

Discovery and functional annotation of quantitative trait loci affecting resistance to sea lice in Atlantic salmon

Diego Robledo^{1*}, Alejandro P. Gutierrez¹, Agustin Barria², Jean P. Lhorente³, Ross Houston^{1*}, José M. Yáñez^{2, 3, 4*}

¹Roslin Institute, University of Edinburgh, United Kingdom, ²Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Chile, ³Benchmark Genetics Chile, Chile, ⁴Núcleo Milenio INVASAL, Chile

Submitted to Journal:
Frontiers in Genetics

Specialty Section:
Livestock Genomics

Article type:
Original Research Article

Manuscript ID:
432942

Received on:
26 Oct 2018

Frontiers website link:
www.frontiersin.org

Conflict of interest statement

The authors declare a potential conflict of interest and state it below

José M. Yáñez and Jean P. Lhorente were supported by Benchmark Genetics Chile.

Author contribution statement

RH, JY, and DR were responsible for the concept and design of this work and drafted the manuscript. JP was responsible for the disease challenge experiment. AB managed the collection of the samples. AG performed the molecular biology experiments. DR performed bioinformatic and statistical analyses. All authors read and approved the final manuscript.

Keywords

Caligus rogercresseyi, *Salmo* *salar*, Aquaculture, Disease, parasite, GWAS, heritability, QTL, Association, Imputation

Abstract

Word count: 323

Sea lice (*Caligus rogercresseyi*) are ectoparasitic copepods which have a large negative economic and welfare impact in Atlantic salmon (*Salmo* *salar*) aquaculture, particularly in Chile. A multi-faceted prevention and control strategy is required to tackle lice, and selective breeding contributes via cumulative improvement of host resistance to the parasite. While host resistance has been shown to be heritable, little is yet known about the individual loci that contribute to this resistance, the potential underlying genes, and their mechanisms of action. In this study we took a multifaceted approach to identify and characterise quantitative trait loci (QTL) affecting host resistance in a population of 2,688 *Caligus*-challenged Atlantic salmon post-smolts from a commercial breeding programme. We used low and medium density genotyping to collect genome-wide SNP marker data for all animals. Moderate heritability estimates of 0.28 and 0.24 were obtained for lice density (as a measure of host resistance) and growth during infestation respectively. Three QTL explaining between 7 and 13 % of the genetic variation in resistance to sea lice (as represented by the traits of lice density) were detected on chromosomes 3, 18 and 21. Characterisation of these QTL regions was undertaken using RNA sequencing and pooled whole genome sequencing data. This resulted in the identification of a shortlist of potential underlying causative genes, and candidate functional mutations for further study. For example, candidates within the chromosome 3 QTL include a putative premature stop mutation in TOB1 (an anti-proliferative transcription factor involved in T cell regulation) and an uncharacterized protein which showed significant differential allelic expression (implying the existence of a cis-acting regulatory mutation). While host resistance to sea lice is polygenic in nature, the results of this study highlight significant QTL regions together explaining a moderate proportion of the heritability of the trait. Future investigation of these QTL may enable improved knowledge of the functional mechanisms of host resistance to sea lice, and incorporation of functional variants to improve genomic selection accuracy.

Funding statement

This work was supported by an RCUK-CONICYT grant (BB/N024044/1) and Institute Strategic Funding Grants to The Roslin Institute (BBS/E/D/20002172, BBS/E/D/30002275 and BBS/E/D/10002070). Edinburgh Genomics is partly supported through core grants from NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC (BB/J004243/1). Diego Robledo is supported by a Newton International Fellowship of the Royal Society (NF160037). José M. Yáñez would like to acknowledge the support from Núcleo Milenio INVASAL from Iniciativa Científica Milenio (Ministerio de Economía, Fomento y Turismo, Gobierno de Chile).

Ethics statements

(Authors are required to state the ethical considerations of their study in the manuscript, including for cases where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: No

Data availability statement

Generated Statement: The datasets generated for this study can be found in NCBI's Sequence Read Archive (SRA), SRP106943.

1 Discovery and functional annotation of quantitative trait loci 2 affecting resistance to sea lice in Atlantic salmon

3 Diego Robledo^{1 *}, Alejandro P. Gutiérrez¹, Agustín Barría², Jean P. Lhorente³, Ross D.
4 Houston^{1 † *}, José M. Yáñez^{2,3,4 † *}

5 ¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of
6 Edinburgh, Midlothian, UK

7 ² Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile

8 ³ Benchmark Genetics Chile, Puerto Montt, Chile

9 ⁴ Núcleo Milenio INVASAL, Concepción, Chile

10 * Corresponding authors

11 † These authors contributed equally to this work

12 Correspondence:

13 Dr. José M. Yáñez

14 jmayanez@uchile.cl

15 Prof. Ross D. Houston

16 ross.houston@roslin.ed.ac.uk

17 Dr. Diego Robledo

18 diego.robledo@roslin.ed.ac.uk

19

20 ABSTRACT

21 Sea lice (*Caligus rogercresseyi*) are ectoparasitic copepods which have a large negative
22 economic and welfare impact in Atlantic salmon (*Salmo salar*) aquaculture, particularly
23 in Chile. A multi-faceted prevention and control strategy is required to tackle lice, and
24 selective breeding contributes via cumulative improvement of host resistance to the
25 parasite. While host resistance has been shown to be heritable, little is yet known about
26 the individual loci that contribute to this resistance, the potential underlying genes, and
27 their mechanisms of action. In this study we took a multifaceted approach to identify
28 and characterise quantitative trait loci (QTL) affecting host resistance in a population of
29 2,688 Caligus-challenged Atlantic salmon post-smolts from a commercial breeding
30 programme. We used low and medium density genotyping to collect genome-wide SNP
31 marker data for all animals. Moderate heritability estimates of 0.28 and 0.24 were
32 obtained for lice density (as a measure of host resistance) and growth during infestation
33 respectively. Three QTL explaining between 7 and 13 % of the genetic variation in
34 resistance to sea lice (as represented by the traits of lice density) were detected on
35 chromosomes 3, 18 and 21. Characterisation of these QTL regions was undertaken
36 using RNA sequencing and pooled whole genome sequencing data. This resulted in the
37 identification of a shortlist of potential underlying causative genes, and candidate
38 genes. This study provides a foundation for future work to identify the underlying genes
39 and mechanisms of action of host resistance to sea lice.

40 functional mutations for further study. For example, candidates within the chromosome
41 3 QTL include a putative premature stop mutation in TOB1 (an anti-proliferative
42 transcription factor involved in T cell regulation) and an uncharacterized protein which
43 showed significant differential allelic expression (implying the existence of a cis-acting
44 regulatory mutation). While host resistance to sea lice is polygenic in nature, the results
45 of this study highlight significant QTL regions together explaining a moderate
46 proportion of the heritability of the trait. Future investigation of these QTL may enable
47 improved knowledge of the functional mechanisms of host resistance to sea lice, and
48 incorporation of functional variants to improve genomic selection accuracy.

49 **Keywords:** *Caligus rogercresseyi*, *Salmo salar*, aquaculture, disease, parasite, GWAS,
50 heritability, association, QTL, imputation

51

52 1. INTRODUCTION

53 Sea lice are a major concern for salmon aquaculture worldwide, in particular
54 *Lepeophtheirus salmonis* in the Northern Hemisphere and *Caligus rogercresseyi* in the
55 Southern, and cause losses of over \$430M per year (Costello 2009). These copepods
56 attach to the skin and feed on the mucus and blood of several species of salmonid fish.
57 Parasitized fish display reduced growth rate and increased occurrence of secondary
58 infections (Jónsdóttir et al. 1992). In addition to a significant negative impact on
59 salmonid health and welfare, lice prevention and treatment costs are a large economic
60 burden for salmonid aquaculture. Current control strategies include, for example, feed
61 supplements, cleaner fish, tailored cage design, or 'lice-zapping' lasers (Aaen et al.
62 2015), but these multifaceted strategies are only partially effective. Expensive and
63 potentially environmentally damaging chemicals and treatments are still frequently
64 required to control sea lice populations, which are becoming resistant to common
65 delousing drugs (Bravo et al. 2008; Aaen et al. 2015). Therefore, despite these extensive
66 control efforts, sea lice remain a significant threat to salmon welfare and aquaculture
67 sustainability, and incur in further indirect costs via negative impact on public opinion
68 of aquaculture (Jackson et al. 2017).

