cambridge, UK and used in accordance
with ethical guidelines of King’s College London (REC reference 13/L0O/1950) and the current UK
law. Studies involving HIV associated cardiomyopathy patients endomyocardial biopsies were
approved by the Ethics Committee of La Sapienza University Rome. All patients gave informed

consent.
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Human Echocardiography

Echocardiographic parameters were determined according to established criteria. In particular, EF
(ejection fraction) was calculated in the apical 4 and 2-chamber views from three separate cardiac
cycles using the modified Simpson's method and LVEDD (left ventricular end-diastolic diameter) was

measured in long-axis and short-axis view.

Generation of cardiomyocyte (CM) specific prelamin A transgenic (csPLA-Tg) mice

All animal procedures were performed in accordance with the Guidance on the Operation of the
Animals (Scientific Procedures) Act, 1986 (UK Home Office). This mouse model was commissioned
from Taconic-Artemis with the aim to devise a transgenic system to assess the in vivo effects of
uncleavable prelamin A overexpression. We performed site directed mutagenesis of the human LMNA
gene at leucine 647 and replaced it with arginine (LMNA-L647R). This corresponds to the cleavage
site for ZMPSTE24 and blocks cleavage. The system involved recombinase mediated cassette
exchange (RMCE) of the Rosa26 gene whereby LMNA-L647R cDNA was inserted into an exchange
vector containing a neomycin resistance gene, a strong CAGGS promoter sequence and a STOP
cassette flanked by loxP sites. Electroporation into the embryonic stem (ES) cells of C57BL/6 mice
led to site-specific recombination by the recombinases F3 and FRT. Neomycin resistant clones that
had undergone RMCE were selected. After administration of hormones, superovulated BALB/c
females were mated with BALB/c males. Blastocysts were isolated from the uterus at 3.5 days post
coitum (dpc) for microinjection. Blastocysts were placed in a drop of DMEM with 15% FCS under
mineral oil. A flat tip, piezo actuated microinjection-pipette with an internal diameter of 12-15 um
was used to inject 10-15 targeted C57BL/6NTac ES cells into each blastocyst. After recovery, 8
injected blastocysts were transferred to each uterine horn of 2.5 dpc, pseudopregnant NMRI females.
Chimerism was measured in chimeras (G0) by coat colour contribution of ES cells to the BALB/c
host (black/white). Highly chimeric mice were bred to strain C57BL/6 females. Recombination by
mating with mice carrying cre-recombinase under the control of the myosin light chain 2 ventricular

(MLC2v) promoter led to removal of the stop cassette allowing expression of uncleavable prelamin A
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in nuclei of CMs of affected offspring. These mice were called CM specific prelamin A transgenic
(csPLA-Tg) mice. They were compared to mice expressing the transgene but retaining the lox P sites,
termed floxed controls (FLctrl). All transgenic mice used in the study were heterozygous for the

transgene and generated on a C57Bl6 background. Male and female mice were used in this study.

Murine echocardiography

Echocardiography was performed using a Vevo® 2100 imaging system with a 30 MHz linear
transducer specially designed for small animal studies (VisualSonics, USA). Echocardiography was
performed with 5% isofluorane fast induction of anaesthesia followed by maintenance of 1-1.5%
isoflurane anaesthesia for 4 week old mice and 2.5% isofluorane for 2 week old mice, which was
vaporized in 100% oxygen delivered at 1.5-2 liters/min. Heart rate was kept at ~400-450 beats per

minute while respiratory rate was ~100 breaths per minute. Body temperature was ~36.5+1°C.

Murine cardiac Magnetic Resonance Imaging (MRI) for T1 mapping

For detection of myocardial ‘scarring’ by T1 mapping (45), anaesthetised mice were subject to MR
imaging before and 25 min after intraperitoneal (i.p.) administration of 0.75 mmol/kg of gadofosveset
trisodium (Ablavar®, Lantheus Medical Imaging, North Billerica, MA), a gadolinium-based contrast
agent. An ECG triggered, single slice, Look-Locker acquisition was used for T1 mapping and to
measure R1 values of the myocardium. The slice was selected in the middle of the heart. Imaging
parameters included FOV = 25 x 25 mm?, slice thickness = 1 mm, matrix size = 128 x 128, 3
phases/cycle, total of 30 phases, 1 slice, flip angle = 10°, TR. 2700 ms, TReff =~ 40 ms ((cardiac
cycle)/(3 phase/cycle)), TE = 2 ms, cardiac cycle = 120 + 20 ms, number of averages = 1, acquisition
time ~ 13 min. T1-weighted sequences were analysed to assess the R1 values of the myocardium.
Look-Locker T1 mapping resulted in 30 images (3 per cardiac cycle) from which R1 values
of blood, infarcted, remote and healthy myocardium were calculated using an exponential 3 parameter

fit (A-B*exp (-TI/T1%*)) with subsequent T1 correction (OriginLab Corporation, Wellesley, USA).
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Transmission Electron Microscopy (TEM)

