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Abstract

Senescence is a tightly regulated developmental programme which is coordinated by transcription
factors. Identifying these transcription factors in crops will provide opportunities to tailor the
senescence process to different environmental conditions and regulate the balance between yield and
grain nutrient content. Here we use ten time points of gene expression data alongside gene network
modelling to identify transcription factors regulating senescence in polyploid wheat. We observe two
main phases of transcription changes during senescence: early downregulation of housekeeping and
metabolic processes followed by upregulation of transport and hormone related genes. We have
identified transcription factor families associated with these early and later waves of differential
expression. Using gene regulatory network modelling alongside complementary publicly available
datasets we identified candidate transcription factors for controlling senescence. We validated the
function of one of these candidate transcription factors in senescence using wheat chemically-induced
mutants. This study lays the ground work to understand the transcription factors which regulate
senescence in polyploid wheat and exemplifies the integration of time-series data with publicly
available expression atlases and networks to identify candidate regulatory genes.

Introduction

Grain yield and nutrient content in cereal crops is determined by the accumulation of carbon, nitrogen
and other nutrients in the grain towards the end of a plant’s life. The availability of these nutrients is
strongly influenced by the process of senescence, a regulated developmental programme to
remobilise nutrients from the vegetative tissues to the developing grain. Both the onset and rate of
senescence influence grain yield and nutrient content. A delay in senescence may be associated with
increased yield due to an extended period of photosynthesis (Gregersen et al., 2013; Thomas and
Howarth, 2000). However, delayed senescence may also be associated with a decrease in grain
nutrient content due to reduced nutrient remobilisation from green tissues (Distelfeld et al., 2014).
Senescence is often associated with the visual loss of chlorophyll, however the initiation of senescence
through signalling cascades, and early stages such as degradation of protein and RNA, are not visible
(Buchanan-Wollaston et al., 2003; Fischer, 2012). Through these initial stages, and later during visual
senescence, a programme of tightly-regulated changes occurs in gene expression (Buchanan-
Wollaston et al., 2003; Fischer, 2012). Despite its importance, we know relatively little about the
molecular control of senescence in crops such as wheat (Distelfeld et al., 2014).
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This lack of knowledge is partly due to the difficulty of identifying genes regulating quantitative traits
in the large wheat genome (IWGSC et al., 2018) as well as the subtle effects of individual gene copies
(homoeologs) within the polyploid context (Borrill et al., 2015). These challenges mean that
conventional genetic mapping approaches often take many years to identify causal genes. To date two
genes have been identified to regulate senescence in wheat. The NAM-B1 NAC transcription factor
was identified to underlie a quantitative trait locus (QTL) for grain protein content and senescence
(Uauy et al., 2006). A second NAC transcription factor, NAC-S, was found to have a strong correlation
between its expression level and leaf nitrogen concentration in tandem with a role in regulating
senescence (Zhao et al., 2015). However, to realise the potential to manipulate the rate and onset of
senescence in wheat it will be necessary to gain a more comprehensive understanding of the network
of transcription factors regulating this process. ldentifying these transcription factors may enable the
development of wheat varieties with a senescence profile tailored to maximise nutrient remobilisation
whilst maintaining yield and providing adaption to local growing conditions.

The first step towards manipulating senescence at the molecular level is to understand the genes
which are involved in the process, and the transcription factors which orchestrate gene expression
changes during senescence. Over 50 % of micro and macronutrients remobilised to the developing
grain originate from the uppermost (flag) leaf of the senescing wheat plant (Garnett and Graham,
2005; Kichey et al., 2007), making it a key tissue in which to understand the senescence process.
Previous attempts have been made to characterise transcriptional changes in wheat flag leaves,
however these studies have been either carried out with microarrays which were limited to a small
set of 9,000 genes (Gregersen and Holm, 2007) or had a limited number of samples and time points
(Pearce et al., 2014; Zhang et al., 2018). Decreases in the cost of RNA-Seq now mean that these
constraints can be overcome through genome-wide expression studies across multiple time points.
The recent publication of the wheat genome sequence with over 100,000 high confidence gene
models (IWGSC et al.,, 2018) and accompanying functional annotations, enhances the ease and
accuracy with which RNA-Seq data can be analysed in wheat. Systems biology approaches can start to
make sense of the vast quantities of data produced and identify the regulatory pathways controlling
quantitative traits (Kumar et al., 2015).

Our aim in this study was to identify the molecular pathways involved in senescence in wheat and
determine candidate transcription factors controlling these processes in the flag leaf. We sequenced
a ten time point expression timecourse of wheat senescence in the flag leaf from 3 days post anthesis
until 26 days post anthesis which corresponded to the first signs of visual senescence. We identified
the temporal progression of the senescence process at the molecular level and used gene regulatory
network modelling to predict transcription factors which coordinate this developmental process. We
confirmed the role of one of these candidate genes, TraesCS2A02G201800 (NAM-A2), in wheat itself.
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76  Results

77  Growth and physiological measurements

78  To understand the transcriptional control of the initiation of senescence we harvested an early
79 timecourse of senescence at 3, 7, 10, 13, 15, 17, 19, 21, 23 and 26 days after anthesis (DAA) (Figure
80 1A). SPAD chlorophyll meter readings in the flag leaf were maintained at a similar level from 3 to 21
81 DAA, with a significant decrease from 23 DAA (Figure S1). Percentage moisture of the grains decreased
82 from 80.0 % at 3 DAA to 54.7 % at 26 DAA which corresponds to soft dough stage (Zadoks GS85 (Zadoks
83  etal.,, 1974)) (Figure S2), indicating that the time period sampled included the majority of the grain
84 filling period.