69 Selective breeding can contribute to sea lice prevention via harnessing naturally
70 occurring genetic variation within commercial salmon stocks to identify the most
71 resistant individuals. The identification of selection candidates can be enabled either by
72 pedigree or genomic based approaches, the latter via genomic selection (Meuwissen et
73 al. 2001). Moderate genetic variation in resistance to sea lice exists in Atlantic salmon,
74 with heritabilities ranging between 0.1 and 0.3 for both the North Atlantic sea louse
75 (*Lepeophtheirus salmonis*; Kolstad et al. 2005; Gjerde et al. 2011; Ødegård et al. 2014;
76 Gharbi et al. 2015; Tsai et al. 2016), and the Pacific sea louse (*Caligus rogercresseyi*;
77 Lhorente et al. 2012; Yáñez et al. 2014; Correa et al. 2017a); and genomic selection
78 approaches for resistance against both lice species have yielded substantially higher
79 prediction accuracies than 'traditional' pedigree-based approaches (Ødegård et al. 2014;
80 Gharbi et al. 2015; Tsai et al. 2016; Correa et al. 2017b).

81 Genomic selection is now routinely applied in Atlantic salmon breeding programmes
82 for the genetic improvement of several traits (Houston 2017; Lhorente et al. Submitted).
83 While it offers notable benefits in terms of selection accuracy, it has limitations such as
84 the significant cost (via the need for high volume genotyping using SNP arrays), and the
85 limited accuracy when the reference and selection candidate populations are not closely
86 related (Daetwyler et al. 2012; Tsai et al. 2016). Discovering the causative genetic
87 polymorphisms underlying phenotypic variation in complex traits is a fundamental goal
88 of genetic research. Further, identifying these causative variants would also facilitate
89 more effective genomic selection, potentially via cheaper genotyping strategies,
90 increased genetic gain each generation, and improved persistency of prediction accuracy
91 across generations and populations. Further, knowledge of causative variants offer the
92 future possibilities of harnessing genomic editing approaches, for example to introduce /
93 remove favourable / detrimental genetic variants. However, finding causative mutations
94 within QTL regions is very challenging, with few success stories in farm animals to
95 date. QTL regions tend to cover large segments of chromosomes, and typically contain
96 many variants in linkage disequilibrium that show approximately equal association with
97 the trait. Functional genome annotation data can be applied to prioritise variants within
98 these regions and – although largely lacking for aquaculture species to date – are
99 currently being developed for Atlantic salmon and other salmonid species (Macqueen et
100 al. 2017). While laborious, shortlisting and identification of causative genes and
101 variants impacting on disease resistance has positive implications for both selective
102 breeding, and fundamental understanding of the host-pathogen interaction.

103 In the current study, a large population of farmed Atlantic salmon of Chilean origin was
104 challenged with sea lice and high density SNP genotype data was collected. The overall
105 aim of the study was to detect and annotate QTL affecting host resistance to sea lice in
106 farmed Atlantic salmon, with a view to identifying putative causative genes and
107 variants. The specific objectives were a) estimate genetic variance of sea lice resistance
108 in our population, b) dissect the genetic architecture of the trait, and c) explore the
109 genomic basis of the detected QTL using transcriptomics and whole-genome
110 sequencing data.

111

112 2. METHODS

113 2.1. Disease challenge

114 2,668 Atlantic salmon (*Salmo salar*) Passive Integrated Transponder (PIT)-tagged post-
115 smolts (average weight 122 g, measured for weight and length prior to the start of the
116 challenge) from 104 families from the breeding population of AquaInnovo (Salmones
117 Chaicas, Xth Region, Chile), were experimentally challenged with *Caligus*
118 *rogercresseyi* (chalimus II-III). Infestation with the parasite was carried out by using 50
119 copepods per fish and stopping the water flow for 6 h during infestation, thereafter
120 water flow was gradually restored reaching its normal flow 2 days after. During this
121 process oxygen saturation was maintained at 90-110 %, and oxygen and temperature

122 where constantly monitored. Eight days after the infestation fish were sedated, carefully
123 and individually removed from the tanks, and the number of sea lice attached where
124 counted from head to tail. At this stage, fish were measured for weight and length, pit-
125 tags were read, and fin-clips collected for DNA extraction. Log-transformed lice density
126 was estimated as $\log_e (LC / BW_{ini}^{2/3})$, where LC is the number of lice counted on the
127 fish, BW_{ini} is the initial body weight prior to the challenge, and $BW_{ini}^{2/3}$ is an
128 approximation of the surface of the skin of each fish (Ødegård et al. 2014). Growth
129 during infestation was calculated as $[(BW_{end} - BW_{ini}) / BW_{ini}] * 100$, where BW_{ini}
130 and BW_{end} are the weight of the fish at the start and at the end of the trial respectively;
131 the same formulae was used for length.

132 2.2 Genotyping

133 DNA was extracted from fin-clips from challenged fish using a commercial kit
134 (Wizard® Genomic DNA Purification Kit, Promega), following the manufacturer's
135 instructions. All samples were genotyped with a panel of 968 SNPs chosen as a subset
136 of the SNPs from a medium density SNP array (Yáñez et al. 2016; Supplementary Table
137 1) using Kompetitive Allele Specific PCR (KASP) assays (LGC Ltd, UK). A population
138 containing full-siblings of the challenged animals had previously been genotyped with a
139 SNP panel of 45,819 SNPs ($n = 1,056$, Correa et al. 2015; Yáñez et al. 2016), and the
140 experimental lice-challenged population was imputed to ~46 K SNPs using FImpute
141 v.2.2 (Sargolzaei et al. 2014). Imputation accuracy was estimated by 10-fold cross
142 validation, masking 10% of the 1,056 genotyped full-sibs to the 968 SNP panel,
143 performing imputation, and then assessing the correlation between the true genotypes
144 and the imputed genotypes. All imputed SNPs showing imputation accuracy below 80%
145 were discarded. Genotypes were further filtered and removed according to the following
146 criteria: SNP call-rate < 0.9, individual call-rate < 0.9, FDR rate for high individual
147 heterozygosity < 0.05, identity-by-state > 0.95 (both individuals removed), Hardy-
148 Weinberg equilibrium p-value < 10^{-6} , minor allele frequency < 0.01. After filtering
149 38,028 markers and 2,345 fish remained for association analysis.

150 2.3 Estimation of genetic parameters

151 Variance components and heritabilities were estimated by ASReml 4.1 (Gilmour et al.
152 2014) fitting the following linear mixed model:

$$153 \quad \mathbf{y} = \boldsymbol{\mu} + \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{a} + \mathbf{e},$$

154 where \mathbf{y} is a vector of observed phenotypes (lice number, lice density, initial weight,
155 initial length and weight and length gain during infestation), $\boldsymbol{\mu}$ is the overall mean of
156 phenotype records, \mathbf{b} is the vector of fixed effects of tank (as factor with 3 levels) and
157 initial body weight (as a covariate; except when initial weight or initial length were the
158 observed phenotypes), \mathbf{a} is a vector of random additive genetic effects of the animal,
159 distributed as $\sim N(0, \mathbf{G}\sigma^2_a)$ where σ^2_a is the additive (genetic) variance, \mathbf{G} is the genomic
160 relationship matrix. \mathbf{X} and \mathbf{Z} are the corresponding incidence matrices for fixed and
161 additive effects, respectively, and \mathbf{e} is a vector of residuals. The best model was
162 determined comparing the log-likelihood of models with different fixed effects and

163 covariates. Phenotypic sex was not significant for any of the traits. **G** was calculated
164 using the GenABEL R package (Aulchenko *et al.* 2007) to obtain the kinship matrix
165 using the method of Amin *et al.* (2007), which was multiplied by a factor of 2 and
166 inverted using a standard R function. Genetic correlations were estimated using
167 bivariate analyses implemented in ASReml 4.1 (Gilmour *et al.* 2014) fitting the same
168 fixed and random effects described in the univariate linear mixed model described
169 above.

170 **2.4 Single-SNP genome-wide association study**

171 The single-SNP GWAS was performed using the GenABEL R package (Aulchenko *et*
172 *al.* 2007) by applying the mmscore function (Chen and Abecasis, 2007), which accounts
173 for the relatedness between individuals applied through the genomic kinship matrix.
174 Significance thresholds were calculated using a Bonferroni correction where genome-
175 wide significance was defined as 0.05 divided by number of SNPs (Duggal *et al.* 2008)
176 and suggestive as one false positive per genome scan (1 / number SNPs).