Mice were injected intraperitoneally with heparin (5000 u/kg body weight). This was followed by
intraperitoneal injection of 50mg/kg body weight of sodium pentobarbital to induce terminal
anaesthesia. The chest cavity was opened and secured with a hemostat. The LV was injected with a
needle connected via a pump to a reservoir of pre-wash buffer. Flow rate of the pump was adjusted as
to perfuse mouse heart at a pressure between 90-100 mmHg with pre-wash buffer. Pre-wash buffer
was a standard physiological tyrode solution containing 10mM BDM to arrest the heart in diastole and
2.5% PVP to replace the protein content of blood, thereby maintaining colloidal pressure and
preventing haemorrhage at vascular sites in the heart. Following prewash, the hearts were perfused
with fixative solution containing 2% Glutaraldehyde and 2% Paraformaldehyde until 20ml of fixative
had been perfused. Hearts were dissected and the mid LV was isolated and cut for further processing.
Samples were dehydrated through a graded series of ethanol washes and embedded in epoxy resin.
Semi-thin sections (0.2 pm) were stained with toluidine blue for light microscopy examinations and
were used to guide sampling for TEM studies. Thin sections (0.09 um) were collected on 150-mesh
copper grids and double stained with uranyl acetate and lead citrate for examination under TEM
(H7650, Hitachi, Tokyo, Japan).

Human HIV+ samples were fixed in 2% glutaraldehyde in a 0.1 M phosphate buffer, at pH
7.3, post fixed in osmium tetroxide and processed following a standard schedule for embedding in
Epon resin. Semi-thin sections were stained either with azur-II or basic fuchsin solutions and mounted
with permount medium. Ultrathin sections (70-80) were stained with uranyl acetate and lead

hydroxyde. A Jeol 1400 plus TEM was used for observation and photographic analysis.

Statistics

All in vivo and ex vivo data of age-matched csPLA-Tg versus FLctrl mice were analysed using the
Student’s unpaired T-test for normal distribution. Where standard deviations were substantially
different Welsch’s correction was applied and in the case of non-normal distribution of data the non-

parametric Mann-Whitney test was applied. For the analyses of body weights at over time, two-way
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analysis of variance with repeated measures was selected with Bonferroni post hoc test for multiple
comparisons. Kaplan-Meier survival curves were assessed by the log-rank Cox-Mantel test. Values
were expressed as means + the standard deviation (SD). Tests were performed in Excel (Microsoft) or

Prism (GraphPad).

Detailed accounts of other methods used in this study can be found in the online supplement to this

article.
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Tables

Table 1. Clinical characteristics and antiretroviral treatment regime of five patients with HIV-

associated cardiomyopathy

Time under Echocardiography Data
HIV+ Patient ID Age Sex retroviral therapy,
LVEDD*, mm | LVEF{, %
years

Pt1 35 M 10% 65 29

Pt2 56 M 8§ 56 40

Pt3 52 M 9| 48 43

Pt4 45 M 8# 62 38

PtS 45 F 9** 68 35

Normal Values <56 >50

* LVEDD=Left ventricular end-diastolic diameter

T LVEF= Left ventricular ejection fraction

1= Emcitrabine/Tenofovir, Atazanavir, Ritonavir,
§=Emcitrabine/Tenofovir, Lopinavir/Ritonavir, Rivotril
||= Atazanavir, Norvir, Abacavir/Lamivudin

