

1 Spatiotemporal proteomics uncovers cathepsin-dependent host 2 cell death during bacterial infection

3 Joel Selkrig¹, Nan Li^{1,2,3}, Jacob Bobonis^{1,4}, Annika Hausmann⁵, Anna Sueki^{1,4}, Haruna
4 Imamura⁶, Bachir El Debs¹, Gianluca Sigismondo³, Bogdan I. Florea⁷, Herman S.
5 Overkleeft⁷, Pedro Beltrao⁶, Wolf-Dietrich Hardt⁵, Jeroen Krijgsveld³‡, Athanasios Typas¹‡.

6
7 ¹ European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117
8 Heidelberg, Germany.
9

10 ² Institute of Synthetic Biology (iSynBio), Shenzhen Institutes of Advanced Technology (SIAT),
11 Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen,
12 China.

13 ³ German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.

14 ⁴ Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences

15 ⁵ Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.

16 ⁶ European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome
17 Campus, Hinxton, Cambridge, CB10 1SD

18 ⁷ Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg
19 55, 2333 CC Leiden, the Netherlands.

20
21 ‡ to whom correspondence should be addressed:

22 j.krijgsveld@dkfz.de & typas@embl.de

24 SUMMARY

25 Immune cells need to swiftly and effectively respond to invading pathogens. This response
26 relies heavily on rapid protein synthesis and accurate cellular targeting to ensure pathogen
27 destruction. In return, pathogens intercept this response to ensure their survival and
28 proliferation. To gain insight into this dynamic interface, we combined click-chemistry with
29 pulsed stable isotope labeling of amino acids (pSILAC-AHA) in cell culture to quantify the
30 newly synthesised host proteome during macrophage infection with the model intracellular
31 bacterial pathogen, *Salmonella enterica* Typhimurium (STm). We monitored newly
32 synthesised proteins across different host cell compartments and infection stages, and used
33 available proteomics data in response to lipopolysaccharide to deconvolute the STm-specific
34 response. Within this rich resource, we detected aberrant trafficking of lysosomal proteases
35 to the extracellular space and the nucleus, the latter of which correlated with signatures of
36 cell death. Pharmacological cathepsin inhibition suppressed Caspase-11 dependent
37 macrophage cell death, thus demonstrating an active role for cathepsins during STm
38 induced pyroptosis. Our study illustrates that resolving host proteome dynamics during
39 infection can drive the discovery of biological mechanisms at the host-microbe interface.

40 **INTRODUCTION**

41 Bacterial pathogens can survive inside mammalian immune cells by injecting toxic effector
42 proteins to co-opt the endogenous host cell machinery and promote their intracellular
43 survival. Prior to proliferation, a successful pathogen must avoid detection by host
44 cytoplasmic pattern recognition receptors (PRRs), which constantly surveil the host
45 cytoplasm for microbial ligands. Upon detection of intracellular pathogens, activated
46 cytoplasmic PRRs trigger the assembly of a large cytoplasmic protein scaffold called the
47 inflammasome, which drives an inflammatory form of cell death termed pyroptosis.
48 Pyroptosis is an effective host strategy to remove a pathogens' replicative niche and subject
49 it to further destruction by the immune system. To avoid triggering pyroptosis, pathogens
50 can maintain physical separation from PRRs by residing within membrane bound organelles
51 sculpted from the host endosomal compartment, whose function is to otherwise destroy
52 pathogens. Thus, triumph of either host or pathogen is fought through active engagement in
53 a dynamic molecular interplay spanning time and space. This complex process remains
54 poorly understood even for well-studied pathogens.

55

56 Pyroptosis is driven by the canonical inflammasome cysteine proteases Caspase-1 (mouse
57 and human) and the non-canonical Caspase-11 (mouse) and Caspases-4 and 5 (human)¹.
58 During canonical inflammasome activation, microorganism-associated molecular patterns
59 (MAMPs) or damage-associated molecular patterns (DAMPs) are recognised by cytoplasmic
60 sensors (e.g. NLRP3 and NLRC4), which then initiate inflammasome assembly ². This
61 macromolecular scaffold activates Caspase-1, which cleaves the proinflammatory cytokines
62 pro-IL-1 β and pro-IL-18. In contrast, the non-canonical inflammasome does not rely on
63 cytoplasmic sensors for its activation. Instead, Caspase-11 appears to be both a sensor and
64 an activator by directly binding to cytoplasmic lipopolysaccharide (LPS) derived from Gram-
65 negative bacteria ³. Upon activation, Caspase-11 cleaves gasdermin (GSDMD) into an
66 active form that then punctures holes in the plasma membrane, ultimately leading to the
67 extracellular release of cytoplasmic contents and cell death ^{4,5}. Mice lacking key
68 inflammasome components (e.g. Caspase-1, Caspase-11, NLRP3 and NLRC4) are more
69 susceptible to bacterial infection ^{6,7}, illustrating the importance of pyroptotic cell death in
70 clearance of intracellular pathogens.

71

72 Subcellular compartmentalisation of molecules that trigger inflammasome activation
73 prevents premature activation and control pyroptotic cell death. For example, lysosomes are
74 membrane-bound organelles containing approximately 50 different hydrolytic enzymes that
75 degrade various forms of internalised material, including microbes, within a low-pH

76 environment ⁸. Disrupting lysosome integrity with chemical destabilisers leads to
77 inflammasome activation and cell death ^{9,10}, both of which can be abrogated by the addition
78 of cathepsin inhibitors ⁹⁻¹⁴. This implicates lysosomal cathepsins as critical effectors of
79 lysosome instability and cell death, although how this occurs, particularly during bacterial
80 infection, remains poorly understood.

81
82 Remarkably, the intracellular pathogen *Salmonella enterica* subsp. *enterica* serovar
83 Typhimurium (STm) evades degradation via the lysosomal pathway by residing within a
84 specialized cellular compartment called the *Salmonella*-containing vacuole (SCV). STm
85 sculpts the SCV via a secretion system (SPI-2), which delivers effector proteins into the host
86 cytosol to hijack various components of the host cell machinery ^{15,16}. STm actively prevents
87 the delivery of toxic lysosomal hydrolases to the SCV by inhibiting retrograde trafficking of
88 mannose-6-phosphate receptors via the SPI-2 effector protein SifA ¹⁷. This ultimately leads
89 to the export of immature lysosomal contents outside the host cell ¹⁷. To safeguard against
90 intracellular pathogens with such capabilities, interferon-induced guanylate-binding proteins
91 (GBPs) lyse bacteria-containing vacuoles, thereby spilling pathogen-derived LPS into the
92 cytoplasm. This activates Caspase-11 and initiates pyroptosis ¹⁸. Thus, control of lysosomal
93 trafficking is critical to both host and pathogen survival. Despite intense research into
94 understanding how STm manages to evade triggering host cell death in the vacuole before
95 replication has taken place, many facets of this interface remain unknown.

96
97 To shed light onto this multi-faceted interface, we leveraged a method recently developed in
98 our lab designed to enrich, identify and quantify newly synthesised host secretory proteins in
99 serum-containing media ¹⁹. In the present study, we extended this approach to include
100 sampling of three host cell compartments (i.e. secretome, lysosome and the nucleome) from
101 STm infected macrophages spanning three distinct stages of the infection cycle. We
102 detected aberrant subcellular distribution of lysosomal proteases during the later stages of
103 infection, and demonstrated their active role during STm-induced cell death via the non-
104 canonical inflammasome Caspase-11. Combined, our findings exemplify the treasure trove
105 of functional biology that can be uncovered by spatiotemporally resolving a host-pathogen
106 interface.

107 **RESULTS**

108 **Dynamic proteome mapping unravels diverse host responses during STm infection.**

109 To model the intracellular STm infection cycle, we infected mouse-derived macrophages
110 with SPI-1 OFF STm. SPI-1 OFF bacteria were chosen to mimic the pathogen-host
111 interaction at systemic sites. After bacterial internalization, the cells were treated with
112 gentamicin to kill non-internalised bacteria, synchronise the infection and avoid re-infection
113 cycles (Figure 1A). The intracellular bacterial load was quantified at the single-cell level to
114 ensure sampling times spanned distinct phases of intracellular STm proliferation states i.e.
115 pre-proliferation (4h), initial (8h) and extensive (20h) proliferation post uptake (Figure S1A).
116 In order to determine the subcellular distribution of host proteins throughout an infection
117 cycle, we utilised our recently developed proteomic methodology that allows specific
118 enrichment and quantification of the newly synthesised host proteome ¹⁹.

119

120 To quantify the subpopulation of host proteins synthesised within a specific timeframe, we
121 simultaneously pulsed cells with SILAC amino acids and an azide-containing analogue of
122 methionine called azidohomoalanine (AHA). Intermediate (I) or heavy (H) SILAC labels
123 facilitate robust protein quantification relative to uninfected controls, whereas AHA enabled
124 enrichment of the newly synthesised proteome. These amino acid labels can be used as
125 substrates by the hosts' endogenous translational machinery and are thereby incorporated
126 into newly synthesised proteins (pSILAC-AHA). A three-hour pulse window is sufficient to
127 allow protein synthesis and subsequent subcellular trafficking to occur ²⁰. After pSILAC-AHA
128 labeling, the azide moiety of AHA was utilized to couple proteins to an alkyne-activated resin
129 via a click-chemistry reaction, thus allowing for selective capture of proteins containing
130 incorporated AHA, while serum and other pre-existing background proteins were removed
131 by stringent washing conditions. Infected and uninfected samples were then combined in a
132 1:1 ratio, followed by LC-MS/MS analysis (Figure 1A).

133

134 We quantified the newly synthesised host proteome (4978 proteins in total) by sampling
135 three distinct subcellular locations from macrophages infected with intracellular STm; 215
136 proteins in the secretome (conditioned media), 4640 in the lysosome (Tx-100 soluble; this
137 contains cytoplasmic and organelle content) and 1283 from the nucleome (Tx-100 insoluble)
138 (Table S1). We observed concordant biological replicate correlation across all time points,
139 and within each subcellular fraction (mean $r = 0.886$; Figure S1B). GO term enrichment
140 analysis for host proteins displaying $>1.5 \pm \text{Log}_2$ fold change revealed a total of 879 enriched
141 GO terms ($p = \leq 0.05$, right-sided hypergeometric test, Bonferroni corrected), with 832
142 upregulated and 47 were downregulated (Table S2). Consistent with the lysosome containing

143 the majority of quantified proteins, 693 enriched GO terms were detected in the lysosome
144 fraction, whereas 97 and 87 GO terms were enriched in the nucleome and secretome
145 samples respectively.

146
147 In general terms, dynamic changes occurring at distinct time-points of the infection time
148 course were more frequent in the subcellular compartments, whereas the lysosome was
149 dominated by responses that were observed from the first time-point post infection (4h) and
150 remained stable across time (Figure 1B). Such early and stable responses included many
151 GO terms related to infection and adaptation to immune stimulation. For example, and as
152 expected, we detected a strong response to bacteria at all time points in the lysosome, as
153 well as cytokine stimulus (GO:0071345), interferon (GO:0035456), an extrinsic apoptotic
154 pathway (GO:0097191) and a progressive decrease in cellular responses to
155 lipopolysaccharide (LPS; GO:0071222). The latter behaviour is consistent with macrophage
156 adaptation to TLR activation by a highly immunogenic stimulus, such as LPS, in order to
157 dampen detrimental impacts from a hyperactive pro-inflammatory response ²¹. A strong and
158 constant response to interferon- γ (GO: 0071346) and virus (GO:0009615) were also visible,
159 with the antiviral response at 20 hours consisting of 33 proteins (Table S2). This is in
160 agreement with the recently discovered role of classic antiviral responses during bacterial
161 infection ²².

162
163 We also detected an early induction of the I-kappaB kinase/NF-kappaB signaling response,
164 which was sustained throughout infection in the lysosome fraction (Figure 1B). For instance,
165 consistent with an early NF- κ B response that relies on NF- κ B1 translocation to the nucleus,
166 we observed strong enrichment of NF- κ B1 in the nucleome at 4 hrs post infection (+2.12
167 Log₂ Fold change, adjusted $p = 6.72 \times 10^{-5}$) (Table S3). Furthermore, NF- κ B1 expression
168 peaked at 8 hrs in the lysosome, followed by a relative decrease at 20 hrs (Table S3). This
169 suggested an overall blunting of the NF- κ B response over time by reducing nuclear NF- κ B1
170 translocation from and abundance within the lysosome. In addition, Nfkbid (NF- κ B inhibitor
171 zeta [$\text{IkB}\zeta$]), was also significantly enriched in the nucleome at 4 hrs (+1.7 Log₂ Fold change,
172 adjusted $p = 1.25 \times 10^{-4}$), followed by a strong increase in nuclear abundance over time (20 h;
173 +4.5 Log₂ fold change, adjusted $p = 3.8 \times 10^{-2}$). In addition to its role as an inhibitor, $\text{IkB}\zeta$ can
174 promote transcription of the siderophore LCN2 ²³. Consistently, LCN2 expression in the
175 lysosome followed a similar pattern in infected cells (Table S3). These findings highlight the
176 spatiotemporal dynamics of NF- κ B signaling during STm infection, whereby early nuclear
177 NF- κ B translocation is followed by a second wave of regulation via $\text{IkB}\zeta$.

178

179 Moreover, several broader responses occurred at specific time-points, including an early
180 reduction in the abundance of DNA binding proteins Uhrf1, Mki67, Tmpo and Zfp3 in the
181 lysosome (GO:0003677; 4h) (Figure 1B). At later time-points, a decrease in protein involved
182 in the DNA replication fork (GO:0005657; 8h) preceded a decrease in the nucleic acid
183 metabolic process (GO:0090304; 20h), suggesting multi-level remodeling of DNA replication,
184 firstly by suppressing the DNA replication fork machinery, followed by metabolic reduction in
185 DNA building blocks to control the host cell cycle. This may indicate a host response aimed
186 at suppressing pathogen proliferation by limiting vital nucleotide building blocks essential for
187 pathogen survival²⁴⁻²⁶.

188
189 In the nucleome, significant enrichment of several nuclear pore proteins was observed by
190 STm infection. Specifically, the nuclear pore scaffold proteins Nup205, Nup188, Nup155 and
191 Nup93 increased at 20 h post infection. This suggests the nuclear pore is remodeled during
192 infection to modify protein trafficking across the nuclear envelope. Furthermore, in
193 secretome samples, lysosomal proteins (GO:0005764) displayed enhanced secretion at 20
194 h post infection (Table S2). The lysosomal trafficking protein Kxd1 was also exported at the
195 same time, suggesting that it may contribute to modifying vacuole transport during STm
196 infection. Finally, similarly to the secretome, we observed an unexpected increase in
197 lysosome components in the nuclear fraction (GO:0005764, Figure 1B), consisting of many
198 lysosomal proteases e.g. Cathepsin A (CtsA), Cathepsin B (CtsB), Cathepsin D (CtsD),
199 Cathepsin L1 (CtsL1), Cathepsin S (CtsS), Cathepsin Z (CtsZ), Legumain (Lgmn). Although
200 cathepsins have previously been observed in the nucleus²⁷⁻²⁹, this has not been reported to
201 occur during infection.

202
203 **STm infection induces distinct host proteome responses compared to LPS**
204 As macrophage-like cells are programmed to respond to MAMPs, we anticipated that many
205 of the observed proteomic-wide responses in our experimental design would be attributable
206 to the highly immunogenic LPS present on the STm cell surface. To test this, we directly
207 compared our lysosome samples from STm infected cells with previously published data
208 from pSILAC-AHA labelled RAW264.7 cells stimulated with LPS²⁰ (Table S3). The two time
209 points analysed span two distinct phases of the STm intracellular life cycle, namely i) pre-
210 SPI-2 dependent proliferation (3-4 hrs) and ii) active SPI-2 dependent growth (8 hrs).
211 Consistent with our expectations, STm infection and LPS stimulation showed a strong
212 positive correlation at both 4 h ($r = 0.65$) and 8 h ($r = 0.635$) (Figure 2A); note that equivalent
213 20h samples of pSILAC-AHA labelled RAW264.7 cells stimulated with LPS were not

214 available. Thus, much of the proteome-response of STm infected cells can be explained by
215 innate immune responses to LPS alone.

216

217 Beyond the overall similarity, this comparison enabled us to identify host responses specific
218 to STm infection by filtering out the LPS response from STm infected samples (Figure 2A &
219 Table S4). We then performed GO term enrichment analysis to identify the STm-infection
220 specific responses. A number of infection-related GO terms, including response to virus
221 (GO:0009615) and defence response (GO:0006952) were significantly enriched at both
222 time-points (Figure 2A & Table S6). The antiviral response includes proteins (Stat1, Oas2,
223 Tlr7, Tllr13, Lgals8, Lgals9, Samhd1 and Eif2ak2), which may provide insights into the
224 molecular players involved in this novel but seemingly universal response towards
225 intracellular bacterial pathogens ²². The remaining defence response, even after normalizing
226 out the LPS response, points to the production of these proteins being significantly higher
227 during STm infection. This could be due to i) relative differences in LPS doses and/or
228 structure between the two conditions (free *E. coli* O111:B vs. STm bound), ii) the nature of
229 the LPS presentation to the host cell, or more interestingly, iii) a possible STm-dependent
230 amplification of the host defence response.

