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Abstract

Multiple steps of bioinformatics processing are needed to convert the raw scRNA-seq
data to information that can be used in downstream analyses and in building cell atlases.
Dozens of software packages have been developed and different labs tend to have different
preferences on choices of the workflow. Such diversity can cause difficulties in future efforts
of aggregating data from multiple labs, and also difficulties for new labs to start in this field.
A few pipelines have been developed to help integrating multiple steps into a whole, but the
fixed software architecture makes it hard for developers to add new features or exchange parts
in the pipeline.

We presented SIP, a Single-cell Interchangeable Pipeline. It is a one-stop platform for the
processing of scRNA-seq data from multiple platforms, and will also support for other types
of data like scATAC-seq data. SIP utilizes container technology to solve the deployment
dilemma when handling multiple packages and provides an easy-to-use interface for users to
conduct the complicated multi-step process from raw data to final results with a single
command. It also allows advanced users to assemble different versions of the pipeline by
interchanging parts or adding new modules. SIP is available at

https://github.com/XuegonglLab/SIP under the GPL-3.0 license.
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1 Introduction

Analysis pipelines for single-cell RNA sequencing (SCRNA-seq) gain increasing
attentions as sSCRNA-seq is becoming more and more important in biological studies (Wang
and Navin, 2015; Hedlund and Deng, 2018; Wu et al., 2017). SCRNA-seq is also one of the
key technologies in the collaborative effort of building the human cell atlas
(HCA)(Rozenblatt-Rosen et al., 2017). Automated or semi-automated bioinformatics
pipelines following standardized framework are one of the fundamental elements to support

the effort.

To date, a group of pipeline and software packages have been developed for analysis of
single-cell data. Some tools like simpleSingleCell (Lun et al., 2016) guide users to manipulate
data manually and require heavy programming skills. Some packages, such as Seurat (Butler
et al., 2018) , Monocle 2 (Trapnell et al., 2014; Qiu et al., 2017) , Scater (McCarthy et al.,
2017), ASAP (Gardeux et al., 2017), and Granatum (Zhu et al., 2017), mainly focused on the
downstream analyzing steps after the gene expression quantification. However, the
guantification of gene expression from raw data is not a trivial task. The alignment process
often consumes substantial computational resources and the computation parameters
correspond to different protocols can be very tricky. Therefore, a pipeline that starts from the
raw data to downstream analysis is still highly demanded, especially for labs that just start to
work in this field, and for labs that need to integrate their data with those from other labs. In

addition, as the sequencing throughput is quickly getting higher, a scalable pipeline capable of
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utilizing the power of HPC (High-Performance Computing) clusters is in urgent need for labs

and consortiums that generate massive single-cell data.

To meet these needs, we developed a Single-cell Interchangeable Pipeline called SIP. It
is an open-source pipeline for processing from raw data to final analyses with standard
framework and interchangeable components. SIP contains seven main modules, including
Read QC and preprocessing, (Quasi-)alignment and transcript assembly, Gene-level
abundance counting, Cluster finding, Trajectory analysis, and DEG analysis. Each module
contains multiple encapsulated tools. The tools can be easily replaced with alternatives, and

new tools and/or modules can also be added.

SIP is constructed with Nextflow (DI Tommaso et al., 2017), which seamlessly take over
outputs and inputs of the upstream and downstream modules, significantly alleviating the data
manipulation efforts for users. SIP adopts the container technology to deploy the pipeline.
Several useful features including e-mail notification and HPC cluster support make it more
convenient to process massive amount of data using SIP. Besides, it is easy to extend SIP’s

function as Nextflow has a large developer community.

Excellent computational tools constantly appear in the field of single-cell data analysis.
To keep pace with the development of new tools, a good pipeline should have an open
software architecture for changes and be endorsed by a development community so that new

tools can be integrated efficiently. The framework used in SIP allows very easy maintaining
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and updating the pipeline, and more potential Nextflow developers can join the improvement

of SIP in a collaborative manner.

2 Methods

SIP prepares a curated list of single-cell RNA-seq data processing tools. The input and

output of each tool are parsed by the Nextflow framework and transferred automatically. As

shown in Fig. 1, users can choose the interchangeable parts for a specific step. With different

combination of components, workflows of different steps are established to process the data.

Users can easily explore proper tool sets for different datasets, and make a performance

comparison on different datasets.

