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Abstract 

Multiple steps of bioinformatics processing are needed to convert the raw scRNA-seq 

data to information that can be used in downstream analyses and in building cell atlases. 

Dozens of software packages have been developed and different labs tend to have different 

preferences on choices of the workflow. Such diversity can cause difficulties in future efforts 

of aggregating data from multiple labs, and also difficulties for new labs to start in this field. 

A few pipelines have been developed to help integrating multiple steps into a whole, but the 

fixed software architecture makes it hard for developers to add new features or exchange parts 

in the pipeline. 

We presented SIP, a Single-cell Interchangeable Pipeline. It is a one-stop platform for the 

processing of scRNA-seq data from multiple platforms, and will also support for other types 

of data like scATAC-seq data. SIP utilizes container technology to solve the deployment 

dilemma when handling multiple packages and provides an easy-to-use interface for users to 

conduct the complicated multi-step process from raw data to final results with a single 

command. It also allows advanced users to assemble different versions of the pipeline by 

interchanging parts or adding new modules. SIP is available at 

https://github.com/XuegongLab/SIP  under the GPL-3.0 license. 
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1 Introduction 

 

Analysis pipelines for single-cell RNA sequencing (scRNA-seq) gain increasing 

attentions as scRNA-seq is becoming more and more important in biological studies (Wang 

and Navin, 2015; Hedlund and Deng, 2018; Wu et al., 2017). ScRNA-seq is also one of the 

key technologies in the collaborative effort of building the human cell atlas 

(HCA)(Rozenblatt-Rosen et al., 2017). Automated or semi-automated bioinformatics 

pipelines following standardized framework are one of the fundamental elements to support 

the effort.  

 

To date, a group of pipeline and software packages have been developed for analysis of 

single-cell data. Some tools like simpleSingleCell (Lun et al., 2016) guide users to manipulate 

data manually and require heavy programming skills. Some packages, such as Seurat (Butler 

et al., 2018) , Monocle 2 (Trapnell et al., 2014; Qiu et al., 2017) , Scater (McCarthy et al., 

2017), ASAP (Gardeux et al., 2017), and Granatum (Zhu et al., 2017), mainly focused on the 

downstream analyzing steps after the gene expression quantification. However, the 

quantification of gene expression from raw data is not a trivial task. The alignment process 

often consumes substantial computational resources and the computation parameters 

correspond to different protocols can be very tricky. Therefore, a pipeline that starts from the 

raw data to downstream analysis is still highly demanded, especially for labs that just start to 

work in this field, and for labs that need to integrate their data with those from other labs. In 

addition, as the sequencing throughput is quickly getting higher, a scalable pipeline capable of 
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utilizing the power of HPC (High-Performance Computing) clusters is in urgent need for labs 

and consortiums that generate massive single-cell data.  

 

To meet these needs, we developed a Single-cell Interchangeable Pipeline called SIP. It 

is an open-source pipeline for processing from raw data to final analyses with standard 

framework and interchangeable components. SIP contains seven main modules, including 

Read QC and preprocessing, (Quasi-)alignment and transcript assembly, Gene-level 

abundance counting, Cluster finding, Trajectory analysis, and DEG analysis. Each module 

contains multiple encapsulated tools. The tools can be easily replaced with alternatives, and 

new tools and/or modules can also be added.  

 

SIP is constructed with Nextflow (DI Tommaso et al., 2017), which seamlessly take over 

outputs and inputs of the upstream and downstream modules, significantly alleviating the data 

manipulation efforts for users. SIP adopts the container technology to deploy the pipeline. 

Several useful features including e-mail notification and HPC cluster support make it more 

convenient to process massive amount of data using SIP. Besides, it is easy to extend SIP’s 

function as Nextflow has a large developer community. 

 

Excellent computational tools constantly appear in the field of single-cell data analysis. 

To keep pace with the development of new tools, a good pipeline should have an open 

software architecture for changes and be endorsed by a development community so that new 

tools can be integrated efficiently. The framework used in SIP allows very easy maintaining 
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and updating the pipeline, and more potential Nextflow developers can join the improvement 

of SIP in a collaborative manner. 

 

2 Methods 

 

SIP prepares a curated list of single-cell RNA-seq data processing tools. The input and 

output of each tool are parsed by the Nextflow framework and transferred automatically. As 

shown in Fig. 1, users can choose the interchangeable parts for a specific step. With different 

combination of components, workflows of different steps are established to process the data. 

Users can easily explore proper tool sets for different datasets, and make a performance 

comparison on different datasets. 