177 **2.5 Regional heritability mapping**

178 A regional heritability mapping (RHM) analysis (Nagamine *et al.* 2012; Uemoto *et al.*
179 2013) was performed where the genome was divided into overlapping regions
180 consisting of 50 sequential SNPs and overlapping by 25 SNPs using Dissect v.1.12.0
181 (Canela-Xandri *et al.* 2015). The significance of the regional heritability for each
182 window was evaluated using a log likelihood ratio test statistic (LRT) comparing the
183 global model fitting all markers with the model only fitting SNPs in a specific genomic
184 region.

185 **2.6 Whole-genome sequencing**

186 Genomic DNA from a pool of 50 fish with high sea lice counts (Mean = 48) and a pool
187 of 50 fish with low sea lice counts (Mean = 20) were sequenced in five lanes of HiSeq
188 4000 as 150 bp PE reads. Family structure was similar in both pools, with 34 different
189 families and a maximum of two fish per family. The quality of the sequencing output
190 was assessed using FastQC v.0.11.5 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Quality filtering and
191 removal of residual adaptor sequences was conducted on read pairs using Trimmomatic
192 v.0.32 (Bolger *et al.* 2004). Specifically, Illumina adaptors were clipped from the reads,
193 leading and trailing bases with a Phred score less than 20 were removed, and the read
194 trimmed if the sliding window average Phred score over four bases was less than 20.
195 Only reads where both pairs were longer than 36 bp post-filtering were retained.
196 Filtered reads were mapped to the most recent Atlantic salmon genome assembly
197 (ICSASG_v2; Genbank accession GCF_000233375.1; Lien *et al.* 2016) using Burrows-
198 Wheeler aligner v.0.7.8 BWA-MEM algorithm (Li 2013). Pileup files describing the
199 base-pair information at each genomic position were generated from the alignment files
200 using the mpileup function of samtools v1.4 (Li *et al.* 2009), discarding those aligned
201 reads with a mapping quality < 30 and those bases with a Phred score < 30.
202 Synchronized files containing read counts for every allele variant in every position of

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-NC 4.0 International license](#).

204 the genome were obtained using *Popoolation2 v1.201* (Kofler et al. 2011). A read depth
205 ≥ 10 and a minimum of 3 reads of the minor allele were required for SNP calling.

206 **2.7 Differential allelic expression**

207 The sequence data from a previous RNA-Seq study on the skin of animals of this sea
208 lice infected population (Robledo et al. 2018) were used to investigate allelic specific
209 expression. Alignment files were produced using STAR v.2.5.2b (Dobin et al. 2013;
210 detailed protocol can be found in Robledo et al. 2018) and used for SNP identification
211 and genotype calling with samtools v1.4 (Li et al. 2009). Reads with mapping quality $<$
212 30 and bases with phred quality scores < 30 were excluded. A read depth ≥ 10 and ≥ 3
213 reads for the alternative allele were required to call a SNP. Read counts were obtained
214 for each allele in heterozygous loci and a binomial test was performed to assess the
215 significance of the allelic differences using the R package AllelicImbalance (Gådin et
216 al. 2015).

217

218 **3. RESULTS**

219 **3.1 Disease challenge, genotyping and imputation**

220 Eight days after the start of the challenge, the average lice burden per fish across the
221 challenged population was 38 ± 16 . The average weight prior to the start of the trial was
222 122 ± 40 grams and 143 ± 49 grams after the challenge. All samples were genotyped
223 using a low-density SNP panel (968 SNPs), but 50 samples were genotyped for less
224 than 90 % of the SNPs and therefore removed from subsequent analyses. The remaining
225 samples were imputed to high-density from a population of 1,056 salmon that included
226 full siblings of the challenge population, which had previously been genotyped for 45K
227 SNPs (subset of Yáñez et al. 2016 selected as described in Correa et al. 2015). After
228 removing SNPs showing low imputation accuracy ($< 80\%$), a total of 39,416 SNPs
229 remained with an average imputation accuracy (as assessed by cross-validation) of
230 $\sim 95\%$. After further call rate, minimum allele frequency, heterozygosity, identity-by-
231 descent and Hardy-Weinberg filters, 38,028 markers and 2,345 fish remained for
232 downstream analyses.

233 **3.2 Genetic parameters**

234 Heritabilities and genetic correlations of different traits related to sea lice load, growth
235 and growth during infestation are shown in Table 1. The estimated heritability for sea
236 lice load was 0.29 ± 0.04 , and the number of sea lice attached to each fish showed
237 positive genetic correlation with both initial weight (0.47 ± 0.07) and initial length (0.42
238 ± 0.08). However, sea lice density ($h^2 = 0.28 \pm 0.04$) was independent of the size of the
239 fish which implies that these positive genetic correlations are due to the fact that larger
240 fish tend to have more lice. Initial weight and length showed significant heritabilities as
241 expected, and growth during infestation also presented a moderate heritability,
242 especially weight ($h^2 = 0.24 \pm 0.04$). Surprisingly, weight gain during infestation

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

243 showed a positive genetic correlation with sea lice density and sea lice counts, albeit
244 with a high standard error (0.25 ± 0.12 and 0.27 ± 0.12 respectively).

245

246 **Table 1. Heritabilities and genetic correlations**

	Caligus number	Caligus density (Ln)	Initial weight	Weight gain (%)	Initial length	Length gain (%)
Caligus number	$0.29 \pm$ 0.04					
Caligus density (Ln)	$0.78 \pm$ 0.04	$0.28 \pm$ 0.04				
Initial weight	$0.47 \pm$ 0.07	$-0.15 \pm$ 0.09	$0.41 \pm$ 0.04			
Weight gain (%)	$0.27 \pm$ 0.12	$0.25 \pm$ 0.12	$0.05 \pm$ 0.10	$0.24 \pm$ 0.04		
Initial length	$0.42 \pm$ 0.08	$-0.22 \pm$ 0.10	$0.99 \pm$ 0.01	$0.17 \pm$ 0.11	$0.27 \pm$ 0.03	
Length gain (%)	$0.23 \pm$ 0.15	$0.31 \pm$ 0.15	$0.09 \pm$ 0.03	$0.89 \pm$ 0.05	$0.09 \pm$ 0.15	$0.12 \pm$ 0.03

247

248

249 **3.3 Genome-wide association**

250 The genetic architectures for the traits of sea lice density (Figure 1) and growth gain
251 during infestation (Supplementary Figure 1) were studied using two different methods.
252 The single SNP GWAS for sea lice density revealed three SNPs reaching genome-wide
253 significance in the distal part of chromosome 3 (Figure 1A), each estimated to explain
254 3.61 - 4.14 % of the genetic variation. Additional SNPs showed suggestive association
255 with sea lice density in chromosome 5, chromosome 9 and chromosome 18. Regional
256 heritability analyses using 50 SNP windows confirmed the QTL in chromosomes 3 and
257 18, both estimated to explain ~7.5 % of the genetic variation in sea lice density (Figure
258 1B). The RHM approach detected an additional QTL not found in the single SNP
259 GWAS, on chromosome 21, explaining close to 10 % of the genetic variation in sea lice
260 density. The QTL regions in chromosomes 3, 18 and 21 were further refined, adding
261 and removing SNPs until the window explaining the most genetic variation for each
262 QTL was found. These QTL were narrowed to regions of 3-5 Mb and were each
263 estimated to explain between 7.8 and 13.4 % of the genetic variation in sea lice density,
264 accounting in total for almost 30 % of the genetic variance (Table 2) assuming additive
265 effects of the QTL.

266

267 **Table 2. Details of Sea lice resistance QTL**

Chromosome	Start (Mb)	End (Mb)	Number of SNPs	Genetic variance explained (%)
3	77.54	82.54	58	7.82
18	14.87	17.56	62	8.34
21	7.96	10.44	52	13.39

268 Positions and details of the QTL detected by RHM. Chromosome, start and end boundaries of
269 the QTL region, number of SNPs in the QTL region, and percentage of genetic variance of sea
270 lice density explained by the QTL are shown.

