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Abstract

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with
Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a
substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To
overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability)
in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This
shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%).
We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either
Parkinson’s disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount
of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic
correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive
correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk
factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants.

Keywords: dementia Lewy bodies, genetic variance, polygenic risk

Introduction

Recent studies have highlighted the role of genetics in the common, but
often underappreciated, form of dementia that is dementia with Lewy
bodies (DLB). Associations with GBA, APOE and SNCA have all been
reproducibly reported by independent groups (1-3), and a recent genome-
wide association study (GWAS) identified several risk and candidate
variants associated with the disease (4). However, GWAS significant
single nucleotide polymorphisms (SNPs) often explain only a small
proportion of the total heritability estimated (usually from family-based
studies) for a given trait, which results in the ‘missing heritability’ issue
(5). One of the possible explanations for this issue is that all common
SNPs, regardless of their association p-value, contribute to the
heritability of complex traits (6—8). However, given that each individual
associated marker explains only a small proportion of the genetic
variation with little predictive power, methods have been developed to
test disorder prediction by summarizing variation across many loci
(regardless of association p-values) into quantitative scores. One such
approach is the generation of polygenic risk scores (PRSs). PRSs have
been successfully applied to Parkinson’s (PD) (9) and Alzheimer’s
diseases (AD) (10) and their usefulness will continue to increase as

discovery datasets are augmented.

A separate, but related, concept is that of genetic correlation of traits.
Here, what is estimated is the genetic covariance between traits that is
tagged by common genome-wide SNPs (11). This allows us to identify
pleiotropic effects between traits that might be unrelated by any other
measurement. We have performed a preliminary study of genetic
correlation between DLB and both PD and AD (12), however performing

similar analyses with other (even apparently unrelated) traits might

provide novel insights for the underlying pathobiology of disease and

perhaps for treatments across diseases.

The phenotypic variance of most complex human traits combines the
genetic with the environmental variance (13). While the effects of the
environment are difficult to ascertain given their complexity and lack of
adequate measurements, we are able to determine the genetic variance
more accurately. Classically, genetic variance has been partitioned into
sources of variation due to additive, dominance and epistatic effects.
Additive genetic variance (h?snp) relates to an allele’s independent effect
on a phenotype; dominance variance (8%snp) refers to the effect on a
phenotype caused by interactions between alternative alleles at a specific
locus; epistatic variance refers to the interaction between different alleles
in different loci. Most available cohorts for studies of human biology and
disease are still underpowered to identify epistatic events, however,
additive and dominance variance can be estimated from standard

genome-wide genotyping data (14).

Here, using data from the first GWAS in DLB that included haplotype
reference consortium (HRC)-imputed genotypes (15), we have estimated
the total heritability of this disease. We used a method (GCTA-LDMS)
that is unbiased regardless of the minor allele frequency (MAF) and
linkage disequilibrium (LD) properties of variants and thus greatly
improves on previous estimates (16). Since it has been suggested that
heritability estimates may be inflated by non-additive variation (17), we
have also estimated the dominance genetic variation in DLB.
Additionally, to measure the proportion of variance explained by PRSs
from PD and AD in a large DLB cohort, we measured the ability of PRS
to discriminate case from control subjects. Lastly, to attempt to derive

novel biological insights from unrelated traits, we have performed
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pairwise genetic correlation analysis of DLB with 235 phenotypes,

including cognitive, anthropometric and education traits.

Results

Quantifying the genetic heritability of DLB

We applied the GREML-LDMS approach to estimate the proportion of
phenotypic variance explained by the HRC-imputed variants for DLB.
Results from this approach showed that imputed variants with R? greater
than or equal to 0.3 and frequency above 0.1% explained 59.9% (s.e.=
2.1%; p=6.8x10) of phenotypic variance for DLB. Lower frequency
variants explained a large proportion of the phenotypic variance in DLB.
This pattern was maintained for the higher quality imputed variants as

well (Figure 1, Supplementary Table 1).
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Fig. 1. Estimate of the DLB variance explained by HRC-imputed
variants by MAF and LD. Segmental LD score increases from the 1st to
4th quartiles. Negative scores are not shown for simplicity but are present
in Supplementary Table 1. The estimates of variance explained are from
the GREML-LDMS analyses of fitting all the 24 genetic components
simultaneously.

