

1

2

3

4 **Validation of a low-cost, carbon dioxide-based**
5 **cryoablation system for percutaneous tumor ablation**

6

7

8

9

10

11 Bailey Surtees^{1¶} and Sean Young^{1¶}, Yixin Hu¹, Guannan Wang², Evelyn McChesney¹,
12 Grace Kuroki¹, Pascal Acree¹, Serena Thomas¹, Tara Blair¹, Shivam Rastogi¹, Dara L.
13 Kraitchman³⁵, Clifford Weiss³⁴, Saraswati Sukumar², Susan C. Harvey³, Nicholas J
14 Durr^{14*}

15

16

17 1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore,
18 Maryland, United States of America
19 2. Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland, United
20 States of America
21 3. The Russell H. Morgan Department of Radiology and Radiological Science, Johns
22 Hopkins University School of Medicine, Baltimore, Maryland, United States of America
23 4. Center for Bioengineering Innovation and Design, Johns Hopkins University,
24 Baltimore, Maryland, United States of America
25 5. Department of Molecular and Comparative Pathobiology, Johns Hopkins University
26 School of Medicine, Baltimore, Maryland, United States of America

27

28

29 Corresponding Author

30 Email: ndurr@jhu.edu (NJD)

31

32 ¶ These authors contributed equally to this work.

33 **Abstract**

34 Breast cancer rates are rising in low- and middle-income countries (LMICs), yet
35 there is a lack of accessible and cost-effective treatment. As a result, the cancer burden
36 and death rates are highest in LMICs. In an effort to meet this need, our work presents the
37 design and feasibility of a low-cost cryoablation system using widely-available carbon
38 dioxide as the only consumable. This system uses an 8-gauge outer-diameter needle and
39 Joule-Thomson expansion to percutaneously necrose tissue with cryoablation. Bench top
40 experiments characterized temperature dynamics in ultrasound gel demonstrated that
41 isotherms greater than 2 cm were formed. Further, this system was applied to mammary
42 tumors in an *in vivo* rat model and necrosis was verified by histopathology. Finally,
43 freezing capacity under a large heat load was assessed with an *in vivo* porcine study,
44 where volumes of necrosis greater than 1.5 cm in diameter confirmed by histopathology
45 were induced in a highly perfused liver after two 7-minute freeze cycles. These results
46 demonstrate the feasibility of a carbon-dioxide based cryoablation system for improving
47 solid tumor treatment options in resource-constrained environments.

48

49 **Introduction**

50 Over 8 million cancer deaths occurred worldwide in 2012, with breast cancer
51 being the largest cause of cancer-related mortality for women with almost 500,000
52 reported deaths [1]. While diagnostic and treatment technologies in the developed world
53 have advanced such that the five-year survival rate for breast cancer is almost 90% in the
54 United States [2], the survival rate in low- and middle-income countries (LMICs) can

55 range from 64% in Saudi Arabia to 46% in Uganda to only 12% in The Gambia [3].
56 These rates are typically lower in rural areas of LMICs due to inadequate treatment and
57 long travel times to regional hospitals [4]. The current treatment pattern used in
58 developed countries—surgery, chemotherapy, and radiation therapy—is inefficient,
59 inaccessible, and costly in many LMICs [5,6].

60 Tissue ablation has several advantages over surgical treatments for practical use
61 in LMICs, and previous work has explored the use of cryoablation for treatment of
62 cancers including liver, lung, prostate, and breast cancer [7-12]. Cryoablation is a
63 minimally-invasive treatment that is well tolerated with the intrinsic anesthetic properties
64 of cold providing local anesthesia [13]. Moreover, the ice formation can easily be tracked
65 with ultrasound for real-time treatment guidance. These features permit precise and
66 effective cryoablation treatment with a companion ultrasound unit and only a local skin
67 cleaning rather than the current standard of general anesthesia and an operating theater
68 for surgery [9,14]. Importantly, circumventing the requirement for a sterile operating
69 room would enable treatments to be performed at local clinics, which are more accessible
70 to patients as they are more abundant in the rural regions. Further, by virtue of being
71 minimally invasive, cryoablation is known to reduce pain, bleeding, and recovery time
72 when compared with surgical procedures [15].

73 Cryoablation kills breast cancer cells through the formation of intracellular ice
74 crystals, which begin forming at temperatures below -20 °C; however, temperatures
75 below -40 °C are optimal for cryoablation due to the certainty of ice crystal formation
76 [16]. To reach these cold temperatures, argon gas is commonly stored at high-pressure
77 and is then allowed to expand through a pinhole-like opening to reach atmospheric

78 pressure. The gas undergoes rapid expansion and, due to the Joule-Thomson (JT) effect,
79 rapidly decreases temperature [16]. This expansion takes place inside a cryoprobe that is
80 percutaneously inserted into the cancerous tissue, and the temperature of the cryoprobe
81 causes an iceball as ice crystals form in surrounding cells (Fig 1). This mechanism
82 introduces a temperature gradient in the iceball of -40 °C at the probe tip to 0 °C at the
83 edge of the iceball. Previous work has found that tissue held below -20 °C for over a
84 minute creates necrosis throughout the region [16]. Treatment is cycled with two freeze
85 cycles interrupted by a thaw cycle, which allows for both cell death via cellular
86 dehydration as well as through the formation of intracellular ice crystals [16].

87 **Fig 1. The percutaneous cryoprobe consists of a double-chamber needle. CO₂ gas**
88 **flows through the inner chamber, cools upon JT expansion at the tip, and is**
89 **exhausted through the outer chamber.**

90 Although cryoablation is promising for use in low-resource settings, most devices
91 are not designed with cost and resource constraints in mind or for use in LMICs. Current
92 cryoablation systems are too expensive for use in LMICs, as a single treatment can cost
93 upwards of \$10,000, with over half of the cost coming from disposable, single-use parts
94 [17]. Furthermore, while argon gas is optimal for cryoablation, as it can reach
95 temperatures as low as its boiling point of -185.8 °C [16], it is not available in LMICs.
96 Alternatively, carbon dioxide (CO₂) is available in most rural areas due to the carbonated
97 beverage industry and via the Joule-Thomson effect can reach a temperature as low as -
98 78.5 °C [18]. In an effort to develop a practical system for tumor treatment in LMICs, we
99 have assessed the performance of a custom-designed cryoablation system optimized for
100 use with CO₂; it is the first percutaneous cryotherapy system to use only CO₂ as a

101 consumable. We report our results from three stages of experimental evaluation: bench
102 top experiment in an ultrasound gel tissue phantom, *in vivo* testing on mammary tumors
103 in a rat model with necrosis verified via histopathology, and assessment of freezing
104 capacity under a large heat load with an *in vivo* experiment in a porcine model.
105 Demonstrating the feasibility of cryoablation with CO₂ will potentially allow for
106 increased affordable and accessible breast cancer treatment globally.
107

108 **Materials and methods**

109 **Cryoablation system design**

110 Our custom-designed cryosystem consists of two modules: the cryoprobe and the
111 gas-control module. The two modules are connected with nylon tubing and joined by
112 high-pressure brass pipefittings. The gas-control module is comprised of a high-pressure
113 fitting that directs CO₂ gas to the JT nozzle. This tubing allows gas release from a high-
114 pressure environment into the cryoprobe chamber, which causes the cryoprobe to rapidly
115 cool. The cooled CO₂ gas then leaves the probe chamber and flows through the pre-
116 cooling chamber that surrounds the gas inflow tube leading to the JT nozzle (Fig 2). The
117 pre-cooling process serves as a positive feedback to the cooling system by chilling the
118 inflow gas before it reaches the JT nozzle. After leaving the cryoprobe, the gas is released
119 into the atmosphere through an outflow tube. The gas control module is directly
120 connected to a tank of compressed CO₂, and is comprised of a valve to control flow to the
121 cryoprobe and a pressure gauge that monitors the gas supply level in the tank. To begin a
122 freeze cycle, the valve on the CO₂ tank is opened, and the control valve is opened to
123 allow gas to flow through the system and cooling to begin.

