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Abstract 10 

Senescence is a tightly regulated developmental programme which is coordinated by transcription 11 

factors. Identifying these transcription factors in crops will provide opportunities to tailor the 12 

senescence process to different environmental conditions and regulate the balance between yield and 13 

grain nutrient content. Here we use ten time points of gene expression data alongside gene network 14 

modelling to identify transcription factors regulating senescence in polyploid wheat. We observe two 15 

main phases of transcription changes during senescence: early downregulation of housekeeping and 16 

metabolic processes followed by upregulation of transport and hormone related genes. We have 17 

identified transcription factor families associated with these early and later waves of differential 18 

expression. Using gene regulatory network modelling alongside complementary publicly available 19 

datasets we identified candidate transcription factors for controlling senescence. We validated the 20 

function of one of these candidate transcription factors in senescence using wheat chemically-induced 21 

mutants. This study lays the ground work to understand the transcription factors which regulate 22 

senescence in polyploid wheat and exemplifies the integration of time-series data with publicly 23 

available expression atlases and networks to identify candidate regulatory genes.   24 

 25 

Introduction  26 

Grain yield and nutrient content in cereal crops is determined by the accumulation of carbon, nitrogen 27 

and other nutrients in the grain towards the end of a plant’s life. The availability of these nutrients is 28 

strongly influenced by the process of senescence, a regulated developmental programme to 29 

remobilise nutrients from the vegetative tissues to the developing grain. Both the onset and rate of 30 

senescence influence grain yield and nutrient content. A delay in senescence may be associated with 31 

increased yield due to an extended period of photosynthesis (Gregersen et al., 2013; Thomas and 32 

Howarth, 2000). However, delayed senescence may also be associated with a decrease in grain 33 

nutrient content due to reduced nutrient remobilisation from green tissues (Distelfeld et al., 2014). 34 

Senescence is often associated with the visual loss of chlorophyll, however the initiation of senescence 35 

through signalling cascades, and early stages such as degradation of protein and RNA, are not visible 36 

(Buchanan-Wollaston et al., 2003; Fischer, 2012). Through these initial stages, and later during visual 37 

senescence, a programme of tightly-regulated changes occurs in gene expression (Buchanan-38 

Wollaston et al., 2003; Fischer, 2012).  Despite its importance, we know relatively little about the 39 

molecular control of senescence in crops such as wheat (Distelfeld et al., 2014). 40 
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This lack of knowledge is partly due to the difficulty of identifying genes regulating quantitative traits 41 

in the large wheat genome (IWGSC et al., 2018) as well as the subtle effects of individual gene copies 42 

(homoeologs) within the polyploid context (Borrill et al., 2015). These challenges mean that 43 

conventional genetic mapping approaches often take many years to identify causal genes. To date two 44 

genes have been identified to regulate senescence in wheat. The NAM-B1 NAC transcription factor 45 

was identified to underlie a quantitative trait locus (QTL) for grain protein content and senescence 46 

(Uauy et al., 2006). A second NAC transcription factor, NAC-S, was found to have a strong correlation 47 

between its expression level and leaf nitrogen concentration in tandem with a role in regulating 48 

senescence (Zhao et al., 2015). However, to realise the potential to manipulate the rate and onset of 49 

senescence in wheat it will be necessary to gain a more comprehensive understanding of the network 50 

of transcription factors regulating this process. Identifying these transcription factors may enable the 51 

development of wheat varieties with a senescence profile tailored to maximise nutrient remobilisation 52 

whilst maintaining yield and providing adaption to local growing conditions. 53 

The first step towards manipulating senescence at the molecular level is to understand the genes 54 

which are involved in the process, and the transcription factors which orchestrate gene expression 55 

changes during senescence. Over 50 % of micro and macronutrients remobilised to the developing 56 

grain originate from the uppermost (flag) leaf of the senescing wheat plant (Garnett and Graham, 57 

2005; Kichey et al., 2007), making it a key tissue in which to understand the senescence process. 58 

Previous attempts have been made to characterise transcriptional changes in wheat flag leaves, 59 

however these studies have been either carried out with microarrays which were limited to a small 60 

set of 9,000 genes (Gregersen and Holm, 2007) or had a limited number of samples and time points 61 

(Pearce et al., 2014; Zhang et al., 2018). Decreases in the cost of RNA-Seq now mean that these 62 

constraints can be overcome through genome-wide expression studies across multiple time points. 63 

The recent publication of the wheat genome sequence with over 100,000 high confidence gene 64 

models (IWGSC et al., 2018) and accompanying functional annotations, enhances the ease and 65 

accuracy with which RNA-Seq data can be analysed in wheat. Systems biology approaches can start to 66 

make sense of the vast quantities of data produced and identify the regulatory pathways controlling 67 

quantitative traits (Kumar et al., 2015). 68 

Our aim in this study was to identify the molecular pathways involved in senescence in wheat and 69 

determine candidate transcription factors controlling these processes in the flag leaf. We sequenced 70 

a ten time point expression timecourse of wheat senescence in the flag leaf from 3 days post anthesis 71 

until 26 days post anthesis which corresponded to the first signs of visual senescence. We identified 72 

the temporal progression of the senescence process at the molecular level and used gene regulatory 73 

network modelling to predict transcription factors which coordinate this developmental process. We 74 

confirmed the role of one of these candidate genes, TraesCS2A02G201800 (NAM-A2), in wheat itself.  75 
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Results 76 

Growth and physiological measurements 77 

To understand the transcriptional control of the initiation of senescence we harvested an early 78 

timecourse of senescence at 3, 7, 10, 13, 15, 17, 19, 21, 23 and 26 days after anthesis (DAA) (Figure 79 

1A). SPAD chlorophyll meter readings in the flag leaf were maintained at a similar level from 3 to 21 80 