271

272 **3.4 QTL characterization**

273 The three sea lice density QTL regions were then further interrogated to identify and
274 characterise potential causative genes and variants. The Atlantic salmon genome
275 annotation (Lien et al. 2016), the results of a previous RNA-Seq study comparing lice-
276 attachment sites and healthy skin (Robledo et al. 2018), and SNP variants obtained from
277 the WGS of pools of fish with high and low number of lice were combined to obtain a
278 holistic view of these regions (Figure 2, Supplementary Figures 1 and 2). The QTL
279 regions were all relatively large, and contained a large number of SNPs and genes. We
280 detected 16 K – 22 K putative SNPs in each of the QTL regions, but less than a
281 thousand were located in genic regions in each of them. Surprisingly, the number
282 mutations that were predicted to have a moderate or large functional effect was
283 relatively high, especially in chromosome 3 where a total of 213 non-synonymous SNPs
284 were detected, along with 5 premature stop, 1 stop lost and 12 start gain mutations. The
285 equivalent numbers were more modest for chromosomes 18 and 21, with 37 and 13
286 non-synonymous mutations respectively, but still relatively high to single out high
287 priority candidate causative variants using variant effect prediction data alone. The three
288 QTL regions had also a relatively high number of genes (83, 36 and 11 genes in the
289 QTL regions of chromosomes 3, 18 and 21 respectively). Therefore, to shortlist
290 candidate genes and variants, a combination of differential expression between resistant
291 and susceptible fish, variant effect prediction, and a literature search relating to the
292 function of the genes and their potential role in host response to parasitic infection were
293 used.

294 The clearest candidate gene in chromosome 3 is TOB1, where a premature stop
295 mutation was detected. This transcription factor negatively regulates cell proliferation
296 (Matsuda et al. 1996), including that of T-cells (Baranzini 2014). In our study, it was
297 highly expressed in the skin according to RNA-Seq data, and its expression was
298 significantly lower in lice attachment regions of the skin (Robledo et al. 2018). For
299 chromosome 21, serine / threonine-protein kinase 17B (STK17B) showed the highest

300 fold change between lice-attachment and healthy skin and a missense mutation; this
301 gene has been connected to apoptosis and T-cell regulation, and T-cells of STK17B
302 deficient mice are hypersensitive to stimulation (Honey 2005). Previous studies
303 comparing the immune response of resistant and susceptible salmonid species have
304 linked Th2-type responses to sea lice resistance (Braden et al. 2015), which is consistent
305 with these two genes potentially having a functional role relating to the resistance QTL.
306 Chromosome 18 does not contain any clear candidate genes, but from a literature search
307 alone, the most plausible gene is probably heme binding protein 2 (HEBP2). Reducing
308 iron availability has been suggested as a possible mechanism of resistance to sea lice
309 (Fast et al. 2007; Sutherland et al. 2014) and *Piscirickettsia salmonis* (Pulgar et al.
310 2015) in Atlantic salmon.

311

312 Since complex traits can be influenced by causative mutations in regulatory regions that
313 impact gene expression (Keane et al. 2011; Albert and Kruglyak, 2015) a differential
314 allelic expression analysis was performed to screen for potential cis-acting regulatory
315 mutations affecting genes in the QTL regions. An uncharacterized gene
316 (XP_014049605.1) showed clear signs of differential allelic expression ($P = 0.00081$,
317 Figure 3) in chromosome 3 at 8.1 Mb, less than 200 Kb away from the significant
318 GWAS SNPs. This gene is also highly expressed in the skin of lice-infected salmon
319 (Robledo et al. 2018), and similar proteins are found in other salmonid and teleost
320 species.

321

322 4. DISCUSSION

323 In the current study we aimed to use a combination of GWAS, RNA-Seq, whole
324 genome resequencing, and functional annotation approaches to identify and characterise
325 QTL influencing host resistance to sea lice. Heritability estimates for sea lice density
326 were similar or higher than previous studies on *C. rogercresseyi*-challenged Atlantic
327 salmon. Lhorente et al. (2012, 2014) obtained pedigree-estimated heritabilities of 0.17 -
328 0.34, while estimates on a previously related sea lice challenged population were of 0.10
329 - 0.11 with both pedigree and molecular information (Yáñez et al., 2014; Correa et al.,
330 2017a,b). This heritability is also in consistent with heritability estimates for salmon
331 challenged with *L. salmonis* (0.2 - 0.3; Kolstad et al. 2005; Gjerde et al. 2011; Gharbi et
332 al. 2015; Tsai et al. 2016), and similar to heritabilities for resistance to other
333 ectoparasites affecting Atlantic salmon such as *Gyrodactylus salaris* (0.32; Salte et al.
334 2010) and *Neoparamoeba perurans* (Amoebic gill disease; 0.23 - 0.48; Taylor et al.
335 2009; Robledo et al. 2018).

336 Previous studies on the architecture of resistance to *C. rogercresseyi* had revealed just
337 one significant SNP in chromosome 21 ~6.5 Mb (Correa et al. 2017a). While no
338 significant SNPs were found in chromosome 21 in our study using single SNP GWAS,
339 the regional heritability analysis did highlight the nearby region between 8 - 10.5 Mb as

340 explaining over 13 % of the genetic variance of the trait. Our regional heritability
341 analysis (RHM) also identified two additional QTL explaining a significant amount of
342 the genetic variance, but only one of them detected in our single SNP GWAS. RHM
343 analyses and other similar approaches use the information of several consecutive SNPs,
344 increasing the statistical power and reliability of association mapping (Riggio and Pong-
345 Wong, 2014; Shirali et al. 2016), which consequently should result in higher
346 repeatability and concordance between genetic association studies. Accordingly, in our
347 study the RHM analysis arguably located the previously detected QTL (Correa et al.
348 2017a), while the single SNP GWAS failed to do so.

349 Discovering the causal variants underlying QTL is a very challenging task, and a result
350 very few causative variants have been identified to date. The first problem lies with the
351 large regions that have to be investigated, since narrowing the QTL is extremely
352 difficult due to reduced recombination and high linkage disequilibrium along large
353 regions of the genome (e.g. Tsai et al. 2016). Further, despite the simplicity of
354 identifying most or all variants within a region using WGS, prioritising those variants is
355 challenging with the current status of annotation of the Atlantic salmon genome, which
356 has 48,775 protein coding genes and 97,546 mRNAs (Lien et al. 2016). Putative non-
357 synonymous and even premature stop mutations appear relatively frequently, probably
358 indicating a significant proportion of pseudogenes, and therefore hindering our ability to
359 prioritize functional mutations. Further, in complex traits, a high proportion of causative
360 mutations are located in regulatory elements (Keane et al. 2011; Albert and Kruglyak,
361 2015), which are difficult to evaluate without comprehensive genome annotation using
362 assays that can identify such regions. In this sense, the outputs of the Functional
363 Annotation of All Salmonid Genomes (FAASG; Macqueen et al. 2017) initiative should
364 contribute to prioritisation of intergenic SNPs through the characterization of functional
365 regulatory elements in salmonid genomes. Complementary, differential allelic
366 expression (DAE) and expression QTL (eQTL) can be an effective route to identify
367 functional candidates (Gamazon et al. 2018). The caveat of DAE and eQTL is that gene
368 expression is quite commonly restricted to specific tissues. A GTEx-like project (GTEx
369 consortium 2017) in salmonids could also facilitate the discovery of functional variants
370 underlying QTL.

371 Despite these limitations, two genes were identified that are strong candidates for the
372 QTLs in chromosome 3 and 21, TOB1 and STK17B respectively. Coho salmon, a
373 salmonid species considered resistant to sea lice, shows pronounced epithelial
374 hyperplasia and cellular infiltration two days after sea lice attachment, and wound
375 healing combined with a strong Th2 immune response has been suggested as the
376 mechanism of resistance (Braden et al. 2015). TOB1 and STK17B have been previously
377 associated with cell proliferation and T cell regulation. TOB1 is an antiproliferative
378 protein which is ubiquitously expressed in several species (Baranzini, 2014), and
379 inhibits T cell proliferation in humans (Tzachanis et al. 2001). TOB1 down-regulation
380 in response to sea lice attachment suggests that this gene plays a relevant role in the
381 Atlantic salmon response to the parasite, and the detected putative premature stop codon

382 mutation may be concordant with faster wound healing and T cell proliferation.