124 **Fig 2. The gas control module of the cryoablation system (left) connects to a**
125 **conventional compressed CO₂ gas canister used in the carbonated beverage**
126 **industry and regulates flow to the cryoprobe (right) during cryoablation.**

127 **Thermodynamic profiles in tissue phantom**

128 Initial tests were performed with the cryosystem in an ultrasound gel tissue
129 phantom for early validation in accordance with prior studies [19]. To evaluate device
130 performance, photographs of the iceball were taken every 30 seconds, and temperature of
131 the cryoprobe was monitored every 0.5 seconds using a thermocouple. In total, the
132 freezing capacity was evaluated through six trials per probe where the system completed
133 a 5-minute freeze cycle, a 3-minute thaw cycle, and then a second 5-minute freeze cycle.
134 For each test, the given probe was submerged in a beaker filled with 400 mL of
135 ultrasound gel at 22.6 °C. Pictures were analyzed in ImageJ [20] to determine iceball
136 size.

137 ***In vivo* cryoablation of mammary tumors**

138 Prior to experimentation, our institutional Animal Care and Use Committee
139 approved the rat protocol. For this portion of the study, cryoablation was performed *in*
140 *vivo* in Sprague Dawley rats induced with primary mammary tumors via injections of *N*-
141 Nitroso-*N*-methylurea (MNU). This was done to validate the efficacy of the device in
142 necrosing breast cancer cells via histopathology, similar to previous studies [21].

143 Nine female Sprague Dawley rats were induced with mammary tumors by
144 intraperitoneal injections of 50 mg/kg of MNU (analytical grade, Sigma/Oakwood

145 Products, Inc.) at 5 weeks and 7 weeks of age. Similar to previous studies [22,23],
146 between one and three tumors were induced per rat, each of which was treated in separate
147 procedures. A total of ten mammary tumors in nine rats were treated by cryoablation. To
148 determine the extent of necrosis caused by the puncture of the cryoprobe rather than the
149 freezing, one tumor was selected at random as a no-treatment control (no freeze) in which
150 no CO₂ was released through the system, but all other procedural steps were followed
151 including needle insertion and elapsed time.

152 All procedures were performed in the veterinary operating room aided by a
153 trained surgeon, and each rat was anesthetized throughout the procedure. The rat was
154 placed on a heating pad to stabilize body temperature and a rectal thermometer was used
155 to monitor core body temperature. The tumors were surgically exposed such that each
156 tumor was separated from the skin, keeping any large blood vessels intact. After the
157 majority of the tumor was separated from the skin, petroleum jelly-coated gauze was
158 placed between the tumor and the skin to act as a thermal insulator to prevent cold injury
159 to the rat's skin (Fig 3).

160 ***Fig 3. The diagram (a) depicts the treatment setup, pictured in (b), for in vivo***
161 ***cryoablation of mammary tumors in Sprague Dawley rats. Tumors were elevated from***
162 ***the body and insulated with petroleum jelly to prevent skin damage, and tumor***
163 ***temperature was monitored using a thermocouple during the procedure.***

164 Prior to cryoprobe insertion, a trocar was used as a guide for the cryoprobe along
165 the longest axis of the tumor. Then, the cryoprobe was inserted into the tumor and a
166 thermocouple was placed 0.5 cm from the probe surface to measure tumor temperature.
167 The control valve was then turned on and CO₂ flowed, rapidly cooling the device and the

168 adjacent tissue. To ensure the tumor exposure and subsequent necrosis, the first freeze
169 cycle continued until the temperature from the thermocouple stabilized below -30 °C for
170 at least one minute with a maximum freezing time of 7 minutes [21]. Then, the control
171 valve was turned off for a 3-minute thaw cycle followed by the control valve being
172 turned on for a secondary freeze cycle defined by the same temperature and time
173 requirement as the first freeze cycle. After the second freeze, the control valve was turned
174 off and the tumor was allowed to thaw to 20 °C followed by removal of the cryoprobe.
175 The wounds were closed with surgical clips and the tumor remained *in situ* for a
176 minimum of 72 hours before excision, allowing time for necrosis. The tumors were fixed
177 in a buffered formalin fixative, and stained with hematoxylin and eosin (H&E) for
178 examination by a pathologist to assess the extent of necrosis [21].

179 ***In vivo* cryoablation under heat load**

180 Prior to experimentation, our institutional Animal Care and Use Committee
181 approved the swine protocol. For this portion of the study, cryoablation was performed *in*
182 *vivo* in the normal liver of a pig to validate the efficacy of the device under a heat load
183 analogous to a human breast, similar to previous studies [24,25].

184 All procedures were performed with aseptic technique by a veterinarian and
185 interventional radiologist. The swine was sedated and an IV catheter was introduced to
186 administer antibiotics and anesthetic induction. The pig was intubated and general
187 anesthesia was maintained with isoflurane anesthesia with mechanical ventilation. The
188 swine was placed in a supine position, and a midline incision was used rather than

189 percutaneous insertion of the probe through the skin, as the goal was to freeze only the
190 liver tissue rather than the skin, muscle and fatty tissue anterior to the liver.

191 A trocar was used as a guide to enter the liver under ultrasonic guidance and then
192 the cryoprobe was inserted. The device was positioned and CO₂ was allowed to flow.
193 Gauze soaked in warm saline was placed near the skin to aid in preventing skin necrosis.
194 The iceball growth was monitored via ultrasound imaging and the timing of the freeze-
195 thaw cycles was determined by the plateau of the iceball growth. Two 7-minute freeze
196 cycles were performed with a 4-minute thaw cycle between the freeze cycles (Fig 4).

197 **Fig 4. An incision was made exposing the swine liver, and the cryoprobe was**
198 **inserted (outlined in white dashes). Two 7-minute freeze cycles were performed,**
199 **causing an iceball to form in the liver tissue.**

200 The midline incision was closed and the pig was recovered. The pig was
201 humanely euthanized 48 hours after cryoablation, and the liver was excised, sectioned,
202 and submitted for H&E staining to examine necrosis. This delay in excision and
203 pathology was necessary as obvious signs of necrosis are not present until at least two
204 days post-cryosurgery [21].

205

206 **Results**

207 **Thermodynamic profiles in tissue phantom**

208 The experiment was run on various prototypes, which guided the choice of probe
209 for final use and further validation and are detailed below. Images taken of iceball growth
210 over time were used to inform both final iceball size as well as isotherm size through a
211 freeze-thaw-freeze cycle, as seen in Fig 5. Over six trials, the probe produced an average

212 iceball diameter of 2.230 +/- 0.075 cm. Additionally, across all six trials, temperatures at
213 the cryoprobe reached < -40 °C in the first freeze cycle, with the temperature in the
214 second freeze cycle decreasing an additional 5°C.

215 **Fig 5. (a) Iceball growth over time as visualized in the tissue phantom, (b) plot of**
216 **probe temperature at the cryoprobe tip and iceball diameter over time**
217 **demonstrating temperatures below -40 °C and iceball diameters larger than 2 cm.**

218 ***In vivo* cryoablation of mammary tumors**

219 Two tumors were not treated using cryoablation and were instead surgically
220 excised as it was determined that the tumors were too close to the heart, posing too great
221 of risk to treat. Additionally, results from two trials were not included due to improper
222 wound closure resulting in indeterminable causes of tumor necrosis. All other tumors
223 treated in the rat experiment showed significant levels (>85%) of tumor necrosis while
224 the tumor from the negative control trial was uniformly viable (Table 1). Tumor sizes
225 ranged from 2.0-3.4 cm.

226 **Table 1. Histological Results Categorized by Level of Necrosis**

Region	Percent Necrosed	Tumors	Histological Characteristics
A	100%	5	Tumor area completely necrotic; reactive stroma observed
B	≥85% and <100%	5	Large area of necrotic debris, edge has a mixture of necrotic inflammatory cells, hemorrhage from cryoablation, neutrophils, degraded islands and few apoptotic cells
C	<85% & >0%	0	Moderate area of necrotic debris, mostly neutrophils, nests of viable/grade cells
D	0%	1 Control	Viable tumor cells throughout the section

227 ***In vivo cryoablation under heat load***

228 Tissue damage was seen in the sectioned portions of liver with defined borders
229 between healthy and necrotic tissue (Fig 6).

230 **Fig 6. A section of the liver after perfusion and fixation where cryoablation was**
231 **performed. Defined borders are seen between the dark necrotic tissue and the**
232 **lighter healthy tissue.**

233 We observed a rapid transition from necrotic tissue to relatively normal liver tissue, as is
234 demarcated by the dashed line in Fig 7. Histopathology examination of the ablated area
235 confirmed varied gradients of necrosis (Fig 8).