Interchangeable Pipeline Components

Qac & Align & e
Ign Stat
Filtering Assembly Count Tools

Step 4

" G

Choose components

Curated Single-cell

Data Processing Tools Analysis Workflow

Fig. 1. Concept map of SIP. A group of software and packages are evaluated and selected to build up

interchangeable parts in the pipeline toolbox. Users can freely choose the tools to process the data without

concerning the tedious intermediate data manipulation operations.
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2.1 The SIP workflow

2.1.0 Feed raw sequencing data to pipeline

SIP accepts raw sequencing data (fastq files) as input. Read files should be named after
identifiers of the cells and placed in the cell home folder. The pipeline detects all files in the
folder and group the files by name. The layout (single-end, paired-end) of sequencing library
will be automatically determined and all layout-associated parameters will be set by the SIP.

Please check the online documentation for more details of read arrangements.

2.1.1 Read quality control and preprocessing

Various quality defects (e.g. adapter sequences, low-quality bases, poly-T ends etc.) may
exist in the raw sequencing reads. Directly processing the raw reads would lower down the
quality of results too (Del Fabbro et al., 2013), hence it is necessary to check the quality of
reads before further steps and filter out defective reads and produce clean reads for
succeeding steps. SIP integrates serveral tools for read quality checking and filtering,
including FastQC (Andrews, 2010), fastp (Chen et al., 2018), AfterQC (Chen et al., 2017),
and applies the quality control and preprocessing step to each sample or cell. Separated results

for each cell are further summarized with MultiQC (Ewels et al., 2016).

2.1.2 (Quasi-)Alignment of reads and transcript assembly
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Alignment (or quasi-alignment) or short sequencing reads is the essential step in the
reference-based transcriptome studies. SIP automatically detects the read layout and the
“strandness” of the RNA-seq experiment with RSeQC (Wang et al., 2012) and set the

corresponding parameters for users in the (quasi-)alignment steps.

SIP by default uses a quasi-alignment tool, salmon (Patro et al., 2017), for transcript
guantification because it is much faster than alignment-based tools. For alignment-based
transcript assembly, we include several classical packages in SIP: STAR (Dobin et al., 2013)
and Hisat2 (Kim et al., 2015, 2017) for read alignment, StringTie (Pertea et al., 2015) for
transcript assembly. Like the previous Read QC and Preprocessing step, the (quasi-)alignment
gualities (e.g. read mapping rate, aligned read count, fragment length distribution) are also

summarized and reported by MultiQC.

2.1.3 Gene-level abundance counting

For alignment-based quantification, the generated Sequence Alignment Map files (e.g.
SAM, BAM files) can be either counted with featureCounts (Liao et al., 2014) or HTSeq
(Anders et al., 2015) at read level, or counted based on normalized results (TPM, RPKM, or

FPKM) produced by StringTie.
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For the quasi-alignment method, abundance levels of transcripts are directly estimated
without explicitly assembling the transcriptome. Normalized results or read counts are supplied

by salmon in SIP.

As accurate quantification of transcriptional isoforms at single-cell level is still
challenging (Vu et al., 2018; Arzalluz-Luqueangeles and Conesa, 2018), SIP currently
imports all cells’ transcript-level quantification results and merge them into gene-level
expression matrix where each column depicts an expression profile of a single cell with the

help of the R package tximport (Soneson et al., 2016).

2.1.4 Post-quantification downstream analysis

SIP can take the gene-level expression matrix generated by the previous abundance
counting step, and continue to conduct downstream analyses like clustering, identifying
differentially expressed genes, and building cell trajectories, etc. A number of packages have
been developed to accomplish such statistical analysis. SIP has currently integrated Seurat,

Monocle 2, and Scater.

2.2 Other useful features

By utilizing the advantages of the Nextflow framework, SIP has the following useful

features:
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® User-friendly reports: Important intermediate results and summarized final results
are well-organized in the output directory along with multiple user-friendly HTML
and PDF graphical reports.

® Cluster environment: Nextflow supports the deployment on cluster environment,
therefore the pipeline is capable of processing very big data with the slurm HPC
cluster management system.

® Parallel processing: Processes can be computed in a parallel manner, maximizing
the usage of computational resources.

® Breakpoint resume: SIP caches accomplished work with Nextflow. Finished
processes will not be wasted when a very long pipeline is interrupted in the middle.