85  Strong transcriptional changes occur during flag leaf senescence

86 RNA was extracted from the flag leaf blade with three replicates for each of the ten time points and
87  sequenced. The RNA-Seq data was aligned to the RefSeqv1.1 transcriptome annotation (IWGSC et al.,
88  2018) using kallisto (Bray et al., 2016). On average each sample had 38.7 M reads, of which 30.9 M
89  mapped (78.9 %) (Table S1). We found that 52,905 high confidence genes were expressed at >0.5
90 transcripts per million (TPM) in at least one time point during flag leaf senescence, which corresponds
91 to 49.0 % of high confidence genes. To identify genes differentially expressed during the timecourse,
92  we used two programmes specifically designed for timecourse data: ImpulseDE2 (Fischer et al., 2018)
93  and gradient tool (Breeze et al., 2011). In total 9,533 genes were identified as differentially expressed
94 by both programmes, giving a high confidence set of differentially expressed genes. In addition,
95  gradient tool identified at which time points the genes became differentially expressed which we used
96 to determine the temporal changes in gene expression associated with senescence (Table S2).

97  To define the biological roles of these 9,533 genes we grouped them according to the first time point

98 at which they were up or downregulated. For example, a gene first upregulated at 10 DAA was in

99  group “U10” (up 10 DAA), whereas a gene first downregulated at this time point was assigned to group
100 “D10” (down 10 DAA). Fewer than 4 % of genes were both up and down regulated during the
101 timecourse and these were excluded from further analysis, resulting in 17 expression patterns (Table
102  S2). In total approximately twice as many genes were upregulated during this senescence timecourse
103  than downregulated (5,343 compared to 2,715). This indicates that senescence is actively regulated
104  through transcriptional upregulation rather than a general downregulation of biological processes.

105 We found that the patterns of up and downregulation were not equally spaced throughout the
106  timecourse. During the early stages of senescence the majority of differentially expressed genes were
107  downregulated (825/1035 differentially expressed genes at 3 DAA), and these continued to be
108  downregulated throughout the timecourse (Figure 1B). At the later stages of senescence relatively
109 few genes started to be downregulated (e.g. 50 genes at 19 DAA). Instead the number of genes which
110  started to be upregulated grew from 210 genes at 3 DAA to 1,324 genes at 13 DAA. After this peak of
111 upregulation at 13 DAA, fewer genes started to be upregulated, although there were still over 500
112  genes upregulated at each of 15, 17 and 19 DAA. Genes which were upregulated even at early stages
113  of senescence tended to continue to increase in expression level throughout the timecourse. At the
114 latest stages of the timecourse when chlorophyll loss was visible, 23 and 26 DAA, very few genes
115  started to be differentially expressed.

116  We found that this temporal divide into downregulation at the early stages of senescence and
117  initiation of upregulation at the later stages of senescence was also reflected in different GO term
118  enrichments in these groups of differentially expressed genes (Figure 1C; Table S3). The large numbers
119 of genes which started to be downregulated at 3 and 7 DAA were enriched for GO terms relating to
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housekeeping functions (e.g. translation, photosynthesis and rRNA processing) as well as for central
metabolic processes such as amino acid biosynthesis and starch biosynthesis. Alongside these
housekeeping functions, downregulated genes were enriched for defence responses and hormone
biosynthesis and signalling, indicating a reduction in the transcriptional responses to stimuli. Later in
the timecourse, from 10 to 13 DAA, groups of genes started to be upregulated which were involved in
vesicle mediated transport and the proteasome, indicating a remobilisation of components from the
existing proteins. This is supported by the upregulation from 13 DAA of genes involved in phosphate
and protein transport. From 15 DAA to 21 DAA waves of genes enriched for responses to cytokinin,
ABA and ethylene were upregulated, indicating a temporal hierarchy of hormone responses during
senescence.
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131 Figure 1. Transcriptional re-programming during flag leaf senescence. A) Timecourse of flag leaf
132  senescence from 3 to 26 days after anthesis (DAA), scale bar represents 1 cm. B) Diagram showing
133 representative patterns for genes which are consistently upregulated (green) or consistently
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134  downregulated (pink) during senescence (96.2 % of differentially expressed genes). Genes were
135 grouped according to the first time of up or downregulation. The majority of genes in each pattern
136  continued to be up or downregulated across the whole timecourse. Bar heights represent the number
137  of genes in each expression pattern. The x axis represents time after anthesis, the axis is represented
138  uniformly although time points are not evenly spaced. C) GO term enrichments are shown related to
139  general, hormone and nutrient related processes. Filled rectangles represent that genes starting to be
140  differentially expressed at that time point are enriched for that specific GO terms. Green rectangles
141 represent upregulated genes, pink rectangles represent downregulated genes. D) Transcription factor
142  families which were significantly enriched amongst upregulated genes across the timecourse.
143 Significantly enriched time points are shown in green.

144

145  To understand how these highly ordered and coordinated transcriptional changes are regulated we
146  examined transcription factor (TF) expression patterns. We found that 2,210 TFs were expressed (>
147 0.5 TPM) during the timecourse but only 341 TFs (15.4 %) were differentially expressed. We calculated
148  the percentage of differentially expressed TF per TF family across time (Figure 2). In general, each TF
149  family tended to either be upregulated or downregulated as a whole (Figure 2), although there are
150  exceptions such as the C2C2_CO-like and MADS_IlI family which showed upregulation and
151  downregulation of different family members during the timecourse. Thus, the TFs which were
152 downregulated during senescence largely belong to different TF families to those which were
153 upregulated.

154 While we observed a temporal gradient of TF families starting to be up and downregulated throughout
155  the timecourse, we defined an initial (3 to 7 DAA) and later wave (13-19 DAA) when many TF families
156  were up or downregulated. TF families which were upregulated in the initial wave from 3 to 7 DAA
157 include the RWP-RK, pseudo ARR-B and CCAAT_HAP2 (NF-YA) families (Figure 2A). A distinct set of TF
158  families were upregulated from 13 to 19 DAA in the later wave including CAMTA, GRAS and MADS _II.
159 After these waves of upregulation were initiated, the same families tended to continue to be
160  upregulated throughout the rest of the timecourse. Compared to all genes, the RWP-RK, CCAAT_HAP2
161 (NF-YA) and NAC families were significantly enriched (padj <0.01, Fisher test; Figure 1D) for
162 upregulated genes at early (RWP-RK and CCAAT_HAP2 (NF-YA)) and late (NAC) time points. In all three
163  families over 30 % of the expressed genes were upregulated during senescence corresponding to 61
164 NAC TFs (32.4 % of expressed NAC TFs) and eight RWP-RK and seven CCAAT_HAP2 (NF-YA) TFs (33.3
165 % and 38.9 % of expressed genes per family, respectively).