236 **Fig 7. (a) Histologic analysis found a 1.48-cm region of complete necrosis (Region**
237 **A), with a 0.1- to 0.2-cm wide region of complete necrosis with traces of**
238 **hemorrhaging (Region B), a 0.1- to 0.4-cm margin of complete hepatocyte necrosis**
239 **with intact bile ducts (Region C), and a region of non-necrotic hepatocytes beyond**
240 **this (Region D) (b) Diameters of necrotic regions are depicted in a circular cross**
241 **section.**

242 **Fig 8. Histological results of the different gradients of necrosis and tissue damage as**
243 **viewed histologically. (a) Histology image from Region A, Complete necrosis; (b)**
244 **Region B, Complete necrosis with traces of hemorrhage; (c) Region C, Complete**
245 **necrosis of hepatocytes but bile ducts in tact; (d) Region D, healthy liver tissue.**

246 The minimum diameter of the necrotic region, from Region A out to Region C, was
247 measured to be 2.08 cm as seen in Fig 8. As the plane of the tissue sections was not
248 strictly perpendicular to the tract of the cryoprobe, the minimum diameter was used to

249 determine the minimum cross sectional area of 3.4 cm^2 . As the iceball forms in a
250 cylindrically symmetrical shape, any cross section will result in an ellipse with a minor
251 diameter equal to the diameter of the cylinder.

252

253 Discussion

254 The results of this study demonstrate the capacity of CO₂-based cryoablation with
255 a percutaneous cryoprobe to cause necrosis in large volumes of tissue and tumors. In tests
256 performed in tissue phantom, a confidant freezing volume with a radius of 2.23 ± 0.075
257 cm was observed over six trials. A minimum temperature below -40 °C was achieved in
258 all trials, which satisfies the standard freezing temperatures for tumor necrosis accepted
259 for similar cryoablation devices currently used in the United States [16]. While
260 the freezing capacity of the cryoablation device was verified in phantoms, *in vivo* studies
261 were performed to determine whether the device could induce tumor necrosis.

262 Histopathology of carcinogen-induced mammary tumors in rats demonstrated the
263 device's ability to repeatedly induce necrosis in large volume malignancies. However, in
264 the rat tumor model, there was not significant heat load. Thus, we evaluated the device's
265 efficacy in a swine liver, i.e., 39 °C - an environment with a heat load similar to that of
266 the human breast, i.e., 37 °C [25]. This step was crucial in validating freezing ability
267 because the heating effect of blood perfusion could significantly reduce iceball formation.

268 Liver sections and histology confirmed that our CO₂-based cryoablation device is capable
269 of inducing necrosis in up to 2.08 cm diameter regions. Therefore, the performance of our
270 custom built cryosystem is comparable to benchmark values of various accepted
271 cryoablation standards of other gas-based systems in the United States.

272 While promising, there are several limitations to this study that will direct future
273 work. Although results have shown cellular necrosis of a 1.5-cm diameter mammary
274 tumor both in rats and in swine liver, it should also be noted that this study did not
275 investigate the use of this device in the necrosis of cancerous tissue under a heat
276 load. These preliminary studies did provide information related to the potential for
277 damage to healthy tissue and skin, which could lead to issues in wound healing. This
278 must be examined further in order to ensure the named device can match the standards of
279 care set by existing cryoablation systems.

280 Future studies are warranted to examine several areas including the extent of
281 necrosis in cancer under a heat load and the impact of the device on healthy tissue and
282 long-term healing. Additionally, there have recently been significant inquiries into the
283 immune response to breast cancers due to cryoablation. These include animal studies
284 examining rejection rates of tumors in mice when rechallenged [26,27] as well as human
285 trials examining the immune response and overall survival outcomes of patients treated
286 with cryoablation [28,29]. This promising work furthers the potential for impact that
287 cryoablation of breast cancer could have in LMICs, and opens the door for future studies
288 to examine the immune response induced by this device.

289

290 **Conclusions**

291 This study evaluated the use of a cryoablation device that utilizes CO₂ as the
292 cryogen in a variety of experimental settings, thus exploring its potential as a breast
293 cancer treatment in LMICs. Although previous work has examined the use of argon-
294 based cryoablation, no such work has explored the efficacy of a CO₂-based cryoablation

295 device. Our results demonstrate the efficacy of this device in phantoms, at the cellular
296 level as examined in induced mammary tumors in rats, and under high heat load and
297 perfusion as performed in swine liver. Thus, this device has passed crucial benchmarks
298 meriting further research in both large animals with tumors and eventually in human
299 trials. With the introduction of this device, we are optimistic that the care paradigm in
300 LMICs may shift in the near future to account for the availability of affordable and
301 effective treatment in rural areas.

302

303 **Acknowledgements**

304 We would like to thank the Center for Bioengineering Innovation and Design and
305 the Biomedical Engineering Department at Johns Hopkins University for research
306 support, as well as: Monica Rex, Yechan Kang, Nikhil Jois, Alwin Hui, Sonia Trakru,
307 Sarah Lee, Sanjay Elangovan, Ben Lee, Marton Varady, and Sue Lucas.

308

309 **References**

310 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer
311 incidence and mortality worldwide: Sources, methods and major patterns in
312 GLOBOCAN 2012. *Int J Cancer*. 2014 Sep;136(5).

313

314 2. Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD. The descriptive
315 epidemiology of female breast cancer: An international comparison of screening,
316 incidence, survival and mortality. *Cancer Epidemiol*. 2012;36(3):237–48.

317

318 3. Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JG, et al.
319 Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet
320 Oncol. 2010 Feb;11(2):165–73.

321

322 4. Pillay AL. Rural and Urban South African Women's Awareness of Cancers of the
323 Breast and Cervix. Ethn Health. 2002 May;7(2):103–14.

324

325 5. Anderson BO, Ilbawi AM, Saghir NSE. Breast Cancer in Low and Middle Income
326 Countries (LMICs): A Shifting Tide in Global Health. Breast J. 2014 Nov;21(1):111–8.

327

328 6. Sankaranarayanan R, Boffetta P. Research on cancer prevention, detection and
329 management in low- and medium-income countries. Ann Onc. 2010;21(10):1935–43.

330

331 7. Callstrom MR, Charboneau JW. Technologies for Ablation of Hepatocellular
332 Carcinoma. Gastro. 2008 Jun;134(7):1831–41.

333

334 8. McTaggart RA, Dupuy DE. Thermal Ablation of Lung Tumors. Tech Vasc Interv Rad.
335 2007;10(2):102–13.

336

337 9. Littrup PJ, Jallad B, Chandiwala-Mody P, Dagostini M, Adam BA, Bouwman D.
338 Cryotherapy for Breast Cancer: A Feasibility Study without Excision. J Vasc Interv

339 Radiol. 2009;20(10):1329–41.

340

341 10. Ritch CR, Katz AE. Prostate cryotherapy: current status. Curr Opin Urol.

342 2009;19(2):177–81.

343

344 11. Haftron J, Kaouk JH. Ablative techniques for the management of kidney cancer. Nat
345 Clin Pract Urol. 2007;4(5):261–9.

346

347 12. Erinjeri JP, Clark TW. Cryoablation: Mechanism of Action and Devices. J Vasc
348 Interv Radiol. 2010 Aug;21(8 Suppl):S187-91.

349

350 13. Winkler JL, Jeronimo J, Singleton J, Janmohamed A, Santos C. Performance of
351 cryotherapy devices using nitrous oxide and carbon dioxide. Int J Gynecol Obstet. 2010
352 Oct;111(1):73–7.

353

354 14. Pfleiderer SR, Freesmeyer MG, Marx C, Kuhne-Heid R, Schneider A, Kaiser WA.
355 Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations.
356 Eur Radiol. 2002 Dec;12(12):3009–14.

357

358 15. Cryosurgery in Cancer Treatment [Internet]. National Cancer Institute. [cited 2018
359 May 10]. Available from: <https://www.cancer.gov/about-cancer/treatment/types/surgery/cryosurgery-fact-sheet#q6>

361

362 16. Theodorescu D. Cancer Cryotherapy: Evolution and Biology. *Rev Urol.* 2004;6 Suppl
363 4:S9-S19.

364

365 17. Laviana AA, Ilg AM, Veruttipong D, Tan H-J, Burke MA, Niedzwiecki DR, et al.
366 Utilizing time-driven activity-based costing to understand the short- and long-term costs
367 of treating localized, low-risk prostate cancer. *Cancer.* 2015 Feb;122(3):447–55.