DAA, with a significant decrease from 23 DAA (Figure S1). Percentage moisture of the grains decreased 81 

from 80.0 % at 3 DAA to 54.7 % at 26 DAA which corresponds to soft dough stage (Zadoks GS85 (Zadoks 82 

et al., 1974)) (Figure S2), indicating that the time period sampled included the majority of the grain 83 

filling period.  84 

Strong transcriptional changes occur during flag leaf senescence 85 

RNA was extracted from the flag leaf blade with three replicates for each of the ten time points and 86 

sequenced. The RNA-Seq data was aligned to the RefSeqv1.1 transcriptome annotation (IWGSC et al., 87 

2018) using kallisto (Bray et al., 2016). On average each sample had 38.7 M reads, of which 30.9 M 88 

mapped (78.9 %) (Table S1). We found that 52,905 high confidence genes were expressed at >0.5 89 

transcripts per million (TPM) in at least one time point during flag leaf senescence, which corresponds 90 

to 49.0 % of high confidence genes. To identify genes differentially expressed during the timecourse, 91 

we used two programmes specifically designed for timecourse data: ImpulseDE2 (Fischer et al., 2018) 92 

and gradient tool (Breeze et al., 2011). In total 9,533 genes were identified as differentially expressed 93 

by both programmes, giving a high confidence set of differentially expressed genes. In addition, 94 

gradient tool identified at which time points the genes became differentially expressed which we used 95 

to determine the temporal changes in gene expression associated with senescence (Table S2).   96 

To define the biological roles of these 9,533 genes we grouped them according to the first time point 97 

at which they were up or downregulated. For example, a gene first upregulated at 10 DAA was in 98 

group “U10” (up 10 DAA), whereas a gene first downregulated at this time point was assigned to group 99 

“D10” (down 10 DAA). Fewer than 4 % of genes were both up and down regulated during the 100 

timecourse and these were excluded from further analysis, resulting in 17 expression patterns (Table 101 

S2). In total approximately twice as many genes were upregulated during this senescence timecourse 102 

than downregulated (5,343 compared to 2,715). This indicates that senescence is actively regulated 103 

through transcriptional upregulation rather than a general downregulation of biological processes.  104 

We found that the patterns of up and downregulation were not equally spaced throughout the 105 

timecourse. During the early stages of senescence the majority of differentially expressed genes were 106 

downregulated (825/1035 differentially expressed genes at 3 DAA), and these continued to be 107 

downregulated throughout the timecourse (Figure 1B). At the later stages of senescence relatively 108 

few genes started to be downregulated (e.g. 50 genes at 19 DAA). Instead the number of genes which 109 

started to be upregulated grew from 210 genes at 3 DAA to 1,324 genes at 13 DAA. After this peak of 110 

upregulation at 13 DAA, fewer genes started to be upregulated, although there were still over 500 111 

genes upregulated at each of 15, 17 and 19 DAA. Genes which were upregulated even at early stages 112 

of senescence tended to continue to increase in expression level throughout the timecourse. At the 113 

latest stages of the timecourse when chlorophyll loss was visible, 23 and 26 DAA, very few genes 114 

started to be differentially expressed.  115 

We found that this temporal divide into downregulation at the early stages of senescence and 116 

initiation of upregulation at the later stages of senescence was also reflected in different GO term 117 

enrichments in these groups of differentially expressed genes (Figure 1C; Table S3). The large numbers 118 

of genes which started to be downregulated at 3 and 7 DAA were enriched for GO terms relating to 119 
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housekeeping functions (e.g. translation, photosynthesis and rRNA processing) as well as for central 120 

metabolic processes such as amino acid biosynthesis and starch biosynthesis. Alongside these 121 

housekeeping functions, downregulated genes were enriched for defence responses and hormone 122 

biosynthesis and signalling, indicating a reduction in the transcriptional responses to stimuli. Later in 123 

the timecourse, from 10 to 13 DAA, groups of genes started to be upregulated which were involved in 124 

vesicle mediated transport and the proteasome, indicating a remobilisation of components from the 125 

existing proteins. This is supported by the upregulation from 13 DAA of genes involved in phosphate 126 

and protein transport. From 15 DAA to 21 DAA waves of genes enriched for responses to cytokinin, 127 

ABA and ethylene were upregulated, indicating a temporal hierarchy of hormone responses during 128 

senescence. 129 
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 130 

Figure 1. Transcriptional re-programming during flag leaf senescence. A) Timecourse of flag leaf 131 

senescence from 3 to 26 days after anthesis (DAA), scale bar represents 1 cm. B) Diagram showing 132 

representative patterns for genes which are consistently upregulated (green) or consistently 133 
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downregulated (pink) during senescence (96.2 % of differentially expressed genes). Genes were 134 

grouped according to the first time of up or downregulation. The majority of genes in each pattern 135 

continued to be up or downregulated across the whole timecourse. Bar heights represent the number 136 

of genes in each expression pattern. The x axis represents time after anthesis, the axis is represented 137 

uniformly although time points are not evenly spaced. C) GO term enrichments are shown related to 138 

general, hormone and nutrient related processes. Filled rectangles represent that genes starting to be 139 

differentially expressed at that time point are enriched for that specific GO terms. Green rectangles 140 

represent upregulated genes, pink rectangles represent downregulated genes. D) Transcription factor 141 

families which were significantly enriched amongst upregulated genes across the timecourse. 142 

Significantly enriched time points are shown in green.   143 

 144 

To understand how these highly ordered and coordinated transcriptional changes are regulated we 145 

examined transcription factor (TF) expression patterns. We found that 2,210 TFs were expressed (> 146 

0.5 TPM) during the timecourse but only 341 TFs (15.4 %) were differentially expressed. We calculated 147 

the percentage of differentially expressed TF per TF family across time (Figure 2). In general, each TF 148 

family tended to either be upregulated or downregulated as a whole (Figure 2), although there are 149 

exceptions such as the C2C2_CO-like and MADS_II family which showed upregulation and 150 

downregulation of different family members during the timecourse. Thus, the TFs which were 151 

downregulated during senescence largely belong to different TF families to those which were 152 

upregulated. 153 

While we observed a temporal gradient of TF families starting to be up and downregulated throughout 154 

the timecourse, we defined an initial (3 to 7 DAA) and later wave (13-19 DAA) when many TF families 155 

were up or downregulated. TF families which were upregulated in the initial wave from 3 to 7 DAA 156 

include the RWP-RK, pseudo ARR-B and CCAAT_HAP2 (NF-YA) families (Figure 2A). A distinct set of TF 157 

families were upregulated from 13 to 19 DAA in the later wave including CAMTA, GRAS and MADS_II. 158 