231

232 Despite the overall innate immune response to LPS and STm being similar, we detected a
233 number of STm-specific deviations. First, there were LPS-induced responses that were
234 silenced by STm, such as lysozyme Lyz2 (Figure 2B & Table S4). STm presumably
235 suppresses this part of the innate immune defence to avoid cell lysis, in line with previous
236 observations ^{30,31}. Second, we detected an even larger number of core cellular processes
237 that were specifically activated during STm-infection. At 8 h, there was a significant
238 upregulation of the apoptotic process (GO:0006915; Figure 2B & Table S6), which contained
239 Caspase-1 (Casp1), Caspase-11 (human ortholog of Caspase-4 ³²), Caspase-8 (Casp8) and
240 death domain-associated protein (Daxx). Activation of the cell death pathway at 8 h is
241 congruent with the timing of delayed Caspase-11 dependent cell death induced by STm SPI-
242 2 during macrophage infection ⁷, which initiates ~8-10 hours post infection. Second, the IMP
243 metabolic process, which plays an important role in purine metabolism, was downregulated
244 at 8 h (GO:0046040; Figure 2B & Table S6). This response may hint to an interesting host-
245 microbe antagonism revolving around purines, as their synthesis appears to be a strong
246 limiting factor for STm infection ^{33,34}. Third, we observed down regulation of cell cycle control
247 proteins at 8h (KEGG:04110; Figure 2B & Table S6), which included Bub1b, Cdc20, Cdk6,
248 Mcm2, Mcm4, Mcm5, Mcm6, Mcm7, Rbl1. It has recently been shown that promotion of
249 G1/S transition enhances STm intracellular proliferation, and that the STm effector protein
250 SpvB facilitates G2/M arrest in host cells, which is more conducive to STm intracellular

251 proliferation³⁵. The suppression of host cell pathways important for DNA synthesis and
252 replication may signify a host-driven response to counter STm G2/M arrest. Together, these
253 findings demonstrate modulation of core cellular processes spanning from DNA replication
254 to cell death specifically during STm infection however, the functional significance of many of
255 these proteins will require further study.

256

257 In addition to changes in protein expression, we noticed a considerable number of
258 extracellular proteins being less abundant at 8 h after STm infection (e.g. Lpl, Plau, C3, Olr1,
259 Serpine1, Tjp2) (Figure 2B, Table S4). This suggested a potential STm-specific
260 downregulation of biological processes at the cell surface and extracellular space. To
261 examine this in more detail, we compared the secretome of LPS and STm treated cells
262 (Figure 2C, Table S5). Similar to the lysosome, STm infection and LPS stimulation induced
263 broadly similar protein secretion dynamics over time (Figure 2B, Table S5), although clear
264 discrepancies were apparent. For example, we observed incongruent regulation of the
265 chemokine Osteopontin (Ssp1) with STm infection preventing its secretion and LPS
266 stimulation inducing it (Figure 2B). Previous reports have indicated Osteopontin is
267 detrimental to the host during Pneumococci or viral infection^{36,37}, and its intracellular form
268 induces the antiviral response by stabilising TRAF3³⁸. Our findings indicate Osteopontin is
269 specifically regulated during STm infection; its functional relevance in this context remains to
270 be elucidated.

271

272 The most profound difference between the extracellular response to LPS and STm infection
273 was the enhanced secretion of lysosomal hydrolases, such as Cathepsin C (CtsC), CtsL1,
274 CtsD, CtsZ, CtsA and Lgmn, in the latter (Figure 2C). This secretion is specific and is not
275 due to pyroptosis, as this would create a general increase of cytosolic contents in the
276 external milieu. Interestingly, STm was previously shown to enhance the secretion of
277 immature cathepsin D, which was linked to SifA-mediated inhibition of mannose-6-
278 phosphate receptor recycling to the ER, ultimately depriving lysosomes of their hydrolytic
279 enzymes and promoting STm proliferation¹⁷. Our findings suggest that STm-induced
280 lysosomal detoxification is more general than for Cathepsin D alone.

281

282 **Lysosomal proteases are enriched in the nuclear fraction upon STm infection.**

283 Reminiscent of STm-induced secretion of lysosomal proteases observed in the secretome,
284 we also detected a strong and significant increase in several lysosomal hydrolases at 20 h
285 post-infection in the nucleome (Figure 3A). As the expression levels of these proteins
286 remained relatively unchanged in the lysosome samples (Figure 3B-C), their selective
287 increase in the nucleus is presumably due to their increased trafficking to this compartment.

288 We excluded that this is due to introduced artefacts from our partial lysis fractionation
289 method, as our fractionation selectively solubilised lysosomal and not nuclear membranes -
290 corroborated by the lysosomal markers Lamp1 and Lamp2 being reproducibly detected in
291 the lysosome but not nucleome samples (Table S1 & S3). We did however notice that not
292 only lysosomal hydrolases, but also membrane proteins, such as V-type proton ATPase
293 subunits, were also enriched in the nuclear fraction. Comparison of lysosomal lumen
294 proteins and membrane proteins demonstrated two distinct populations within the nuclear
295 fraction, suggesting cathepsin enrichment (lumen proteins) cannot be generally explained by
296 increased levels of lysosomal membrane proteins in the nucleome alone (Figure 3C). These
297 findings strongly suggest that newly synthesised lysosomal proteins, in addition to being
298 secreted, are also trafficked to the nucleus during STm infection. Overall, these findings
299 imply that lysosomal trafficking during infection is more complex than previously appreciated.
300 We hypothesised that this organized re-trafficking of lysosomal proteases during STm
301 infection has a key intracellular role during the infection process and therefore, we set out to
302 examine its significance in more detail.

303

304 **STm SPI-2 is required for nuclear cathepsin activity.**

305 To examine cathepsin localisation and activity, we added a cell permeable cathepsin
306 reactive probe, DCG04-Bodipy-FLike (DCG04-FL), to live cells during STm infection. Such
307 inhibitor-based probes covalently link to the reactive cysteine in the catalytic site of
308 endolysosomal proteases, thus the amount of bound probe directly corresponds to cathepsin
309 activity, which is visualised via the appended fluorophore on SDS-PAGE or by microscopy
310 ³⁹. Endosomal organelles containing active lysosomal cysteine proteases were effectively
311 solubilised with the non-ionic detergent Tx-100, as evidenced by the presence of highly
312 active mature cathepsins in cells treated with the cathepsin probe 488nm DCG04-Bodipy-
313 FLike (Figure 4A left panel), and not in DMSO treated cells, thus demonstrating specificity of
314 the DCG04-Bodipy-FLike probe. Cathepsin activity was elevated in the Tx-100 soluble
315 fraction of infected relative to uninfected cells, particularly for CtsB and CtsZ (Figure 4A left
316 panel). Analysis of nuclear extracts from these same samples exhibited a striking increase in
317 nuclear cathepsin activity upon infection with wildtype STm compared to uninfected (Figure
318 4A, right panel). The high reactivity of the cathepsin probe in nuclear fractions of infected
319 cells demonstrated that the multiple nuclear enriched cathepsins are active. Nuclear
320 cathepsins were also of a higher molecular weight relative to their endolysosomal
321 counterparts (Figure 4A), which are generally known to be processed to more active mature
322 forms ⁴⁰. However, consistent with previous reports describing higher molecular weight
323 nuclear forms of cathepsin CtsB and CtsL in human and murine cell lines ^{27,28,41}, we found
324 these larger forms to be also proteolytically active ^{27,41}, since our probes bind only active

325 enzymes. We eliminated the possibility that this nuclear cathepsin activity was an artefact of
326 cross-reactivity with STm proteins, whereby reactivity to the DCG04-FL probe was detected
327 only in nuclear enriched fractions and not in STm enriched fractions (Figure S2).
328 Interestingly, this increase in nuclear cathepsin activity was not followed by an increase in
329 histone H3 cleavage (Figure S3), which is mediated by nuclear CtsL during stem cell
330 differentiation ⁴². Thus, newly synthesised cathepsins are re-trafficked to the nucleus during
331 STm infection, yielding active enzymes of higher molecular weight compared to their
332 endolysosomal counterparts.

333
334 As the SPI-2 secretion system of STm has been implicated in modifying cellular trafficking of
335 lysosomal contents ¹⁷, and nuclear cathepsin activity coincides with SPI-2 dependent
336 proliferation (Figure S2), we examined whether SPI-2 secretion is required for nuclear
337 cathepsin activity. Cathepsin activity in Tx-100 soluble lysates was comparable between
338 RAW264.7 cells infected with wildtype, SPI-1 ($\Delta prgK$) or SPI-2 ($\Delta ssaV$) secretion system
339 mutants (Figure 4B left panel). In contrast, nuclear cathepsin activity was reduced in cells
340 infected with the SPI-2 mutant, but not the SPI-1 mutant infected cells (Figure 4B right
341 panel). Thus, SPI-2 does not only control export of lysosomal contents to the extracellular
342 space ¹⁷, but also nuclear cathepsin re-trafficking and activation.

343
344 To ensure our observations of SPI-2 dependent nuclear cathepsin activity by SDS-PAGE
345 were not artefacts of biochemical fractionation or reduced bacterial load in the SPI-2 mutant,
346 we used fluorescence microscopy to quantify *in situ* nuclear cathepsin activity from single
347 cells (Figure 4C-D, Figure S4). After live cell labeling with the cathepsin probe DCG04-
348 Boclicky-TAMRA, cathepsin activity overlaying with nuclear DNA was quantified in
349 uninfected bystanders and infected cells containing similar loads of wildtype or SPI-2 mutant
350 STm. Increased nuclear cathepsin activity was observed in wildtype infected cells relative to
351 uninfected bystanders (unpaired Wilcoxon rank sum, $p = 7.86e-11$) (Figure 4D).
352 Furthermore, nuclear cathepsin activity in cells infected with the SPI-2 deficient mutant was
353 significantly lower compared to wildtype-infected cells (unpaired Wilcoxon rank sum, $p =$
354 $7.2e-3$). Finally, confocal microscopy demonstrated increased cathepsin activity inside the
355 nucleus (i.e. cathepsin activity within the nuclear boundary defined by Hoechst stained host
356 nuclei) and as well as in the perinuclear region of wildtype-infected cells, but not uninfected
357 bystanders, uninfected naïve or those infected with a SPI-2 deficient mutant (Figure 4E).
358 Cells displaying elevated nuclear cathepsin activity also exhibited a strong increase in
359 cathepsin activity throughout the cell body. Thus, STm SPI-2 elevates cathepsin activity
360 throughout the cell, as well as driving it towards the nucleus during infection.

362 **Nuclear cathepsin activity correlates with signatures of cell death**

363 To further examine the consequences of nuclear cathepsin activity, we extracted nuclei from
364 cells treated with the cathepsin probe DCG04-Boclicky-TAMRA and analysed by flow
365 cytometry. In uninfected cells, 0.47 % of nuclei were positive for cathepsin activity, in
366 contrast to 5.6 % of nuclei from cells exposed to wildtype STm and 3.6 % exposed to the
367 *ssaV* mutant (Figure 5A). This suggested that only a small fraction of cells undergo nuclear
368 cathepsin delivery at any given time and this partially depends on the SPI-2 secretion
369 system. Interestingly, a substantial fraction of the cathepsin positive nuclei from only the
370 wildtype infected cells were detected in the sub-nuclear region of the FACS plot (Figure 5A,
371 red box), indicative of nuclear DNA fragmentation and cell death. This implied that nuclear
372 cathepsin activity correlates with cell death, which prompted us to examine further the role of
373 cathepsin activity in cell death.

374

375 To determine the role of specific cathepsins during STm induced cell death, we used the
376 widely reported cathepsin B and L specific inhibitor, CA-074-Me, and measured LDH release
377 as a more direct readout of delayed pyroptotic cell death, which can be effectively modelled
378 in RAW264.7 cells ⁴³. We infected RAW264.7 cells with wildtype STm, SPI-2 deficient
379 mutant and the effector mutant $\Delta sifA$, which has a strong replication defect and readily
380 escapes into the cytoplasm, promoting Caspase-11 dependent cell death ⁴⁴ (Figure 5B).
381 Both wildtype STm and the *sifA* mutant induced considerable levels of cell death after 19
382 hours of infection (the latter exhibiting higher cell death, as expected). In wildtype-infected
383 cells, cell death was partially inhibited by the addition of CA-074-Me in a dose dependent
384 manner. As expected, cell death was largely dependent on the expression of a functional
385 SPI-2 ($\Delta ssaV$; Figure 5B). Unexpectedly, the elevated cell death induced by a *sifA* mutant
386 was largely insensitive to inhibition by CA-074-Me. These findings suggest that cathepsin
387 dependent cell death requires an active SPI-2, and intravacuolar STm.

388

389 **Cathepsin activity is required for STm induced Caspase-11 dependent cell death**

390 To further understand the host molecules at play, and to ensure our observations were
391 generalisable to cells other than RAW264.7 cells which lack key inflammasome components
392 ⁴⁵, we sought to replicate our findings using BMDMs from rodent knockout lines. Consistent
393 to previous reports ^{7,46}, LDH release started ~10 h post-infection (Figure 6A). This LDH
394 release was dose-dependently suppressed with the cathepsin B/L specific inhibitor CA-074-
395 Me (Figure 6A), similarly to our observations in RAW264.7 cells.

396

397 Delayed lytic cell death of STm infected macrophages depends on the cytoplasmic LPS
398 sensor Caspase-11 ³. We therefore tested whether cathepsin dependent cell death requires

399 the presence of caspase-11. Cell death was low in cells lacking Caspase-11, and cathepsin
400 inhibitor addition did not change this, demonstrating the critical importance of Caspase-11 in
401 mediating cathepsin-dependent cell death during STm infection (Figure 6B). Cell death
402 occurred to a large degree independently of the inflammasome activators NLRP3 and
403 NLRC4, and the cathepsin inhibitor also blocked cell death in these mutants (Figure 6B).

404

405 Cathepsin inhibitors may rescue Caspase-11-mediated cell death because they inhibit the
406 activity of cathepsins or because they inhibit STm growth inside macrophages. To exclude
407 the latter scenario, we grew STm in the presence of E-64 and CA-074-Me and observed no
408 effect on STm growth (Figure S5). Furthermore, we hypothesised that if the suppression of
409 STm-induced host cell death by cathepsin inhibition can be explained by cathepsin inhibition
410 in the SCV and thereby SPI-2 activation, then the addition of cathepsin inhibitors subsequent
411 to the initiation of SPI-2-dependent replication should largely abrogate their rescuing effect
412 on host cell death. However, addition of inhibitor at 8 h post infection rescued cathepsin-
413 dependent cell death induced by STm in BMDMs equally well as addition of the inhibitor
414 from the beginning of infection (Figure 6C). Therefore, it is the late cathepsin activity that
415 promotes the Caspase-11-mediated cell death. Since cathepsins relocate to the nucleus or
416 the extracellular milieu at this time point, it is possible that these activities trigger cell death.

417 **DISCUSSION**

418 We selectively enriched and quantified the host pool of newly synthesised proteins, enabling
419 unprecedented proteome-wide spatiotemporal resolution of a host-pathogen interaction. This
420 dataset provides a rich resource for infection biology, and could serve as a basis for a
421 plethora of hypotheses. We used it to reveal a novel role for cathepsins in activating STm-
422 induced pyroptosis via the non-canonical inflammasome. This proof-of-principle example
423 illustrates how the selective quantification of the newly synthesised host proteome within
424 different cellular compartments can illuminate mechanisms that would otherwise remain
425 hidden using conventional proteomic approaches.

426

427 The host proteome during STm infection has been mapped before: whole proteome analysis
428 during infection of RAW264.7 macrophages (at the time, the authors could identify in total
429 ~1,000 host proteins)⁴⁷, and mapping the secretome of human monocytes (THP-1) during
430 early stages of infection - before intracellular SPI-2-dependent proliferation⁴⁸. In contrast to
431 prior studies, our approach has three clear advantages: i) we monitor dynamic host
432 proteome responses, collecting samples at different phases of infection and quantifying the
433 newly synthesized proteins at each stage; ii) we use subcellular fractionation and pSILAC-
434 AHA to assess protein redistribution between cellular compartments, quantifying 4978 newly
435 synthesized host proteins in total from the cytoplasm/organelles, the nucleus and the
436 extracellular milieu (lysosome, nucleome and secretome); and iii) we deconvolute the STm-
437 specific response by directly comparing our data with similarly acquired data on the
438 macrophage response to LPS²⁰. To our knowledge, this level of comprehensive proteomic
439 analysis has never been performed before for any host-pathogen interface.

440

441 The benefits of the different angles of our approach are reflected by the multiple facets of
442 infection biology that each can uncover. First, although a large fraction of the host proteome
443 response to STm is due to LPS, there is distinct STm specific proteome regulation compared
444 to LPS stimulation. For example, proteins typically associated with antiviral defense
445 including Tmem173, Oas2, Stat2 and Tlr7 shown distinct regulation during STm infection
446 compared to LPS stimulation. Induction of Oas2 expression in cells infected with
447 *Mycobacterium leprae* promotes intracellular bacterial survival⁴⁹. Tlr7 recognises RNA
448 within bacterial containing vacuoles⁵⁰, and has previously been implicated in the recognition
449 of STm in BMDMs⁵¹. The functional relevance of antiviral proteins during STm infection
450 remains to be elucidated⁴⁹. Second, through temporal sampling, we detected the increased
451 abundance of proteins relevant for host surveillance of symbiont-containing vacuolar
452 membrane (GO:0020005) in the lysosome at both 8 and 20 hours post infection i.e. Gbp2,

453 Gbp2b, Gbp6 and Gbp7. Furthermore, we detected down-regulation of the nucleic acid
454 metabolic process (GO:0090304) only at 20 hours post infection, which consisted of 149
455 proteins. Third, by monitoring the subcellular proteome, we found a nuclear enrichment of
456 NF- κ B at early stages of infection, which was followed by nuclear re-localization of the NF-
457 κ B inhibitor I κ Bi- ζ . This suggests that blunting of the NF- κ B signaling response after LPS
458 stimulation ⁵² may be mediated by nuclear enrichment of I κ Bi ζ . In addition, Spp1 secretion
459 was reduced during STm infection and instead increased inside host cells. As intracellular
460 Spp1 plays an important role in immune modulation ⁵³ including the antiviral response ³⁸, and
461 Spp1 mRNA is elevated in STm infected cells ⁵⁴, we hypothesise that Spp1 plays an as yet
462 undefined role during STm infection. Last, we detected an increase in lysosomal proteases
463 in the secretome and the nuclear fraction during the later stages of STm infection. This
464 unexpected observation led us to unravel a novel functional role for cathepsins during STm
465 induced pyroptosis.