368

369 18. Taylor AL, Jacobson MF. Carbonating the world: the marketing and health impact of
370 sugar drinks in low- and middle-income countries. Center for Science in the Public
371 Interest [Internet]. 2016 [cited 2018 Jun 3]. Available from:
372 <https://cspinet.org/sites/default/files/attachment/carbonatingreport.pdf>

373

374 19. Etheridge, Michael L., Jeunghwan Choi, Satish Ramadhyani, and John C. Bischof.
375 Methods for characterizing convective cryoprobe heat transfer in ultrasound gel
376 phantoms. *J Biomech Eng.* 2013 Feb; 135(2):021002

377

378 20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.
379 "Fiji: an open-source platform for biological-image analysis. *Nat Methods.* 2012 Jun
380 28;9(7):676-82.

381

382 21. Staren ED, Sabel MS, Gianakakis LM, Wiener GA, Hart VM, Gorski M, et al.

383 Cryosurgery of breast cancer. Arch Surg. 1997; 132(1). 28-33.

384

385 22. Sukumar S, Notario V, Martin-Zanca D, Barbacid M. Induction of mammary

386 carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus

387 by single point mutations. Nature. 1983 Dec 15-21;306(5944):658-61.

388

389 23. Murata S, Kominsky SL, Vali M, Zhang Z, Garrett-Mayer E, Korz D, et al. Ductal

390 access for prevention and therapy of mammary tumors. Cancer Res. 2006 Jan

391 15;66(2):638-45.

392

393 24. Weimar T, Lee AM, Ray S, Schuessler RB, Damiano RJ Jr. Evaluation of a novel

394 cryoablation system: in vivo testing in a chronic porcine model. Innovations (Phila). 2012

395 Nov-Dec;7(6):410-6

396

397 25. Littrup PJ, Jallad B, Vorugu V, Littrup G, Currier B, George M, et al. Lethal

398 isotherms of cryoablation in a phantom study: Effects of heat load, probe size and

399 number. J Vasc Interv Radiol 2009 Oct;20(10):1343-51

400

401 26. Sabel MS, Kaufman CS, Whitworth P, Chang H. Cryoablation of early-stage breast

402 cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol.

403 2004;11(5):542-549.

404

405 27. Sabel MS, Nehs MA, Su G, Lowler KP, Ferrara JL, Chang AE. Immunologic
406 response to cryoablation of breast cancer. *Breast Cancer Res Treat.* 2005 Mar;90(1):97-
407 104

408

409 28. David B Page, Heather McArthur, Zhiwan Dong, Phillip Wong, Ryan Emerson,
410 Zhenyu Mu, et al. Matched T cell repertoire analysis of peripheral blood and tumor-
411 infiltrating lymphocytes (TILs) in early stage breast cancer (ESBC) patients (pts) treated
412 with pre-operative cryoablation (cryo) and/or Ipilimumab (Ipi). 2014 Nov;2(3):138

413

414 29. Niu L, Mu F, Zhang C, Lii Y, Liu W, Jiang F, et al. Cryotherapy Protocols for
415 Metastatic Breast Cancer after Failure of Radical Surgery. *Cryobiology.* 2013
416 Aug;67(1):17-22