166 In parallel with certain TF families being upregulated, another group of TF families were
167  downregulated during the senescence timecourse. The initial wave of downregulation largely
168 occurred at 7 DAA and included the AS2/LOB, bHLH_TCP and MADS_| families. The later wave of
169  downregulation initiated from 17 to 19 DAA and included the C2C2 GATA, GARP G2-like and MADS_II
170  families. Similar to upregulation of TFs, the downregulation tended to continue throughout the rest
171  of the timecourse, indicating a gradual change in transcription factor expression levels. None of the
172  TF families were significantly enriched for downregulated genes compared to all genes.

173  These two waves of TF differential expression are analogous to the two waves of differential
174  expression observed for all gene classes (Figure 1). This is consistent with TF roles as activators and
175 repressors of gene expression. These results suggest that specific TF families initiate temporally
176  distinct changesin gene expression, broadly classed into an initial (3 to 7 DAA) and later (13 to 19 DAA)
177 response.

6/22


https://doi.org/10.1101/456749
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/456749; this version posted October 30, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

178

A B

A | | [ | | CCAAT_HAP2 (18)
Pseudo ARR-B (16)
| | —| RB (6)

S | | — RWP-RK (24)
C2C2_CO-like (23)
E2F/DP (18)
HD-Zip_|I_Il (36)
HD_PHD (9)

== NAC (188)
ARID (13)
C2C2_YABBY (7)
CAMTA (16)
SBP (22)
Zinc finger, MIZ (15)
GARP_G2-like (54)
MYB-related (282)
EIL (12)
GRAS (76)
MADS_II (48)
PLATZ (12)
TAZ (19)
Sigma70-like (17)
AS2/LOB (13)
bHLH_TCP (22)
CCAAT_Dr1 (20)
MADS_I (17)
FHA (31)
C2C2_GATA (40)
TUB (31)
CCAAT_HAP5 (17)
ABI3/VP1 (69)
AP2/EREBP (160)
ARF (50)
BBR/BPC (6)
BES1 (15)
bHLH (81)
C2C2_Dof (49)
C3H (81)
CCAAT_HAP3 (3)
CPP (13)
CSD (11)
GeBP (28)
GRF (10)
HD (21)
HD-Zip_IV (11)
HD_PLINC (18)
HRT (2)
HSF (47)
mTERF (170)
S1Fa-like (3)
Sir2 (6)
SRS (1)
tify (52)
VOZ (5)
Whirly (6)
WRKY (170)
3 7 10 13 15 17 19 21 23 26 3 7 10 13 15 17 19 21 23 26

Days after anthesis Days after anthesis

| (S
0 10 20 30 40 50 0 10 20 30 40 50
179 Percentage of family upregulated (%) Percentage of family downregulated (%)

180

181 Figure 2. Percentage of expressed genes which were differentially expressed per transcription factor
182  family at each time point. Upregulated (A) and downregulated (B) genes are shown. The total number
183  of genes expressed in each family is shown in brackets after the family name.
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184  Understand regulation using network modelling

185  Our results indicate that there are two main temporal waves of expression during senescence (3 to 7
186 DAA and from 13 to 19 DAA) which may be regulated by the associated upregulation of particular TF
187  families. However, to understand the interactions between TFs and predict which ones may be key
188  regulators (hub genes) driving this transcriptional programme we constructed a gene regulatory
189 network. We used Causal Structure Inference (Penfold and Wild, 2011) which produces a directional
190 network of transcription factor interactions. We included 213 TF which were both differentially
191  expressed during the timecourse and which also had an expression level >5 TPM. We chose this
192 threshold to maximise the number of informative genes, but to minimise noise by removing low
193 expressed transcription factors which may not play a role in the transcriptional reprogramming of
194 senescence.

195  Tointerpret the network it is necessary to determine the ‘edge weight threshold’ at which to include
196  edges. Since our aim was to identify the most important TFs within the network to test as candidate
197  genes for the regulation of senescence, we decided to compare the network across different
198  thresholds. We hypothesised that by identifying TFs which were important across multiple thresholds
199  we would be more likely to identify robust candidate genes. We found that from a threshold of 0.01
200 to 0.3 the number of edges reduced from 11,049 to 30 (Table 1). NAM-A1, a known regulator of
201 senescence in wheat, was only present in the network at the lower thresholds of 0.01, 0.05 and 0.1.
202 We therefore decided to focus on the networks which included NAM-A1, as it is likely that the more
203  stringent thresholds (0.2 and 0.3) would also have excluded other TFs relevant to the senescence
204  process. The other TF which had previously been identified to regulate senescence in wheat (NAC-S)
205 was not detected as differentially expressed during our timecourse so it was not used to construct the
206  network or determine appropriate thresholds.

207

208  Table 1. Comparing CSI network at different thresholds for edge weight.

Edge weight # genes # edges NAM-A1
threshold

0.01 213 11,049 Yes
0.05 204 692 Yes
0.1 132 182 Yes
0.2 67 59 No
0.3 38 30 No

209

210  We determined the importance of a gene within the network using two measures: ‘edge count’ which
211 is the number of connections to other genes, and ‘betweenness centrality’ which is a measure of the
212 number of shortest paths which pass through that gene and represents a measure of how essential
213  the gene is to the flow of information around the network. We calculated percentage rankings for
214  genesineach the three thresholds (0.01, 0.05 and 0.1) according to their edge count and betweenness
215  centrality to allow comparison across networks with different numbers of genes. We found that 24.7
216 % of genes (53 genes) were ranked in the top 20 % of genes in at least one threshold for betweenness
217  centrality and one threshold for edge count (Figure 3A). We consider these to represent good
218 candidate genes for further investigation. Amongst the 53 top ranked genes we found that three
219  transcription factor families were enriched compared to all 213 transcription factors in the network:
220  GARP_G2-like, HSF and RWP-RK (x? < 0.01, 0.05 and 0.001 respectively; Figure 3B-D). Interestingly the
221 RWP-RK family was also significantly enriched for upregulation during senescence (Figure 1D), in
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222  addition to being enriched amongst top ranked genes in the network. One family was significantly
223 depleted in the top ranked genes: the WRKY family (x> < 0.05) which was surprising since WRKY
224  transcription factors have been reported to regulate senescence in rice (Muho et al., 2014) and
225 Arabidopsis (Phukan et al., 2016).