To determine if non-additive variance in DLB would explain a subset of
the total disease heritability, we calculated the disease dominance
variance as implemented in the tool GCTA-GREMLJ. This method uses
genome-wide data to estimate the additive and dominance genetic
relationship matrices (GRMs) and fits both GRMs in a mixed linear
model to estimate h’snp and 8%snp simultaneously. Our results suggest that
DLB does not show significant dominance variance with an overall

estimate 6%snp=-0.05 (s.e. = 0.02).

Polygenic Prediction of Case-Control Status

We applied the PRSs derived from AD and PD data to determine if these
would discriminate between DLB and controls. The AD score explained

1.33% of the variance (Nagelkerke’s pseudo-R?) and was highly

significant (p = 5.8x1073"). Performing the same analysis while excluding
the APOE locus brought the estimate down to 0.14%, while reaching only
nominal significance. Using the PD polygenic risk score, we obtained an
estimate of 0.37% of the variance in DLB being explained by that score,
a result that was also significant (p=6.4x10'%). Interestingly, removing
the GBA locus resulted in only a small reduction in the variance explained
by the PD PRS (0.36%; p=1.23x10") at the best p-value threshold.
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Fig. 2. Proportion of variance of DLB case-control status explained by
PRSs from AD (A), AD excluding the APOE locus (B), PD (C) and PD
excluding the GBA locus (D). The bars represent PRSs calculated for 9
subsets of markers at different p-value thresholds in the original GWAS
publications. Best scores for each PRS are presented in (D). R2:
Nagelkerke’s pseudo-R2; Threshold: P-value threshold in original GWAS.
The bar plots of DLB variance explained by the AD and PD polygenic
risk scores are presented in Figure 2. As expected given these results,
DLB cases had on average higher polygenic risk scores than control

subjects for both PD and AD (Figure 3).

Unbiased genetic correlation

To test whether DLB has a shared genetic etiology with any of 235 other
diseases or biomedical relevant traits, we used LD score regression as
implemented in LDHub (http:/ldsc.broadinstitute.org/Idhub/). This
method estimates the degree to which genetic risk factors are shared
between pairs of diseases or traits, although it should be noted that it does
not inform regarding how this shared genetic etiology arises. We selected
the correlations with a p-value <0.01 in DLB and tested these in AD and
PD (Figure 4).
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Fig. 3. Density distribution of polygenic risk scores (PRS) from AD
and PD in DLB case and control subjects. The curves represent the
standardized residuals of PRS after adjustment for the first 6 principal
components. Blue indicates case subjects; orange indicates case
subjects.

The most significant correlation identified between DLB and each of the
235 tested traits was with “Years of schooling” (18) reaching a p-value
of 6.32x10 (Bonferroni corrected p-value=0.015) and a correlation
estimate (rg) of 0.48 (s.e. = 0.12) (Table 1). Interestingly, these scores
were found to be in the opposite direction in AD, but in the same direction
in PD (AD: rg=-0.33, p-value=8.87x1073; PD: rg=0.05, p-value=0.07)
(Figure 4). A positive correlation was also obtained for “Childhood 1Q”
(19) in DLB and PD, whereas a negative correlation was identified in AD
(DLB: 0.68, p-value=0.0009; AD: rg=-0.36, p-value=0.0011; PD:
rg=0.25, p-value=0.0013). Similarly, “Intracranial volume” (20)
presented a positive correlation with both DLB and PD, but no
discernible correlation with AD (DLB: 0.69, p-value=0.0052; AD: rg=-
0.003, p-value=0.96; PD: rg=0.34, p-value=0.0005). Conversely,
“Citrate” (21) was positively correlated with both DLB and AD, but had
no correlation with PD (DLB: 0.82, p-value=0.0033; AD: rg=-0.21, p-

value=0.25; PD: rg=-0.05, p-value=0.63).

Dementia with Lewy bodies

Age of first birth

Alzheimer's disease
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Discussion

With this study we provide more accurate estimates of genetic heritability
for DLB, quantify the variance explained by AD and PD polygenic risk
and estimate pleiotropy between DLB and over 200 diseases and

biomedical relevant traits.