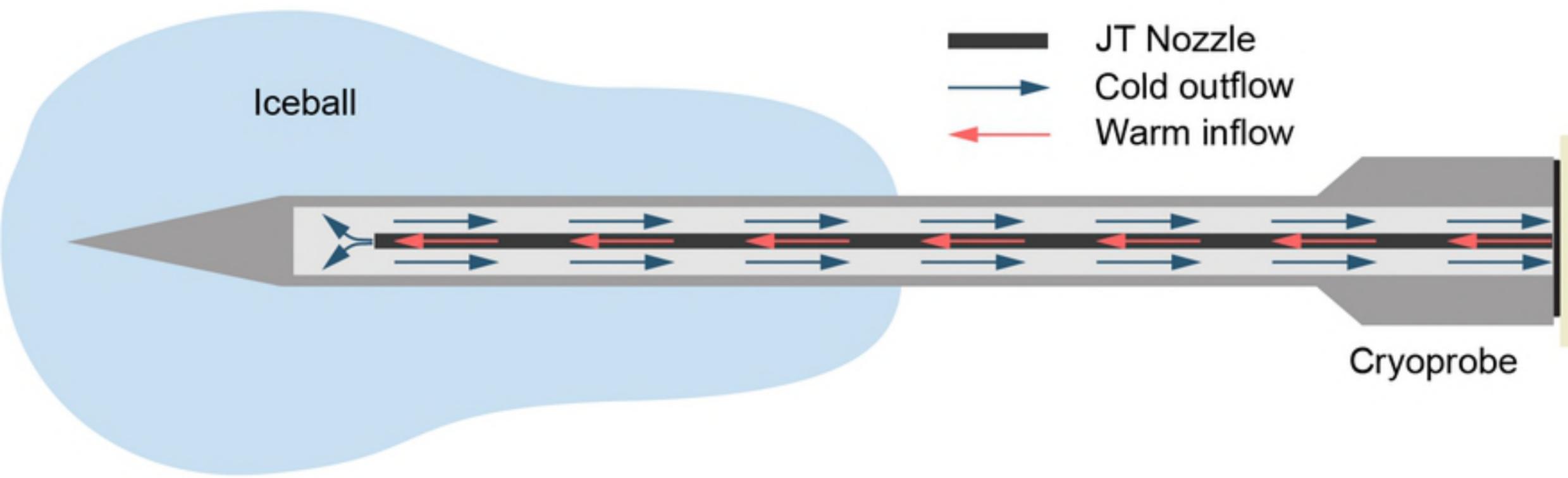


Figure 1

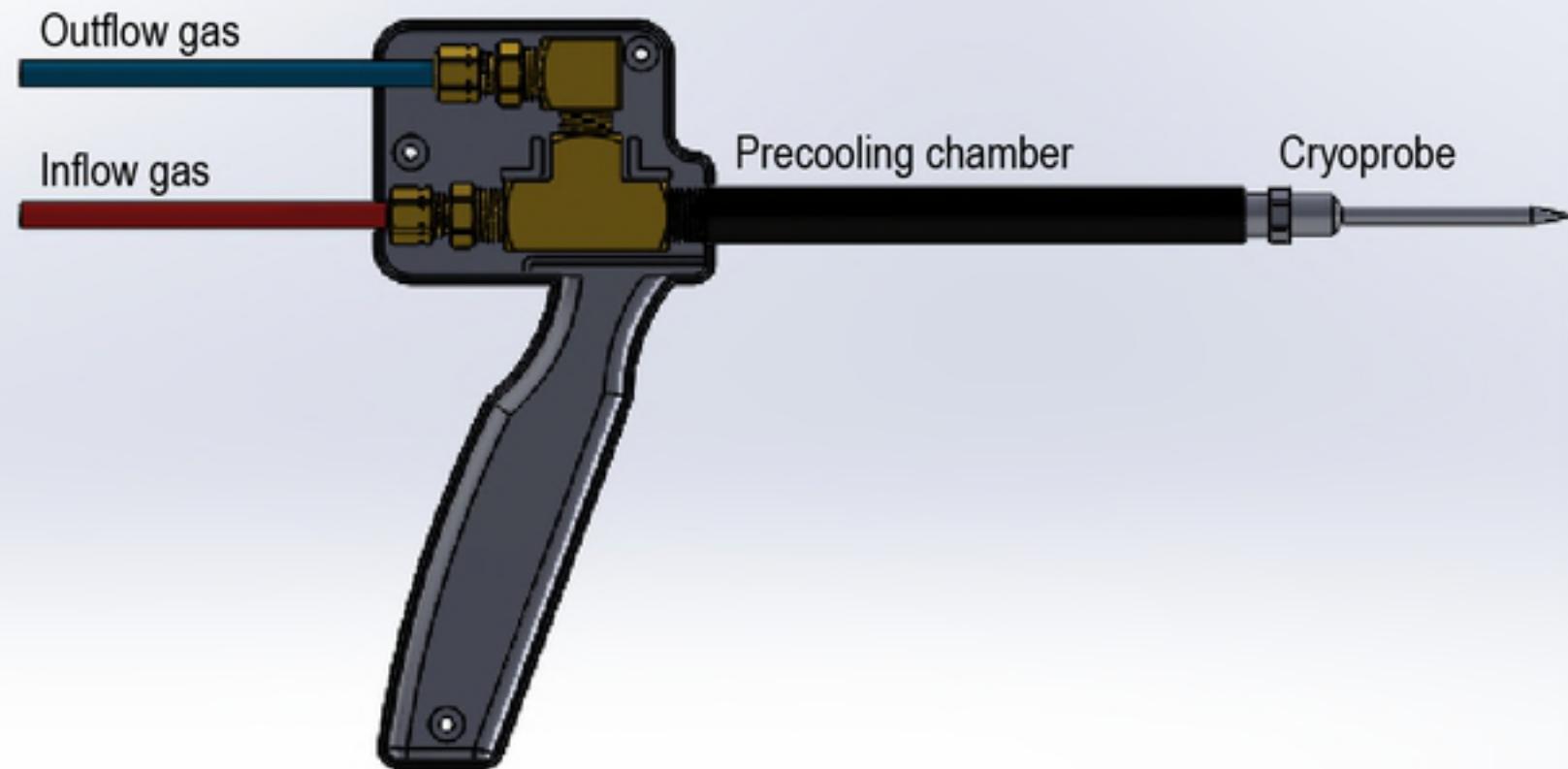
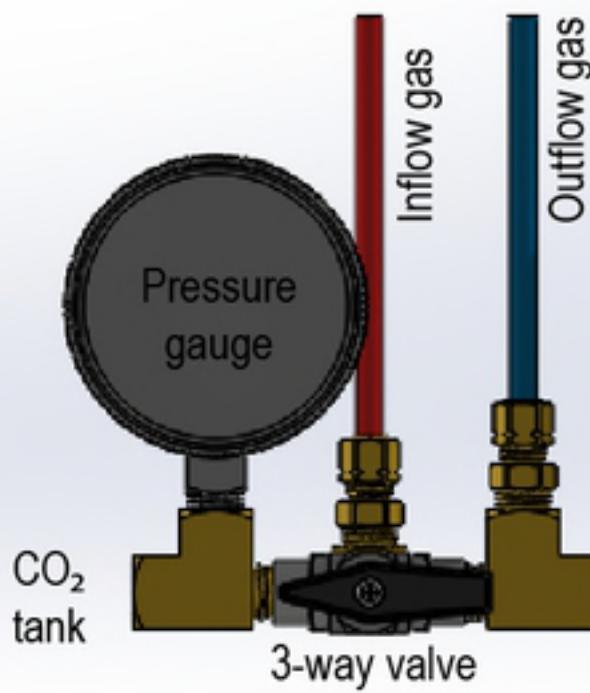
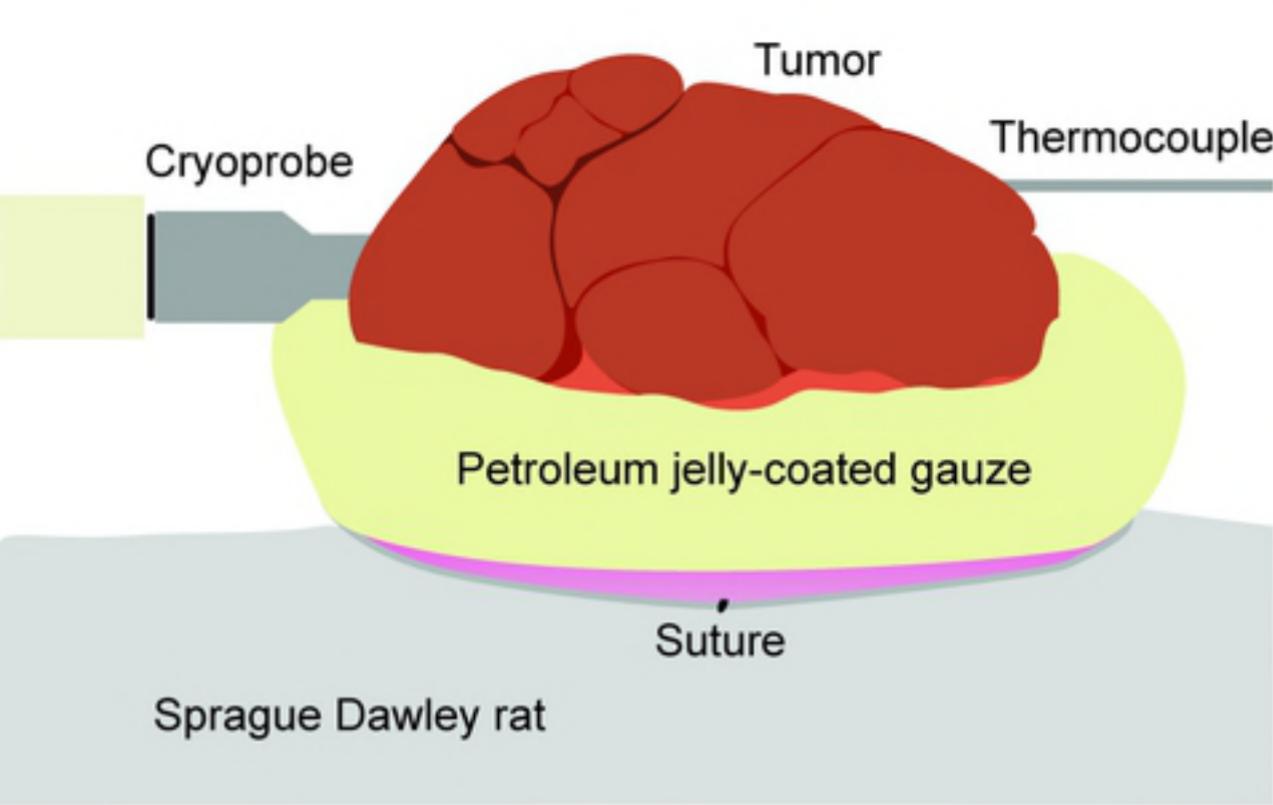
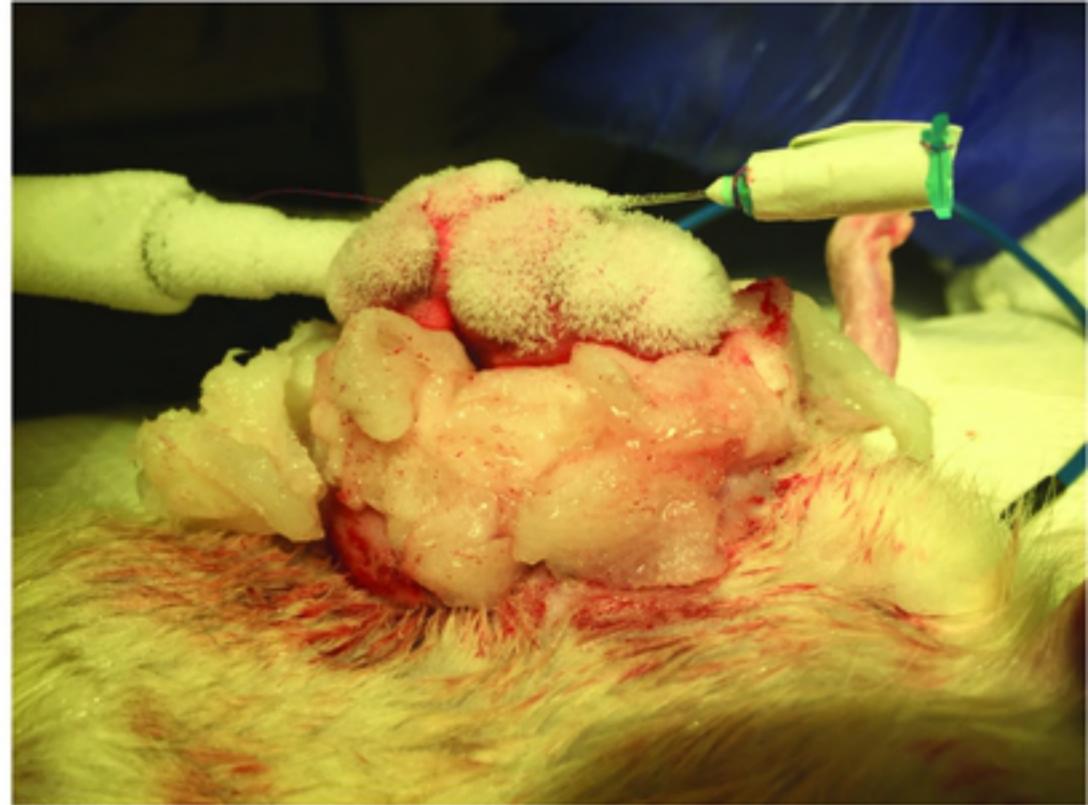
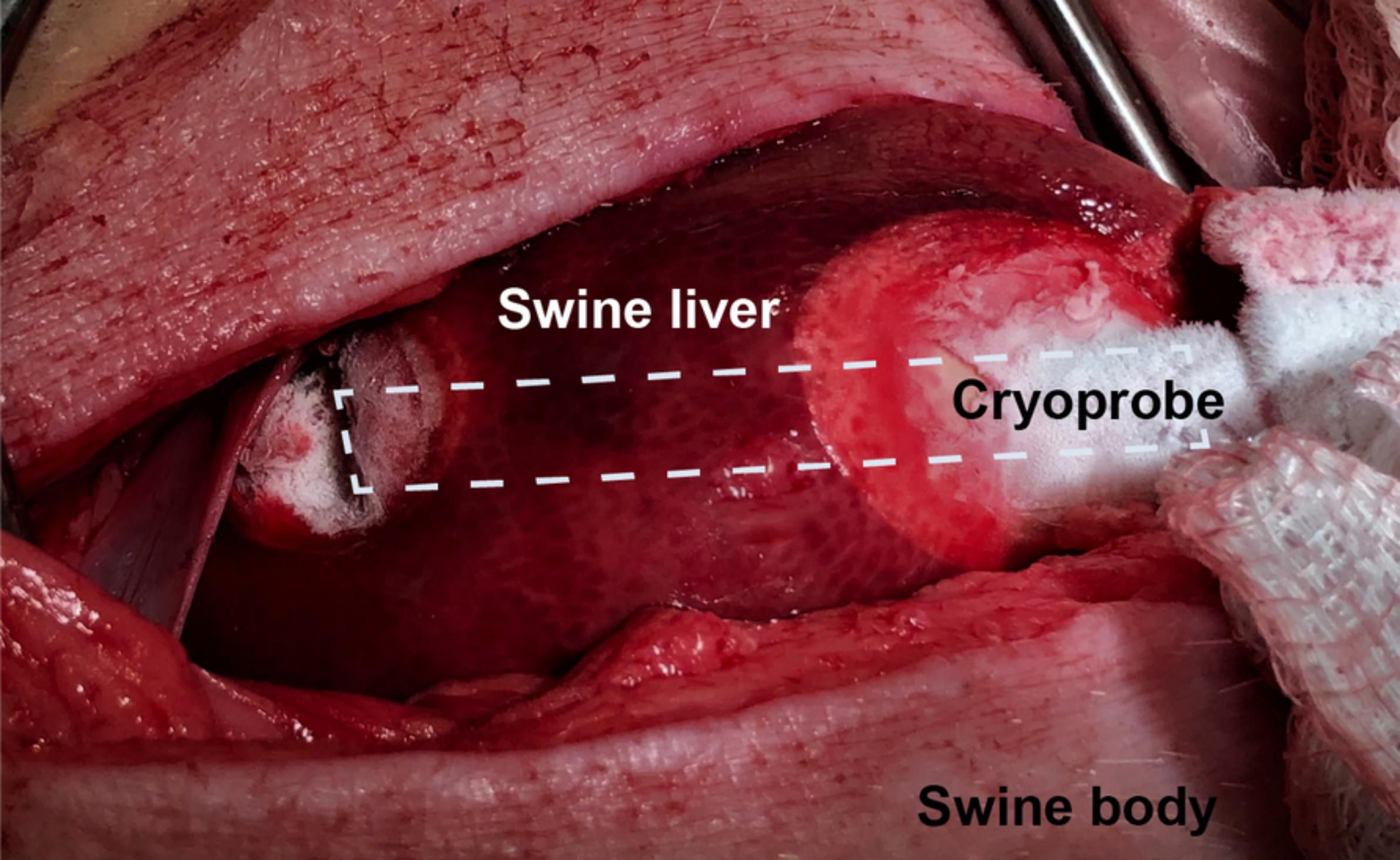