466

467 Our findings that lysosomal proteases are rewired in their cellular trafficking during STm
468 infection builds on a large body of evidence implicating altered trafficking of lysosomal
469 proteases during STm infection. It is now well appreciated that the SCV contains reduced
470 levels of vacuolar hydrolases, including cathepsins, likely due to fusion of the SCV with
471 lysosomes whose hydrolytic activity has been deactivated by the STm effector protein SifA
472 ¹⁷. Consistent with our observations in RAW264.7 cells, STm infection of HeLa cells resulted
473 in enhanced CtsD secretion in a SPI-2 dependent manner ¹⁷. In addition to CtsD, we
474 detected eight additional lysosomal proteases (i.e. CtsC, CtsB, CtsS, CtsL1, CtsZ, CtsA,
475 Psap and Lgmn) showing elevated secretion during infection (Figure 2C). This implies that
476 STm induced rewiring of cathepsin trafficking is a more general phenomenon, not specific to
477 CtsD. Furthermore, recent observations that STm elevates vacuolar pH in both infected and
478 bystander cells ⁵⁵, and given that secretion of CtsD pro-forms play an active role in paracrine
479 signaling ⁵⁶, it is plausible that cathepsin secretion induced by STm infection may affect
480 lysosomal function in uninfected bystander cells.

481

482 In addition to cathepsin secretion, we noticed a pronounced enrichment for lysosomal
483 proteases in the nucleus during STm infection. Although cathepsins and lysosomal
484 hydrolases have previously been shown to be targeted to the nucleus during cellular stress,
485 in cancer cells, or different phases of the cell cycle ^{28,29,41,42,57-60}, to our knowledge this is the
486 first report of active cathepsin delivery to the nucleus during infection. Despite the
487 considerable overlap in the lysosomal proteases enriched in both the secretome and the
488 nucleome upon infection, CtsB and CtsS displayed pronounced enrichment only in the
489 nucleus. This distinct cathepsin enrichment profile between these two cellular compartments

490 suggests that STm-induced changes to subcellular cathepsin targeting are not identical for
491 nuclear and extracellular targeted proteins.

492

493 Analogous to the previously reported SPI-2 dependent cathepsin secretion ¹⁷, cathepsin
494 delivery to the nucleus required SPI-2. Furthermore, nuclear cathepsins were of higher
495 molecular weight compared to lysosomal forms found in the Tx-100 soluble fraction, akin to
496 previously reported SPI-2 dependent CtsD secretion ¹⁷. However in this instance, high
497 molecular weight nuclear cathepsins are active. Nuclear cathepsins often exist as higher
498 molecular weight pro-forms ^{28,29,41,57} and have also been reported to be active in thyroid
499 carcinoma cells and during the S-phase of the cell cycle ^{27,41}. This suggests a non-canonical
500 form of protein trafficking delivers cathepsins to the nucleus during STm infection, possibly
501 as a result of alternate splicing events leading to signal-peptide-devoid N-termini as
502 previously observed for CtsL and CtsB ^{27,61}, followed by a subsequent pH-independent
503 maturation and/or activation (currently, cathepsin S is the only known example that remains
504 as active at neutral pH ⁶²). We can exclude that the nuclear cathepsins are simply proteins
505 derived from ruptured vacuoles, as these are newly synthesised proteins and have not
506 undergone maturation in the low pH of a lysosome. Taken together, nuclear cathepsins
507 represent a branch of cathepsin trafficking distinct from those destined for the
508 endosome/lysosomal compartment however, the precise mechanism for nuclear cathepsin
509 targeting and activation during infection will require further investigation.

510

511 Once in the nucleus, cathepsins have been shown to induce transcriptional changes through
512 the cleavage of proteinaceous DNA regulatory elements ^{29,42}. The most extensively
513 characterised nuclear cathepsins are CtsL and CtsB. Once in the nucleus, CtsL cleaves the
514 N-terminal tail of histone 3 (H3), and is thought to play a role in cellular differentiation by
515 altering the transcriptional landscape ⁴². This specific mechanism is unlikely to occur in our
516 system, as we detected less CtsL specific histone cleavage products ⁴² (Fig S3). Instead,
517 parallels exist between the here observed nuclear cathepsin activity and the mechanisms
518 underlying Neutrophil Extracellular Traps (NETs) production. Nuclear targeting of the
519 lysozyme-derived serine protease neutrophil elastase (NE) promotes partial degradation of
520 several histones, including H2B and H4, and thereby induces chromatin condensation and
521 NET production ⁶³. Reminiscent of this, nuclear cathepsins increased at 20 h post infection,
522 at which point H4 and H3 reduced in abundance (Figure 3A). In addition, we also saw
523 reduced Mki67 levels, which is a commonly used cell proliferation marker, recently shown to
524 play an important role in dispersal of mitotic chromosomes ⁶⁴. This reduction in nuclear
525 proteins critical for maintaining chromatin structure co-occurs with nuclear cathepsin activity,

526 providing a link between these proteins. Whether histone H3/H4 and Mki67 are direct
527 substrates of nuclear cathepsin remains to be tested.

528

529 Consistent with previous reports, we observe that pyroptotic cell death induced by SPI-1
530 OFF STm is strongly Caspase-11 dependent ^{7,44}. At this point we are unable to conclude
531 whether cathepsin activity lies upstream or downstream of Caspase-11 in promoting cell
532 death. Cathepsins play an undisputed role in promoting cell death ⁶⁵. For example,
533 Cathepsin B can directly cleave inflammatory Caspases-1/11 ^{66,67}. Cathepsins, in particular
534 CtsB and CtsC, mediate sterile forms of cell death via lysosomal destabilisation ^{9,13,14,68}, or
535 with purified bacterial components such as flagellin ⁶⁹. Some of these cathepsin-dependent
536 effects are mediated by NLRP3 ⁹ and NLRC4 ⁶⁹, whereas others are NLRP3 independent ¹³.
537 We show that CA-074-Me mediated cathepsin inhibition during STm infection suppresses
538 cell death via Caspase-11, but independently of NLRP3 and NLRC4. This is consistent with
539 reports describing that Caspase-11 dependent cell death occurs independently of NLRP3
540 and NLRC4 during bacterial infection ⁴⁴. However, it remains plausible that cathepsins might
541 still function via both NLRP3 and NLRC4, which would remain undetected in our assays due
542 to their functional redundancy ⁶.

543

544 Additional support for nuclear cathepsins playing an active role in cell death comes from the
545 observation that CtsB is delivered to the nucleus during bile salt-induced apoptosis, whereby
546 addition of the CtsB/L inhibitor CA-074-Me, or silencing *ctsB* expression, abrogates cell
547 death ⁷⁰. Cathepsin B can also induce nuclear apoptosis in digitonin-permeabilized cells ⁶⁷.
548 Moreover, deletion of the endogenous cathepsin inhibitor Stefin-B, which interacts with CtsL
549 in the nucleus ^{58,71}, leads to enhanced Caspase-11 transcription in BMDMs ⁷². Albeit in the
550 absence of infection, these findings provide strong support that nuclear cathepsins play an
551 active role during cell death. Consistently, we observe increased nuclear localization of
552 CtsA, CtsB, CtsL1, CtsS, CtsD, CtsZ upon STm infection, which correlates with signs of cell
553 death, such as DNA fragmentation. Furthermore, we could inhibit pyroptosis by adding CA-
554 074-Me at 8 h after infection when cathepsin activity is present in the nucleus, consistent
555 with nuclear cathepsin activity playing a functional role in STm-induced cell death. At this
556 stage we cannot rule out that endosomal cathepsin activity or cathepsin leakage into the
557 cytosol may also play an active role in STm-induced cell death, as the available cathepsin
558 inhibitors are not cell compartment-selective. Vacuolar cathepsin leakage into the cytosol
559 could directly cleave Caspase-11 ⁶⁶ and/or GSDMD and lead to pyroptosis as seen
560 previously in neutrophils ⁷³. However, in our case the cathepsin inhibitors were less able to
561 rescue cell death in an STm *sifA* mutant, in which SCVs rupture more readily, releasing
562 cathepsins into the cytosol.

563

564 In summary, we used a novel proteome-wide approach to selectively enrich and quantify the
565 newly synthesised host proteome during infection with an intracellular bacterial pathogen,
566 unmasking a hidden layer of the mammalian innate immune response. This rich tapestry of
567 regulated proteins, resolved throughout time and space offers a proteome-wide resource
568 that can now be used to formulate new hypotheses governing host-pathogen interactions.
569 Here, we provide a proof-of-principle by further interrogating the re-trafficking of cathepsins
570 outside of the cell and into the nucleus during STm infection. This highlights a new role for
571 cathepsins during infection, which actively participate in STm-induced cell death via
572 Caspase-11.

573 **ACKNOWLEDGEMENTS**

574 We thank Dr. Malte Paulsen and Dr. Diana Ordonez from the EMBL Flow Cytometry core
575 facility for performing and analysing flow cytometry experiments; members of the Proteomics
576 Core Facility (PCF), especially Mandy Rettel and Per Haberkant for helping in sample
577 preparation, data acquisition and analysis; and the EMBL ALMF Core Facility for providing
578 expertise in image acquisition and data analysis using CellProfiler. We also thank Dr. Sophie
579 Helaine (Imperial College) for the pDiGc plasmid; Omar Wagih (EBI) for the R script to
580 generate scatter plots; and Kyung-Min Noh (EMBL) for the H3.cs1 antibody. We are grateful
581 to all members of the Typas and Krijgsveld laboratories for their valuable discussions. We
582 acknowledge funding from EMBL for this research. JS, NL and HI were supported by
583 fellowships from the EMBL Interdisciplinary Postdoc (EIPOD) programme under Marie
584 Skłodowska-Curie Actions COFUND (grant number 291772).

585

586 **AUTHOR CONTRIBUTIONS**

587 *Conceptualization*: JS, JK and AT; *Investigation*: JS, NL, GS (proteomics), JS, JB, AS
588 (biochemistry and cell biology) and AS (bacterial growth curves); *Resources*: BIF, HSO
589 (cathepsin reactive probes) and AH, WDH (BMDM methodology); *Software*: JS, BED
590 (CellProfiler & R); *Data Analysis*: JS, NL, HI (proteomics), JS, BED (CellProfiler); *Writing*: JS
591 and AT with input from NL, JB, AH, AS, HI, GS, PB, WDH, PB, and JK; *Figures*: JS
592 (schematics, proteomic data, follow up cell biology), AS (bacterial growth curves);
593 *Supervision*: AT, JK and PB; *Funding Acquisition*: AT and JK.

594

595 **DATA AVAILABILITY**

596 Proteomic data has been deposited at ProteomeXchange
597 (<http://www.proteomexchange.org/>) under the identifier PXD010179.

598

599 **CODE AVAILABILITY**

600 The code and pipelines used for data analysis are available upon request.

601

602 **DECLARATION OF INTEREST**

603 The authors declare no competing interests.

604 **FIGURE LEGENDS**

605 **Figure 1. Newly synthesised proteome enrichment detects diverse host responses**
606 **during STm infection.**

607 (A) Experimental design of pSILAC-AHA labelling and subcellular fractionation. (1)
608 RAW264.7 cells were infected with STm 14028s grown to stationary phase at a MOI 100:1,
609 followed by centrifugation to facilitate host-pathogen contact. After a 25 min incubation,
610 extracellular STm were killed by moving cells first to media containing 100 μ g/ml gentamicin
611 for 1 h, and then to media containing 16 μ g/ml gentamicin for the remainder of the
612 experiment (Materials and Methods). Uninfected samples received a mock inoculum and
613 were otherwise treated identically to infected samples. (2) 3.5 hrs prior to harvest, cells were
614 washed and briefly starved for 30 minutes to remove residual amino acids, followed by
615 pSILAC-AHA labelling for 3 hours. (3) Conditioned media was harvested for the secretome
616 samples, whereas cells were washed and partially lysed with a mild detergent (Triton X-100)
617 to extract both the lysatome and nuclear samples. (4) Samples were mixed at 1:1 ratio
618 (infected: uninfected) and then fractionated by centrifugation to separate the secretome,
619 nucleome and lysatome. (5) Newly synthesised proteins containing AHA were covalently
620 linked to alkyne agarose beads via a Click-chemistry reaction. (6) After on-bead protease
621 digestion, peptides were quantified by LC-MS/MS. (I) and (H) refer to intermediate and
622 heavy isotopic amino acids respectively.

623 (B) GO term enrichment of differentially regulated host proteins (4, 8 and 20 h). Selected
624 enriched GO terms are depicted; all enriched GO terms can be found in Table S2. Node size
625 and colours depict the significance (p (-Log₁₀) = right-sided hypergeometric test, Bonferroni
626 corrected) and number of proteins (blue shade), respectively.

627

628 **Figure 2. STm infection induces distinct host proteome responses compared to LPS**
629 **across time and space.**

630 (A) Upper panel, scatter plot of pSILAC-AHA lysatome data previously collected in response
631 to LPS stimulation (LPS was from *Escherichia coli* O111:B) ²⁰ vs data collected after STm
632 infection from this study (Table S3). N.B. Due to differences in sample collection, the LPS
633 samples contain both the lysatome and nucleome fractions. Lower panel, histogram
634 containing protein expression from lysatome of RAW264.7 cells infected with STm for 4 hrs
635 after subtracting the corresponding LPS signal. Dotted blue lines in histogram indicate \pm 2
636 S.D. from the mean and the dotted red line on inset GO term histograms indicates multiple-
637 test adjusted p value (Bonferroni corrected) cutoff of 0.05.

638 (B) Same as A but at later time point: 8 hrs after STm infection or LPS stimulation of
639 RAW264.7. Corresponding protein levels for both panels (A) and (B) in Table S4 and GO
640 terms in Table S6.

641 (C) Heatmap of secreted proteins from pSILAC-AHA labelled RAW264.7 cells after STm
642 infection or LPS stimulation, the latter data obtained previously²⁰. N.B. Only rows without
643 missing data points were used for analysis. To the right is a STRING network of vacuolar
644 proteins with increased secretion dynamics upon STm infection relative to LPS. Nodes
645 represent individual proteins and edges reflect experimentally determined interactions and
646 co-expression weighted data from STRING v10.5⁷⁴.

647

648 **Figure 3. Lysosomal proteases are enriched in the nuclear fraction upon STm
649 infection.**

650 (A) Histogram of nuclear proteins differentially regulated upon STm infection at 20 h,
651 lysosomal hydrolases are annotated in red. Blue and red dotted lines, as well as GO cellular
652 component enrichments (inset) as in Fig. 2a.

653 (B) Scatter plot of lysosome and nucleome data collected from RAW264.7 cells at 20 h post-
654 infection. Distributions of all proteins found in the lysosome (x-axis) and nuclear fraction (y-
655 axis) (blue), and lysosomal hydrolases (red). Black dotted line represents the line of best fit.
656 p = (unpaired Wilcoxon rank sum test).

657 (C) Boxplots displaying the relative fold change (infected/uninfected) of membrane bound
658 lysosomal vs soluble lysosomal luminal proteins from the lysosome and nucleome samples.
659 Box boundaries indicate the upper and lower IQR, the median is depicted by the middle
660 boundary and whiskers represent 1.5x IQR (see Table S7).

661

662 **Figure 4. STm SPI-2 is required for nuclear cathepsin activity.**

663 (A) Uninfected and wildtype STm-infected RAW264.7 cells (MOI = 100:1) were treated with
664 the cathepsin probe DCG04-Bodipy-FLike (5 μ M), or DMSO vehicle for 3 h prior to
665 harvesting at 20 h post-infection. Tx-100 soluble (left) and insoluble (right) extracts were
666 separated by SDS-PAGE and then visualised using a fluorescence scanner (Ex 405 nm/Em
667 520 nm). Immunoblot with anti-GAPDH and coomassie staining of histones were used as
668 loading controls for lysosome and nucleome samples respectively. Data is representative of
669 two biological replicates (all blots shown in supplement).

670 (B) RAW264.7 cells infected with wildtype, Δ ssaV (SPI-2) or Δ prgK (SPI-1) STm were
671 treated with the cathepsin probe DCG04-Bodipy-FLike (5 μ M) and lysosome (left) and
672 nucleome (right) extracts were separated and visualised as described in A. Loading controls
673 as in A. Data is representative of two biological replicates (all blots shown in supplement).

674 (C) The cathepsin activity probe DCG04-Boclicky-TAMRA (5 μ M) was added to the media 2
675 h prior harvesting at 2 (upper) and 20 (lower) hours post-infection (MOI = 100:1) with STm
676 constitutively expressing GFP from pDiGc (see Methods). Cells were then fixed and stained
677 with Hoechst 33342 (DNA) and images acquired using a 20x objective.

678 (D) Violin plots of single cell nuclear cathepsin activity quantified in RAW264.7 cells infected
679 with wildtype or Δ ssaV (SPI-2) STm constitutively expressing GFP from pDiGc (MOI =
680 100:1) for 20 h. Infected cells were treated with the cathepsin probe DCG04-Boclicky-
681 TAMRA 2 h prior to cell fixation. Nuclear cathepsin activity was measured by quantifying
682 DCG04-Boclicky-TAMRA signal that overlapped with Hoechst 33342 stained nuclei. Each
683 data point represents a measurement per cell nuclei, which was further classified as infected
684 or uninfected bystander based on the presence or absence of GFP expressing STm located
685 inside the host cell perimeter, respectively. Nuclear cathepsin activity was normalised to
686 nuclei area. Only infected cells containing similar bacterial loads per cell were compared.
687 Red bar = median. An unpaired Wilcoxon rank sum test was used to calculate p . A replicate
688 experiment yielded similar results (Fig S4).

689 (E) Cathepsin activity in fixed cells, prepared as in C), were visualised by confocal
690 microscopy. Depicted cells are representative of high and low nuclear cathepsin activity
691 distributions in D. Cells with high nuclear and perinuclear cathepsin activity are more readily
692 observed in cells infected with wildtype-STm compared to those infected with Δ ssaV (SPI-2)
693 mutants, uninfected bystanders, and naïve cells from control wells not exposed to bacteria.
694 Scale bars represents 2 μ m.