383 STK17B, also known as DRAK2, has also been connected to T cell function (Honey
384 2005, Gatzka et al. 2009) and to proliferation in cancer (Yang et al. 2012; Lan et al.
385 2018). STK17B contains a non-synonymous mutation and marked up-regulation in
386 response to sea lice in salmon skin. In addition to these two strong functional
387 candidates, the allelic differential expression analysis also revealed an uncharacterized
388 protein regulated by cis-polymorphisms in the QTL region in chromosome 3. These
389 three genes and their mutations deserve further attention in follow-up studies aimed to
390 increase resistance to sea lice in Atlantic salmon. Such follow up studies could include
391 further functional annotation of QTL regions using chromatin accessibility assays to
392 identify genomic regions potentially impacting on the binding of transcription factors or
393 enhancers. Genome editing approaches (such as CRISPR-Cas9) could be applied to test
394 hypotheses relating to modification of gene function or expression caused by coding or
395 putative cis-acting regulatory variants in cell culture, or ultimately to perform targeted
396 perturbation of the QTL regions and assess the consequences on host resistance to sea
397 lice *in vivo*.

398

399 CONCLUSIONS

400 Host resistance to sea lice in this Chilean commercial population is moderately heritable
401 ($h^2 = 0.28$) and shows a polygenic architecture, albeit with at least three QTL of
402 moderate effect on chromosomes 3, 18 and 21 (7.8 to 13.4 % of the genetic variation).
403 Growth during infestation also has a significant genetic component ($h^2 = 0.24$), and its
404 genetic architecture is clearly polygenic, with QTL of small effect distributed along
405 many genomic regions. The three QTL affecting lice density were further investigated
406 by integrating RNA-Seq and WGS data, together with a literature search. A putative
407 premature stop codon within TOB1, an anti-proliferative protein, seems a plausible
408 candidate to explain the QTL in chromosome 3. Alternatively, an uncharacterized
409 protein on the same QTL region displayed differential allelic expression, and which
410 may form a suitable target for further functional studies. STK17B, functionally
411 connected to proliferation and T cell function, is a plausible candidate for the QTL in
412 chromosome 21. It is evident that even when all variants in a QTL region are
413 discovered, that shortlisting and prioritising the potential causative variants underlying
414 QTL is challenging. However, the impending availability of more complete functional
415 genome annotation and eQTL data is likely to assist this process, thereby helping to
416 elucidate the functional genetic basis of complex traits in aquaculture species.

417

418 Data Availability Statement

419 The RNA-Seq raw reads have been deposited in NCBI's Sequence Read Archive (SRA)
420 under Accession No. SRP100978, and the results have been published in Robledo et al.
421 (2018). The WGS raw reads have been deposited in NCBI's Sequence Read Archive

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

422 (SRA) under Accession No. SRF106943. The imputed genotypes and corresponding
423 SNP positions are available in Data Sheet 1 (compressed file, GenABEL .ped and .map
424 files), and phenotypes of the challenged animals are available in Supplementary Table
425 2.

426

427 **Ethics approval and consent to participate**

428 The lice challenge experiments were performed under local and national regulatory
429 systems and were approved by the Animal Bioethics Committee of the Faculty of
430 Veterinary and Animal Sciences of the University of Chile (Santiago, Chile), Certificate
431 N° 01-2016, which based its decision on the Council for International Organizations of
432 Medical Sciences (CIOMS) standards, in accordance with the Chilean standard NCh-
433 324-2011.

434

435 **Authors contributions**

436 RH, JY, and DR were responsible for the concept and design of this work and drafted
437 the manuscript. JP was responsible for the disease challenge experiment. AB managed
438 the collection of the samples. AG performed the molecular biology experiments. DR
439 performed bioinformatic and statistical analyses. All authors read and approved the final
440 manuscript.

441

442 **Conflict of interest statement**

443 José M. Yáñez and Jean P. Lhorente were supported by Benchmark Genetics Chile. All
444 other Authors declare no competing interests

445

446 **Funding**

447 This work was supported by an RCUK-CONICYT grant (BB/N024044/1) and Institute
448 Strategic Funding Grants to The Roslin Institute (BBS/E/D/20002172,
449 BBS/E/D/30002275 and BBS/E/D/10002070). Edinburgh Genomics is partly supported
450 through core grants from NERC (R8/H10/56), MRC (MR/K001744/1) and BBSRC
451 (BB/J004243/1). Diego Robledo is supported by a Newton International Fellowship of
452 the Royal Society (NF160037). José M. Yáñez would like to acknowledge the support
453 from Núcleo Milenio INVASAL from Iniciativa Científica Milenio (Ministerio de
454 Economía, Fomento y Turismo, Gobierno de Chile).

455

456 **Acknowledgements**

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

457 The authors would like to thank the contribution of Benchmark Genetics Chile and
458 Salmones Chaicas for providing the biological material and phenotypic records of the
459 experimental challenges. We would also like to thank Benchmark Genetics Chile for
460 providing high-density genotypes of full-sibs of our experimental population for
461 imputation.

462

463 **REFERENCES**

464 Aaen, S.M., Helgesen, K.O., Bakke, M., Kaur, K., Horsberg, T.E. (2015). Drug
465 resistance in sea lice: a threat to salmonid aquaculture. *Trends Parasitol.* 31, 72-81.

466 Albert, F.W., Kruglyak, L. (2015). The role of regulatory variation in complex traits and
467 disease. *Nat. Rev. Genet.* 16, 197-212.

468 Amin, N., van Duijn, C.M., Aulchenko, Y.S. (2007). A genomic background based
469 method for association analysis in related individuals. *PLoS ONE* 2, e1274.

470 Aulchenko, Y.S., Ripke, S., Isaacs, A., van Duijn, C.M. (2007). GenABEL: an R library
471 for genome-wide association analysis. *Bioinformatics* 23, 1294–1296.

472 Baranzini, S.E. (2014). The role of antiproliferative gene *Tob1* in the immune system.
473 *Clin. Exp. Neuroimmunol.* 5, 132-136.

474 Bolger, A.M., Lohse, M., Usadel, B. (2004). Trimmomatic: a flexible trimmer for
475 Illumina sequence data. *Bioinformatics* 30, 2114-2120.

476 Braden, L.M., Koop, B.F., Jones, S.R.M. (2015). Signatures of resistance to
477 *Lepeophtheirus salmonis* include a Th2-type response at the louse-salmon interface.
478 *Dev. Comp. Immunol.* 48, 178-191.

479 Bravo, S., Sevatdal, S., Horsberg, T.E. (2008). Sensitivity assessment of *Caligus*
480 *rogercresseyi* to emamectin benzoate in Chile. *Aquaculture* 282, 7-12.

481 Canela-Xandri, O., Law A., Gray A., Woolliams, J.A., Tenesa, A., (2015). A new tool
482 called DISSECT for analysing large genomic data sets using a big data approach. *Nat.*
483 *Commun.* 6, 10162.

484 Chen, W.M., Abecasis, G.R. (2007). Family-based association tests for genomewide
485 association scans. *Am. J. Hum. Genet.* 81, 913–926

486 Correa, K., Lhorente, J.P., López, M.E., Bassini, L., Naswa, S., Deeb, N., et al. (2015).
487 Genome-wide association analysis reveals loci associated with resistance against
488 *Piscirickettsia salmonis* in two Atlantic salmon (*Salmo salar* L.) chromosomes. *BMC*
489 *Genomics* 16, 854.

490 Correa, K., Lhorente, J.P., Bassini, L., López, M.E., di Genova, A., Maass, A., et al.
491 (2017a). Genome wide association study for resistance to *Caligus rogercresseyi* in
492 Atlantic salmon (*Salmo salar* L.) using a 50K SNP genotyping array. *Aquaculture* 472,
493 61-65.

494 Correa, K., Bangera, R., Figueiróa, R., Llorente, J.P., Yanez, J.M. (2017b). The use of
495 genomic information increases the accuracy of breeding value predictions for sea louse
496 (*Caligus rogercresseyi*) resistance in Atlantic salmon (*Salmo salar*). *Gen. Sel. Evol.* 49,
497 15.

498 Costello, M.J. (2009). The global economic cost of sea lice to the salmonid farming
499 industry. *J. Fish Dis.* 32, 115-118.

500 Daetwyler, H.D., Kemper, K.E., van der Werf, J.H.J., Hayes, B.J. (2012). Components
501 of the accuracy of genomic prediction in a multi-breed sheep population. *J. Anim. Sci.*
502 90, 3375-3384.

503 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013).
504 STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21.

505 Duggal, P., Gillanders, E.M., Holmes, T.N., Bailey-Wilson, J.E. (2008). Establishing an
506 adjusted p-value threshold to control the family-wide type 1 error in genome wide
507 association studies. *BMC Genomics* 9, 516.

508 Fast, M.D., Johnson, S.C., Jones, S.R.M. (2007). Differential susceptibility and the
509 responses of pink (*Oncorhynchus gorbuscha*) and chum (*O. Keta*) salmon juveniles to
510 infection with *Lepeophtheirus salmonis*. *Dis. Aquat. Organ.* 75, 229-238.