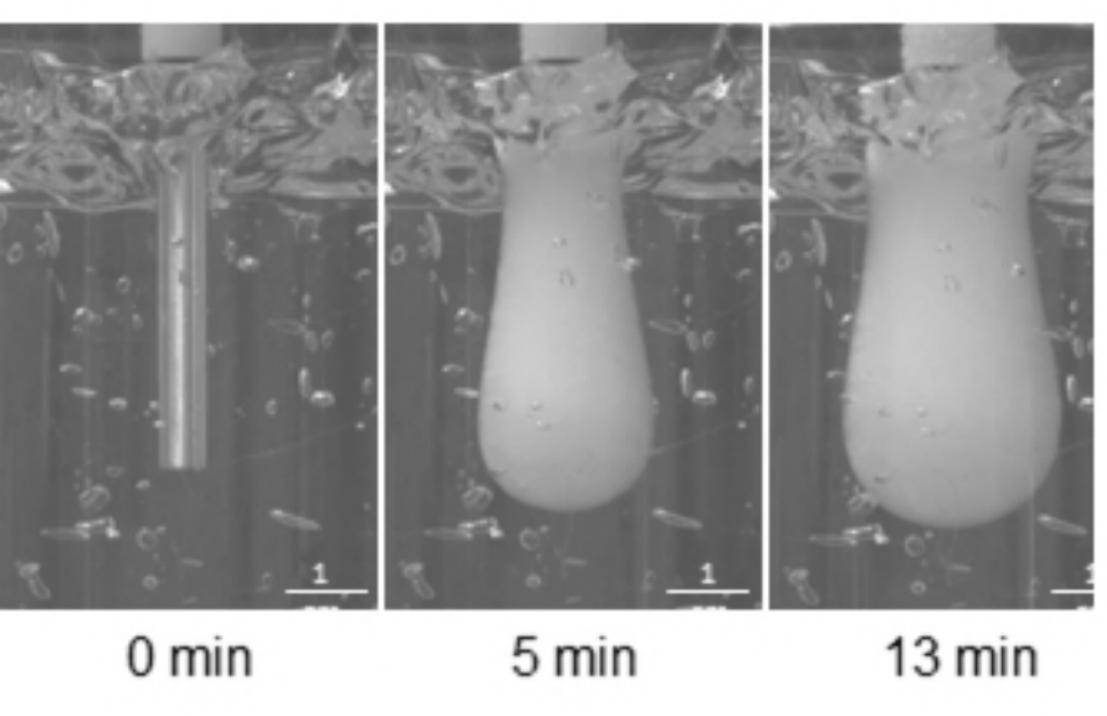
Figure 2



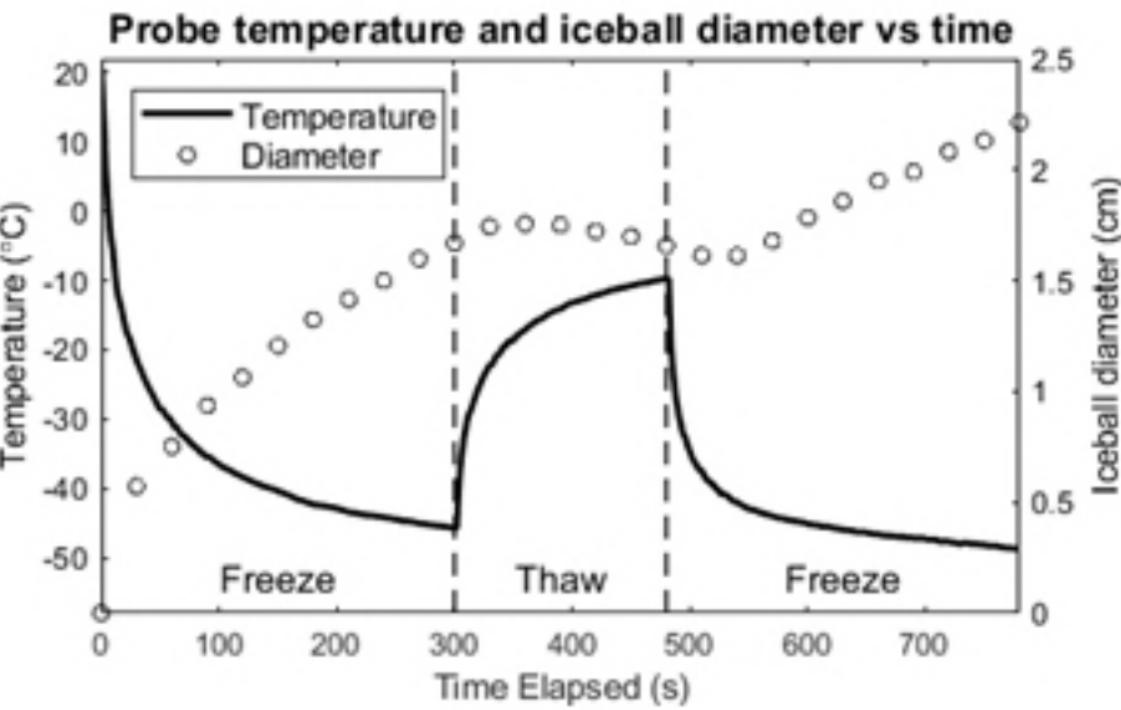
(a)