After these waves of upregulation were initiated, the same families tended to continue to be 159 

upregulated throughout the rest of the timecourse. Compared to all genes, the RWP-RK, CCAAT_HAP2 160 

(NF-YA) and NAC families were significantly enriched (padj <0.01, Fisher test; Figure 1D) for 161 

upregulated genes at early (RWP-RK and CCAAT_HAP2 (NF-YA)) and late (NAC) time points. In all three 162 

families over 30 % of the expressed genes were upregulated during senescence corresponding to 61 163 

NAC TFs (32.4 % of expressed NAC TFs) and eight RWP-RK and seven CCAAT_HAP2 (NF-YA) TFs (33.3 164 

% and 38.9 % of expressed genes per family, respectively).  165 

In parallel with certain TF families being upregulated, another group of TF families were 166 

downregulated during the senescence timecourse. The initial wave of downregulation largely 167 

occurred at 7 DAA and included the AS2/LOB, bHLH_TCP and MADS_I families. The later wave of 168 

downregulation initiated from 17 to 19 DAA and included the C2C2 GATA, GARP G2-like and MADS_II 169 

families. Similar to upregulation of TFs, the downregulation tended to continue throughout the rest 170 

of the timecourse, indicating a gradual change in transcription factor expression levels.  None of the 171 

TF families were significantly enriched for downregulated genes compared to all genes.  172 

These two waves of TF differential expression are analogous to the two waves of differential 173 

expression observed for all gene classes (Figure 1). This is consistent with TF roles as activators and 174 

repressors of gene expression. These results suggest that specific TF families initiate temporally 175 

distinct changes in gene expression, broadly classed into an initial (3 to 7 DAA) and later (13 to 19 DAA) 176 

response.  177 
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 178 

 179 

 180 

Figure 2. Percentage of expressed genes which were differentially expressed per transcription factor 181 

family at each time point. Upregulated (A) and downregulated (B) genes are shown. The total number 182 

of genes expressed in each family is shown in brackets after the family name. 183 
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Understand regulation using network modelling 184 

Our results indicate that there are two main temporal waves of expression during senescence (3 to 7 185 

DAA and from 13 to 19 DAA) which may be regulated by the associated upregulation of particular TF 186 

families. However, to understand the interactions between TFs and predict which ones may be key 187 

regulators (hub genes) driving this transcriptional programme we constructed a gene regulatory 188 

network. We used Causal Structure Inference (Penfold and Wild, 2011) which produces a directional 189 

network of transcription factor interactions. We included 213 TF which were both differentially 190 

expressed during the timecourse and which also had an expression level >5 TPM. We chose this 191 

threshold to maximise the number of informative genes, but to minimise noise by removing low 192 

expressed transcription factors which may not play a role in the transcriptional reprogramming of 193 

senescence.  194 

To interpret the network it is necessary to determine the ‘edge weight threshold’ at which to include 195 

edges. Since our aim was to identify the most important TFs within the network to test as candidate 196 

genes for the regulation of senescence, we decided to compare the network across different 197 

thresholds. We hypothesised that by identifying TFs which were important across multiple thresholds 198 

we would be more likely to identify robust candidate genes. We found that from a threshold of 0.01 199 

to 0.3 the number of edges reduced from 11,049 to 30 (Table 1). NAM-A1, a known regulator of 200 

senescence in wheat, was only present in the network at the lower thresholds of 0.01, 0.05 and 0.1. 201 

We therefore decided to focus on the networks which included NAM-A1, as it is likely that the more 202 

stringent thresholds (0.2 and 0.3) would also have excluded other TFs relevant to the senescence 203 

process. The other TF which had previously been identified to regulate senescence in wheat (NAC-S) 204 

was not detected as differentially expressed during our timecourse so it was not used to construct the 205 

network or determine appropriate thresholds.  206 

 207 

Table 1. Comparing CSI network at different thresholds for edge weight.  208 

Edge weight 
threshold 

# genes # edges NAM-A1 

0.01 213 11,049 Yes 
0.05 204 692 Yes 
0.1 132 182 Yes 
0.2 67 59 No 
0.3 38 30 No 

 209 

We determined the importance of a gene within the network using two measures: ‘edge count’ which 210 

is the number of connections to other genes, and ‘betweenness centrality’ which is a measure of the 211 

number of shortest paths which pass through that gene and represents a measure of how essential 212 

the gene is to the flow of information around the network. We calculated percentage rankings for 213 

genes in each the three thresholds (0.01, 0.05 and 0.1) according to their edge count and betweenness 214 

centrality to allow comparison across networks with different numbers of genes. We found that 24.7 215 

% of genes (53 genes) were ranked in the top 20 % of genes in at least one threshold for betweenness 216 

centrality and one threshold for edge count (Figure 3A). We consider these to represent good 217 

candidate genes for further investigation. Amongst the 53 top ranked genes we found that three 218 

transcription factor families were enriched compared to all 213 transcription factors in the network: 219 

GARP_G2-like, HSF and RWP-RK (χ2 < 0.01, 0.05 and 0.001 respectively; Figure 3B-D). Interestingly the 220 

RWP-RK family was also significantly enriched for upregulation during senescence (Figure 1D), in 221 
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addition to being enriched amongst top ranked genes in the network. One family was significantly 222 

depleted in the top ranked genes: the WRKY family (χ2 < 0.05) which was surprising since WRKY 223 

transcription factors have been reported to regulate senescence in rice (Muho et al., 2014) and 224 