226
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228 Figure 3. Comparisons of percentage rankings for betweenness centrality and edge count. A) All 213
229  genesinthe network are shown with their percentage ranking at each threshold. The 53 genes ranked
230  inthe top 20 % across at least one betweenness centrality and one edge count threshold are shown
231 in red. B) GARP_G2-like, C) HSF and D) RWP-RK TF families enriched within the top ranked 53 genes.
232 B-D) Genes within the top 53 genes are shown in red, whilst genes in these families not in the top 53
233 genes are shown in grey (there are no HSF outside the top 53 genes). Numbers above graphs indicate
234 the number of TFs in the top 20 % out of the total number of TFs shown in the graph. Genes not
235 present in the network at higher thresholds are represented as points below the Y-axis break.

236

237 Independent data supporting candidate gene prioritisation

238  Although we could prioritise candidates based on information solely from the network, we decided to
239  alsoincorporate other data sources to help distinguish the 53 top ranked candidate genes. We focused
240  onthree additional datasets: 1) expression data from an independent experiment with 70 tissues/time
241 points in the spring wheat variety Azhurnaya which included senescing leaves (Ramirez-Gonzalez et
242 al., 2018), 2) a GENIE3 network of predicted transcription factors — target relationships from 850
243 independent expression samples (Ramirez-Gonzalez et al., 2018) and 3) information from orthologs in
244  Arabidopsis and rice.

245  We found that 16 out of the 53 top ranked genes from the network were expressed over two-fold
246  higher in senescing tissues than in other tissues across the Azhurnaya developmental experiment
247  (Figure 4A). This independent dataset suggests that these 16 genes may play a specific role in
248 senescing tissues and we hypothesise that they would be less likely to induce pleiotropic effects when
249  their expression is altered in mutant or transgenic lines. We also tested whether these 53 candidate
250 genes had targets which were predicted to play a role in senescence, using the independent GENIE3
251 transcription factor - target network. We found that five of the candidate genes had targets enriched
252  for senescence-related GO terms (Figure 4B), however this did not include NAM-A1, which suggested
253 this approach might miss some interesting candidate genes. Therefore, we also tested whether the
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254  candidate genes had any shared targets genes with NAM-A1 which might indicate they act together
255 in the same senescence related pathway. We found that 22 genes had one or more shared target
256  genes with NAM-A1 (Figure 4B). Even an overlap of one target gene is significantly more than the
257  expected zero overlap between NAM-A1 and a random transcription factor (Sign test, p-value < 0.001).
258 We found that only two of the candidate genes were direct targets of NAM-A1, and these included
259  NAM-D1, the D-genome homoeolog of NAM-A1, and NAM-A2, an uncharacterised paralog of NAM-
260 A1 whichis located on a different chromosome.

261  We identified Arabidopsis and rice orthologs for the 53 candidate genes using EnsemblPlants gene
262 trees (Kersey et al., 2018). Arabidopsis orthologs were identified for 45 genes, and rice orthologs for
263 46 genes (Table S4). The Arabidopsis orthologs of thirteen genes had known leaf senescence functions,
264  these corresponded to seven Arabidopsis genes in total due to several wheat homoeologs sharing the
265 same ortholog. The rice orthologs of these genes had not been reported to have a leaf senescence
266  function because the majority had not been phenotypically characterised. In addition, a large
267  proportion of both Arabidopsis and rice orthologs (orthologs of thirteen and nine wheat genes
268  respectively) play roles in nitrogen responses, consistent with the tight coordination expected

269  between senescence and nitrogen remobilisation from flag leaves.
270
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Figure 4. Additional information for 53 top ranked candidate genes. A) Expression from an
independent RNA-Seq experiment using Azhurnaya spring wheat (left part of heatmap) and expression
in the senescence timecourse (right part of heatmap, “Timecourse”). Each of the 53 genes is
represented in one row, and rows are sorted according to the similarity of the expression patterns
(dendrogram to left). Genes which were over two-fold upregulated in senescence compared to other
tissues/time points in Azhurnaya are highlighted by red boxes (“upreg. in senescence”). Expression
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279  level is measured in transcripts per million (TPM). B) Targets of the TF predicted by independent
280 GENIE3 network. Genes with downstream targets enriched for senescence GO terms in the
281 independent GENIE3 network are marked with green boxes. The bar graph shows the number of
282  shared targets with NAM-A1. NAM-A1 (TraesCS6A02G108300) has 111 targets and its homoeolog
283  NAM-D1 (TraesCS6D02G096300) has 69 shared targets, shown with broken axis.

284

285  Validation of candidate gene NAM-A2

286 Using the additional information sources above we selected NAM-A2 (TraesCS2A02G201800) for
287  phenotypic characterisation in wheat because it was amongst our 53 top ranked candidate genes, was
288  upregulated in senescing leaves and shared many downstream target genes with NAM-AL.
289 Furthermore the NAM-A2 homoeolog, NAM-B2 (TraesCS2B02G228900) was also amongst the top 53
290 candidate genes. NAM-A2 is a closely related paralog of NAM-A1 which regulates senescence and
291 nutrient remobilisation (Avni et al., 2014; Uauy et al., 2006). The homoeolog of NAM-A2, NAM-B2,
292 was previously found to cause a slight delay in senescence (Pearce et al., 2014) but NAM-A2 has not
293 been previously characterised so was a strong candidate as a transcription factor which might regulate
294 senescence.