Previous heritability estimates for DLB were calculated based on a
smaller cohort genotyped at a relatively smaller number of sites and using
GCTA’s GREML-SC (based on a single genetic relationship matrix).
These earlier studies provided an estimate of 31% heritability for this
disease (12). It is now recognised that GREML-SC may, under certain
circumstances (such as causal variants being enriched in regions with
higher or lower LD than average or if the causal variants had a different
MAF spectrum than the variants sampled), be biased (16). Because of
this, we used a recently developed approach that corrects for the LD bias
in the estimated SNP-based heritability and that is unbiased regardless of
the properties (e.g. MAF and LD) of the underlying causal variants
(GCTA GREML-LDMS) (16). We applied this tool to a larger cohort,
that was imputed with the most recent imputation panel, providing more
detailed genetic information. Using this approach we estimated that all
HRC-imputed variants with MAF >0.001 explained 59.9% (s.e= 2.1%)
of phenotypic variance for DLB, which is nearly double the previous
estimate (12). Our results also show that a large proportion of the variance
is explained by variants with lower frequency (MAFs from 0.001 to
0.01). Given that the current version of HRC allows for imputation of
variants with frequencies as low as 0.0005 and aggregate R? above 0.5

(15), this indicates that performing GWAS in DLB with increased sample

Parkinson's disease
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Fig. 4. Correlation scores with p-value <0.01 in DLB. Shown are also the scores for those same traits in PD and AD.
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Table 1. LDHub correlations with p-value <0.01.

o8 AD D
TRAIT Category ® se.  palue [ se.  palue [ se.  pvalue
FATHERS AGE AT DEATH; aging 0777 0230 0001
PMID:27015805
MOTHERS AGE AT DEATH; aging 0626 0234 0007 0250 0092 0007
PMID:27015805
BODY FAT; PMID:26833246 anthropometric 0382 0130 0003
BODY MASS INDEX; anthropometric 0287  0.093 0002
PMID:20935630
HEIGHT; FEMALES AT AGE 10 AND anthropometric -0.282 0.107 0.008
MALES AT AGE 12;
PMID:23449627
OBESITY CLASS 1; PMID:23563607 | anthropometric 0334 0113 0,003
PRIMARY BILIARY CIRRHOSIS; autoimmune -0.501 0.159 0.002
PMID:26394269
ARTHRITIS; 0358 0101 0000
PMID:24390342
ICV; PMID:25607358 brain_volume 0.691 0.247 0.005 0343 0.098 0.001
MEAN ACCUMBENS; brain_volume 0402 0143 0005
PMID:25607358
MEAN CAUDATE; PMID:25607358 | brain_volume 0266 0075 0000
MEAN PUTAMEN; PMID:25607358 | brain_volume 0251 0082 0002
LUNG CANCER; PMID:27488534 cancer 0493 0241 0001
LUNG CANCER (ALL); cancer 0579 0193 0003
PMID:24880342
LUNG CANCER (SQUAMOUS CELL); | cancer 0878 0313 0005
PMID:24880342
SQUAMOUS CELL LUNG CANCER; | cancer 0739 0224 0001
PMID:27488534
CORONARY ARTERY DISEASE; cardiometabolic  -0.442 0128 0001
PMID:26343387
INTELLIGENCE; PMID:28530673 cognitive 0281 0102 0006 -0357 0104 0001
CHILDHOOD IQ; PMID:23358156 | education 0675 0204 0001 -0362 0111 0001 025 0080  0.001
COLLEGE COMPLETION; education 0364 0100  0.000
PMID:23722424
YEARS OF SCHOOLING (PROXY education 0300 0081 0000 0138 0048 0004
COGNITIVE PERFORMANCE);
PMID:25201988
YEARS OF SCHOOLING 2013; education 029 0092 0002 0137 0048 0005
PMID:23722424
YEARS OF SCHOOLING 2016; education 0481 0120 0000 -0330 0088 0000
PMID:27225129
CITRATE; PMID:27005778 metabolites 0821 0280 0003
ISOLEUCINE; PMID:27005778 metabolites 0547 0208 0009
'AGE OF FIRST BIRTH; reproductive 0311 0.105 0.003 0.140 0.042 0.001
PMID:27798627

sizes will allow us to identify novel loci involved in conferring risk for

disease without the need for large-scale whole-genome sequencing.

One of the explanations for the common issue of “missing heritability” is
that non-additive heritability (such as dominance variance or epistatic
variance) represents a substantial component of a trait’s total heritable
genetic component. Our results suggest that dominance variance has a
negligible effect on the genetic heritability of DLB, in line with findings
from 79 unrelated traits (14). However, we cannot exclude that epistatic
variance plays a role in DLB, given that our cohort is underpowered to

detect epistatic events.