Arabidopsis (Phukan et al., 2016). 225 

 226 

 227 

Figure 3. Comparisons of percentage rankings for betweenness centrality and edge count. A) All 213 228 

genes in the network are shown with their percentage ranking at each threshold. The 53 genes ranked 229 

in the top 20 % across at least one betweenness centrality and one edge count threshold are shown 230 

in red. B) GARP_G2-like, C) HSF and D) RWP-RK TF families enriched within the top ranked 53 genes. 231 

B-D) Genes within the top 53 genes are shown in red, whilst genes in these families not in the top 53 232 

genes are shown in grey (there are no HSF outside the top 53 genes). Numbers above graphs indicate 233 

the number of TFs in the top 20 % out of the total number of TFs shown in the graph. Genes not 234 

present in the network at higher thresholds are represented as points below the Y-axis break.  235 

 236 

Independent data supporting candidate gene prioritisation 237 

Although we could prioritise candidates based on information solely from the network, we decided to 238 

also incorporate other data sources to help distinguish the 53 top ranked candidate genes. We focused 239 

on three additional datasets: 1) expression data from an independent experiment with 70 tissues/time 240 

points in the spring wheat variety Azhurnaya which included senescing leaves (Ramirez-Gonzalez et 241 

al., 2018), 2) a GENIE3 network of predicted transcription factors – target relationships from 850 242 

independent expression samples (Ramirez-Gonzalez et al., 2018) and 3) information from orthologs in 243 

Arabidopsis and rice. 244 

We found that 16 out of the 53 top ranked genes from the network were expressed over two-fold 245 

higher in senescing tissues than in other tissues across the Azhurnaya developmental experiment 246 

(Figure 4A). This independent dataset suggests that these 16 genes may play a specific role in 247 

senescing tissues and we hypothesise that they would be less likely to induce pleiotropic effects when 248 

their expression is altered in mutant or transgenic lines. We also tested whether these 53 candidate 249 

genes had targets which were predicted to play a role in senescence, using the independent GENIE3 250 

transcription factor - target network. We found that five of the candidate genes had targets enriched 251 

for senescence-related GO terms (Figure 4B), however this did not include NAM-A1, which suggested 252 

this approach might miss some interesting candidate genes. Therefore, we also tested whether the 253 
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candidate genes had any shared targets genes with NAM-A1 which might indicate they act together 254 

in the same senescence related pathway. We found that 22 genes had one or more shared target 255 

genes with NAM-A1 (Figure 4B). Even an overlap of one target gene is significantly more than the 256 

expected zero overlap between NAM-A1 and a random transcription factor (Sign test, p-value < 0.001). 257 

We found that only two of the candidate genes were direct targets of NAM-A1, and these included 258 

NAM-D1, the D-genome homoeolog of NAM-A1, and NAM-A2, an uncharacterised paralog of NAM-259 

A1 which is located on a different chromosome.  260 

We identified Arabidopsis and rice orthologs for the 53 candidate genes using EnsemblPlants gene 261 

trees (Kersey et al., 2018). Arabidopsis orthologs were identified for 45 genes, and rice orthologs for 262 

46 genes (Table S4). The Arabidopsis orthologs of thirteen genes had known leaf senescence functions, 263 

these corresponded to seven Arabidopsis genes in total due to several wheat homoeologs sharing the 264 

same ortholog. The rice orthologs of these genes had not been reported to have a leaf senescence 265 

function because the majority had not been phenotypically characterised. In addition, a large 266 

proportion of both Arabidopsis and rice orthologs (orthologs of thirteen and nine wheat genes 267 

respectively) play roles in nitrogen responses, consistent with the tight coordination expected 268 

between senescence and nitrogen remobilisation from flag leaves. 269 
 270 
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 271 

 272 

Figure 4. Additional information for 53 top ranked candidate genes. A) Expression from an 273 

independent RNA-Seq experiment using Azhurnaya spring wheat (left part of heatmap) and expression 274 

in the senescence timecourse (right part of heatmap, “Timecourse”). Each of the 53 genes is 275 

represented in one row, and rows are sorted according to the similarity of the expression patterns 276 

(dendrogram to left). Genes which were over two-fold upregulated in senescence compared to other 277 

tissues/time points in Azhurnaya are highlighted by red boxes (“upreg. in senescence”). Expression 278 
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level is measured in transcripts per million (TPM). B) Targets of the TF predicted by independent 279 

GENIE3 network. Genes with downstream targets enriched for senescence GO terms in the 280 

independent GENIE3 network are marked with green boxes. The bar graph shows the number of 281 

shared targets with NAM-A1. NAM-A1 (TraesCS6A02G108300) has 111 targets and its homoeolog 282 

NAM-D1 (TraesCS6D02G096300) has 69 shared targets, shown with broken axis. 283 

 284 

Validation of candidate gene NAM-A2 285 

Using the additional information sources above we selected NAM-A2 (TraesCS2A02G201800) for 286 

phenotypic characterisation in wheat because it was amongst our 53 top ranked candidate genes, was 287 

upregulated in senescing leaves and shared many downstream target genes with NAM-A1. 288 

Furthermore the NAM-A2 homoeolog, NAM-B2 (TraesCS2B02G228900) was also amongst the top 53 289 

candidate genes. NAM-A2 is a closely related paralog of NAM-A1 which regulates senescence and 290 

nutrient remobilisation (Avni et al., 2014; Uauy et al., 2006). The homoeolog of NAM-A2, NAM-B2, 291 

was previously found to cause a slight delay in senescence (Pearce et al., 2014) but NAM-A2 has not 292 

been previously characterised so was a strong candidate as a transcription factor which might regulate 293 

senescence.  294 

To test the predictions of our model we identified TILLING mutations in NAM-A2 and NAM-B2 in a 295 

tetraploid Kronos background (Krasileva et al., 2017; Uauy et al., 2009). Due to the potential 296 

redundancy between homoeologs in wheat (Borrill et al., 2015) we decided to generate double NAM-297 