295  To test the predictions of our model we identified TILLING mutations in NAM-A2 and NAM-B2 in a
296  tetraploid Kronos background (Krasileva et al., 2017; Uauy et al.,, 2009). Due to the potential
297  redundancy between homoeologs in wheat (Borrill et al., 2015) we decided to generate double NAM-
298  A2/NAM-B2 mutants through crossing. We identified a mutation leading to a premature stop codon
299 in NAM-B2 (R170%*; between subdomains D and E of the NAC domain (Kikuchi et al., 2000)), which is
300 predicted to abolish protein function by creating a truncated protein lacking part of the NAC DNA
301 binding domain. For NAM-A2 we could not identify any mutations which would cause truncations,
302 instead we selected three missense mutations which were in highly conserved domains and were thus
303  expected to play important roles in protein function (Figure 5A). These were located in the A, Cand D
304 NAC subdomain and were predicted to be highly deleterious according to SIFT and PSSM scores. We
305 crossed each of the NAM-A2 missense mutants to the NAM-B2 truncation mutant to create
306  segregating populations from which wild type, single and double mutants which were phenotyped in
307  the F; generation.

308  Across the three populations with different missense mutations in NAM-A2, and a common truncation
309  mutation in NAM-B2, there was a significant delay of 4.9 days in flag leaf senescence in the double
310 mutant compared to wild type (padj <0.01, ANOVA post-hoc Tukey HSD; Figure 5B-C). There were no
311  significant differences between the single mutants and wild type in flag leaf senescence. Peduncle
312  senescence was significantly delayed by 7.4 days in the double mutant compared to wild type (padj
313  <0.001, ANOVA post-hoc Tukey HSD; Figure 5D), and in addition the single A mutant was significantly
314  later in peduncle senescence than wild type (3.9 days, padj <0.001, ANOVA post-hoc Tukey HSD). The
315 single B mutant was not significantly different from wild type suggesting that the A genome
316  homoeolog has a stronger effect on senescence than the B genome homoeolog. Since the comparison
317  is between different types of mutations (missense compared to a truncation mutation) interpretation
318 of the relative magnitudes is difficult, although the truncation mutation in the B genome would have
319 been expected to produce at least an equivalent effect to the missense mutation in the A genome.
320 These effects were largely consistent across the three different missense mutations, although the
321 mutation in subdomain C (G111R) had the largest effect when combined into a double mutant
322  compared to wild type (Figure S3).
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Figure 5. Mutants in NAM-A2 and NAM-B2. A) Selected missense mutations in NAM-A2 and stop
mutation in NAM-B2. Grey regions are the NAC subdomains A-E. Subdomain E spans the end of exon
2 and the start of exon 3. B) Wild type sister line (left) and NAM-A2 NAM-B2 double homozygous
(aabb) mutant (right), 37 days after anthesis. C) Days from heading to flag leaf senescence and D) days
from heading to peduncle senescence in wild type, single and double mutants. Letters indicate
significant differences p < 0.05, with ANOVA post-hoc Tukey HSD.
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331 Discussion

332 In this work we have characterised the transcriptional processes associated with senescence in the
333  wheat flag leaf. We found that specific transcription factor families are associated with these changes
334 in transcription and have used gene regulatory network modelling, alongside additional
335 complementary information, to identify candidate genes controlling this process. We confirmed that
336 one of these genes, NAM-A2, plays a role in senescence in wheat itself.

337 Time-resolved transcriptional control of senescence in wheat

338 We found that although 52,905 genes were expressed in senescing flag leaves, only 9,533 genes were
339  differentially expressed during this time period. Sampling ten time points allowed us to observe that
340 these 9,533 differentially expressed genes were largely divided into two temporal waves of
341  transcriptional changes which may not have been captured using a less time-resolved set of data.
342 Frequent sampling has also proved informative in other time dependent processes in wheat such as
343 pathogen infection (Dobon et al., 2016) and represents a powerful approach to understand the co-
344 ordination and regulation of gene expression changes throughout development and environmental
345 responses (Bar-Joseph et al., 2012; Lavarenne et al., 2018).

346  We found that during the first wave of transcriptional changes the majority of differentially expressed
347  genes were downregulated, and these groups were enriched for GO terms related to translation,
348 photosynthesis and amino acid biosynthesis. During the second wave, genes started to be upregulated
349  with enrichment for GO terms related to vesicle mediated transport, protein transport and phosphate
350 transport. The chronology of biological processes is well conserved with Arabidopsis. For example
351 early downregulation of chlorophyll related genes is observed in both Arabidopsis (Breeze et al., 2011)
352  and wheat, whilst transport processes are upregulated later during senescence. The temporal order
353 of senescence related processes is also broadly conserved in maize (Zhang et al., 2014) and rice (Lee
354 et al., 2017).

355  The importance of transcription factors to tightly coordinate the transcriptional changes happening
356  during the senescence is well known from other plant species (Podzimska-Sroka et al., 2015; Woo et
357 al., 2016). We found that particular TF families were up and downregulated in two distinct waves, an
358 initial and later response, following the pattern for all differentially expressed genes. We found that
359  three transcription factor families were enriched for upregulated genes during senescence at early
360  (CCAAT_HAP2 and RWP-RK) and late (NAC) stages. Members of the NAC family have been
361 characterised to play a role in regulating senescence in both wheat (Uauy et al., 2006; Zhao et al.,
362 2015) and other plant species (Podzimska-Sroka et al., 2015). The CCAAT_HAP2 (NF-YA) family is less
363  well characterised in this process but one member has been shown to delay nitrate-induced
364  senescence in Arabidopsis (Leyva-Gonzdlez et al., 2012). The RWP-RK family is known in Arabidopsis
365 to control nitrogen responses (Chardin et al., 2014), and in cereals nitrogen remobilisation is closely
366  connected with senescence highlighting the potential for further investigations into this family in the
367  future. Surprisingly the WRKY transcription factor family, which has been reported to play important
368 roles in senescence in several other species such as Arabidopsis (Breeze et al., 2011; Woo et al., 2013),
369  cotton (Lin et al., 2015) and soybean (Brown and Hudson, 2017), was not enriched for upregulation
370  during senescence in wheat. It is possible that relatively few members of the WRKY family function in
371 regulating senescence in wheat or that the function of WRKY TFs has diverged between wheat and
372 other plant species. This potential for divergence in the regulation of senescence between species is
373  supported by experiments characterising the rice ortholog of NAM-B1. Whilst the NAM-B1
374  transcription factor in wheat regulates monocarpic senescence, the ortholog in rice (0s07g37920)
375 regulates anther dehiscence and does not affect monocarpic senescence (Distelfeld et al., 2012).
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376  ldentifying candidate genes in networks