Fig. 1. Concept map of SIP. A group of software and packages are evaluated and selected to build up 

interchangeable parts in the pipeline toolbox. Users can freely choose the tools to process the data without 

concerning the tedious intermediate data manipulation operations.  
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2.1 The SIP workflow 

 

2.1.0 Feed raw sequencing data to pipeline 

 

SIP accepts raw sequencing data (fastq files) as input. Read files should be named after 

identifiers of the cells and placed in the cell home folder. The pipeline detects all files in the 

folder and group the files by name. The layout (single-end, paired-end) of sequencing library 

will be automatically determined and all layout-associated parameters will be set by the SIP. 

Please check the online documentation for more details of read arrangements. 

 

2.1.1 Read quality control and preprocessing 

 

Various quality defects (e.g. adapter sequences, low-quality bases, poly-T ends etc.) may 

exist in the raw sequencing reads. Directly processing the raw reads would lower down the 

quality of results too (Del Fabbro et al., 2013), hence it is necessary to check the quality of 

reads before further steps and filter out defective reads and produce clean reads for 

succeeding steps. SIP integrates serveral tools for read quality checking and filtering, 

including FastQC (Andrews, 2010), fastp (Chen et al., 2018), AfterQC (Chen et al., 2017), 

and applies the quality control and preprocessing step to each sample or cell. Separated results 

for each cell are further summarized with MultiQC (Ewels et al., 2016). 

 

2.1.2 (Quasi-)Alignment of reads and transcript assembly 
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Alignment (or quasi-alignment) or short sequencing reads is the essential step in the 

reference-based transcriptome studies. SIP automatically detects the read layout and the 

“strandness” of the RNA-seq experiment with RSeQC (Wang et al., 2012) and set the 

corresponding parameters for users in the (quasi-)alignment steps. 

 

SIP by default uses a quasi-alignment tool, salmon (Patro et al., 2017), for transcript 

quantification because it is much faster than alignment-based tools. For alignment-based 

transcript assembly, we include several classical packages in SIP: STAR (Dobin et al., 2013) 

and Hisat2 (Kim et al., 2015, 2017) for read alignment, StringTie (Pertea et al., 2015) for 

transcript assembly. Like the previous Read QC and Preprocessing step, the (quasi-)alignment 

qualities (e.g. read mapping rate, aligned read count, fragment length distribution) are also 

summarized and reported by MultiQC. 

 

2.1.3 Gene-level abundance counting 

 

For alignment-based quantification, the generated Sequence Alignment Map files (e.g. 

SAM, BAM files) can be either counted with featureCounts (Liao et al., 2014) or HTSeq 

(Anders et al., 2015) at read level, or counted based on normalized results (TPM, RPKM, or 

FPKM) produced by StringTie. 
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For the quasi-alignment method, abundance levels of transcripts are directly estimated 

without explicitly assembling the transcriptome. Normalized results or read counts are supplied 

by salmon in SIP.  

  

As accurate quantification of transcriptional isoforms at single-cell level is still 

challenging (Vu et al., 2018; Arzalluz-Luqueángeles and Conesa, 2018), SIP currently 

imports all cells’ transcript-level quantification results and merge them into gene-level 

expression matrix where each column depicts an expression profile of a single cell with the 

help of the R package tximport (Soneson et al., 2016).  

 

2.1.4 Post-quantification downstream analysis 

 

SIP can take the gene-level expression matrix generated by the previous abundance 

counting step, and continue to conduct downstream analyses like clustering, identifying 

differentially expressed genes, and building cell trajectories, etc. A number of packages have 

been developed to accomplish such statistical analysis. SIP has currently integrated Seurat, 

Monocle 2, and Scater. 

2.2 Other useful features 

 

By utilizing the advantages of the Nextflow framework, SIP has the following useful 

features: 
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 User-friendly reports: Important intermediate results and summarized final results 

are well-organized in the output directory along with multiple user-friendly HTML 

and PDF graphical reports. 

 Cluster environment: Nextflow supports the deployment on cluster environment, 

therefore the pipeline is capable of processing very big data with the slurm HPC 

cluster management system.  

 Parallel processing: Processes can be computed in a parallel manner, maximizing 

the usage of computational resources. 

 Breakpoint resume: SIP caches accomplished work with Nextflow. Finished 

processes will not be wasted when a very long pipeline is interrupted in the middle. 

 Container support: SIP provides Docker images with all software and packages 

installed inside. Users can plug and play the pipeline directly without pre-install the 

numerous dependencies. 

 E-mail notification: SIP can be configured to send information automatically when 

a certain process or the whole workflow is finished.  