695 **Figure 5. Nuclear cathepsin activity correlates with signatures of cell death.**

696 (A) Nuclei were extracted from RAW264.7 cells treated with DCG04-Boclicky-TAMRA (5 μ M)
697 for 2 h prior to harvest at 20 h post infection (MOI = 100:1), and were subsequently
698 counterstained with Hoechst 33342 and analysed by flow cytometry. Cells in G1, S or G2
699 phase of the cell cycle are separated by Hoechst 33342 staining on the x-axis (upper).
700 Cathepsin activity (DCG04-Boclicky-TAMRA) per nuclei is shown on the lower panel where
701 the value refers to the % of total DCG04-Boclicky-TAMRA positive nuclei in either sub-G1 or
702 G1/S/G2, red and black boxes, respectively.

703 (B) RAW264.7 cells were infected with STm 14028s (MOI 100:1) for 19 h. Pyroptotic cell
704 death was assessed by quantifying LDH release into culture supernatants of cells infected
705 with wildtype, SPI-2 (Δ ssaV) and the effector deletion (Δ sifA) mutants in the presence or
706 absence of CA-074-Me (12.5 and 25 μ M) or DMSO solvent control. Data is from two
707 independent experiments; each containing 8, 4 and 4 biological replicate wells infected with
708 wildtype, Δ ssaV and Δ sifA mutants, respectively, per condition. Data represents the % LDH

709 release per condition relative maximum LDH release (see Methods). Box plots are depicted
710 as in Fig. 3C. An unpaired t-test was used to calculate p .
711

712 **Figure 6. Cathepsin activity is required for STm induced Caspase-11 dependent cell**
713 **death.**

714 (A) BMDMs were infected with wildtype STm (MOI 100:1), followed by incubation in the
715 presence of cathepsin inhibitor CA-074-Me at the indicated concentrations. At the indicated
716 times post-infection, cell death was measured as the % of LDH released into culture
717 supernatants. Data points represent the mean and error bars indicate the 95% CI. Time
718 points 0-14 are derived from three biological replicates per condition, whereas the 18 hour
719 time point contains combined data from 3 or more independent experiments, each
720 containing 3-4 biological replicates per condition.

721 (B) related to A), wildtype, caspase-11/1 $^{-/-}$, caspase-11 $^{-/-}$, NLRP3 $^{-/-}$, NLRC4 $^{-/-}$ BMDMs
722 were infected with wildtype STm (MOI 100:1), followed by incubation in the presence of
723 cathepsin inhibitor CA-074-Me (12.5 μ M) for 18 h. The % LDH released into culture
724 supernatants was measured 18 h post-infection. n denotes the combined data from 10 (wild
725 type) and 3 (mutant genotypes) independent experiments, each containing 3-4 biological
726 replicates per condition.

727 (C) BMDMs infected with wildtype STm (MOI = 100:1) were treated with CA-074-Me (12.5 or
728 25 μ M) or DMSO control at 1 or 9 h post infection. Box plots are depicted as in Fig. 3C. An
729 unpaired t-test was used to calculate p . n denotes the combined data from 3 independent
730 experiments, each containing 3-4 biological replicates per condition.

731 **Supplementary Figure S1. Increasing intracellular STm load over time co-occurs with**
732 **dynamic proteome changes.**

733 (A) RAW264.7 cells infected with STm constitutively expressing GFP (pDiGc) at MOI 100:1
734 and incubated for the indicated times were analysed by CellProfiler. Images were captured
735 at 20x objective and analysis was conducted with CellProfiler to segment infected from
736 uninfected cells and quantify bacterial load per cell based on GFP fluorescence per infected
737 cell. CellProfiler quantification of bacterial count per infected cell (only infected cells) are
738 displayed as a histogram and shows increasing bacterial load with time. Data contains
739 combined counts from two biological replicate experiments, whereby each replicate received
740 reverse SILAC labels (see Methods). 2-5 fields of view (technical replicates) were acquired
741 per biological replicate and per time point. The combined total of host cells quantified is
742 indicated (n=). The dotted red line indicates distribution median. Representative images of
743 quantified cells are displayed to the right of histograms. Scale bars represent 50 μ m. The %
744 of infected cells per fields of view (FOV) at the beginning of the experiment (i.e. immediately

745 post gentamicin 100 μ g/ml treatment, $t=0$) is displayed as a boxplot on the far right. Box
746 plots are depicted as in Fig. 3C.

747 (B) Replicate correlation of infected vs. uninfected samples for the indicated time points and
748 different subcellular fractions - cytoplasmic and solubilised organelles within the Tx-100
749 soluble fraction (lysosome; upper), nuclear enriched fraction in the Tx-100 insoluble fraction
750 (nucleome-middle) and proteins secreted into the culture supernatant (secretome-lower).
751 Two biological replicates containing reversed SILAC labels were obtained for each cell
752 fraction and each time point (See Table S1).

753 **Supplementary Figure S2. Nuclear cathepsin activity is observed within the first 8**
754 **hours of infection.** Time course of nuclear cathepsin activity. Nuclei and STm were
755 enriched by sequential 50 \times g and 8,000x g centrifugation steps, respectively. RAW264.7
756 cells were infected with wild type STm 14028s, and treated with DCG04-Bodipy-FLike (5 μ M)
757 for 4 hours prior to harvesting. Samples were separated by SDS-PAGE and visualised using
758 a fluorescent scanner (Ex 405 nm/Em 520 nm), followed by immunoblotting for the
759 lysosomal associated membrane protein LAMP1, the soluble cytoplasmic protein GAPDH
760 and Coomassie stained for histones as a loading control for nuclear extracts. L = lysosome,
761 N = nucleome, STm = STm enriched fraction.

762 **Supplementary Figure S3. CtsL specific Histone 3 cleavage product is decreased by**
763 **STm infection.** RAW264.7 cells were infected with STm at MOI 100:1 and harvested at 20 h
764 post infection. Whole cell lysates were immunoblotted with the CtsL specific cleavage
765 product of H3 (H3.cs1)⁴² and histone 3 (H3) as loading control. The experiment was
766 performed in biological duplicate per condition and were analysed in adjacent lanes.

767 **Supplementary Figure S4. Nuclear cathepsin activity requires SPI-2.** Replicate
768 experiment of Figure 4D. The cathepsin activity probe DCG04-Boclicky-TAMRA (5 μ M) was
769 added to the media 2 h prior to harvesting at 20 h hours post-infection (MOI = 100:1). Cells
770 were fixed and stained with Hoechst 33342 (DNA). Four fields of view per biological triplicate
771 well were acquired per condition and analysed using CellProfiler as per Fig 4D. Images were
772 acquired using a 10x objective. An unpaired Wilcoxon rank sum test was used to calculate p .

773 **Supplementary Figure S5. STm growth is unaffected by cathepsin inhibitors in batch**
774 **culture conditions.**

775 (A) STm 14028s growth was measured in the presence of the pan-cathepsin inhibitor E-64
776 in LB at 37 °C. STm was grown in the presence of E-64 5, 10 and 15 μ M and DMSO solvent
777 controls.

778 (B) STm 14028s growth was measured in the presence of the selective cathepsin inhibitor
779 CA-074-Me in LB 6, 12.5 and 25 μ M and DMSO solvent controls. Drug concentrations used
780 are indicated. Both A and B were performed in biological triplicate.

781 **Supplemental information**

782 **Figure S1.** Increasing intracellular STm load over time co-occurs with dynamic proteome
783 changes

784 **Figure S2.** Nuclear cathepsin activity time course of RAW264.7 infected cells.

785 **Figure S3.** CtsL specific Histone 3 cleavage product is not increased by STm infection

786 **Figure S4.** Nuclear cathepsin activity, repeat of Fig 4C.

787 **Figure S5.** STm growth is not inhibited by cathepsin inhibitors in batch culture conditions

788 **Table S1.** Replicate data of reversed pSILAC-AHA labelled RAW264.7 cells during STm
789 infection.

790 **Table S2.** GO term enrichment analysis of proteome changes during STm infection of
791 RAW264.7 cells.

792 **Table S3.** Merged pSILAC-AHA proteomic data from cells stimulated with LPS or STm
793 infection.

794 **Table S4.** STm infected Lysatome pSILAC-AHA labeled RAW264.7 cell data after
795 subtraction of LPS signal from Eichelbaum & Krijgsveld 2014b.

796 **Table S5.** STm infected Secretome pSILAC-AHA labeled RAW264.7 cell data after
797 subtraction of LPS signal from Eichelbaum & Krijgsveld 2014b.

798 **Table S6.** GO term enrichment of STm infected Lysatome, Nucleome and Secretome
799 pSILAC-AHA data data after subtraction of LPS signal from Eichelbaum & Krijgsveld 2014b.

800 **Table S7.** Luminal and membrane bound lysosomal proteins.

801 **METHODS**

802 No statistical methods were used to predetermine sample size.

803 **Media, chemicals and reagents**

804 The following chemical and reagents used were purchased from Sigma: E64 (cat. 3132),
805 DMSO (cat. D8418), L-methionine, L-cysteine, L-lysine, L-arginine L-glutamine.
806 Tris(carboxyethyl)phosphine (cat. C4706) and 40 mM 2-Chloroacetamide (cat. 22790),
807 Triton X-100 (x100), heat inactivated Fetal Bovine Serum (FBS) (F9665-500ML), Phalloidin-
808 ATTO 700 (79286-10NMOL), gentamicin (G1914), Gibco; DMEM 4.5 g/L glucose (41965),
809 DMEM 4.5 g/L glucose non GMP formulation ME 100073L1 (without L-lysine HCl and L-
810 arginine HCl), dialysed FBS (26400044), RPMI 1640 without (11835-030) & with (52400-
811 025) phenol red, respectively. DMEM containing high glucose, HEPES buffered and without
812 phenol was purchased from Thermo Fisher (21063029). Cathepsin inhibitor CA-074-Me was
813 purchased from EMD Millipore (205531), L-azidohomoalanine (AHA) from Click chemistry
814 tools (1066-100), cOmplete mini EDTA-free protease inhibitors from Roche (11873580001),
815 recombinant murine M-CSF from PeproTech (315-02), Hoechst 33342 from Life
816 Technologies (H3570), formaldehyde 16% (w/v) from Thermo Scientific PierceTM (28908)
817 and the CytoTox 96[®] Non-Radioactive Cytotoxicity kit from Promega (G1780). Antibodies
818 were mostly purchased from Cell Signalling; GAPDH(D16H11) cat. 8884, Histone H3(D1H2)
819 cat. 4499P, Sigma; anti-rabbit HRP (Sigma/GE - NA934-1ML) and anti-mouse HRP (Sigma,
820 HVZ-A4416-1ML).Anti-RNA polymerase Sigma 70 (RpoD) [2G10] cat. GTX12088 was
821 purchased from Acris antibodies. Mouse serum was purchased from Abcam (ab7486).

822 **Bacterial culture conditions and strain construction**

823 *Salmonella enterica* Typhimurium 14028s (STm) was cultured at 37°C in LB Broth (Lennox)
824 with agitation overnight in the presence of antibiotics for plasmid selection. Strains
825 expressing antibiotic resistance genes were selected and maintained on solid LB agar plates
826 containing citrate and 30µg/mL kanamycin (mutant selection) or 100µg/mL ampicillin (for
827 pDiGc plasmid). Mutant strains were retrieved from a single-gene mutant collection⁷⁵,
828 followed by PCR confirmation and retransduction of the mutated loci into the wild type STm
829 14028s background using P22 phage. To visualise bacteria during infection via fluorescence
830 microscopy, a plasmid constitutively expressing GFP - pDiGc -⁷⁶ was introduced into
831 bacteria by electroporation followed by selection on LB agar containing ampicillin 100µg/mL
832 at 37°C.

833

834

835 **Cell culture conditions**

836 RAW264.7 cells (ATCC®TIB71™) purchased from ATCC were routinely cultured in DMEM
837 containing 4.5 g/L glucose and passaged by detaching with accutase (StemCell; A1110501).
838 Only cells below passage number 15 were used for experiments. Bone marrow was isolated
839 from 8-12 week old mice from wild type C57Bl/6 mice, Casp11/-/-⁷⁷, Casp11/-/-⁷⁸, Nlrp3/-/-⁷⁹ and Nlrc4/-/-⁸⁰ (C57BL/6 genetic background). Femur and tibia were flushed with PBS.
840 The bone marrow cell suspension (from femur) was filtered through a 70 µm cell strainer
841 (Falcon), washed with 20 ml PBS, spun down at 1200 rpm (4 °C, 15 min) and resuspended
842 in 1 ml of 90 % heat-inactivated FBS (Life Technologies) + 10 % DMSO (Sigma) at a
843 concentration of 1x10⁷, then transferred to liquid nitrogen for storage. For experiments, bone
844 marrow was thawed and washed in 10 mL of pre-warmed RPMI supplemented with 10%
845 FBS (Sigma) (RPMI+FBS). Cells were then resuspended in 20 mL RPMI+FBS without
846 phenol, supplemented with 50 µg/L gentamicin and 40 ng/mL M-CSF. N.B. M-CSF was
847 reconstituted in 0.1% bovine serum albumin (Carl Roth, cat. 8076.4), then aliquoted and
848 stored at -30°C. Cell suspensions were then split across two 10 cm petri dishes, then
849 incubated at 37°C, 5% CO₂ for 6 days to allow bone marrow-derived macrophage (BMDMs)
850 differentiation. BMDMs were washed with 3 mL PBS, and detached by incubating cells in 3
851 mL cell dissociation buffer (5% FBS, 2.5 mM EDTA in PBS) and incubation on ice for 5
852 minutes. Resuspended BMDMs were pooled, then pelleted at 500 xg and resuspended in 20
853 mL RPMI+FBS(5%) without phenol and supplemented with 40 ng/mL M-CSF.
854

855 **Proteomic sample preparation**

856 RAW264.7 cell infections were performed as previously described⁸¹. Approximately 18-20 h
857 prior to infection, RAW264.7 cells were seeded in DMEM containing 10% FBS
858 (DMEM+FBS) at a cell density of 0.9x10⁵ per well in 6 well plates. Cell density from
859 overnight bacterial cultures grown in LB Broth (Lennox) at 37°C were measured (OD₅₇₈) and
860 normalised to OD₅₇₈ = 1. Cells were then washed in PBS and pelleted at 8,000 xg for 5 min.
861 To opsonize bacteria, pellets were resuspended in DMEM containing 10% mouse serum
862 and incubated at room temperature for 20 min. Opsonized bacteria and mock inoculum,
863 were added directly to wells containing RAW264.7 cells at an MOI 100:1 and centrifuged at
864 170 g for 5 min to promote bacterial uptake. Infected cells were incubated at 37°C at 5%
865 CO₂ for 25 min. Infected cells were then washed once and media and replaced with
866 DMEM+FBS containing 100 µg/mL gentamicin and returned to the incubator for 1 hour.
867 Media was then replaced with DMEM+FBS containing 16 µg/mL gentamicin for the
868 remainder of the experiment; this step denotes *t* = 0 h. Therefore, for all experiments, *t* =
869 time since addition of DMEM+FBS containing 16 µg/mL gentamicin.
870

871 Cells were pulse-SILAC-AHA labeled as previously described ¹⁹ with the following
872 modifications. To deplete the cells of methionine, lysine and arginine, roughly 3.5 hours prior
873 to harvest, infected and corresponding control cells were washed thrice with prewarmed
874 PBS followed by a 30 min incubation in DMEM dropout media; DMEM containing 10%
875 dialysed FBS, 4.5 g/L glucose, 40 mM L-glutamine, 60 µg/mL L-cysteine and 16 µg/mL
876 gentamicin, but lacking L-methionine, L-lysine and L-arginine (GIBCO). This was then
877 replaced with DMEM dropout media media supplemented with 100 µM L-azidohomoalanine
878 and either 84 µg/ml [¹³C₆, ¹⁵N₄] L-arginine and 146 µg/ml [¹³C₆, ¹⁵N₂]L-lysine (heavy) or 84
879 µg/ml [¹³C₆]L-arginine and 146 µg/ml [4,4,5,5-D₄]L-lysine (intermediate) SILAC labels
880 (Cambridge Isotope Laboratories, Inc). Cells were then pulse labeled for 3 hours to allow
881 sufficient time for protein translation and subsequent trafficking throughout the cell.

882

883 For cell fractionation, conditioned media containing the “secretome” from pulse SILAC-AHA
884 labeled cells were collected as previously described ¹⁹ and stored at -80°C. RAW264.7 cells
885 were then washed three times with prewarmed PBS followed by partial lysis in 1 ml PBS
886 containing 0.1% Tx-100 and protease inhibitors (Roche: cOmplete, mini, EDTA-free) per well
887 for 10 minutes at room temperature. Intermediate and heavy isotopically labeled samples
888 corresponding to either infected or uninfected cells were combined in a 1:1 ratio. To isolate
889 Tx-100 resistant nuclei and bacteria, the lysate was centrifuged at 3,220 xg for 10 min at
890 4°C. Supernatant containing the “lysosome” was transferred to a separate tube and the
891 pellets containing the “nucleome” were washed with PBS containing 0.1% Tx-100 followed
892 by storage at -80°C. Thus, the lysosome is a nuclear-free cell lysate.

893

894 To enrich for the newly synthesised proteome, samples from two biological replicates that
895 were simultaneously pulse labeled with SILAC and AHA labels (biological replicates
896 contained reversed SILAC labels) for 3 h prior to harvest were harvested as previously
897 described ²⁰, with the following modifications. Secretome and lysosome samples were
898 thawed and concentrated to a volume of ~250 ul using a 15 ml Amicon Ultra centrifugal
899 device with a 3 kDa cutoff at 4°C at 3,220 xg. Nucleome pellet was thawed and solubilised
900 in Lysis buffer (ThermoFischer Click-iT: C10416) followed by DNA shearing using a probe
901 sonicator. Newly synthesised proteins were then enriched using 100 ul of beads and
902 according to the manufacturer’s instructions with the following modifications. AHA-containing
903 newly synthesised proteins were reacted with the beads overnight (~16 hrs) at room
904 temperature with rotation. Samples were then centrifuged at 2,600 xg. Beads were then
905 washed three times with SDS buffer (1% SDS, 100mM Tris pH8, 5mM EDTA and 500mM
906 NaCl) followed by reduction and alkylation by resuspending the beads in 500 ul SDS buffer
907 containing 10 mM Tris(carboxyethyl)phosphine (Sigma: C4706) and 40 mM 2-

908 Chloroacetamide (Sigma: 22790). Samples were then incubated for 30 minutes at 37 °C with
909 constant agitation at 1,000 rpm. Beads were transferred to retention columns and washed in
910 the following sequence: 7x with 1 ml SDS wash buffer, 10x with 1 ml freshly prepared Urea
911 buffer (8M Urea, Tris-HCl pH 8.0), 10x with 20% 2-propanol and 10x with 20% acetonitrile.
912 Beads were then transferred to low protein binding tubes by resuspending in buffer
913 containing 100 mM Tris pH 8.0, 2 mM CaCl₂ and 4% acetonitrile. Beads were then
914 centrifuged at 2,600 xg for 1 minute and supernatant decanted.