(b)

Figure 3



Swine liver


Cryoprobe

Swine body

Figure 4

(a)

(b)

Figure 5

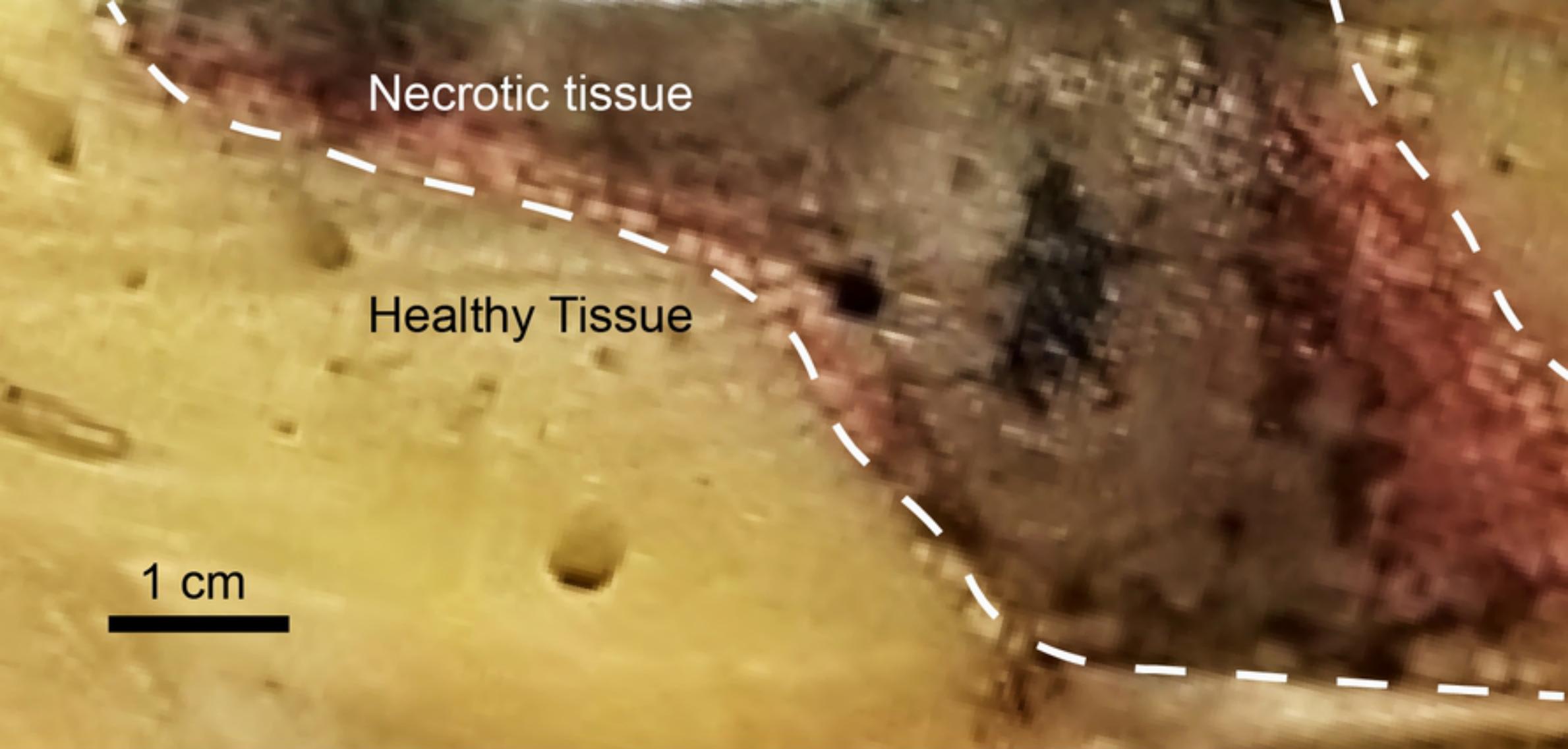
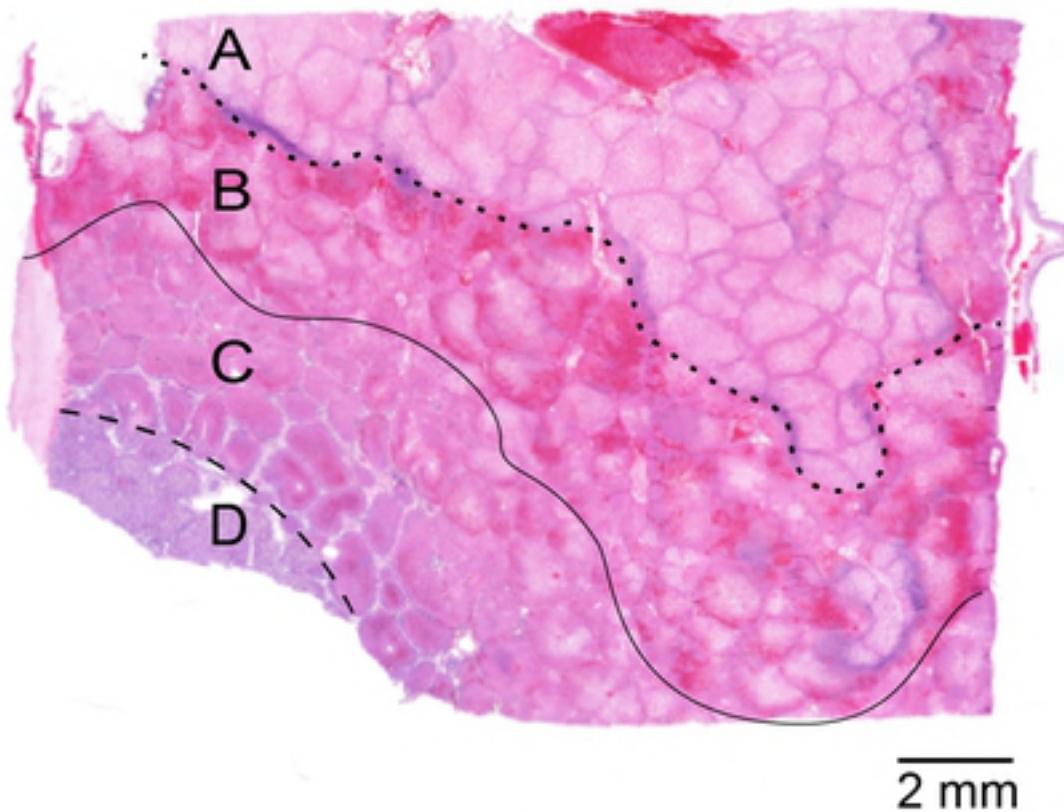
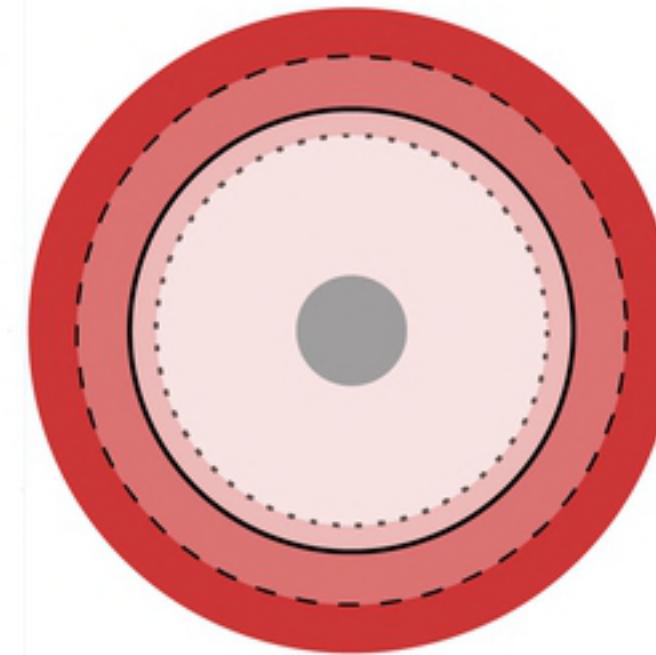
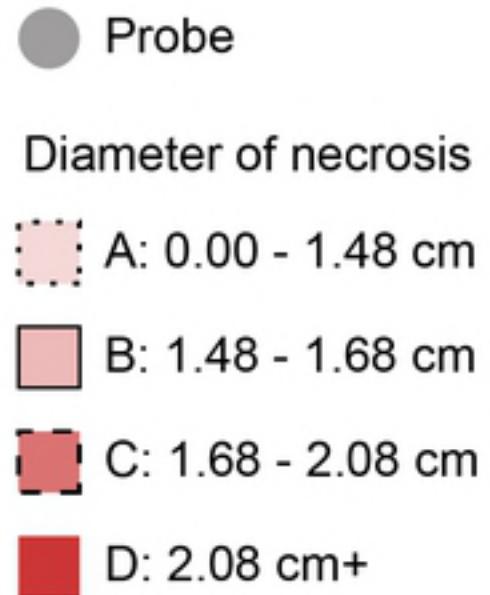
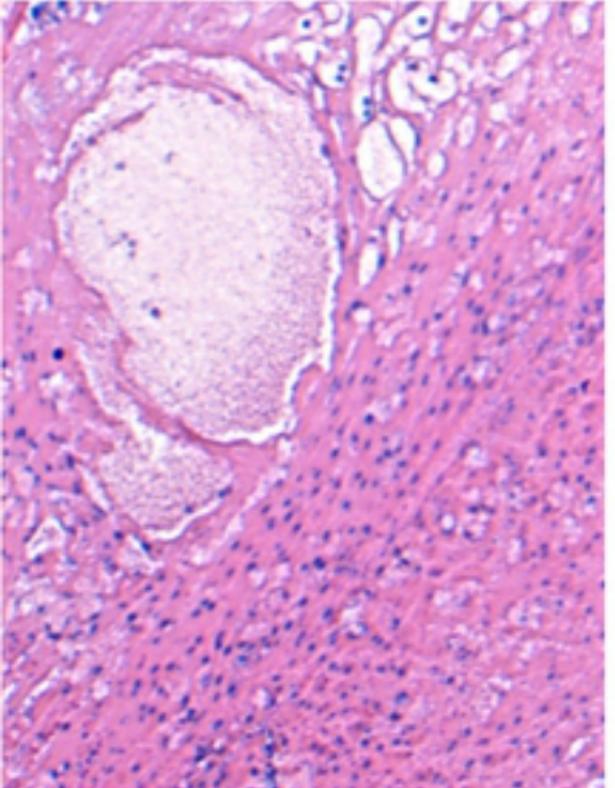
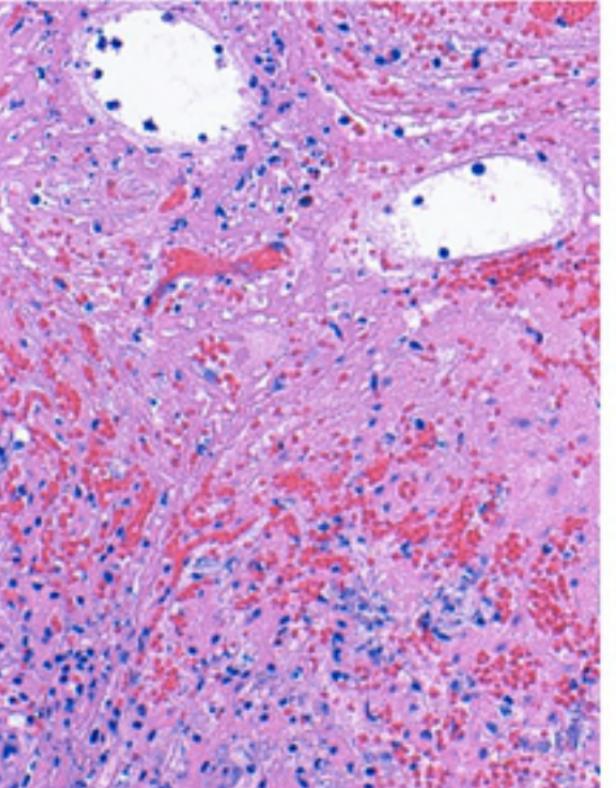
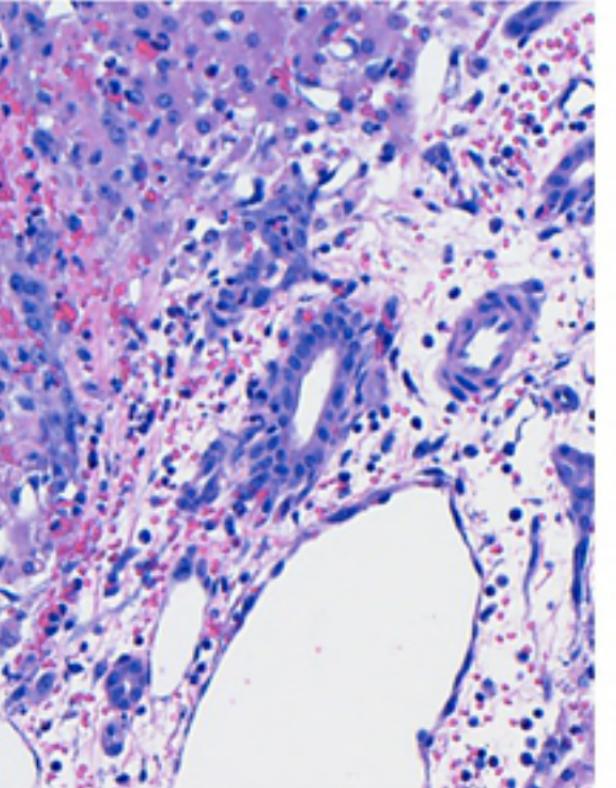