511 Gamazon, E.R., Segrè, A.V., van de Bunt, M., Wen, X., Xi, H.S., Hormozdiari, F., et al.
512 (2018). Using an atlas of gene regulation across 44 human tissues to inform complex
513 disease and trait-associated variation. *Nat. Genet.* 50, 956-967.

514 Gådin JR, van't Hooft FM, Eriksson P, Folkersen L (2015). AllelicImbalance: an R/
515 bioconductor package for detecting, managing, and visualizing allele expression
516 imbalance data from RNA sequencing. *BMC Bioinformatics* 16, 194.

517 Gatzka, M., Newton, R.H., Walsh, C.M. (2009). Altered thymic selection and increased
518 autoimmunity caused by ectopic expression of DRAK2 during T cell development. *J.*
519 *Immunol.* 183, 285-297.

520 Gharbi, K., Matthews, L., Bron, J., Roberts, R., Tinch, A., et al. (2015) The control of
521 sea lice in Atlantic salmon by selective breeding. *J. R. Soc. Interface.* 12, 0574.

522 Gilmour, A.R., Gogel, B.J., Cullis, B.R., Thompson, R. (2014). ASReml user guide. 4th
523 ed. Hemel Hempstead: VSN International Ltd.

524 Gjerde, B., Ødegård, J., Thorland, I. (2011). Estimates of genetic variation in the
525 susceptibility of Atlantic salmon (*Salmo salar*) to the salmon louse *Lepeophtheirus*
526 *salmonis*. *Aquaculture* 314, 66-72.

527 GTEx Consortium (2017). Genetic effect on gene expression across human tissues.
528 *Nature* 550, 204-210.

529 Honey, K. (2005). T-cell signalling: DRAK2 puts the brakes on T-cell responses. *Nat.*
530 *Rev. Immunol.* 5, 98.

531 Houston, R.D. (2017). Future directions in breeding for disease resistance in
532 aquaculture species. *R. Bras. Zootec.* 46, 545-551.

533 Jackson, D., Moberg, O., Stenevik Djupevåg, E.M., Kane, F., Hareide, H. (2017). The
534 drivers of sea lice management policies and how best to integrate them into a risk
535 management strategy: an ecosystem approach to sea lice management. *J. Fish. Dis.* 41,
536 927-933.

537 Jónsdóttir, H., Bron, J.E., Wootten, R., Turnbull, J.F. (1992). The histopathology
538 associated with the pre-adult and adult stages of *Lepeophtheirus salmonis* on the
539 Atlantic salmon, *Salmo salar* L. *J Fish Dis.* 15, 521-527.

540 Keane, T.M., Goodstadt, L., Danecek, P., White, M.A., Wong, K., Yalcin, B., et al.
541 (2011). Mouse genomic variation and its effect on phenotypes and gene regulation.
542 *Nature* 477, 289-294.

543 Kofler, R., Pandey, R.V., Schlötterer, C. (2011). PoPoolation2: identifying
544 differentiation between populations using sequencing of pooled DNA samples (Pool-
545 Seq). *Bioinformatics* 27, 3435-3436.

546 Kolstad, K., Heuch, P.A., Gjerde, B., Gjedrem, T., Salte, R. (2005) Genetic variation in
547 resistance of Atlantic salmon (*Salmo salar*) to the salmon louse *Lepeophtheirus*
548 *salmonis*. *Aquaculture* 247, 145–51.

549 Lan, Y., Han, J., Wang, Y., Wang, J., Yang, G., Li, K., et al. (2018). STK17B promotes
550 carcinogenesis and metastasis via AKT / GSK-3 β / Snail signalling in hepatocellular
551 carcinoma. *Cell Death Dis.* 9, 236.

552 Lhorente, J.P., Gallardo, J.A., Villanueva, B., Araya, A.M., Torrealba, D.A., Toledo,
553 X.E., et al. (2012). Quantitative genetic basis for resistance to *Caligus rogercresseyi* sea
554 lice in a breeding population of Atlantic salmon (*Salmo salar*). *Aquaculture* 324-325,
555 55-59.

556 Lhorente, J.P., Gallardo, J.A., Villanueva, B., Carabaño, M.J., Neira, R. (2014). Disease
557 resistance in Atlantic salmon (*Salmo salar*): coinfection of the intracellular bacterial
558 pathogen *Piscirickettsia salmonis* and the sea louse *Caligus rogercresseyi*. *PLoS One* 9,
559 e95397.

560 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The
561 sequence alignment/map (SAM) format and SAMtools. *Bioinformatics* 25, 2078-2079.

562 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
563 BWA-MEM. *arXiv:1303.3997v1* [q-bio.GN].

564 Lien, S., Koop, B.F., Sandve, S.R., Miller, J.R., Kent, M.P., Nome, T., et al. (2016). The
565 Atlantic salmon genome provides insights into rediploidization. *Nature* 533, 200-205.

566 Macqueen, D.J., Primmer, C.R., Houston, R.D., Nowak, B.F., Bernatchez, L., Bergseth,
567 S., et al. (2017). Functional annotation of all salmonid genomes (FAASG): an
568 international initiative supporting future salmonid research, conservation and
569 aquaculture. *BMC Genomics* 18, 484.

570 Matsuda, S., Kawamura-Tsuzuku, J., Ohsugi, M., Yoshida, M., Emi, M., Nakamura, Y.,
571 et al. (1996). Tob, a novel protein that interacts with p185erbB2, is associated with anti-
572 proliferative activity. *Oncogene* 12: 705-713.

573 Meuwissen, T.H., Hayes, B.J., Goddard, M.E. (2001). Prediction of total genetic value
574 using genome-wide dense marker maps. *Genetics* 157, 1819-1829.

575 Nagamine, Y., Pong-Wong, R., Navarro, P., Vitart, V., Hayward, C., Rudan, I., et al.,
576 2012. Localising loci underlying complex trait variation using regional genomic
577 relationship mapping. *PLoS ONE* 7: e46501

578 Ødegård, J., Moen, T., Santi, N., Korsvoll, S.A., Kjøglum, S., Meuwissen, T.H.E.
579 (2014). Genomic prediction in an admixed population of Atlantic salmon (*Salmo salar*).
580 *Frontiers in Genetics* 5, 402.

581 Pulgar, R., Hödar, C., Travisany, D., Zuñiga, A., Domínguez, C., Maass, A., et al.
582 (2015). Transcriptional response of Atlantic salmon families to *Piscirickettsia salmonis*
583 infection highlights the relevance of the iron-deprivation defence system. *BMC
584 Genomics* 16, 495.

585 Riggio, V., and Pong-Wong, R. (2014). Regional Heritability Mapping to identify loci
586 underlying genetic variation of complex traits. *BMC Proc.* 8, S3.

587 Sargolzaei, M., Chesnais, J.P., Schenkel, F.S. (2014). A new approach for efficient
588 genotype imputation using information from relatives. *BMC Genomics* 15, 478.

589 Shirali, M., Pong-Wong, R., Navarro, P., Knott, S., Hayward, C., et al. (2016) Regional
590 heritability mapping method helps explain missing heritability of blood lipid traits in
591 isolated populations. *Heredity* 116, 333-338.

592 Sutherland, B.J.G., Koczka, K.W., Yasuike, M., Jantzen, S.G., Yazawa, R., Koop, B.F.,
593 et al. (2014). Comparative transcriptomics of Atlantic *Salmo salar*, chum *Oncorhynchus
594 keta* and pink salmon *O. gorbuscha* during infections with salmon lice *Lepeophtheirus
595 salmonis*. *BMC Genomics* 15, 200.

596 Robledo, D., Matika, O., Hamilton, A., Houston, R.D. (2018). Genome-wide
597 association and genomic selection for resistance to amoebic gill disease in Atlantic
598 salmon. *G3* 8, 1195-1203.

599 Robledo, D., Gutiérrez, A.P., Barría, A., Yáñez, J.M., Houston, R.D. (2018). Gene
600 expression response to sea lice in Atlantic salmon skin: RNA sequencing comparison
601 between resistant and susceptible animals. *Front. Genet.* 9, 287.

602 Taylor, R.S., Kube, P.D., Muller, W.J., Elliott, N.G. (2009). Genetic variation of gross
603 gill pathology and survival of Atlantic salmon (*Salmo salar* L.) during natural amoebic
604 gill disease challenge. *Aquaculture* 294, 172-179.