915

916 For peptide preparation, on-bead digestion was carried out in 50 μ l of digestion buffer (8M
917 Urea, Tris-HCl pH 8.0, 2.5% acetonitrile) by adding 2 μ l of a 0.5 μ g/ μ l LysC/Trypsin to each
918 tube and incubation at 37 °C for 4 hours with shaking at 1,000 rpm. Urea was then diluted by
919 adding 150 μ l of buffer (100 mM Tris pH 8.0, 2 mM CaCl₂ and 4% acetonitrile) and incubated
920 overnight at 37 °C. Supernatants were then transferred to fresh microfuge collection tubes.
921 Beads were then washed with 200 μ l of H₂O to collect residual peptides and collated.
922 Samples were acidified by adding 8 μ l (2% of the sample volume) of a 10% formic acid
923 followed by acidification verification using a pH strip.

924

925 Peptides were desalted by binding to a Waters Oasis HLB 96-well μ Elution Plate (Waters:
926 186001828BA) using a vacuum manifold. Wells were preconditioned by passing 100 μ l of
927 100% acetonitrile followed by 100 μ l of Oasis buffer B (1% formic in 60% MeOH) then 100 μ l
928 of Oasis buffer A (1% formic in H₂O). Samples were then bound followed by sequential 300
929 μ l, 200 μ l and 100 μ l washes with Oasis buffer A. To elute peptides, a collection tray was
930 loaded with glass vials over which the Oasis plate was carefully aligned. Peptides were
931 eluted in subsequent 50 μ l and 25 μ l of Oasis buffer B. Glass vials were then transferred to 2
932 ml centrifuge tubes, pulse spun then stored at -20°C. Secretome and nucleome fractions
933 were evaporated using a speedVac at 35°C for ~2 hrs, then resuspended in 20 μ l of injection
934 buffer (96.9% water, 3% ACN and 0.1% Formic acid) for direct analysis by nano LC-MS/MS
935 on Velos orbitrap.

936

937 To reduce sample complexity, lysosome samples were subjected to high-pH reversed phase
938 fractionation. In brief, the fractionation was performed on an Agilent 1260 HPLC system
939 equipped with a variable wavelength detector (254nm). On the HPLC, fractionation was
940 performed on an XBridge BEH C18 column (1 x 100mm, 3.5 μ m, 130Å, Waters). Elution was
941 performed at a flow rate of 0.1mL per minute using a gradient of mobile phase A (20mM
942 ammonium formate, pH 10) and B (acetonitrile), from 1% to 37.5% over 61 minutes.
943 Fractions were collected every 2 minutes across the entire gradient length and concatenated
944 into 8 final samples as discussed previously ⁸². Fractions were dried in a SpeedVac and

945 reconstituted in 0.1% formic acid prior to desalting on an Oasis uElution plate and analysis
946 by LC-MS/MS. Samples were then analysed on an Orbitrap Velos Pro (Thermo Fisher
947 Scientific) as previously described²⁰.

948
949 For proteomic data analysis, the raw data obtained by Orbitrap mass spectrometers were
950 processed using MaxQuant software (version 1.5.0.0). The MaxQuant implanted search
951 engine Andromeda was used to search the MS/MS spectra, against a mouse database
952 obtained from Uniprot. In the database, the sequences of frequently observed contaminant
953 proteins and the reversed sequences of all entries were included, to indicate the false-
954 positive search hints. Trypsin/P was chosen as the digestion enzyme, and only no more than
955 two miss cleavages were allowed for the peptide identification. Cysteine
956 carbamidomethylation was used as the only fixed modification, while methionine oxidation,
957 N-terminal acetylation and AHA replacement of methionine were chosen as the variable
958 modifications. The minimal peptide length was set to 7 amino acids. The mass tolerance for
959 peptides was 20 ppm in initial search and 6 ppm in main search. The maximal tolerance for
960 fragment ion identification was 0.5 Da. False discovery rates for the identification of proteins
961 and peptides were set to 1%. The minimal unique peptide number for protein identification
962 was set to 1%. At least two ratio counts (quantified peptides for each protein) were set for
963 the protein quantification. The "requantify" and "match between runs" were functionalized in
964 MaxQuant. In the pulse SILAC-AHA samples, only protein groups having a ratio of over 20%
965 identified peptides containing medium or heavy labels were kept for the further analysis.
966 Proteins identified as potential contaminants, with reverse sequences, and from only
967 peptides were removed. Average protein ratios were calculated, only if they were quantified
968 in both biological replicates. The data are available via ProteomeXchange⁸³ with the
969 identifier (PXD010179). Proteomic data was visualized using R (v 1.0.143) and Cytoscape
970 (v3.3.0). Heatmaps were visualised with Heatmapper⁸⁴.

971 **Flow Cytometry of extracted nuclei**

972 Tissue culture media from infected cells were replaced with fresh DMEM containing 5 µM
973 DCG04-Boclicky-TAMRA, followed by a 1 hour incubation at 37°C, 5% CO₂. Cells were
974 washed thrice in PBS followed by solubilization in 0.1% Triton X-100. Nuclei were pelleted
975 (500 xg, 3 min), washed and resuspended in PBS containing 0.1% Tx-100. Nuclei were then
976 fixed by adding formaldehyde to 4% wt/vol (Thermo Scientific; 28908) and incubated for 15
977 minutes at room temperature, followed by washing in buffer containing 0.1% Triton X-100
978 containing 2 µg/ml Hoechst 33342. Nuclei were resuspended in 0.1% Triton X-100
979 containing 2 µg/ml Hoechst 33342 and subjected to flow cytometry. Nuclei samples were
980 acquired on the Attune NxT Flow Cytometer (Thermo Fisher Scientific) equipped with 405

981 nm, 488 nm, 561 nm, and 638 nm lasers. Hoechst was excited by the 405 nm laser line and
982 fluorescence signal was collected using a 440/50 bandpass filter and TAMRA excited by the
983 561 nm laser line and collected using a 585/15 bandpass filter. Post-acquisition analysis was
984 done in FlowJo software 10.0.08 (Tree Star, Inc.).

985 **SDS-PAGE and Immunoblot**

986 RAW264.7 cells were infected in 6 well plates tissue culture plates at an MOI 100:1 as
987 described above. To visualise cathepsin activity, infected and mock treated cells were
988 labeled with 5 μ m DCG04-Bodipy-FLike (λ ex 488 λ em520) 3-4 hours prior to harvest. Cells
989 were then washed three times with PBS, then partially lysed in 200 μ L PBS lysis buffer (PBS
990 containing 0.1% Tx-100 and cOmplete mini EDTA-free protease inhibitors) on ice for 10 min.
991 Cell lysates were then collected and nuclei pelleted at 50 xg for 3 min, followed by a
992 subsequent spin at 500 xg to pellet bacterial cells. Nuclei and bacterial enriched pellets were
993 washed once and then resuspended in 200 μ L PBS lysis buffer. Cell fractions were then
994 combined with 4x Laemmli buffer loading dye, heated to 95°C for 3 min. Samples were then
995 separated by SDS-PAGE and cathepsin activity measured using 488nm laser on Typhoon
996 scanner (FLA 9500). The bottom sections of SDS-PAGE gels were subjected to Coomassie
997 staining to visualise histones followed by western transfer to a 0.45 μ m PVDF membrane
998 (Millipore Immobilin®-P, IPVH00010). Infected whole cell lysates for analysis by SDS-PAGE
999 were generated by washing cells 3 times in PBS at the indicated time point and then directly
1000 lysing cells in 1x Laemmli buffer loading dye. Lysates were then heated to 95°C for 3 min
1001 and analysed by immunoblot. Prior to SDS-PAGE, nuclear DNA was mechanically sheared
1002 using a Hamilton syringe.

1003

1004 Membranes were blocked with 5% skim milk in TBS-T and probed with the following
1005 antibodies 5% skim milk in TBS-T overnight; RpoD 1:1000, GAPDH 1:10,000, LAMP1
1006 1:1,000, Lamin A 1:1,000, Histone H3 1:1,000 and H3.cs1 1:1,000. Secondary antibodies
1007 were used at 1:5,000 and incubated with washed membranes for 1 h at room temperature.
1008 After washing, chemiluminescence substrate (GE Healthcare, RPN2106) was used for
1009 signal development and detected using x-ray film (Advantsta, L-07013-100) or a BioRad
1010 ChemiDoc Touch. X-ray film was converted to digital from by scanning at 300x300 dpi.
1011 Digital images were then cropped and contrast adjusted in Photoshop and incorporated into
1012 figures using Adobe Illustrator. Biological replicate samples were analysed on separate
1013 SDS-PAGE gels, unless otherwise stated.

1014

1015

1016 **LDH release assay**

1017 RAW264.7 cells were seeded in DMEM containing 10% FBS (DMEM+FBS) at a cell density
1018 of 2×10^4 per well in 96 well plates and infected as described above with the following
1019 deviations. Unless otherwise stated, inhibitors and DMSO solvent was added at $t = 0$ h (see
1020 definition above). BMDMs were seeded in RPMI+FBS(5%) without phenol and
1021 supplemented with 40 ng/mL M-CSF at 5×10^4 cells per well into a 96 well plate (Thermo,
1022 cat.167008) ~18-20 h prior to infection. The bacterial inoculum was prepared as described
1023 above. To opsonize bacteria, pellets were resuspended in RPMI containing 10% mouse
1024 serum and incubated at room temperature for 20 min. Opsonized bacteria were added
1025 directly to wells containing BMDMs or RAW264.7 cells at an MOI 100:1 and centrifuged at
1026 170 xg for 5 min to promote bacterial uptake. Infected cells were incubated at 37°C at 5%
1027 CO₂ for 25 min. Cells were then washed once, media was replaced with RPMI + FBS(5%)
1028 without phenol, or DMEM+FBS(5%) without phenol for RAW264.7 cells, containing 100
1029 µg/mL gentamicin and returned to the incubator for 1 hour. Media was then replaced with
1030 RPMI+FBS(5%) or DMEM+FBS(5%) without phenol for RAW264.7 cells with 16 µg/mL
1031 gentamicin for the remainder of the experiment for BMDMs and RAW264.7 cells,
1032 respectively: this step denotes $t = 0$ h. LDH release as a measure of cell death was
1033 quantified according by measuring the % LDH release as previously described using the
1034 CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega:G1780) kit ⁸⁵ according to
1035 manufacturer's instructions. Percentage cell death = 100 x (experimental LDH - spontaneous
1036 LDH) / (maximum LDH release - spontaneous LDH). Data was visualised in R and
1037 GraphPad Prism. Each experimental batch consisted of 3-8 biological replicate wells per
1038 condition, whereby single measurements (490nm) were acquired per well. This
1039 measurement was then normalised to the spontaneous LDH release from uninfected wells
1040 that were otherwise identically treated, using the aforementioned formula and treated as a
1041 separate data point. In our hands, the degree of overall LDH release upon STm infection
1042 displayed considerable variance across batches of BMDM cells. To reduce this variance,
1043 batches whereby wildtype STm induced more than >50% LDH release were removed. All
1044 conditions/mutants for a single experiment (batch) were contained within a single 96 well
1045 plate.

1046 **Microscopy**

1047 RAW264.7 cells were seeded in DMEM containing 10% FBS (DMEM+FBS) at a density of
1048 4×10^5 cells per well in 24 well glass bottom tissue culture plates (Greiner, 662892). Cells
1049 were infected with pDiGc expressing bacteria as described above (MOI 100:1). At the
1050 indicated times, cells were then treated with the cell permeable cathepsin probe DCG04-
1051 Boclicky-TAMRA for 2 hours prior to harvest. Cells were washed three times with PBS and

1052 then fixed with in PBS solution containing 4% formaldehyde. Cells were then stained
1053 overnight with 2 µg/mL Hoechst 33342 and 70 ng/mL Phalloidin in PBS containing 0.05%
1054 Tx-100 to visualize host cell nuclei and host cytoskeleton, respectively. Images of stained
1055 cells were acquired on a Zeiss Cell Observer microscope using a 20x objective. Images
1056 were processed using CellProfiler software 2.1.1 as previously described ⁸⁶. Nuclear
1057 cathepsin activity was quantified by measuring the integrated DCG04-Boclicky-TAMRA
1058 signal intensity that overlapped with the host nucleus defined by the Hoechst 33342 channel.
1059 Cathepsin activity of individual nuclei was normalised to the nuclear size (area), and only
1060 infected cells containing similar bacterial loads were compared between strains. A replicate
1061 experiment was performed by seeding 2x10⁴ cells per well of a 96 well glass bottomed plate,
1062 infected with an MOI 100:1 and processed as described above. Images for this experiment
1063 were acquired on a Nikon Ti-E with a pate loader for 96 well plates using a 10x objective.

1064

1065 Confocal images were acquired on an Olympus confocal laser scanning microscope
1066 (FV3000) using an 60x oil immersion objective. Samples were prepared as described above
1067 in a glass bottomed 96 well plate. After three washes in PBS, cells were fixed with 4%
1068 formaldehyde and 0.4% Tx-100 in PBS for 1 hour at room temperature. Pictures were
1069 captured using the 405 nm laser for excitation for Hoechst 33342, 488 nm for GFP
1070 expressing (pDiGc) STm and 561 nm for DCG04-Boclicky-TAMRA. Image overlays and grey
1071 scale conversions were done in FIJI, then images were cropped in Photoshop before figure
1072 construction with Adobe Illustrator.

1073

1074 **Bacterial growth curves**

1075 Overnight bacterial cultures grown at 37°C in LB (Lennox) were pelleted at 8000 xg and
1076 washed 3 times in fresh media, then back-diluted to OD₅₇₈ = 0.005 in the presence of
1077 inhibitors and solvent at the indicated concentrations. Cells were dispensed, 100 µL per well,
1078 into a round bottom 96 well plate in triplicate (Thermo, Nunclon Delta Surface, cat. 168136),
1079 then covered with a sealable transparent breathable membrane (Breathe-Easy by Divbio,
1080 cat. BEM-1). Cell growth was quantified by measuring the absorbance at 578 nm at 20 min
1081 intervals with constant shaking at 37°C.

1082

1083 **Statistical analyses**

1084 For cell death (LDH release) assays, significance testing was performed in R using the
1085 unpaired t-test (Figure 5B, 6B & C). To avoid assuming any shape of the distribution for
1086 single cell nuclei analysis of cathepsin activity, statistical testing was performed in R using
1087 the unpaired Wilcoxon rank sum test (non-parametric) (Figure 4D & S4). Gene Ontology
1088 (GO) enrichment was calculated with the ClueGO plugin v2.1.7 of Cytoscape v3.3.0. For

1089 global analyses described (Figure 1B), GO enrichment was performed on proteins displaying
1090 ± 1.5 Log₂ fold change (infected/uninfected). For comparison between STm and LPS
1091 stimulated cells in (Figure 2A & B), GO enrichment was performed on proteins ± 2 s.d. of the
1092 Log₂ fold change (infected/uninfected). A custom reference set was used for each test and
1093 contained all quantified proteins within the same fraction. GO enrichment was performed
1094 separately on up- and down-regulated proteins using the right-sided hypergeometric test,
1095 and corrected for multiple testing using the Bonferroni step-down (Holm) method. This test
1096 was chosen for stringent error control.

1097

1098 **References**

1. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. *Nat. Rev. Immunol.* **16**, 407–420 (2016).
2. Man, S. M. & Kanneganti, T.-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. *Nat. Rev. Immunol.* **16**, 7–21 (2016).
3. Shi, J. *et al.* Inflammatory caspases are innate immune receptors for intracellular LPS. *Nature* **514**, 187–192 (2014).
4. Kayagaki, N. *et al.* Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. *Nature* **526**, 666–671 (2015).
5. Shi, J. *et al.* Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. *Nature* **526**, 660–665 (2015).
6. Broz, P. *et al.* Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. *J. Exp. Med.* **207**, 1745–1755 (2010).
7. Broz, P. *et al.* Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. *Nature* **490**, 288–291 (2012).
8. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. *Nat. Rev. Mol. Cell Biol.* **10**, 623–635 (2009).
9. Hornung, V. *et al.* Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. *Nat. Immunol.* **9**, 847–856 (2008).
10. Katsnelson, M. A., Lozada-Soto, K. M., Russo, H. M., Miller, B. A. & Dubyak, G. R. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K⁺ efflux and Ca²⁺ influx. *Am. J. Physiol. Cell Physiol.* **311**, C83–C100 (2016).
11. Orlowski, G. M. *et al.* Multiple Cathepsins Promote Pro-IL-1 β Synthesis and NLRP3-Mediated IL-1 β Activation. *J. Immunol.* **195**, 1685–1697 (2015).
12. Brojatsch, J. *et al.* Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. *Cell Cycle* **14**, 964–972 (2015).
13. Lima, H., Jr *et al.* Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. *Cell Cycle* **12**, 1868–1878 (2013).
14. Brojatsch, J. *et al.* A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants. *PLoS One* **9**, e95032 (2014).
15. LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. *Nat. Rev. Microbiol.* **13**, 191–205 (2015).
16. Jennings, E., Thurston, T. L. M. & Holden, D. W. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. *Cell Host Microbe* **22**, 217–231 (2017).
17. McGourty, K. *et al.* Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. *Science* **338**, 963–967 (2012).
18. Meunier, E. *et al.* Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. *Nature* **509**, 366–370 (2014).
19. Eichelbaum, K., Winter, M., Berriel Diaz, M., Herzog, S. & Krijgsveld, J. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. *Nat. Biotechnol.* **30**, 984–990 (2012).
20. Eichelbaum, K. & Krijgsveld, J. Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation. *Mol. Cell. Proteomics* **13**, 792–810 (2014).
21. Seeley, J. J. & Ghosh, S. Molecular mechanisms of innate memory and tolerance to LPS. *J. Leukoc. Biol.* **101**, 107–119 (2017).
22. Kovarik, P., Castiglia, V., Ivin, M. & Ebner, F. Type I Interferons in Bacterial Infections: A Balancing Act. *Front. Immunol.* **7**, 652 (2016).
23. Matsuo, S., Yamazaki, S., Takeshige, K. & Muta, T. Crucial roles of binding sites for NF-kappaB and C/EBPs in IkappaB-zeta-mediated transcriptional activation. *Biochem. J* **405**, 605–615 (2007).
24. Mantena, R. K. R. *et al.* Reactive oxygen species are the major antibacterials against Salmonella Typhimurium purine auxotrophs in the phagosome of RAW 264.7 cells. *Cell. Microbiol.* **10**, 1058–1073 (2008).
25. Leung, K. Y. & Finlay, B. B. Intracellular replication is essential for the virulence of Salmonella typhimurium. *Proc. Natl. Acad. Sci. U. S. A.* **88**, 11470–11474 (1991).
26. Steeb, B. *et al.* Parallel exploitation of diverse host nutrients enhances Salmonella virulence. *PLoS Pathog.* **9**, e1003301 (2013).