A2/NAM-B2 mutants through crossing. We identified a mutation leading to a premature stop codon 298 

in NAM-B2 (R170*; between subdomains D and E of the NAC domain (Kikuchi et al., 2000)), which is 299 

predicted to abolish protein function by creating a truncated protein lacking part of the NAC DNA 300 

binding domain. For NAM-A2 we could not identify any mutations which would cause truncations, 301 

instead we selected three missense mutations which were in highly conserved domains and were thus 302 

expected to play important roles in protein function (Figure 5A). These were located in the A, C and D 303 

NAC subdomain and were predicted to be highly deleterious according to SIFT and PSSM scores. We 304 

crossed each of the NAM-A2 missense mutants to the NAM-B2 truncation mutant to create 305 

segregating populations from which wild type, single and double mutants which were phenotyped in 306 

the F3 generation.  307 

Across the three populations with different missense mutations in NAM-A2, and a common truncation 308 

mutation in NAM-B2, there was a significant delay of 4.9 days in flag leaf senescence in the double 309 

mutant compared to wild type (padj <0.01, ANOVA post-hoc Tukey HSD; Figure 5B-C). There were no 310 

significant differences between the single mutants and wild type in flag leaf senescence. Peduncle 311 

senescence was significantly delayed by 7.4 days in the double mutant compared to wild type (padj 312 

<0.001, ANOVA post-hoc Tukey HSD; Figure 5D), and in addition the single A mutant was significantly 313 

later in peduncle senescence than wild type (3.9 days, padj <0.001, ANOVA post-hoc Tukey HSD). The 314 

single B mutant was not significantly different from wild type suggesting that the A genome 315 

homoeolog has a stronger effect on senescence than the B genome homoeolog. Since the comparison 316 

is between different types of mutations (missense compared to a truncation mutation) interpretation 317 

of the relative magnitudes is difficult, although the truncation mutation in the B genome would have 318 

been expected to produce at least an equivalent effect to the missense mutation in the A genome. 319 

These effects were largely consistent across the three different missense mutations, although the 320 

mutation in subdomain C (G111R) had the largest effect when combined into a double mutant 321 

compared to wild type (Figure S3).   322 
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 323 

 324 

Figure 5. Mutants in NAM-A2 and NAM-B2. A) Selected missense mutations in NAM-A2 and stop 325 

mutation in NAM-B2. Grey regions are the NAC subdomains A-E. Subdomain E spans the end of exon 326 

2 and the start of exon 3. B) Wild type sister line (left) and NAM-A2 NAM-B2 double homozygous 327 

(aabb) mutant (right), 37 days after anthesis. C) Days from heading to flag leaf senescence and D) days 328 

from heading to peduncle senescence in wild type, single and double mutants. Letters indicate 329 

significant differences p < 0.05, with ANOVA post-hoc Tukey HSD.  330 
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Discussion 331 

In this work we have characterised the transcriptional processes associated with senescence in the 332 

wheat flag leaf. We found that specific transcription factor families are associated with these changes 333 

in transcription and have used gene regulatory network modelling, alongside additional 334 

complementary information, to identify candidate genes controlling this process. We confirmed that 335 

one of these genes, NAM-A2, plays a role in senescence in wheat itself.  336 

Time-resolved transcriptional control of senescence in wheat 337 

We found that although 52,905 genes were expressed in senescing flag leaves, only 9,533 genes were 338 

differentially expressed during this time period. Sampling ten time points allowed us to observe that 339 

these 9,533 differentially expressed genes were largely divided into two temporal waves of 340 

transcriptional changes which may not have been captured using a less time-resolved set of data. 341 

Frequent sampling has also proved informative in other time dependent processes in wheat such as 342 

pathogen infection (Dobon et al., 2016) and represents a powerful approach to understand the co-343 

ordination and regulation of gene expression changes throughout development and environmental 344 

responses (Bar-Joseph et al., 2012; Lavarenne et al., 2018).  345 

We found that during the first wave of transcriptional changes the majority of differentially expressed 346 

genes were downregulated, and these groups were enriched for GO terms related to translation, 347 

photosynthesis and amino acid biosynthesis. During the second wave, genes started to be upregulated 348 

with enrichment for GO terms related to vesicle mediated transport, protein transport and phosphate 349 

transport. The chronology of biological processes is well conserved with Arabidopsis. For example 350 

early downregulation of chlorophyll related genes is observed in both Arabidopsis (Breeze et al., 2011) 351 

and wheat, whilst transport processes are upregulated later during senescence. The temporal order 352 

of senescence related processes is also broadly conserved in maize (Zhang et al., 2014) and rice (Lee 353 

et al., 2017).  354 

The importance of transcription factors to tightly coordinate the transcriptional changes happening 355 

during the senescence is well known from other plant species (Podzimska-Sroka et al., 2015; Woo et 356 

al., 2016). We found that particular TF families were up and downregulated in two distinct waves, an 357 

initial and later response, following the pattern for all differentially expressed genes. We found that 358 

three transcription factor families were enriched for upregulated genes during senescence at early 359 

(CCAAT_HAP2 and RWP-RK) and late (NAC) stages. Members of the NAC family have been 360 

characterised to play a role in regulating senescence in both wheat (Uauy et al., 2006; Zhao et al., 361 

2015) and other plant species (Podzimska-Sroka et al., 2015). The CCAAT_HAP2 (NF-YA) family is less 362 

well characterised in this process but one member has been shown to delay nitrate-induced 363 

senescence in Arabidopsis (Leyva-González et al., 2012). The RWP-RK family is known in Arabidopsis 364 

to control nitrogen responses (Chardin et al., 2014), and in cereals nitrogen remobilisation is closely 365 

connected with senescence highlighting the potential for further investigations into this family in the 366 

future. Surprisingly the WRKY transcription factor family, which has been reported to play important 367 

roles in senescence in several other species such as Arabidopsis (Breeze et al., 2011; Woo et al., 2013), 368 

cotton (Lin et al., 2015) and soybean (Brown and Hudson, 2017), was not enriched for upregulation 369 

during senescence in wheat. It is possible that relatively few members of the WRKY family function in 370 

regulating senescence in wheat or that the function of WRKY TFs has diverged between wheat and 371 

other plant species. This potential for divergence in the regulation of senescence between species is 372 

supported by experiments characterising the rice ortholog of NAM-B1. Whilst the NAM-B1 373 

transcription factor in wheat regulates monocarpic senescence, the ortholog in rice (Os07g37920) 374 

regulates anther dehiscence and does not affect monocarpic senescence (Distelfeld et al., 2012).  375 
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Identifying candidate genes in networks  376 