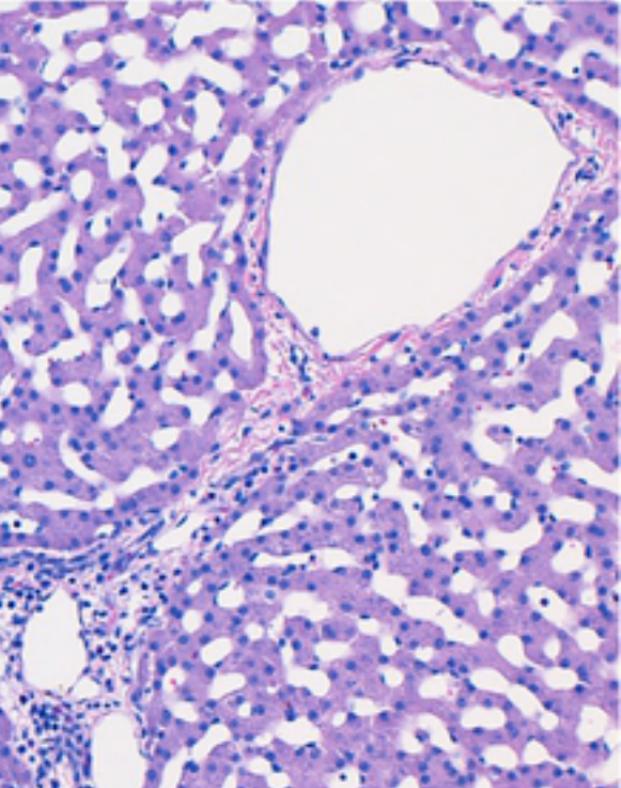
Figure 6

(a)

(b)


Figure 7


(a)

(b)

(c)

(d)

Figure 8