1157 27. Goulet, B. *et al.* A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in
1158 S phase and processes the CDP/Cux transcription factor. *Mol. Cell* **14**, 207–219 (2004).

1159 28. Tamhane, T. *et al.* Nuclear cathepsin L activity is required for cell cycle progression of colorectal
1160 carcinoma cells. *Biochimie* **122**, 208–218 (2016).

1161 29. Goulet, B. *et al.* Increased expression and activity of nuclear cathepsin L in cancer cells suggests
1162 a novel mechanism of cell transformation. *Mol. Cancer Res.* **5**, 899–907 (2007).

1163 30. Martinez Rodriguez, N. R. *et al.* Expansion of Paneth cell population in response to enteric
1164 *Salmonella enterica* serovar *Typhimurium* infection. *Infect. Immun.* **80**, 266–275 (2012).

1165 31. Salzman, N. H. *et al.* Enteric salmonella infection inhibits Paneth cell antimicrobial peptide
1166 expression. *Infect. Immun.* **71**, 1109–1115 (2003).

1167 32. Knodler, L. A. *et al.* Noncanonical inflammasome activation of caspase-4/caspase-11 mediates
1168 epithelial defenses against enteric bacterial pathogens. *Cell Host Microbe* **16**, 249–256 (2014).

1169 33. Liu, Y. *et al.* Quantitative Proteomics Charts the Landscape of *Salmonella* Carbon Metabolism
1170 within Host Epithelial Cells. *J. Proteome Res.* **16**, 788–797 (2017).

1171 34. Villarreal-Ramos, B. *et al.* Susceptibility of calves to challenge with *Salmonella typhimurium* 4/74
1172 and derivatives harbouring mutations in *htrA* or *purE*. *Microbiology* **146** (Pt 11), 2775–2783
1173 (2000).

1174 35. Maudet, C. *et al.* Functional high-throughput screening identifies the miR-15 microRNA family as
1175 cellular restriction factors for *Salmonella* infection. *Nat. Commun.* **5**, 4718 (2014).

1176 36. Paul, A. M. *et al.* Osteopontin facilitates West Nile virus neuroinvasion via neutrophil ‘Trojan
1177 horse’ transport. *Sci. Rep.* **7**, 4722 (2017).

1178 37. van der Windt, G. J. W. *et al.* Osteopontin impairs host defense during pneumococcal
1179 pneumonia. *J. Infect. Dis.* **203**, 1850–1858 (2011).

1180 38. Zhao, K. *et al.* Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral
1181 response. *Sci. Rep.* **6**, 23771 (2016).

1182 39. Greenbaum, D. *et al.* Chemical approaches for functionally probing the proteome. *Mol. Cell.*
1183 *Proteomics* **1**, 60–68 (2002).

1184 40. Turk, V. *et al.* Cysteine cathepsins: from structure, function and regulation to new frontiers.
1185 *Biochim. Biophys. Acta* **1824**, 68–88 (2012).

1186 41. Tedelind, S. *et al.* Nuclear cysteine cathepsin variants in thyroid carcinoma cells. *Biol. Chem.*
1187 **391**, 923–935 (2010).

1188 42. Duncan, E. M. *et al.* Cathepsin L proteolytically processes histone H3 during mouse embryonic
1189 stem cell differentiation. *Cell* **135**, 284–294 (2008).

1190 43. Napier, B. A. *et al.* Complement pathway amplifies caspase-11-dependent cell death and
1191 endotoxin-induced sepsis severity. *J. Exp. Med.* **213**, 2365–2382 (2016).

1192 44. Aachoui, Y. *et al.* Caspase-11 protects against bacteria that escape the vacuole. *Science* **339**,
1193 975–978 (2013).

1194 45. Pelegrin, P., Barroso-Gutierrez, C. & Surprenant, A. P2X7 receptor differentially couples to
1195 distinct release pathways for IL-1beta in mouse macrophage. *J. Immunol.* **180**, 7147–7157
1196 (2008).

1197 46. van der Velden, A. W., Lindgren, S. W., Worley, M. J. & Heffron, F. *Salmonella* pathogenicity
1198 island 1-independent induction of apoptosis in infected macrophages by *Salmonella enterica*
1199 serotype *typhimurium*. *Infect. Immun.* **68**, 5702–5709 (2000).

1200 47. Shi, L. *et al.* Proteomic investigation of the time course responses of RAW 264.7 macrophages to
1201 infection with *Salmonella enterica*. *Infect. Immun.* **77**, 3227–3233 (2009).

1202 48. Hui, W. W. *et al.* *Salmonella enterica* Serovar *Typhimurium* Alters the Extracellular Proteome of
1203 Macrophages and Leads to the Production of Proinflammatory Exosomes. *Infect. Immun.* **86**,
1204 (2018).

1205 49. Leisching, G., Wiid, I. & Baker, B. The Association of OASL and Type I Interferons in the
1206 Pathogenesis and Survival of Intracellular Replicating Bacterial Species. *Front. Cell. Infect.*
1207 *Microbiol.* **7**, 196 (2017).

1208 50. Mancuso, G. *et al.* Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells.
1209 *Nat. Immunol.* **10**, 587–594 (2009).

1210 51. Arpaia, N. *et al.* TLR signaling is required for *Salmonella typhimurium* virulence. *Cell* **144**, 675–
1211 688 (2011).

1212 52. O’Dea, E. L. *et al.* A homeostatic model of IkappaB metabolism to control constitutive NF-kappaB
1213 activity. *Mol. Syst. Biol.* **3**, 111 (2007).

1214 53. Kanayama, M. *et al.* Skewing of the population balance of lymphoid and myeloid cells by
1215 secreted and intracellular osteopontin. *Nat. Immunol.* (2017). doi:10.1038/ni.3791

1216 54. Saliba, A.-E. *et al.* Single-cell RNA-seq ties macrophage polarization to growth rate of

1217 intracellular *Salmonella*. *Nat Microbiol* **2**, 16206 (2016).

1218 55. Sanman, L. E., van der Linden, W. A., Verdoes, M. & Bogyo, M. Bifunctional Probes of Cathepsin
1219 Protease Activity and pH Reveal Alterations in Endolysosomal pH during Bacterial Infection. *Cell
1220 Chem Biol* **23**, 793–804 (2016).

1221 56. Beaujouin, M. *et al.* Pro-cathepsin D interacts with the extracellular domain of the beta chain of
1222 LRP1 and promotes LRP1-dependent fibroblast outgrowth. *J. Cell Sci.* **123**, 3336–3346 (2010).

1223 57. Bestvater, F., Dallner, C. & Spiess, E. The C-terminal subunit of artificially truncated human
1224 cathepsin B mediates its nuclear targeting and contributes to cell viability. *BMC Cell Biol.* **6**, 16
1225 (2005).

1226 58. Ceru, S. *et al.* Stefin B interacts with histones and cathepsin L in the nucleus. *J. Biol. Chem.* **285**,
1227 10078–10086 (2010).

1228 59. Bach, A.-S. *et al.* Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to
1229 regulate cell cycle progression and transformation in human breast cancer cells. *Oncotarget* **6**,
1230 28084–28103 (2015).

1231 60. Khalkhali-Ellis, Z., Goossens, W., Margaryan, N. V. & Hendrix, M. J. C. Cleavage of Histone 3 by
1232 Cathepsin D in the involuting mammary gland. *PLoS One* **9**, e103230 (2014).

1233 61. Mehtani, S. *et al.* In vivo expression of an alternatively spliced human tumor message that
1234 encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS
1235 cells. *J. Biol. Chem.* **273**, 13236–13244 (1998).

1236 62. Kirschke, H., Wiederanders, B., Brömme, D. & Rinne, A. Cathepsin S from bovine spleen.
1237 Purification, distribution, intracellular localization and action on proteins. *Biochem. J* **264**, 467–
1238 473 (1989).

1239 63. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and
1240 myeloperoxidase regulate the formation of neutrophil extracellular traps. *J. Cell Biol.* **191**, 677–
1241 691 (2010).

1242 64. Cuylen, S. *et al.* Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. *Nature*
1243 **535**, 308–312 (2016).

1244 65. Guicciardi, M. E., Leist, M. & Gores, G. J. Lysosomes in cell death. *Oncogene* **23**, 2881–2890
1245 (2004).

1246 66. Schotte, P. *et al.* Cathepsin B-mediated activation of the proinflammatory caspase-11. *Biochem.
1247 Biophys. Res. Commun.* **251**, 379–387 (1998).

1248 67. Vancompernolle, K. *et al.* Atractyloside-induced release of cathepsin B, a protease with caspase-
1249 processing activity. *FEBS Lett.* **438**, 150–158 (1998).

1250 68. Jacobson, L. S. *et al.* Cathepsin-mediated necrosis controls the adaptive immune response by
1251 Th2 (T helper type 2)-associated adjuvants. *J. Biol. Chem.* **288**, 7481–7491 (2013).

1252 69. Lage, S. L. *et al.* Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-
1253 dependent and -independent macrophage responses. *Proc. Natl. Acad. Sci. U. S. A.* **110**,
1254 E3321–30 (2013).

1255 70. Roberts, L. R. *et al.* Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes.
1256 *Gastroenterology* **113**, 1714–1726 (1997).

1257 71. Konjar, S., Yin, F., Bogyo, M., Turk, B. & Kopitar-Jerula, N. Increased nucleolar localization of
1258 SpiA3G in classically but not alternatively activated macrophages. *FEBS Lett.* **584**, 2201–2206
1259 (2010).

1260 72. Maher, K. *et al.* A role for stefin B (cystatin B) in inflammation and endotoxemia. *J. Biol. Chem.*
1261 **289**, 31736–31750 (2014).

1262 73. Kambara, H. *et al.* Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death.
1263 *Cell Rep.* **22**, 2924–2936 (2018).

1264 74. Szklarczyk, D. *et al.* The STRING database in 2017: quality-controlled protein-protein association
1265 networks, made broadly accessible. *Nucleic Acids Res.* **45**, D362–D368 (2017).

1266 75. Porwollik, S. *et al.* Defined single-gene and multi-gene deletion mutant collections in *Salmonella*
1267 *enterica* sv *Typhimurium*. *PLoS One* **9**, e99820 (2014).

1268 76. Helaine, S. *et al.* Dynamics of intracellular bacterial replication at the single cell level. *Proc. Natl.
1269 Acad. Sci. U. S. A.* **107**, 3746–3751 (2010).

1270 77. Li, P. *et al.* Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-
1271 1 beta and resistant to endotoxic shock. *Cell* **80**, 401–411 (1995).

1272 78. Kayagaki, N. *et al.* Non-canonical inflammasome activation targets caspase-11. *Nature* **479**,
1273 117–121 (2011).

1274 79. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals
1275 activate the NALP3 inflammasome. *Nature* **440**, 237–241 (2006).

1276 80. Mariathasan, S. *et al.* Differential activation of the inflammasome by caspase-1 adaptors ASC

1277 and Ipf. *Nature* **430**, 213–218 (2004).

1278 81. Beuzón, C. R. *et al.* *Salmonella* maintains the integrity of its intracellular vacuole through the
1279 action of SifA. *EMBO J.* **19**, 3235–3249 (2000).

1280 82. Yang, F., Shen, Y., Camp, D. G., 2nd & Smith, R. D. High-pH reversed-phase chromatography
1281 with fraction concatenation for 2D proteomic analysis. *Expert Rev. Proteomics* **9**, 129–134
(2012).

1282 83. Vizcaíno, J. A. *et al.* The PRoteomics IDEntifications (PRIDE) database and associated tools:
1283 status in 2013. *Nucleic Acids Res.* **41**, D1063–9 (2013).

1284 84. Babicki, S. *et al.* Heatmapper: web-enabled heat mapping for all. *Nucleic Acids Res.* **44**, W147–
1285 53 (2016).

1286 85. Brennan, M. A. & Cookson, B. T. *Salmonella* induces macrophage death by caspase-1-
1287 dependent necrosis. *Mol. Microbiol.* **38**, 31–40 (2000).

1288 86. Ochoa, D. *et al.* An atlas of human kinase regulation. *Mol. Syst. Biol.* **12**, 888 (2016).