#= Abacavir/Lamivudine, Efavirenz, Atazanavir

** Ritonavir, Rivotril, Lamivudine, Zidovudine, Fosamprenavir
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Figure 1. Prelamin A accumulates in hearts of patients with HIV-associated cardiomyopathy
under retroviral therapy and Dilated Cardiomyopathy (DCM). A. Western blotting detected
accumulation of prelamin A in hearts of HIV patients, but not in a selection of DCM patient samples.
B. Immunohistochemistry showing focal prelamin A accumulation in CM nuclei (black arrows) and
non-CM populations (green arrows) of HIV+ myocardium. Electron micrographs showing C. nuclear
morphology defects in HIV+ myocardium (red arrow). Scale = 3 um. D. Nuclear pore complexes
surrounded by evenly spread heterochromatin in non-diseased myocardium (large white arrows) and
heterochromatin displacement in HIV+ myocardium (small white arrows). Scale = 1 pm. N= Nucleus,
L=Lipid bodies. E. Confocal micrographs of human heart sections from DCM patients and non-
failing (NF) controls subjected to immunofluorescence staining to detect prelamin A (green),
myomesin (red) and DAPI (blue). Arrows point to prelamin A positive CM nuclei, many of which
exhibit nuclear morphology defects. F. the number of nuclei which stained positively for prelamin A
were quantified as a percentage of CM nuclei for non-failing (blue circles, N=10) and DCM (red
squares, N=21) myocardial sections (means = SDs). Scale = 10 um.
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Figure 2. Targeted transgenesis of prelamin A led to nuclear ac cumulation in CMs and resulted
in cardiomyopathy and premature death by heart failure in mice. A. schematic representation
showing the site and of prelamin A (LMNA-L647R) cDNA insertion and the modifications required
for conditional expression. B. Confocal micrographs of myocardium stained for prelamin A showing
nuclear rim localisation in csPLA-Tg hearts. Scale = 10 um. C. Growth curves showing that csPLA-
Tg mice stop growing after 30 days (2-way ANOVA with Bonferroni multiple comparisons *P<0.05,
**%P<0.001). D. Kaplan-Meier survival analysis showing that csPLA-Tg male and female mice die
early compared to FLctrl counterparts (log-rank P<0.0001). E. Graphs of echocardiography analysis
performed on movies acquired in B-mode showing severely compromised cardiac function in four-
week old mice N=8-12/group. F. Foetal gene expression is dysregulated in csPLA-Tg hearts at four
weeks indicating heart failure N=3/group. Values are means + SDs. *P<(.05 **P<0.01 ****P<(.0001
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Figure 3. Fibrotic remodelling of csPLA-Tg myocardium occurred in tandem with
inflammation and senescence whilst also sharing histological features with HIV associated
cardiomyopathy and prelamin A mediated DCM. A. Light micrographs showing myocardial
disarray in four week csPLA-Tg myocardium stained with Haematoxylin and Eosin. Scale = 30um.
B. Light micrographs showing Picrosirius red stained myocardium to indicate fibrosis in four week
csPLA-Tg myocardium shown by excessive red staining. Scale =30um. C. Increased relaxation time
(R1) of gadolinium contrast in four week csPLA-Tg myocardium indicative of fibrosis remodelling.
D. Quantitative fluorescence immunostaining for CD45 shows presence of CD45+ cells in two and
four-week csPLA-Tg myocardium. Scale = 10 um. Values are means + SDs. N=3/group **P<0.01 E.
qPCR showing the cytokine profile of csPLA-Tg myocardial mRNA. N=4/group F. H&E and CD3+
immunohistochemistry showing inflammation in HIV+ myocardium consistent with the csPLA-Tg
model. Scale = 30pum. G. DCM patient sample in which Prelamin A accumulated showed
mononuclear infiltration. Scale = 40 um. H. expression of the mRNA for senescence markers p16 and
p21 was elevated in four week csPLA-Tg hearts I. Immunohistochemical staining showing increase in
pl6 staining in 4 week csPLA-Tg myocardium. Scale = 30 um. J. Senescence associated 3
galactosidase assay was performed to reveal bright blue staining in four week csPLA-Tg myocardium.
Scale = 30 pum.
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Figure 4. NF-kB signalling was activated in four week csSPLA-Tg CMs and mediated by
persistent DNA damage. A. Confocal micrographs of fluorescence immunostaining showing DNA
damage marker y-H2AX (white arrows) and quantification of y-H2AX micrographs showing no
significant changes between csPLA-Tg and FLctrl. B. Subcellular localisation of p65 subunit of NF-
kB in csPLA-Tg myocardium, highlighted by white arrows and quantification of p65 micrographs
showing increases in the number of nuclei expressing p65 for two and four week hearts counted as a
percentage of total nuclei C. Western blot showing increase of NF-kB sub-unit p65 in four week
csPLA-Tg myocardium. D. Western blots of four week myocardial lysates showing phosphorylation
status of ATM and IxkBa and E. graphs showing corresponding densitometry analyses. Scale = 10 pum.
Values are means = SDs. N=3/group *P<0.05 **P<0.001.
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Figure S. Prelamin A accumulation led to disorganisation of molecular structure at four weeks
and loss of chromatin and histone marks at two weeks. A. Electron micrographs showing nuclear
shape and size changes in csPLA-Tg myocardium, red arrows point to regions of nuclear in-folding
characteristic of nuclear morphology defects. Scale = 500 nm. B. Western blot analysis showing the
protein expression changes occurring at four weeks in structural proteins of the nuclear envelope-
lamin A/C, emerin, SUN2, nesprin 2, and also the cytoskeleton-desmin, with corresponding semi-
quantitative densitometry analysis. Values are means + SDs *P<0.05 **P<0.01 ***P<0.001. C.
Electron micrographs show heterochromatin displacement and loss of chromocentres. Scale = 500
nm. D. Quantitative immunohistochemistry showed a profound loss of H3K9me3 staining as a
percentage of total Haemotoxylin stain in two week csPLA myocardium. Scale = 30 um. Values are
mean £ SD. N=3/group. * P<0.05.
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Figure 6. Schematic showing molecular and phenotypic implications of prelamin A
accumulation in the heart. In a normally functioning heart prelamin A is cleaved by ZMPSTE24
leading to lamin A insertion in the nuclear lamina. Prelamin A accumulation may occur by mutations
in LMNA and ZMPSTE24 genes, and also by inhibition of ZMPSTE24 by HIV protease inhibitors. In
this setting prelamin A accumulation is likely to contribute to the development of inflammatory
cardiomyopathy. In the case of HIV PI inhibiton of ZMPSTE24, switiching treatments to HIV Pls
with low- or no affinity to ZMPSTE24 may prove beneficial.
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