605 Tsai, H.Y., Hamilton, A., Tinch, A.E., Guy, D.R., Bron, J.E., Taggart, J.B., et al. (2016)
606 Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations.
607 *Gen. Sel. Evol.* 48, 47.

608 Tzchanis, D., Freeman, G.J., Hirano, N., Van Tuldenbroek, A.A.F.L., Delfs, M.W.,
609 Berezovskaya, A., et al. (2001) Tob is a negative regulator of activation that is
610 expressed in anergic and quiescent T cells. *Nat. Immunol.*, 2, 1174-1182.

611 Uemoto, Y., Pong-Wong, R., Navarro, P., Vitart, V., Hayward, C., et al. (2013). The
612 power of regional heritability analysis for rare and common variant detection:
613 simulations and application to eye biometrical traits. *Front. Genet.* 4, 232.

614 Wang, Y., Lin, G., Li, C., Stothard, P. (2016). Genotype imputation methods and their
615 effects on genomic predictions in cattle. *Springer Sci. Rev.* 4, 79.

616 Yáñez, J.M., Lhorente, J.P., Bassini, L.N., Oyarzún, M., Neira, R., Newman, S. (2014).
617 Genetic co-variation between resistance against both *Caligus rogercresseyi* and
618 *Piscirickettsia salmonis*, and body weight in Atlantic salmon (*Salmo salar*).
619 *Aquaculture* 433, 295-298.

620 Yáñez, J.M., Naswa, S., López, M.E., Bassini, L., Correa, K., Gilbey, J., et al. (2016).
621 Genomewide single nucleotide polymorphism discovery in Atlantic salmon (*Salmo
622* *salar*): validation in wild and farmed American and European populations. *Mol. Ecol.*
623 Res. 16, 1002-1011.

624 Yang, K.M., Kim, W., Gim, J., Weist, B.M., Jung, Y., Hyun, J.S., et al. (2012). DRAK2
625 participates in a negative feedback loop to control TGF- β /Smads signalling by binding
626 to type I TGF- β receptor. *Cell Rep.* 2, 1286-1299.

627

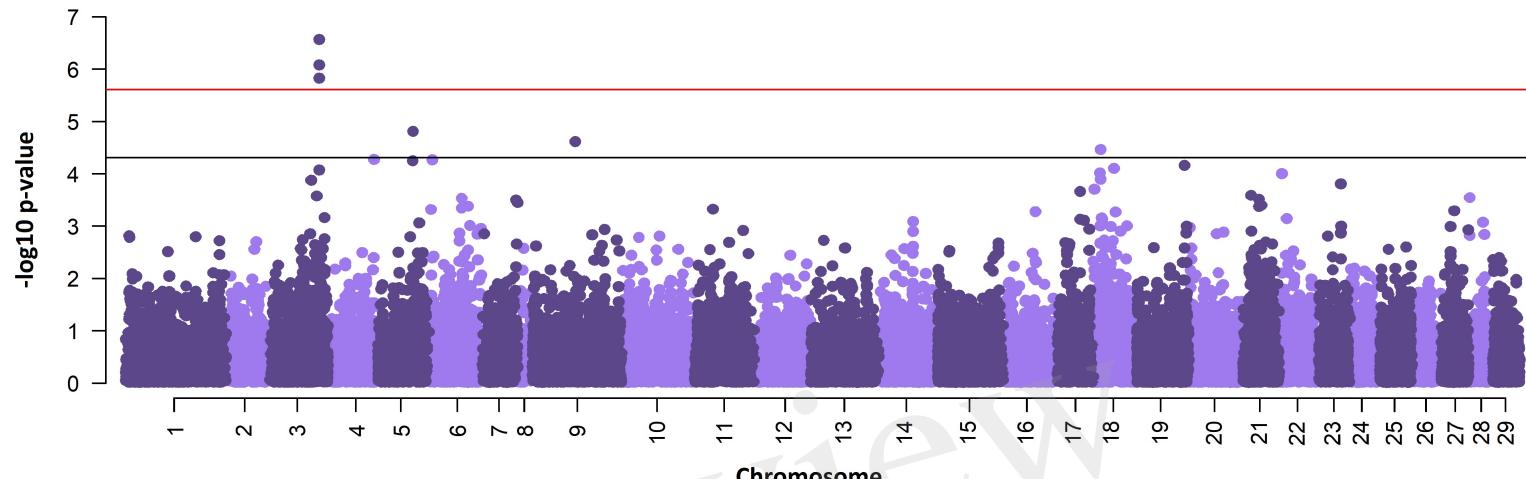
628 FIGURE LEGENDS

629 **Figure 1. Genome-wide association analyses for sea lice density.** A) Single-SNP
630 GWAS results, horizontal bars represent Bonferroni corrected significance (red) and
631 nominal significance (black). B) RHM results showing the percentage of additive
632 genetic variance explained by each genomic region, represented by 50 consecutive
633 SNPs.

634

635 **Figure 2. QTL region in chromosome 21.** Bars represent the log₂ fold change
636 between healthy and sea lice attachment skin for every gene in the QTL region
637 according to the RNA-seq. Bar colour represents the expression level of the gene
638 (lighter = less expressed), and the annotation of the gene is presented in a label on the
639 top of the graph. Genic SNPs detected by WGS are shown in between, those with
640 putatively more severe effects are located towards the top of the figure.

641


642 **Figure 3. Differential allelic expression of XP_014049605.1.** Gene counts in
643 heterozygous animals for a SNP showing allelic imbalance in XP_014049605.1. The p-
644 values of the binomial test comparing the expression of both alleles are shown for each
645 animal.

In review

Figure 1.JPG

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A)

B)