1289

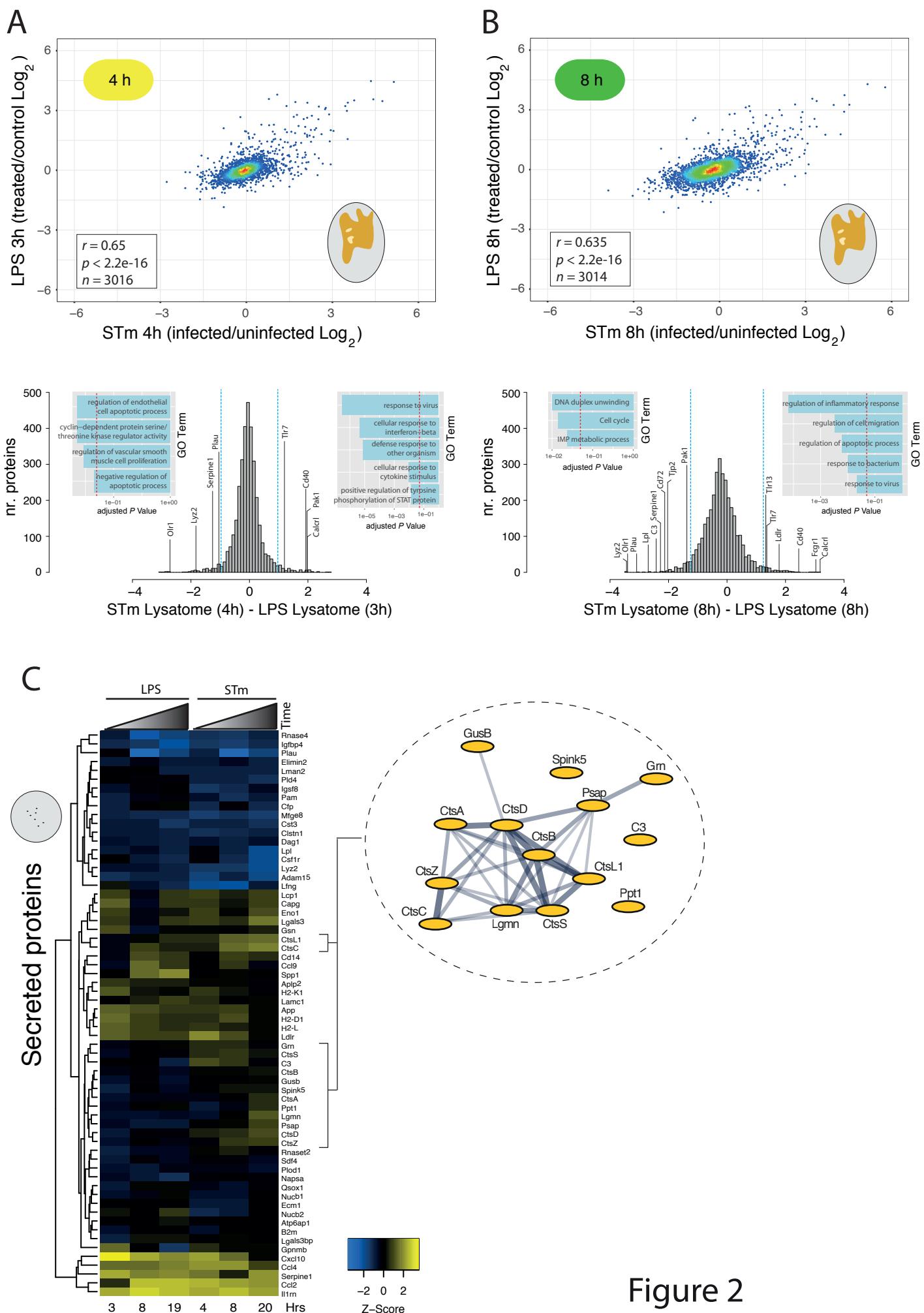



Figure 1

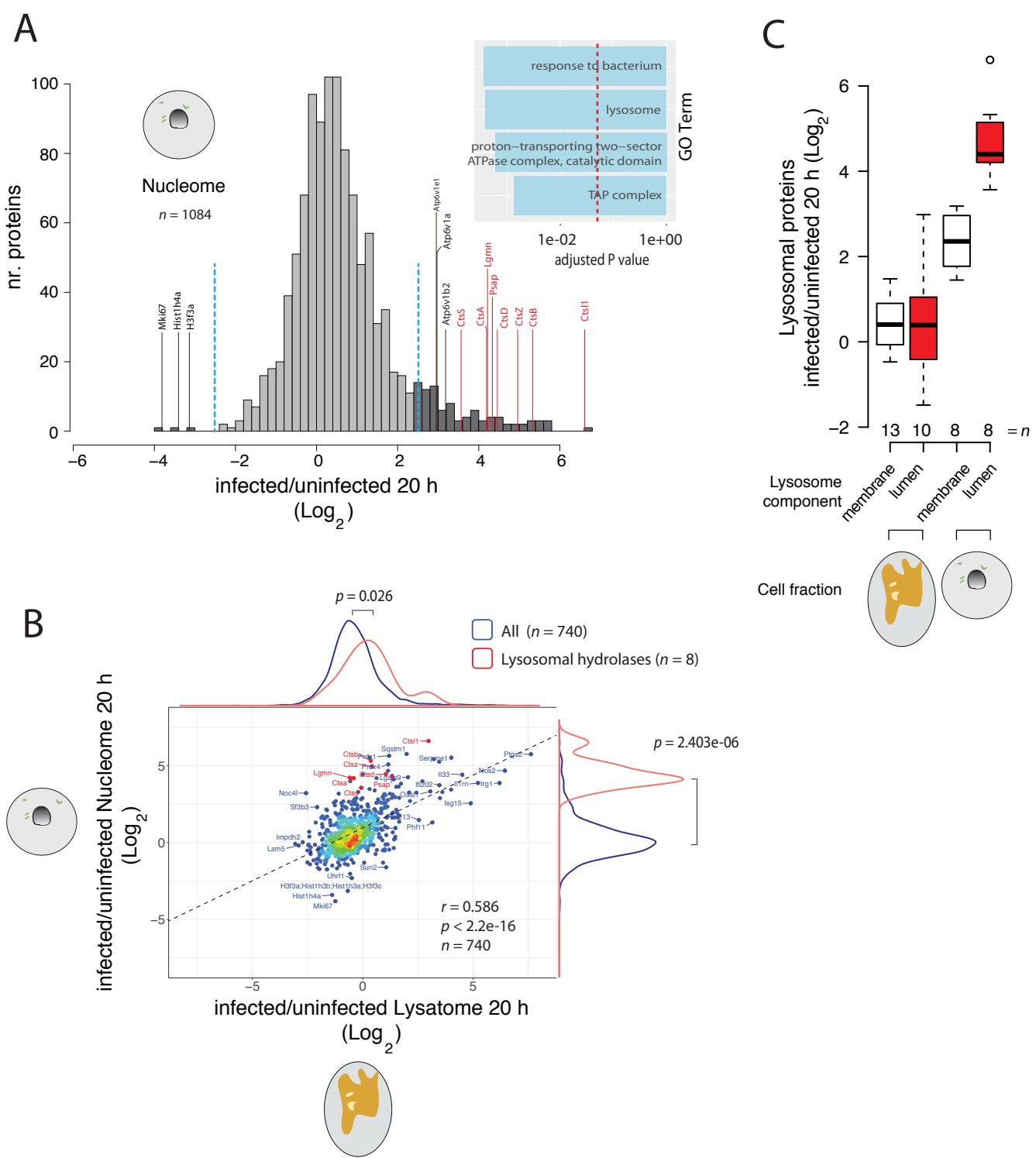


Figure 3.

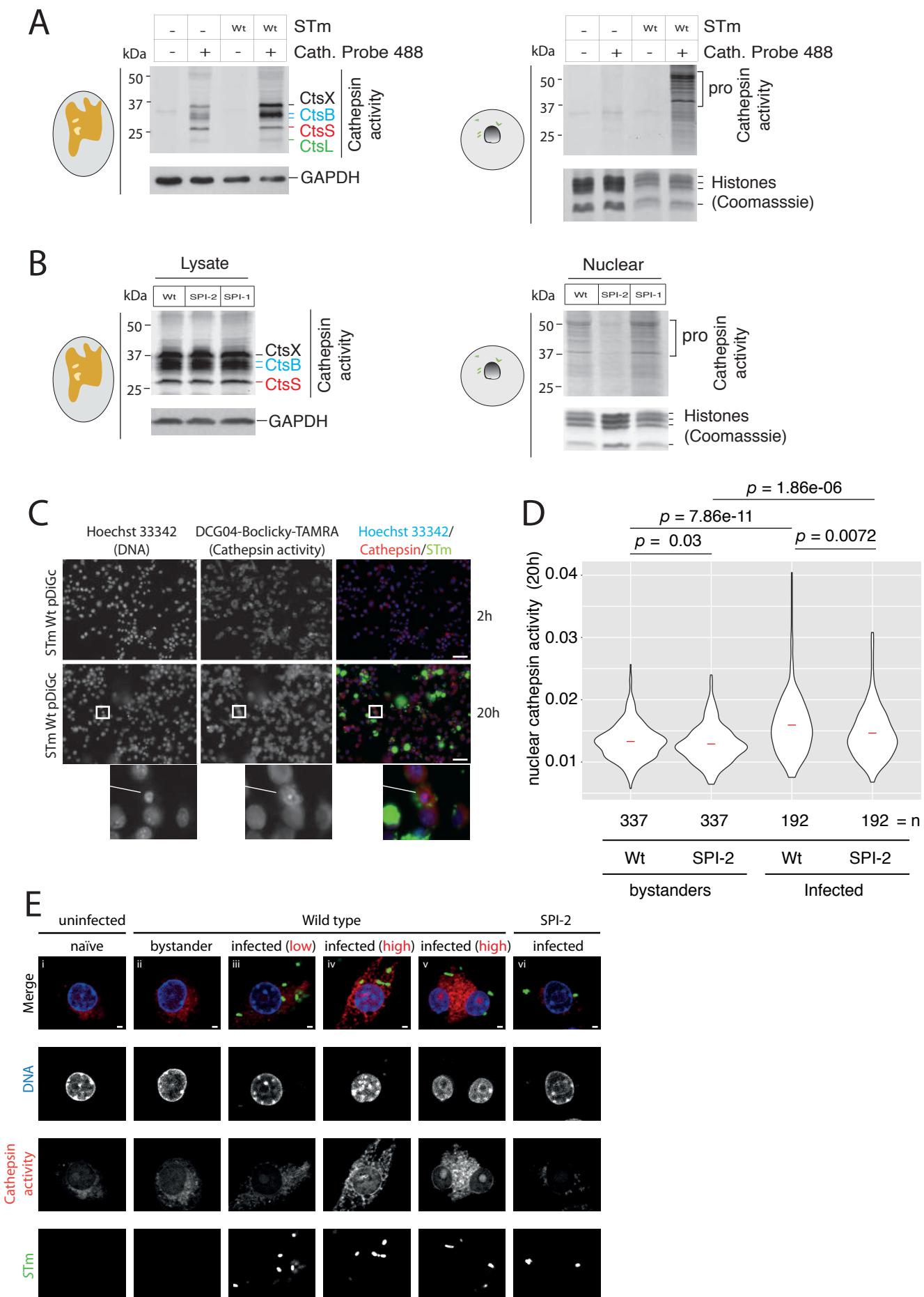


Figure 4.

A

B

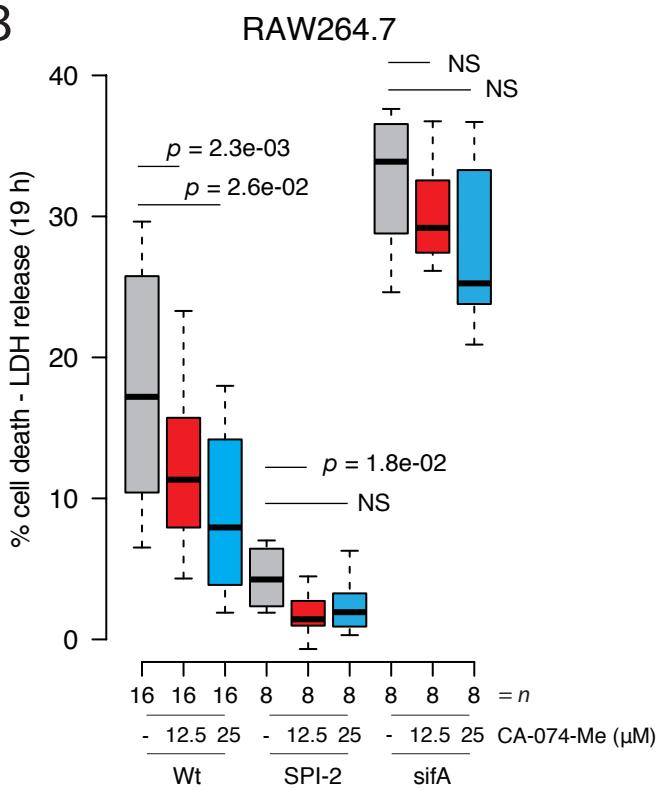


Figure 5.

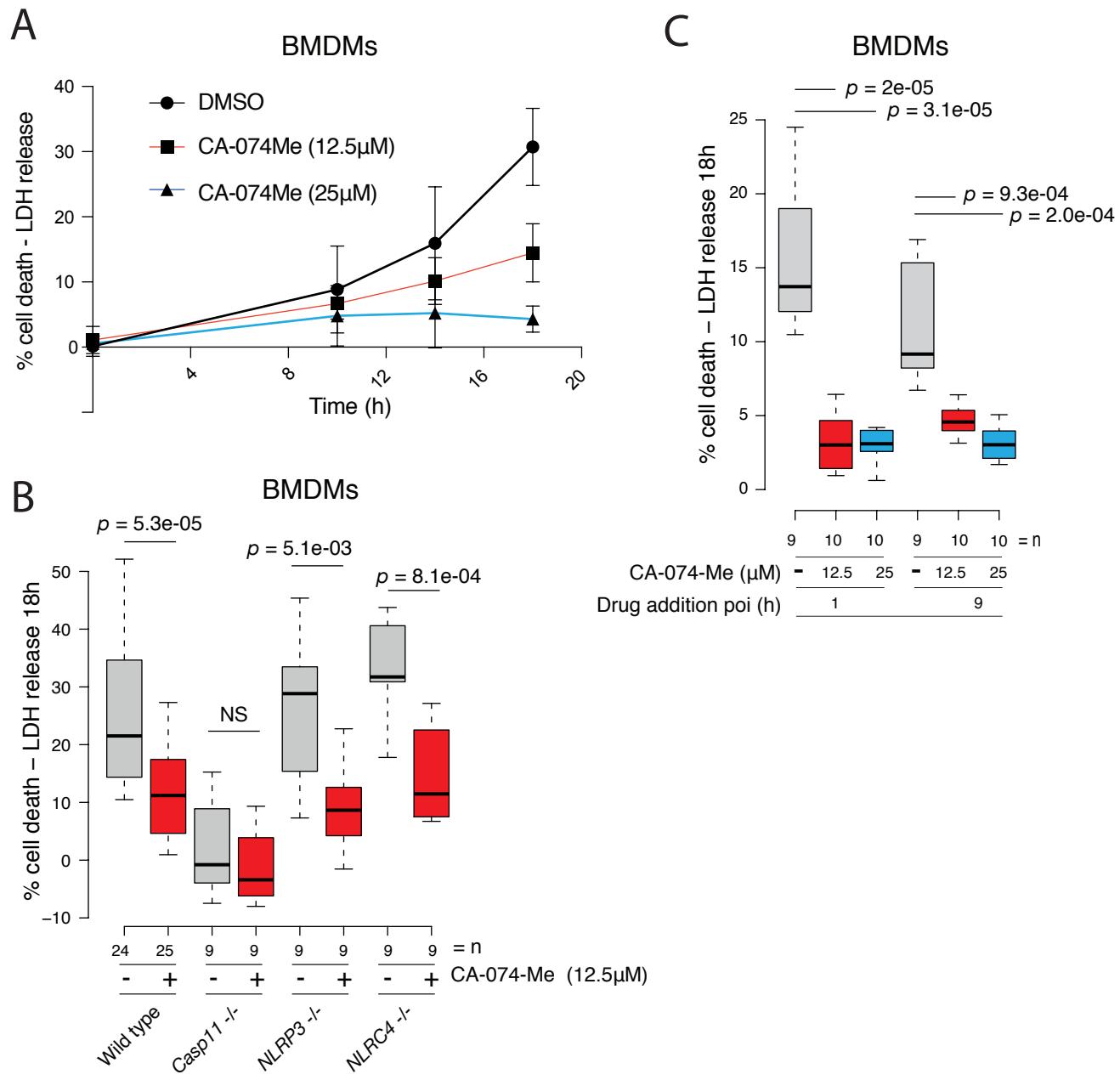
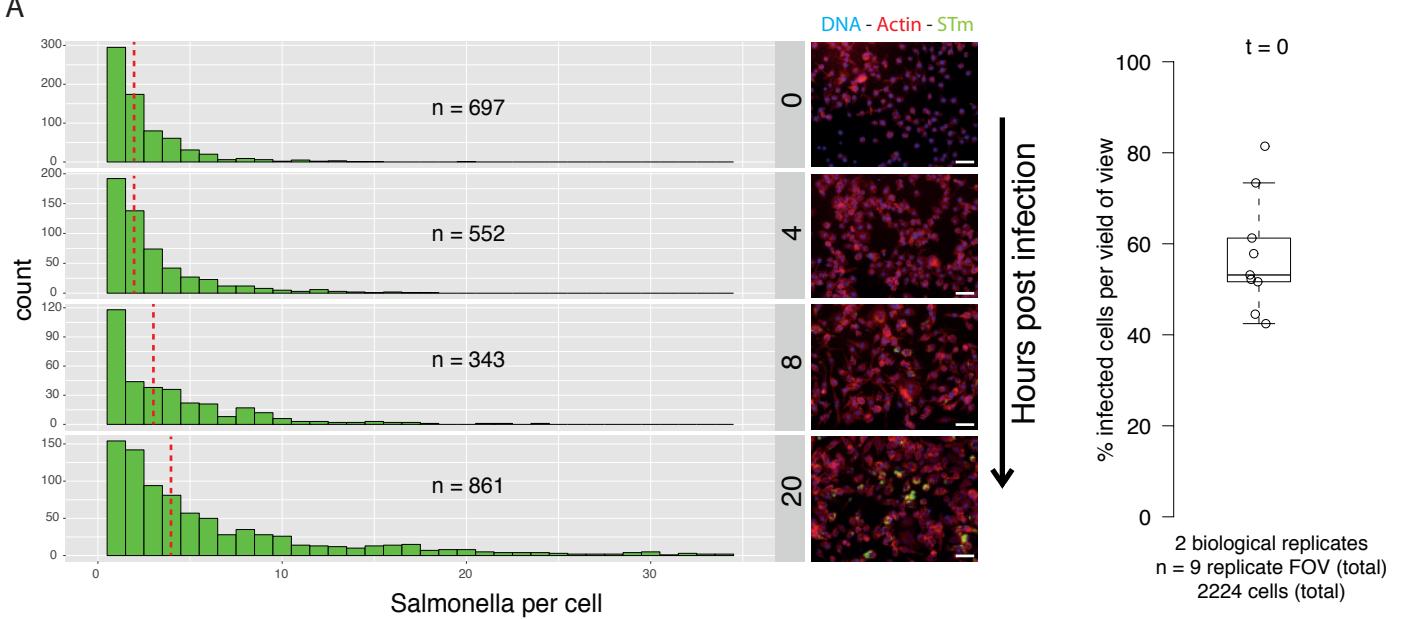



Figure 6.

A

B

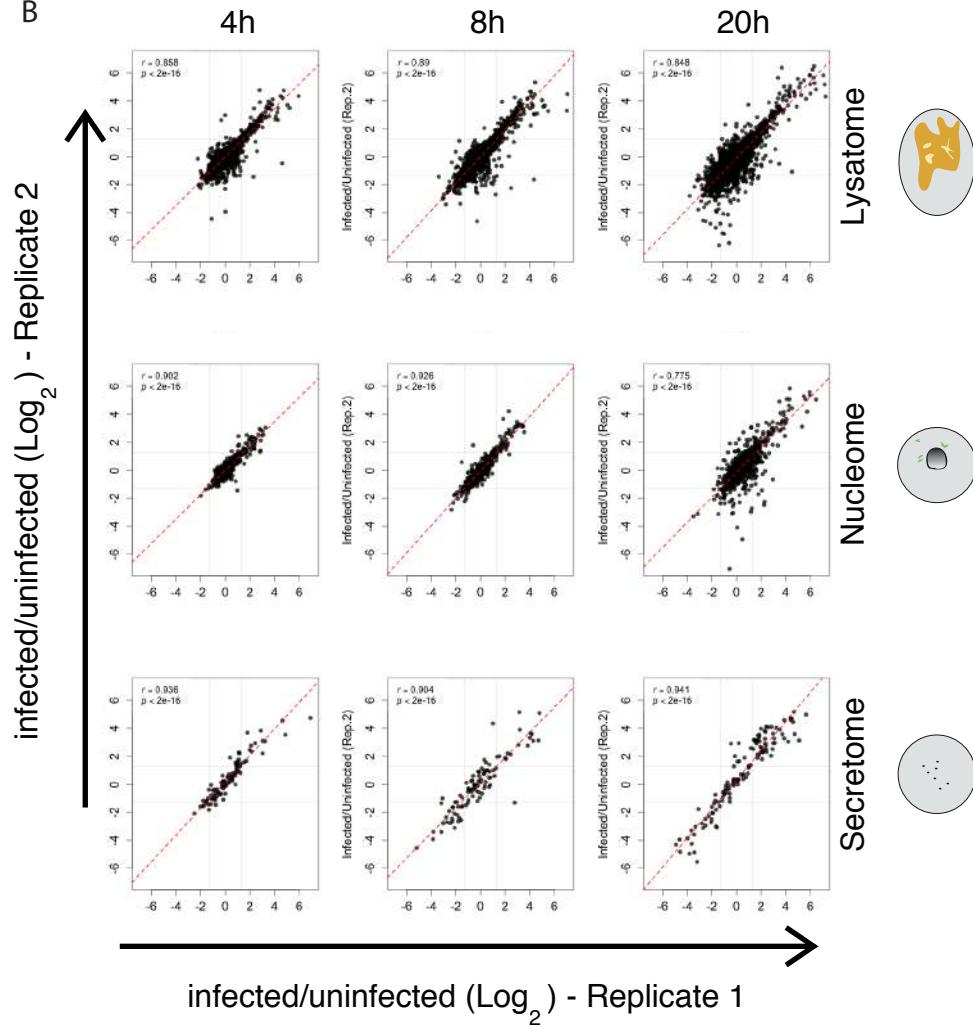


Figure S1

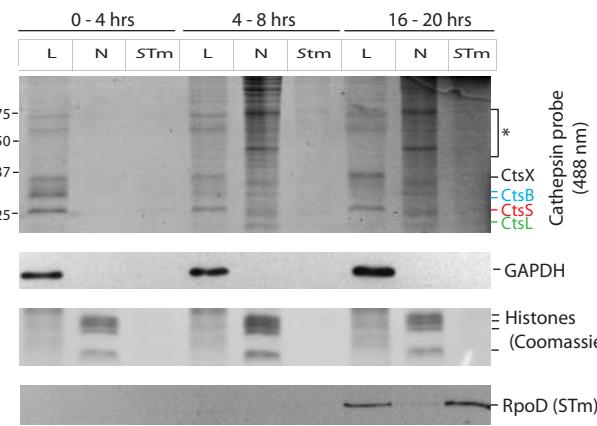


Fig S2.