 Developer community: Nextflow has a large developer community. This will help 

the future development and extension of SIP. 
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3 Results 

 

We applied SIP on several single-cell RNA-seq datasets to test the usability and 

performance of the pipeline. We selected a subset of the single-cell dataset generated by 

SMART-seq with accession number GSE38495 (Ramsköld et al., 2012). The subset contains 

8 hESCs (human embryonic stem cells), and 19 LNCaP cells (androgen-sensitive 

human prostate adenocarcinoma cells). The whole analysis workflow is finished in 46 

minutes on a workstation with 2 Intel®  Xeon®  E5-2670 CPU and 96 GB memory. The real 

memory requirement for the package depends on the particular set of modules uses choose in 

the pipeline. The actually memory consumption in this example experiment is <40GB, and we 

have also checked that SIP can be installed and ran on personal computers or laptops with 

memory as low as only 8GB. 

 

The raw sequencing reads are checked and filtered with fastp using the “--readqc=fastp” 

option. Pre-processed clean reads are quantified in quasi-alignment mode with salmon using 

the “--quant=salmon” option. Fig. 2 (a) shows snapshots of read quality control results and 

quasi-alignment results. In general, the read qualities of 27 samples are good enough to 

perform succeeding steps: 97.5%~99.5% of the reads passes the read filtering; adapter 

sequences are detected in 12 out of the 27 samples, and the percentage of adapter-trimmed 

reads are ≤ 1.0% . More details about GC-content, sequence quality, duplication rates, N 

contents, etc. are also suppled in the report. 
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After quantification, the transcript-level expression profiles of multiple cells are 

automatically transformed into gene-level and then merged into a matrix of all cells to feed 

the downstream statistical analysis. Clustering identification and differentially expressed gene 

identification are conducted using Seurat with the “--using_seurat” option for this dataset. We 

used a typical Seurat workflow: 

1) Initialize a Seurat object; 

2) Filter cells based on built-in metrics; 

3) Normalize the data; 

4) Select variable genes across cells； 

5) Removing confounding factors by regression. 

6) Linear dimensionality reduction. 

7) t-SNE visualization 

8) PCA-based clustering 

9) Identify differentially expressed genes 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2018. ; https://doi.org/10.1101/456772doi: bioRxiv preprint 

https://doi.org/10.1101/456772
http://creativecommons.org/licenses/by-nc/4.0/


 

Fig. 2. Selected results of experiment 1. (a) read quality check report and quasi-alignment report; (b) 

Visualizations of PCA’s first 6 components; (c) t-SNE plot of the 2 types of cells; (d) Heatmap of the 

cells across part of selected marker genes; (e) Selected differentially expressed marker genes. 
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Fig. 2 (b) visualizes the result of PCA linear dimensionality reduction with SIP. The first 

6 principle components are listed, where x-axis represents the PC’s value, and y-axis 

represents the corresponding feature genes. Fig. 2 (c) is the t-SNE plot of the PCA-

transformed data reported by SIP. The PCA-based clustering algorithm obtains two cluster 

and they exactly correspond to the two real cell types (19 LNCap cells and 8 hESCs). The 

colors in the t-SNE plot are inferred from cluster information automatically by SIP. The t-

SNE is derived with perplexity parameter = 5 and first two PCA dimension. The clustering 

algorithm used the first 10 principle components and a resolution parameter = 1.04. 

Differentially expressed marker genes are then identified between the two computed groups. 

A heatmap with an obvious pattern shows top 15 genes with high fold changes in Fig. 2 (d). 

Fig. 2 (e) lists the most significant differentially expressed marker genes in two cell types.  

 

4 Conclusion 

 

We have developed a one-stop pipeline SIP for processing and analyzing single-cell 

RNA-seq data from the raw fastq data to downstream analyses and automatic report 

generation. The pipeline is interchangeable and expansible, and can be scaled up to be ran on 

HPC clusters. The current version of SIP supports data generated from all major RNA-seq 

platforms. And the future upgrades will soon support other types of single-cell sequencing 

data such as scATAC-seq data. With this handy pipeline, biological labs that generating 

single-cell sequencing data can be freed from the tedious and challenging labors of installing 

and running multiple software packages and setting computer environments to make 

everything compatible. This allows them to better focus on the scientific questions to be 
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answered from the data. Besides, the pipeline also allows biological labs to be able to share 

bioinformatics pipelines including detailed parameter settings with other labs, which makes it 

easier for integrating data from multiple labs in big collaborative projects such as the Human 

Cell Atlas (HCA) program. SIP is available at https://github.com/chansigit/SIP under the 

GPL-3.0 license. 
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