® Container support: SIP provides Docker images with all software and packages
installed inside. Users can plug and play the pipeline directly without pre-install the
numerous dependencies.

® E-mail notification: SIP can be configured to send information automatically when
a certain process or the whole workflow is finished.

® Developer community: Nextflow has a large developer community. This will help

the future development and extension of SIP.
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3 Results

We applied SIP on several single-cell RNA-seq datasets to test the usability and
performance of the pipeline. We selected a subset of the single-cell dataset generated by
SMART-seq with accession number GSE38495 (Ramskdd et al., 2012). The subset contains
8 hESCs (human embryonic stem cells), and 19 LNCaP cells (androgen-sensitive
human prostate adenocarcinoma cells). The whole analysis workflow is finished in 46
minutes on a workstation with 2 Intel® Xeon® E5-2670 CPU and 96 GB memory. The real
memory requirement for the package depends on the particular set of modules uses choose in
the pipeline. The actually memory consumption in this example experiment is <40GB, and we
have also checked that SIP can be installed and ran on personal computers or laptops with
memory as low as only 8GB.

The raw sequencing reads are checked and filtered with fastp using the “--readqc=fastp”
option. Pre-processed clean reads are quantified in quasi-alignment mode with salmon using
the “--quant=salmon” option. Fig. 2 (a) shows snapshots of read quality control results and
quasi-alignment results. In general, the read qualities of 27 samples are good enough to
perform succeeding steps: 97.5%~99.5% of the reads passes the read filtering; adapter
sequences are detected in 12 out of the 27 samples, and the percentage of adapter-trimmed
reads are < 1.0% . More details about GC-content, sequence quality, duplication rates, N

contents, etc. are also suppled in the report.
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After quantification, the transcript-level expression profiles of multiple cells are

automatically transformed into gene-level and then merged into a matrix of all cells to feed

the downstream statistical analysis. Clustering identification and differentially expressed gene

identification are conducted using Seurat with the “--using_seurat” option for this dataset. We

used a typical Seurat workflow:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Initialize a Seurat object;

Filter cells based on built-in metrics;
Normalize the data;

Select variable genes across cells;

Removing confounding factors by regression.
Linear dimensionality reduction.

t-SNE visualization

PCA-based clustering

Identify differentially expressed genes
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Fig. 2. Selected results of experiment 1. (a) read quality check report and quasi-alignment report; (b)

Visualizations of PCA’s first 6 components; (c) t-SNE plot of the 2 types of cells; (d) Heatmap of the

cells across part of selected marker genes; (e) Selected differentially expressed marker genes.
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Fig. 2 (b) visualizes the result of PCA linear dimensionality reduction with SIP. The first
6 principle components are listed, where x-axis represents the PC’s value, and y-axis
represents the corresponding feature genes. Fig. 2 (c) is the t-SNE plot of the PCA-
transformed data reported by SIP. The PCA-based clustering algorithm obtains two cluster
and they exactly correspond to the two real cell types (19 LNCap cells and 8 hESCs). The
colors in the t-SNE plot are inferred from cluster information automatically by SIP. The t-
SNE is derived with perplexity parameter = 5 and first two PCA dimension. The clustering
algorithm used the first 10 principle components and a resolution parameter = 1.04.
Differentially expressed marker genes are then identified between the two computed groups.
A heatmap with an obvious pattern shows top 15 genes with high fold changes in Fig. 2 (d).

Fig. 2 (e) lists the most significant differentially expressed marker genes in two cell types.

4 Conclusion

We have developed a one-stop pipeline SIP for processing and analyzing single-cell
RNA-seq data from the raw fastq data to downstream analyses and automatic report
generation. The pipeline is interchangeable and expansible, and can be scaled up to be ran on
HPC clusters. The current version of SIP supports data generated from all major RNA-seq
platforms. And the future upgrades will soon support other types of single-cell sequencing
data such as scATAC-seq data. With this handy pipeline, biological labs that generating
single-cell sequencing data can be freed from the tedious and challenging labors of installing
and running multiple software packages and setting computer environments to make

everything compatible. This allows them to better focus on the scientific questions to be
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answered from the data. Besides, the pipeline also allows biological labs to be able to share
bioinformatics pipelines including detailed parameter settings with other labs, which makes it
easier for integrating data from multiple labs in big collaborative projects such as the Human
Cell Atlas (HCA) program. SIP is available at https://github.com/chansigit/SIP under the

GPL-3.0 license.
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