One of the aims of this study was to identify transcription factors which regulate the process of 377 

senescence. The rationale behind this approach was that transcription factors control other genes and 378 

therefore may have a strong and readily detectable effect on the process of senescence.  Secondly, in 379 

crops, transcription factors have been frequently selected under QTLs for important traits such as 380 

flowering time (PPD1, VRN1) (Beales et al., 2007; Yan et al., 2003) and cold tolerance (CBF) (Knox et 381 

al., 2008) due to their strong phenotypic effects. Thus, identified candidate transcription factors 382 

regulating senescence might also prove to be useful breeding targets.  383 

Through examining the expression patterns of transcription factors in detail we identified 384 

transcription factor families which were enriched for upregulation during senescence, however this 385 

analysis cannot provide information about which of the individual transcription factors within the 386 

family might be more important in regulating the senescence process. To address this question, we 387 

used Causal Structure Inference (Penfold and Wild, 2011) to identify interactions between 388 

transcription factors. Our hypothesis was that central transcriptional regulators of senescence would 389 

regulate other transcription factors to create a regulatory cascade to influence the thousands of genes 390 

differentially expressed during senescence. Amongst the 53 top ranked transcription factors in the 391 

network, three TF families were enriched: the GARP-G2-like, HSF and RWP-RK. Members of the 392 

GARP_G2-like family have been reported to play a role in senescence in rice (Rauf et al., 2013). HSF 393 

transcription factors are associated with stress responses, and although no members have been 394 

associated with developmental senescence, stress responsive genes are also closely associated with 395 

environmentally-induced senescence, and common regulation has been observed in Arabidopsis 396 

(Woo et al., 2013). The RWP-RK family is of interest because it also significantly enriched for 397 

upregulation during senescence, in addition to being enriched amongst top ranked genes in the 398 

network. This adds further weight to the hypothesis that the RWP-RK TFs may play a role in 399 

senescence, in addition to their known role in nitrogen responses. The roles of these identified TF can 400 

now be directly tested in wheat to determine whether they regulate senescence using gene editing 401 

and TILLING (Borrill et al., 2015). 402 

To further delimit this list of candidate genes we used information from independent datasets 403 

(developmental timecourse of expression and GENIE3 TF-target network) to prioritise candidate 404 

genes. The approach to combine additional data sets was also applied in Arabidopsis where a Y1H 405 

screen was used in conjunction with Causal Structure Inference to help to identify regulatory 406 

interactions in senescence and pathogen infection (Hickman et al., 2013). Another approach which 407 

can be used to narrow down candidate genes is to examine how the network is perturbed in 408 

transcription factor mutants. This approach was used in Arabidopsis to identify three NAC 409 

transcription factors which regulate senescence (Kim et al., 2018) and could now be applied in wheat 410 

using the TILLING mutant resource (Krasileva et al., 2017), for example starting with the mutants 411 

generated in this study.  412 

To test the predicted function of these candidate genes in regulating wheat senescence, we focused 413 

on NAM-A2, which is a paralog of the known NAM-B1 gene. We found significant delays in flag leaf 414 

and peduncle senescence in NAM-A2/NAM-B2 double mutants, indicating that the genes predicted by 415 

the network play roles in senescence. The peduncle senescence phenotype indicates that this 416 

approach can identify genes which regulate senescence across different tissues, not only in the flag 417 

leaf, and may reflect that monocarpic senescence in wheat is a developmental process regulated 418 

across the whole plant. Ongoing work is currently characterising the additional candidate genes 419 

through the development of wheat double mutants for phenotypic characterisation.  420 
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Future directions 421 

This study has uncovered candidate transcription factors which may regulate senescence in wheat and 422 

has confirmed the role of one of these genes in regulating senescence. It will be of great interest to 423 

determine whether these genes control only senescence or also affect nutrient remobilisation and 424 

hence influence final grain nutrient content. In addition to deepening our understanding of the 425 

molecular regulation of senescence, this study lays the ground work to use this network-enabled 426 

approach to identify transcription factors regulating a range of different biological processes which 427 

happen across a timecourse. This approach is not only applicable to developmental processes but 428 

could equally be applied to abiotic and biotic stresses, as has been carried out in other plant species 429 

(Hickman et al., 2013). This approach could also be applied to identify candidate genes for traits in 430 

species without genome sequences, although a transcriptome would need to be assembled from the 431 

RNA-Seq data. The advent of genome-editing means that the prediction of gene function could readily 432 

be tested in any transformable species.  433 

 434 

Conclusion 435 

The availability of a fully sequenced reference genome for wheat, alongside functional genomic 436 

resources such as the TILLING population, have brought wheat biology into the genomics era and have 437 

made possible studies which even a few years ago would have been unthinkable. Here we have used 438 

these new resources to characterise the transcriptional processes occurring during wheat senescence. 439 