377 One of the aims of this study was to identify transcription factors which regulate the process of
378 senescence. The rationale behind this approach was that transcription factors control other genes and
379 therefore may have a strong and readily detectable effect on the process of senescence. Secondly, in
380 crops, transcription factors have been frequently selected under QTLs for important traits such as
381 flowering time (PPD1, VRN1) (Beales et al., 2007; Yan et al., 2003) and cold tolerance (CBF) (Knox et
382  al., 2008) due to their strong phenotypic effects. Thus, identified candidate transcription factors
383 regulating senescence might also prove to be useful breeding targets.

384 Through examining the expression patterns of transcription factors in detail we identified
385 transcription factor families which were enriched for upregulation during senescence, however this
386  analysis cannot provide information about which of the individual transcription factors within the
387  family might be more important in regulating the senescence process. To address this question, we
388 used Causal Structure Inference (Penfold and Wild, 2011) to identify interactions between
389  transcription factors. Our hypothesis was that central transcriptional regulators of senescence would
390 regulate other transcription factors to create a regulatory cascade to influence the thousands of genes
391  differentially expressed during senescence. Amongst the 53 top ranked transcription factors in the
392 network, three TF families were enriched: the GARP-G2-like, HSF and RWP-RK. Members of the
393 GARP_G2-like family have been reported to play a role in senescence in rice (Rauf et al., 2013). HSF
394  transcription factors are associated with stress responses, and although no members have been
395 associated with developmental senescence, stress responsive genes are also closely associated with
396  environmentally-induced senescence, and common regulation has been observed in Arabidopsis
397 (Woo et al., 2013). The RWP-RK family is of interest because it also significantly enriched for
398 upregulation during senescence, in addition to being enriched amongst top ranked genes in the
399 network. This adds further weight to the hypothesis that the RWP-RK TFs may play a role in
400 senescence, in addition to their known role in nitrogen responses. The roles of these identified TF can
401 now be directly tested in wheat to determine whether they regulate senescence using gene editing
402  and TILLING (Borrill et al., 2015).

403  To further delimit this list of candidate genes we used information from independent datasets
404  (developmental timecourse of expression and GENIE3 TF-target network) to prioritise candidate
405  genes. The approach to combine additional data sets was also applied in Arabidopsis where a Y1H
406  screen was used in conjunction with Causal Structure Inference to help to identify regulatory
407 interactions in senescence and pathogen infection (Hickman et al., 2013). Another approach which
408 can be used to narrow down candidate genes is to examine how the network is perturbed in
409  transcription factor mutants. This approach was used in Arabidopsis to identify three NAC
410 transcription factors which regulate senescence (Kim et al., 2018) and could now be applied in wheat
411 using the TILLING mutant resource (Krasileva et al., 2017), for example starting with the mutants
412  generated in this study.

413  To test the predicted function of these candidate genes in regulating wheat senescence, we focused
414  on NAM-A2, which is a paralog of the known NAM-B1 gene. We found significant delays in flag leaf
415  and peduncle senescence in NAM-A2/NAM-B2 double mutants, indicating that the genes predicted by
416  the network play roles in senescence. The peduncle senescence phenotype indicates that this
417  approach can identify genes which regulate senescence across different tissues, not only in the flag
418 leaf, and may reflect that monocarpic senescence in wheat is a developmental process regulated
419 across the whole plant. Ongoing work is currently characterising the additional candidate genes
420  through the development of wheat double mutants for phenotypic characterisation.
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421  Future directions

422  Thisstudy has uncovered candidate transcription factors which may regulate senescence in wheat and
423 has confirmed the role of one of these genes in regulating senescence. It will be of great interest to
424  determine whether these genes control only senescence or also affect nutrient remobilisation and
425 hence influence final grain nutrient content. In addition to deepening our understanding of the
426  molecular regulation of senescence, this study lays the ground work to use this network-enabled
427  approach to identify transcription factors regulating a range of different biological processes which
428 happen across a timecourse. This approach is not only applicable to developmental processes but
429  could equally be applied to abiotic and biotic stresses, as has been carried out in other plant species
430 (Hickman et al., 2013). This approach could also be applied to identify candidate genes for traits in
431  species without genome sequences, although a transcriptome would need to be assembled from the
432 RNA-Seq data. The advent of genome-editing means that the prediction of gene function could readily
433 be tested in any transformable species.

434

435 Conclusion

436  The availability of a fully sequenced reference genome for wheat, alongside functional genomic
437  resources such as the TILLING population, have brought wheat biology into the genomics era and have
438  made possible studies which even a few years ago would have been unthinkable. Here we have used
439  these new resources to characterise the transcriptional processes occurring during wheat senescence.
440  We found that specific transcription factor families are associated with this process in wheat, some of
441 which have been reported in other species, but others present new links between transcription factor
442 families and the process of senescence. Although these associations do not prove causality, the
443 hypotheses generated can now be tested experimentally in wheat using TILLING or gene editing. Gene
444 network modelling, when used in conjunction with complementary datasets, is a powerful approach
445  which can accelerate the discovery of genes regulating biological processes in both model and crop
446 species.