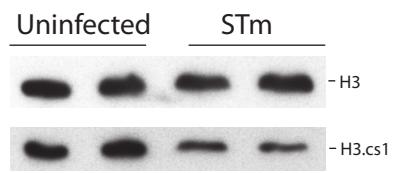


Fig S3.

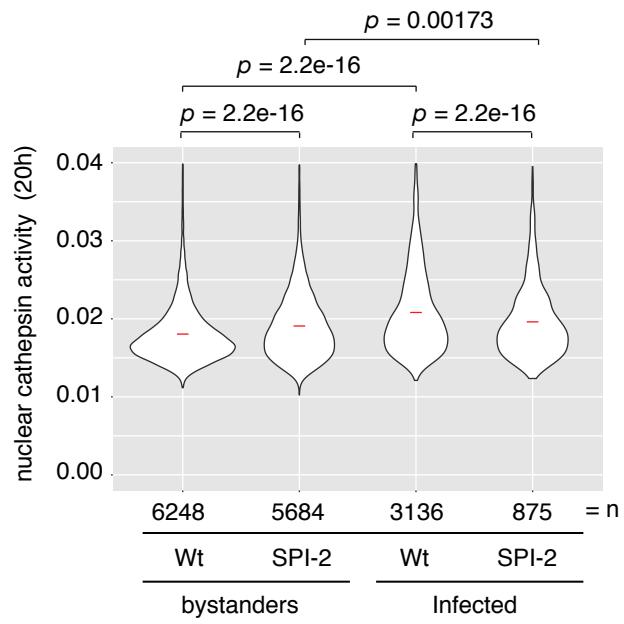


Fig S4.

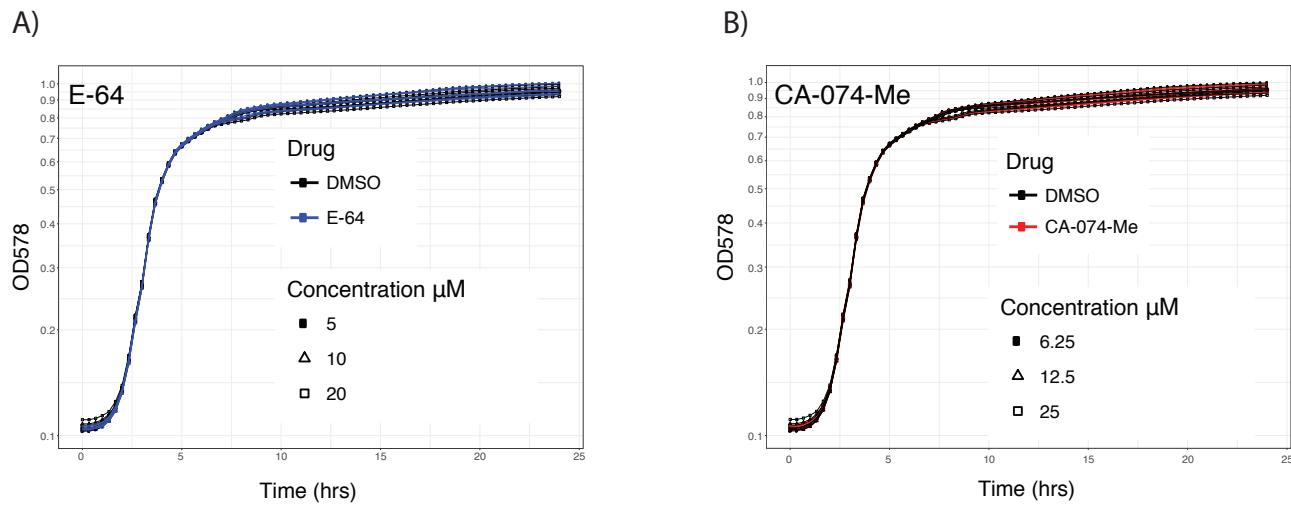
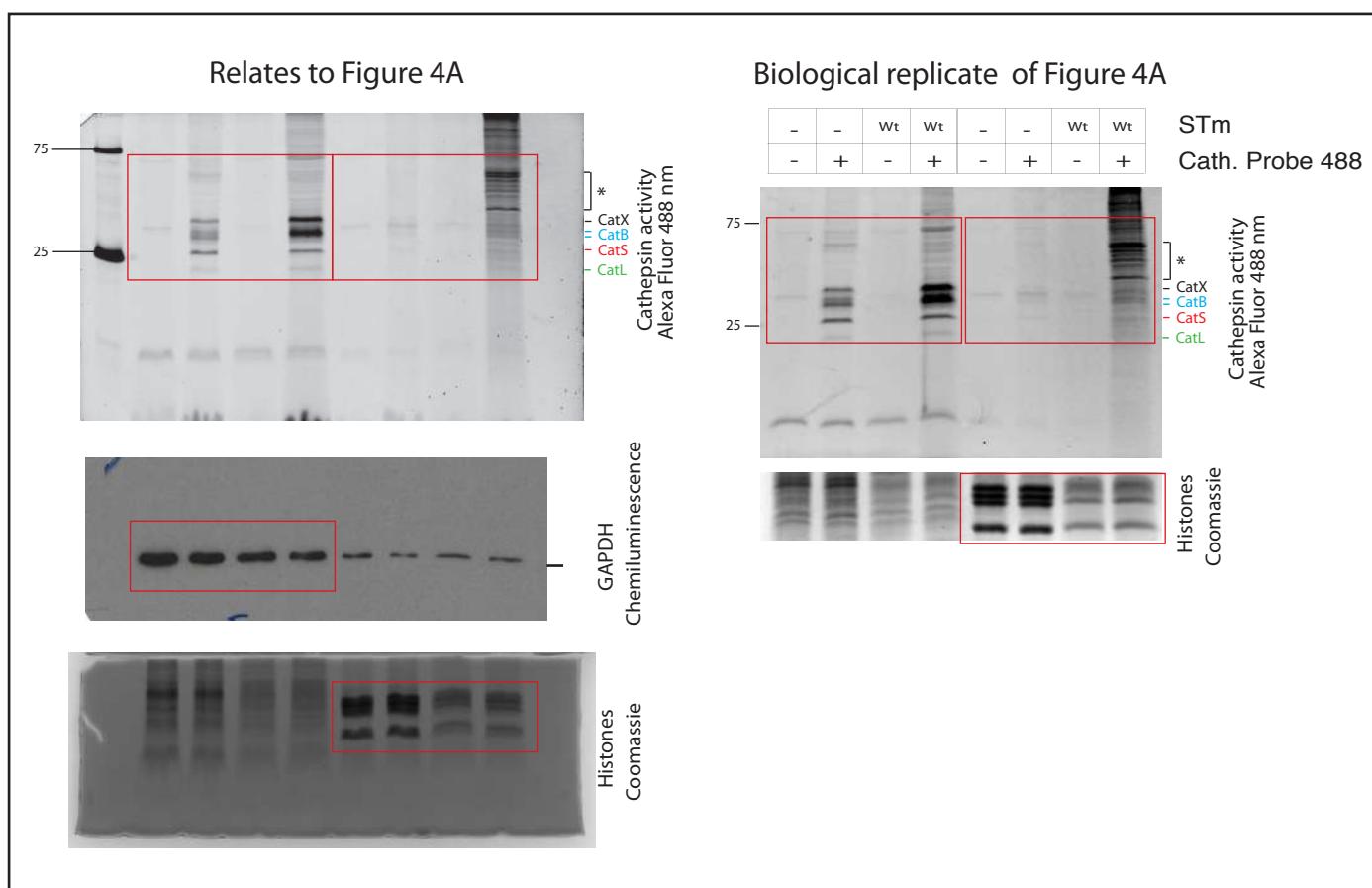
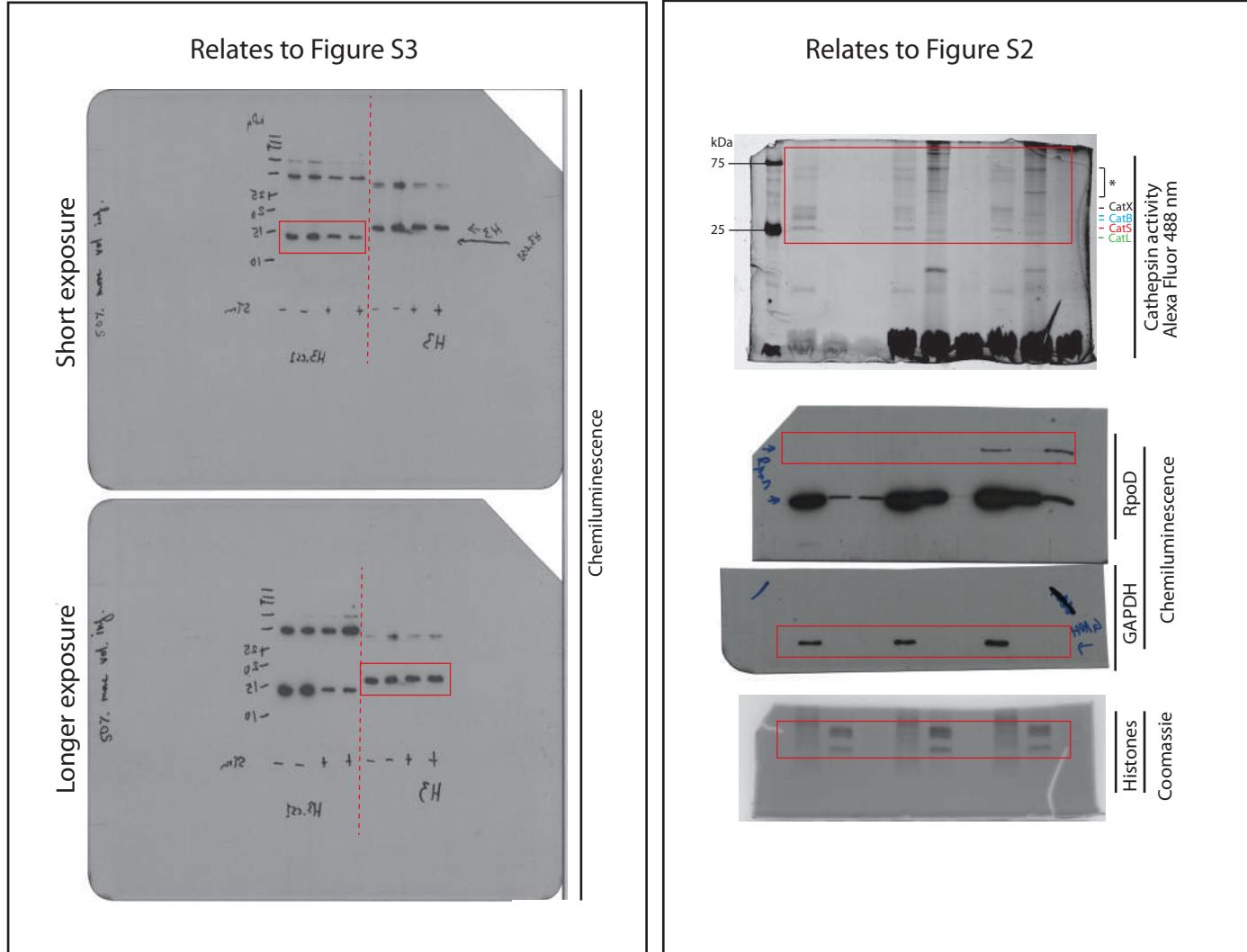
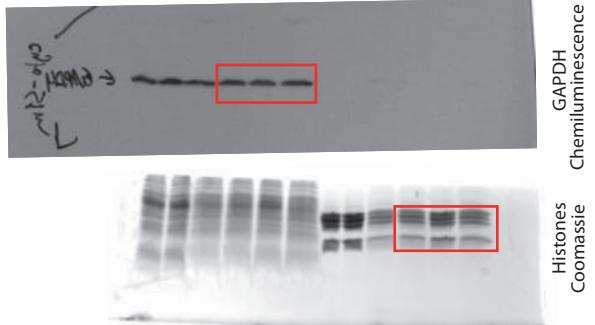
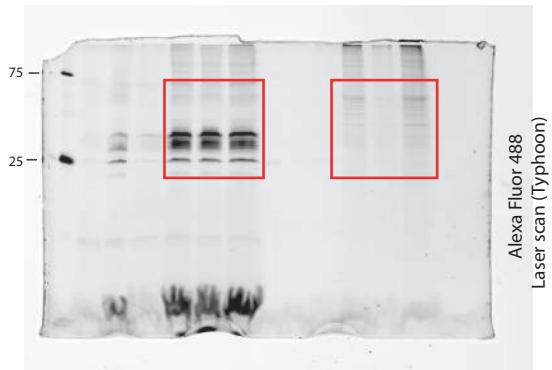
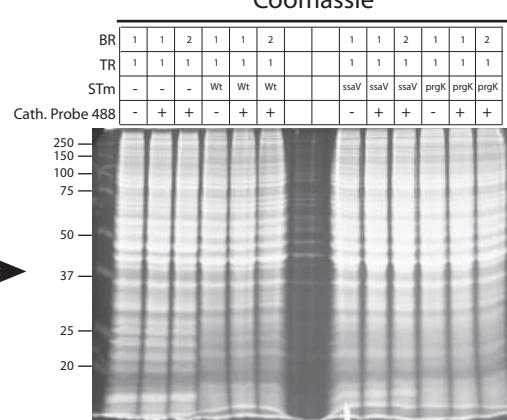
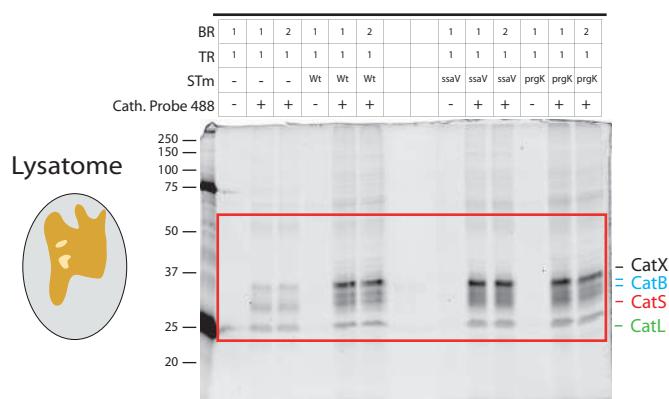




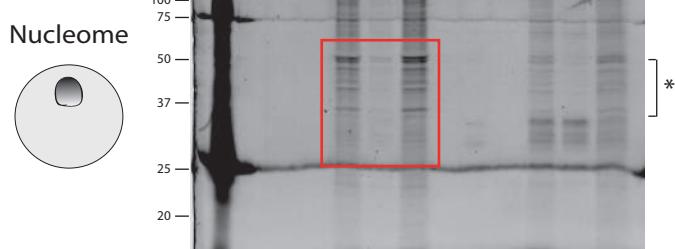
Fig S5.



Supplementary Figure - Uncropped scans

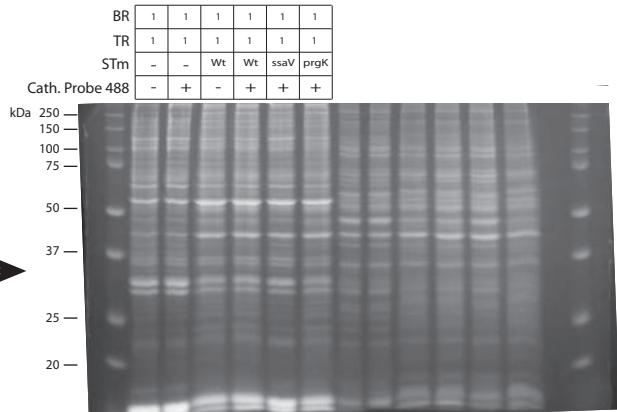
Supplementary Figure - Uncropped scans



Relates to Figure 4B.

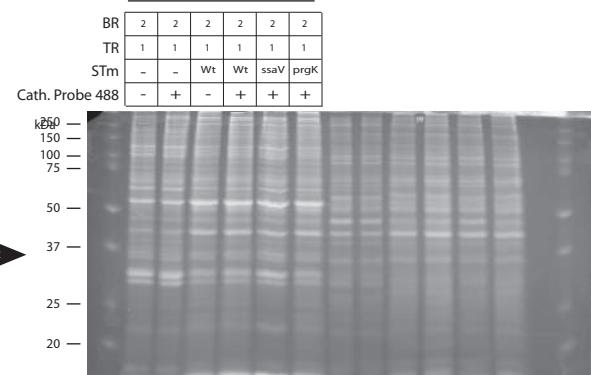
Uncropped from Figure 4B (TR2 of BR1)



Cathepsin activity DCG04-FL
Alexa Fluor 488 nm


BR = Biological replicate
TR = Technical replicate

Nucleome (20x g pellet)


Nucleome (20x g pellet)

Nucleome (20x g pellet)

Nucleome (20x g pellet)