We found that specific transcription factor families are associated with this process in wheat, some of 440 

which have been reported in other species, but others present new links between transcription factor 441 

families and the process of senescence. Although these associations do not prove causality, the 442 

hypotheses generated can now be tested experimentally in wheat using TILLING or gene editing. Gene 443 

network modelling, when used in conjunction with complementary datasets, is a powerful approach 444 

which can accelerate the discovery of genes regulating biological processes in both model and crop 445 

species. 446 

 447 

Methods 448 

Plant growth for RNA-Seq timecourse 449 

We pre-germinated seeds of hexaploid wheat cv. Bobwhite on moist filter paper for 48 h in 4 °C 450 

followed by 48 h in the dark at room temperature. These pre-germinated seeds were sown in P40 451 

trays in 85% fine peat with 15% horticultural grit. Plants were potted on at 2–3 leaf stage to 1L square 452 

pots with 1 plant per pot in Petersfield Cereal Mix (Petersfield, Leicester, UK). Plants were grown in 16 453 

h light at 20 °C, with 8 h dark at 15 °C. The main tiller was tagged at anthesis, and the anthesis date 454 

was recorded. 455 

Phenotyping for RNA-Seq timecourse 456 

We measured the chlorophyll content of flag leaves across the timecourse from 3 to 26 days after 457 

anthesis (DAA) using a SPAD-502 chlorophyll meter (Konica Minolta). The time points used were 3, 7, 458 

10, 13, 15, 17, 19, 21, 23 and 26 DAA. We measured the flag leaf from the main tiller (tagged at 459 

anthesis) for five separate plants for each time point, taking measurements at 8 different locations 460 

distributed along the length of each flag leaf. Three of these measured leaves were subsequently 461 

harvested for RNA extraction. 462 
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We measured the grain moisture content across the timecourse from 3 to 26 days after anthesis, using 463 

the same time points as for chlorophyll measurements. We harvested eight grains from central 464 

spikelets (floret positions 1 and 2) within the primary spike of five separate plants at each time point, 465 

these grains were weighed, and then dried at 65 °C for 72 hours before re-weighing. The difference in 466 

weight was used to calculate the percentage grain moisture content.  467 

Tissue harvest, RNA extraction and sequencing  468 

Harvesting  469 

The flag leaf from the main tiller was harvested at 3, 7, 10, 13, 15, 17, 19, 21, 23 and 26 DAA from 470 

three separate plants (three biological replicates). We harvested the middle 3 cm of the flag leaf 471 

lengthways to have a region of the leaf which was synchronised in its developmental stage. We flash 472 

froze the samples in liquid nitrogen, then stored them at -80 °C prior to processing. In total we 473 

harvested 30 samples.  474 

RNA extraction 475 

We ground the samples to a fine powder in mortar and pestles which had been pre-chilled with liquid 476 

nitrogen. We extracted RNA using Trizol (ThermoFisher) according to the manufacturer’s instructions, 477 

using 100 mg ground flag leaf per 1 ml Trizol. We removed genomic DNA contamination using DNAseI 478 

(Qiagen) according to the manufacturer’s instructions and cleaned up the samples using the RNeasy 479 

Mini Kit (Qiagen) according to the manufacturer’s instructions.  480 

Library preparation 481 

The quality of the RNA was checked using using a Tecan plate reader with the Quant-iT™ RNA Assay 482 
Kit (Life technologies/Invitrogen Q-33140) and also the Quant-iT™ DNA Assay Kit, high sensitivity (Life 483 
technologies/Invitrogen Q-33120) Finally the quality of the RNA was established using the PerkinElmer 484 
GX with a high sensitivity chip and High Sensitivity DNA reagents (PerkinElmer 5067-4626). Thirty 485 
Illumina TruSeq RNA libraries were constructed on the PerkinElmer Sciclone using the TruSeq RNA 486 
protocol v2 (Illumina 15026495 Rev.F). After adaptor ligation, the libraries were size selected using 487 
Beckman Coulter XP beads (Beckman Coulter A63880). This removed the majority of un-ligated 488 
adapters, as well as any adapters that may have ligated to one another. The PCR was performed with 489 
a PCR primer cocktail that annealed to the ends of the adapter to enrich DNA fragments that had 490 
adaptor molecules on both ends. The insert size of the libraries was verified by running an aliquot of 491 
the DNA library on a PerkinElmer GX using the High Sensitivity DNA chip and reagents (PerkinElmer 492 
CLS760672) and the concentration was determined by using the Tecan plate reader.  493 

Sequencing 494 

The TruSeq RNA libraries were normalised and equimolar pooled into one final pool using elution 495 

buffer (Qiagen). The library pool was diluted to 2 nM with NaOH and 5μL transferred into 995μL HT1 496 

(Illumina) to give a final concentration of 10pM.  120 μL of the diluted library pool was then transferred 497 

into a 200 μL strip tube, spiked with 1% PhiX Control v3 and placed on ice before loading onto the 498 

Illumina cBot.  The flow cell was clustered using HiSeq PE Cluster Kit v3, utilising the Illumina 499 

PE_Amp_Lin_Block_Hyb_V8.0 method on the Illumina cBot. Following the clustering procedure, the 500 

flow cell was loaded onto the Illumina HiSeq 2000/2500 instrument following the manufacturer’s 501 

instructions. The sequencing chemistry used was HiSeq SBS Kit v3 with HiSeq Control Software 2.2.58 502 

and RTA 1.18.64. Reads (100 bp, paired end) in bcl format were demultiplexed based on the 6bp 503 

Illumina index by CASAVA 1.8, allowing for a one base-pair mismatch per library, and converted to 504 

FASTQ format by bcl2fastq. 505 
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RNA-Seq data analysis 506 