447

448 Methods

449  Plant growth for RNA-Seq timecourse

450 We pre-germinated seeds of hexaploid wheat cv. Bobwhite on moist filter paper for 48 h in 4 °C
451  followed by 48 h in the dark at room temperature. These pre-germinated seeds were sown in P40
452  trays in 85% fine peat with 15% horticultural grit. Plants were potted on at 2—3 leaf stage to 1L square
453 pots with 1 plant per pot in Petersfield Cereal Mix (Petersfield, Leicester, UK). Plants were grown in 16
454  hlight at 20 °C, with 8 h dark at 15 °C. The main tiller was tagged at anthesis, and the anthesis date
455  was recorded.

456  Phenotyping for RNA-Seq timecourse

457  We measured the chlorophyll content of flag leaves across the timecourse from 3 to 26 days after
458  anthesis (DAA) using a SPAD-502 chlorophyll meter (Konica Minolta). The time points used were 3, 7,
459 10, 13, 15, 17, 19, 21, 23 and 26 DAA. We measured the flag leaf from the main tiller (tagged at
460  anthesis) for five separate plants for each time point, taking measurements at 8 different locations
461 distributed along the length of each flag leaf. Three of these measured leaves were subsequently
462 harvested for RNA extraction.
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463  We measured the grain moisture content across the timecourse from 3 to 26 days after anthesis, using
464  the same time points as for chlorophyll measurements. We harvested eight grains from central
465  spikelets (floret positions 1 and 2) within the primary spike of five separate plants at each time point,
466  these grains were weighed, and then dried at 65 °C for 72 hours before re-weighing. The difference in
467  weight was used to calculate the percentage grain moisture content.

468  Tissue harvest, RNA extraction and sequencing

469  Harvesting

470 The flag leaf from the main tiller was harvested at 3, 7, 10, 13, 15, 17, 19, 21, 23 and 26 DAA from
471  three separate plants (three biological replicates). We harvested the middle 3 cm of the flag leaf
472 lengthways to have a region of the leaf which was synchronised in its developmental stage. We flash
473  froze the samples in liquid nitrogen, then stored them at -80 °C prior to processing. In total we
474 harvested 30 samples.

475  RNA extraction

476  We ground the samples to a fine powder in mortar and pestles which had been pre-chilled with liquid
477  nitrogen. We extracted RNA using Trizol (ThermoFisher) according to the manufacturer’s instructions,
478 using 100 mg ground flag leaf per 1 ml Trizol. We removed genomic DNA contamination using DNAsel
479  (Qiagen) according to the manufacturer’s instructions and cleaned up the samples using the RNeasy
480 Mini Kit (Qiagen) according to the manufacturer’s instructions.

481  Library preparation

482  The quality of the RNA was checked using using a Tecan plate reader with the Quant-iT™ RNA Assay
483 Kit (Life technologies/Invitrogen Q-33140) and also the Quant-iT™ DNA Assay Kit, high sensitivity (Life
484  technologies/Invitrogen Q-33120) Finally the quality of the RNA was established using the PerkinElmer
485  GX with a high sensitivity chip and High Sensitivity DNA reagents (PerkinElmer 5067-4626). Thirty
486 Ilumina TruSeq RNA libraries were constructed on the PerkinElmer Sciclone using the TruSeq RNA
487 protocol v2 (lllumina 15026495 Rev.F). After adaptor ligation, the libraries were size selected using
488 Beckman Coulter XP beads (Beckman Coulter A63880). This removed the majority of un-ligated
489  adapters, as well as any adapters that may have ligated to one another. The PCR was performed with
490 a PCR primer cocktail that annealed to the ends of the adapter to enrich DNA fragments that had
491  adaptor molecules on both ends. The insert size of the libraries was verified by running an aliquot of
492  the DNA library on a PerkinElmer GX using the High Sensitivity DNA chip and reagents (PerkinElmer
493  CLS760672) and the concentration was determined by using the Tecan plate reader.

494  Sequencing

495  The TruSeq RNA libraries were normalised and equimolar pooled into one final pool using elution
496  buffer (Qiagen). The library pool was diluted to 2 nM with NaOH and 5yl transferred into 995uL HT1
497  (lllumina) to give a final concentration of 10pM. 120 pL of the diluted library pool was then transferred
498  into a 200 pL strip tube, spiked with 1% PhiX Control v3 and placed on ice before loading onto the
499 llumina cBot. The flow cell was clustered using HiSeq PE Cluster Kit v3, utilising the lllumina
500 PE_Amp_Lin_Block_Hyb_V8.0 method on the Illumina cBot. Following the clustering procedure, the
501 flow cell was loaded onto the lllumina HiSeg 2000/2500 instrument following the manufacturer’s
502 instructions. The sequencing chemistry used was HiSeq SBS Kit v3 with HiSeq Control Software 2.2.58
503 and RTA 1.18.64. Reads (100 bp, paired end) in bcl format were demultiplexed based on the 6bp
504 Illumina index by CASAVA 1.8, allowing for a one base-pair mismatch per library, and converted to
505 FASTQ format by bcl2fastq.
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506 RNA-Seq data analysis

507 Mapping

508 We pseudoaligned the samples using kallisto v0.44.0 with default parameters to the RefSeqv1.0
509 annotation v1.1 (IWGSC et al., 2018). Transcripts per million (TPM) and counts for all samples were
510 merged into a single dataframe using tximport v1.0.3 (Soneson et al., 2016). Scripts for data analysis
511  are available from https://github.com/Borrill-Lab/WheatFlagLeafSenescence.