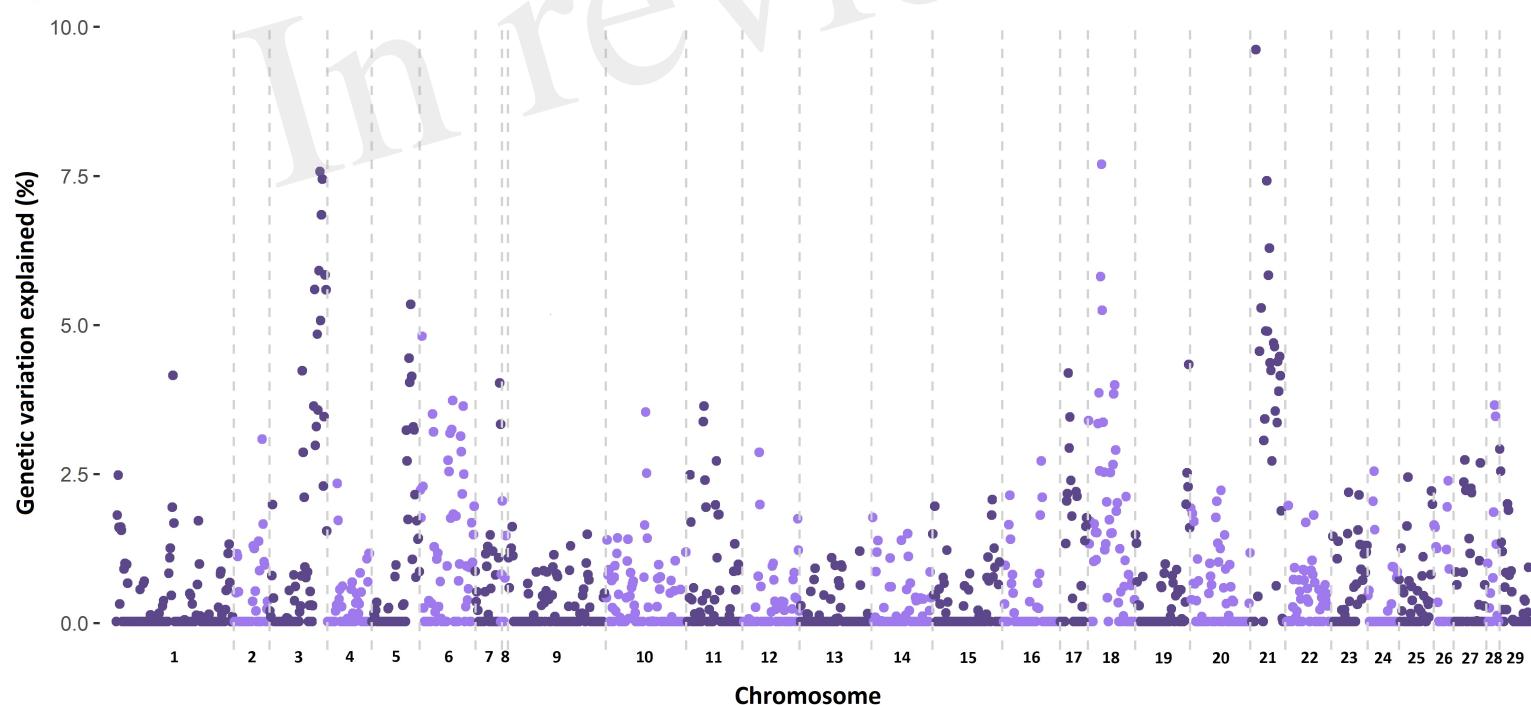


Figure 2.JPG

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

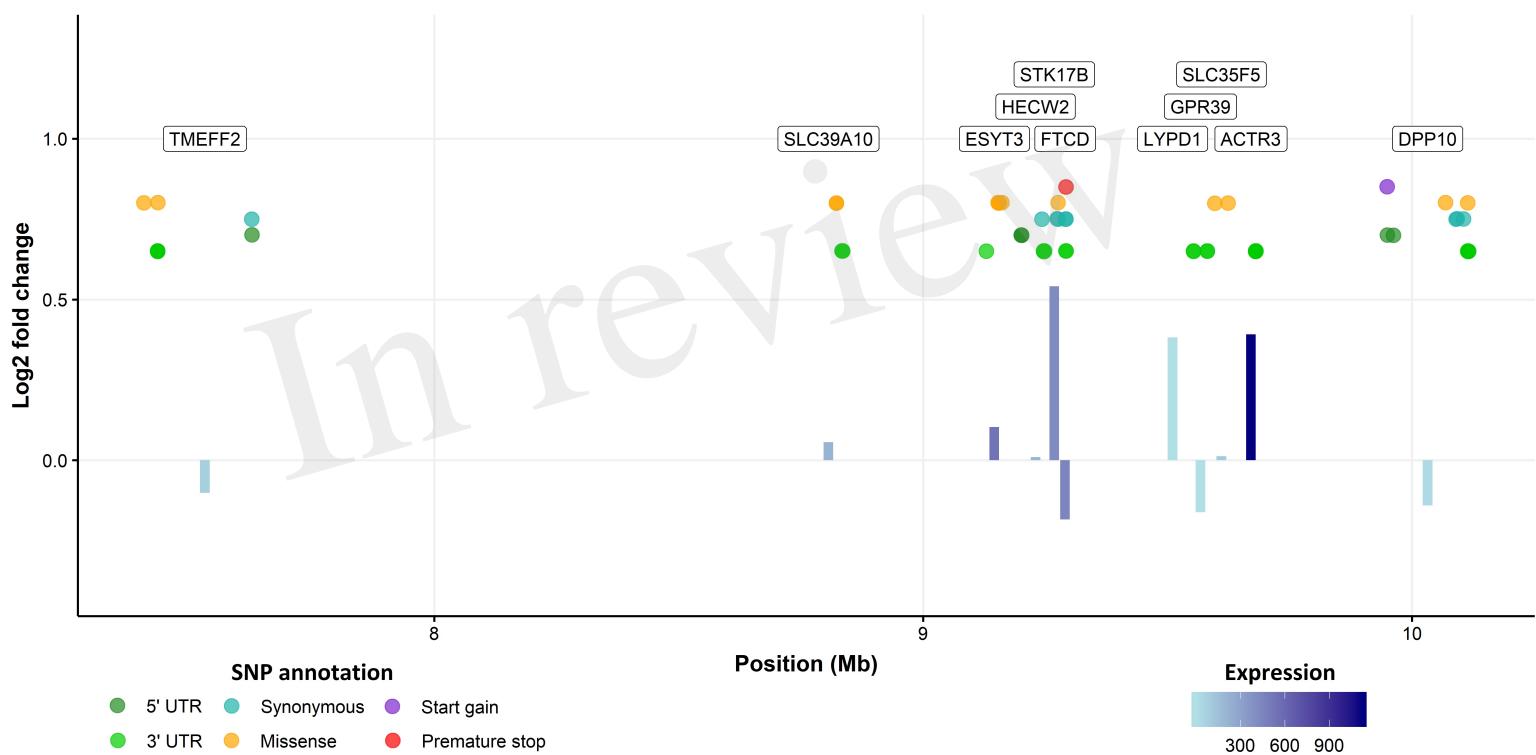
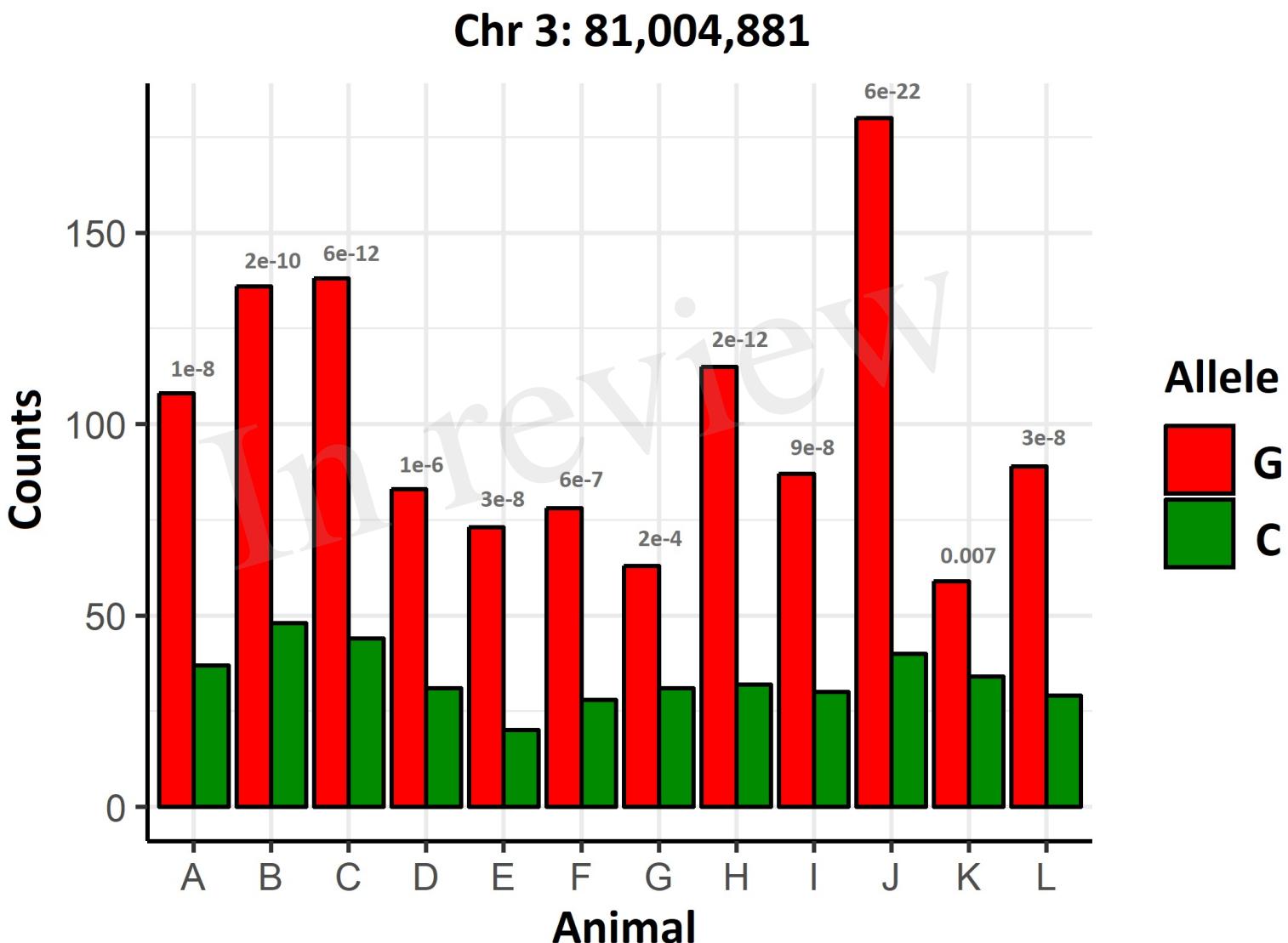



Figure 3.JPG

bioRxiv preprint doi: <https://doi.org/10.1101/455626>; this version posted October 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