Mapping 507 

We pseudoaligned the samples using kallisto v0.44.0 with default parameters to the RefSeqv1.0 508 

annotation v1.1 (IWGSC et al., 2018). Transcripts per million (TPM) and counts for all samples were 509 

merged into a single dataframe using tximport v1.0.3 (Soneson et al., 2016). Scripts for data analysis 510 

are available from https://github.com/Borrill-Lab/WheatFlagLeafSenescence. 511 

Differential expression analysis 512 

We filtered for high confidence genes which were expressed on average >0.5 TPM in at least one time 513 

point; this excluded low expressed genes and low confidence gene models from further analysis, 514 

consistent with previous analyses in wheat (Ramirez-Gonzalez et al., 2018). In total 52,905 genes met 515 

this condition. We used the count expression level of these genes for differential expression analysis 516 

using the R package ImpulseDE2 v1.4.0 (Fischer et al., 2018), all counts were rounded to the nearest 517 

integer before they were analysed with ImpulseDE2. In parallel we used the TPM expression level of 518 

these 52,905 genes for differential expression analysis using Gradient Tool v1.0 (Breeze et al., 2011) 519 

with the normalisation enabled on Cyverse (https://de.cyverse.org/de/) (Merchant et al., 2016). To 520 

select a high confidence set of differentially expressed genes we only retained genes which were 521 

differentially expressed padj <0.001 from ImpulseDE2 and which were differentially expressed 522 

according to Gradient Tool with a z-score of >|2|. We grouped the 9,533 high confidence differentially 523 

expressed genes according to the first time point at which they were up or downregulated. For 524 

example, a gene first upregulated at 10 DAA was in group “U10” (up 10 DAA), whereas a gene first 525 

downregulated at this time point was assigned to group “D10” (down 10 DAA). Genes which were 526 

both up and downregulated during the timecourse (<4 % of all differentially expressed genes) were 527 

grouped according to the time point of first differential expression with the opposite change also 528 

indicated. For example a gene upregulated at 10 DAA and then downregulated at 15 DAA was grouped 529 

as U10D (the second time point of differential expression was not recorded in the grouping). These 530 

groupings are available in (Table S2). The minority of genes with both up and downregulation (<4 %of 531 

all differentially expressed genes) were excluded from further analysis. 532 

GO term enrichment 533 

We obtained GO terms from the RefSeqv1.0 annotation and transferred them from the annotation 534 

v1.0 to v1.1. We only transferred GO terms for genes which shared >99 % identity across > 90% of the 535 

sequence (105,182 genes; 97.5 % of all HC genes annotated in v1.1). GO term enrichment was carried 536 

out for each group of differentially expressed genes (groups defined according to the first time point 537 

at which genes were upregulated or downregulated, see above) using GOseq v1.24.0.  538 

TF annotation 539 

Genes which were annotated as TFs were obtained from 540 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-541 

Transcriptome-Landscape/data/data_tables/ (Ramirez-Gonzalez et al., 2018). 542 

Gene regulatory network construction 543 

We selected transcription factors which were amongst the 9,533 differentially expressed genes. We 544 

filtered to only keep transcription factors which were expressed on average >5 TPM in at least one 545 

time point. We used the TPM gene expression values as input to Causal Structure Inference (CSI) v1.0 546 

(Penfold and Wild, 2011) which was run through Cyverse (https://de.cyverse.org/de/) (Merchant et 547 

al., 2016). The parameters used with CSI were the defaults (parental set depth =2, gaussian process 548 

prior = 10;0.1, weight truncation = 1.0E-5, data normalisation = standardise (zero mean, unit variance), 549 

weight sampling = FALSE). The output marginal file was converted to Cytoscape format using 550 
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hCSI_MarginalThreshold v1.0 in Cyverse with a probability threshold of 0.01. We used this file for 551 

directed network analysis in Cytoscape v3.6.1 (Shannon et al., 2003) which produced network 552 

statistics. We used Cytoscape to filter the network for edge count and betweenness centrality at 0.01, 553 

0.05, and 0.1.  554 

GENIE3 data 555 

We identified the targets of TF using a TF-target network which was previously published (Ramirez-556 

Gonzalez et al., 2018). Only connections amongst the top one million links were considered in this 557 

analysis. The network had been produced by a random forest approach (GENIE3) (Huynh-Thu et al., 558 

2010) using 850 RNA-Seq samples.  559 

Ortholog identification 560 

We identified the rice and Arabidopsis orthologs of the wheat genes using EnsemblPlants gene trees 561 

(Kersey et al., 2018). In cases where relationships were not one to one, all possible paralogous copies 562 

were included in the analysis.  563 

Visualisation 564 

Graphs were made in R using the packages ggplot2 (Wickham, 2016), NMF (aheatmap function) 565 

(Gaujoux and Seoighe, 2010)  and pheatmap (Kolde, 2013). 566 

Candidate gene validation 567 

Phenotyping of NAM-2 mutants 568 

We selected mutant lines from the Kronos TILLING population (K0282, K0427, K3240) (Krasileva et al., 569 

2017) with missense mutations (G111R, G133D, P40S, respectively) in NAM-A2 570 

(TraesCS2A02G201800).  These NAM-A2 mutant lines were crossed with a line containing a mutation 571 

inducing a premature stop codon in NAM-B2 (TraesCS2B02G228900) (K4452; R170*). For each of the 572 

three crosses, heterozygous F1 seeds (AaBb) were self-pollinated to produce an F2 population. We 573 

selected double homozygous mutant (aabb), single homozygous mutant (aaBB or AAbb) and double 574 

homozygous wild type plants (AABB) in the F2. Seeds from two individuals of each genotype in the F2 575 

population were grown in greenhouse conditions for phenotyping from Jan 2018 – May 2018 in 576 

Norwich with 16 h supplemental lighting and a daytime temperature of 18 °C, and a night-time 577 

temperature of 12 °C. We tagged the main tiller at anthesis and recorded the anthesis date. We scored 578 

flag leaf senescence as the date when the flag leaf of the main tiller had lost chlorophyll from 25 % of 579 

the flag leaf blade. We scored peduncle senescence as the date when the top 3 cm of the peduncle 580 

lost all green colour and turned straw-yellow.  581 

Data availability 582 

RNA-Seq raw reads have been deposited in the SRA accession PRJNA497810. Scripts for data analysis 583 

are available from https://github.com/Borrill-Lab/WheatFlagLeafSenescence. 584 

Additional files 585 

Figures S1 – S3. 586 

Tables S1-S4. 587 
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RNA extraction, analysed the RNA-Seq data and built the gene regulatory network model. PB identified 591 

mutations in NAM-A2 and NAM-B2 for crossing and designed KASP markers. JS carried out crossing of 592 
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