512  Differential expression analysis

513 We filtered for high confidence genes which were expressed on average >0.5 TPM in at least one time
514 point; this excluded low expressed genes and low confidence gene models from further analysis,
515  consistent with previous analyses in wheat (Ramirez-Gonzalez et al., 2018). In total 52,905 genes met
516  this condition. We used the count expression level of these genes for differential expression analysis
517  using the R package ImpulseDE2 v1.4.0 (Fischer et al., 2018), all counts were rounded to the nearest
518 integer before they were analysed with ImpulseDE2. In parallel we used the TPM expression level of
519 these 52,905 genes for differential expression analysis using Gradient Tool v1.0 (Breeze et al., 2011)
520  with the normalisation enabled on Cyverse (https://de.cyverse.org/de/) (Merchant et al., 2016). To
521 select a high confidence set of differentially expressed genes we only retained genes which were
522  differentially expressed padj <0.001 from ImpulseDE2 and which were differentially expressed
523  according to Gradient Tool with a z-score of >|2|. We grouped the 9,533 high confidence differentially
524 expressed genes according to the first time point at which they were up or downregulated. For
525  example, a gene first upregulated at 10 DAA was in group “U10” (up 10 DAA), whereas a gene first
526  downregulated at this time point was assigned to group “D10” (down 10 DAA). Genes which were
527 both up and downregulated during the timecourse (<4 % of all differentially expressed genes) were
528  grouped according to the time point of first differential expression with the opposite change also
529 indicated. For example a gene upregulated at 10 DAA and then downregulated at 15 DAA was grouped
530 as U10D (the second time point of differential expression was not recorded in the grouping). These
531  groupings are available in (Table S2). The minority of genes with both up and downregulation (<4 %of
532  all differentially expressed genes) were excluded from further analysis.

533 GO term enrichment

534  We obtained GO terms from the RefSeqv1.0 annotation and transferred them from the annotation
535 v1.0tovl.1l. We only transferred GO terms for genes which shared >99 % identity across > 90% of the
536  sequence (105,182 genes; 97.5 % of all HC genes annotated in v1.1). GO term enrichment was carried
537  out for each group of differentially expressed genes (groups defined according to the first time point
538  at which genes were upregulated or downregulated, see above) using GOseq v1.24.0.

539  TF annotation

540  Genes which were annotated as TFs were obtained from
541  https://opendata.earlham.ac.uk/wheat/under license/toronto/Ramirez-Gonzalez etal 2018-06025-
542  Transcriptome-Landscape/data/data tables/ (Ramirez-Gonzalez et al., 2018).

543  Gene regulatory network construction

544  We selected transcription factors which were amongst the 9,533 differentially expressed genes. We
545 filtered to only keep transcription factors which were expressed on average >5 TPM in at least one
546 time point. We used the TPM gene expression values as input to Causal Structure Inference (CSI) v1.0
547  (Penfold and Wild, 2011) which was run through Cyverse (https://de.cyverse.org/de/) (Merchant et
548 al., 2016). The parameters used with CSl were the defaults (parental set depth =2, gaussian process
549 prior = 10;0.1, weight truncation = 1.0E-5, data normalisation = standardise (zero mean, unit variance),
550  weight sampling = FALSE). The output marginal file was converted to Cytoscape format using
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551 hCSI_MarginalThreshold v1.0 in Cyverse with a probability threshold of 0.01. We used this file for
552 directed network analysis in Cytoscape v3.6.1 (Shannon et al., 2003) which produced network
553  statistics. We used Cytoscape to filter the network for edge count and betweenness centrality at 0.01,
554  0.05,and0.1.

555  GENIE3 data

556  We identified the targets of TF using a TF-target network which was previously published (Ramirez-
557  Gonzalez et al., 2018). Only connections amongst the top one million links were considered in this
558 analysis. The network had been produced by a random forest approach (GENIE3) (Huynh-Thu et al.,
559  2010) using 850 RNA-Seq samples.

560  Ortholog identification

561 We identified the rice and Arabidopsis orthologs of the wheat genes using EnsemblPlants gene trees
562 (Kersey et al., 2018). In cases where relationships were not one to one, all possible paralogous copies
563  were included in the analysis.

564  Visualisation
565  Graphs were made in R using the packages ggplot2 (Wickham, 2016), NMF (aheatmap function)
566  (Gaujoux and Seoighe, 2010) and pheatmap (Kolde, 2013).

567 Candidate gene validation

568  Phenotyping of NAM-2 mutants

569 We selected mutant lines from the Kronos TILLING population (K0282, K0427, K3240) (Krasileva et al.,
570 2017) with missense mutations (G111R, G133D, P40S, respectively) in NAM-A2
571 (TraesCS2A02G201800). These NAM-A2 mutant lines were crossed with a line containing a mutation
572 inducing a premature stop codon in NAM-B2 (TraesCS2B02G228900) (K4452; R170*). For each of the
573  three crosses, heterozygous F; seeds (AaBb) were self-pollinated to produce an F, population. We
574  selected double homozygous mutant (aabb), single homozygous mutant (aaBB or AAbb) and double
575 homozygous wild type plants (AABB) in the F,. Seeds from two individuals of each genotype in the F;
576  population were grown in greenhouse conditions for phenotyping from Jan 2018 — May 2018 in
577  Norwich with 16 h supplemental lighting and a daytime temperature of 18 °C, and a night-time
578  temperature of 12 °C. We tagged the main tiller at anthesis and recorded the anthesis date. We scored
579 flag leaf senescence as the date when the flag leaf of the main tiller had lost chlorophyll from 25 % of
580 the flag leaf blade. We scored peduncle senescence as the date when the top 3 cm of the peduncle
581 lost all green colour and turned straw-yellow.

582 Data availability

583 RNA-Seq raw reads have been deposited in the SRA accession PRINA497810. Scripts for data analysis
584  are available from https://github.com/Borrill-Lab/WheatFlaglLeafSenescence.

sss  Additional files
586 Figures S1 —S3.

587 Tables S1-S4.
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591 RNA extraction, analysed the RNA-Seq data and built the gene regulatory network model. PB identified
592 mutations in NAM-A2 and NAM-B2 for crossing and designed KASP markers. JS carried out crossing of
593  NAM-A2 and NAM-B2 mutant lines. JS and PB carried out KASP genotyping. PB and SH carried out
594  phenotyping of the NAM2 mutant lines. PB wrote the manuscript. CU, SH and JS edited the
595 manuscript.
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