Recently, there has been growing interest in the use of PRSs as a way to
perform risk prediction in various diseases and these have successfully
been applied to AD (10) and PD (9). To determine how much of the
phenotypic variance in our DLB cohort can be caused by AD and PD
known genetic risk factors, we used PRSs from recent GWAS from each
of these diseases. In both cases scores were predictive of case-control
status, although explaining only relatively small proportions of variance
(0.37-1.33%). In AD, excluding the APOE locus greatly reduced the

amount of variance explained in DLB (0.14%), which is in accordance
with the strong effect that locus has in the risk of both diseases (4, 22).
Conversely, excluding the GBA locus in PD had only a modest effect,
which likely results from the lower frequency in the general population
of the variants that comprised this signal compared to APOE. Since the
amount of variance explained by each of the PRS is relatively small, this
adds to the growing body of evidence that suggests that, genetically, DLB
is a unique condition and not simply a mix of PD and AD risk factors.
These data also confirm the polygenic nature of DLB as well as quantify
the amount of variance that polygenic risk from each of those diseases

accounts for in DLB.

Given the large number of pleiotropic events that are being identified for
a variety of diseases and traits (23, 24), finding correlated conditions
opens the door to a better understanding of disease pathobiology and
perhaps may even suggest novel therapeutic targets. Assessing the
genetic correlation of DLB with over 200 diseases and traits showed
correlations that were in the same direction of those seen in PD while
others were in the same direction as in AD. It is interesting to note that
education scores were positively correlated with DLB, while they have a
well established negative correlation with AD (25, 26). Similar positive
correlations have been identified for bipolar disorder and autism
spectrum disorders (27), as well as for PD in the present data. Also in PD,
there is evidence for the presence of increased intracranial volumes when
compared to controls (28). Here, supporting those findings, we identify a
positive genetic correlation between both PD and DLB with intracranial
volume, whereas in AD no evidence for genetic correlation was
identified. Interestingly, the anthropometric characteristics obesity, body
mass index (BMI) and body fat were negatively correlated with all 3
diseases. For BMI and PD, recent Mendelian randomization results have
shown a negative effect (29) which our results replicate and suggest they
extend to both AD and DLB. A similar finding was obtained for cancer
traits, where lung cancer showed a general negative correlation with the
three traits. This agrees with transcriptomic studies that showed that the
cancer gene expression profile is almost an opposite mirror image to that
of neurodegenerative disease (30). A positive correlation between both
DLB and AD with citrate (21) was identified, although this was not the
case for PD, where no evidence of correlation was found. Increased
plasma levels of citrate have been shown to be associated with increased
levels of oxidative stress (31), making it tempting to speculate that in AD
and DLB oxidative stress may be involved in the neurodegenerative

processes, while in PD it may be more akin to a consequence.
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We note several limitations in our study. First, the DLB dataset, despite
being the largest to date, is relatively small when compared to other
recently published GWAS. This has implications in the statistical power
to make novel findings and is reflected in the standard errors of the
analyses performed. We are underpowered to detect rare variants and
certainly rare variants with small effect sizes. Second, we are unable to
provide definitive biological mechanisms underlying the genetic
correlations identified. This means that it is possible that for some of the
correlations observed, what we are seeing are proxy effects and not direct
correlations. Lastly, this study focused on individuals of European/North
American descent. It is likely that studies of populations of different
ancestries will reveal not only novel loci, but perhaps also novel
pleiotropic effects, which could improve our understanding of the

pathobiology of DLB.

In summary, we provide updated estimates of the genetic heritability of
DLB and show that dominance variance is not a substantial part of the
heritability of this disease. We quantify the amount of phenotypic
variance in DLB that can be attributed to PD and AD polygenic risk
scores and show that this is relatively small. Lastly, we estimate genetic
correlations between DLB and over 200 diseases and medically relevant
traits, shedding light into the complex relationship between DLB and
both PD and AD.

Materials and Methods

Sample description

The DLB dataset was previously published (4) and is comprised of 1,216
cases and 3,791 controls, imputed with HRC v1.1 and includes variants
with minor allele frequency >= 0.001 and R*>=0.3, for a total number of
18.4 million variants (median R?>=0.92). We used AD summary statistics
from the International Genomics of Alzheimer's Project (IGAP) (22),
which is a large two-stage study based upon genome-wide association
studies (GWAS) on individuals of European ancestry. In stage 1, IGAP
used genotyped and imputed data on 7,055,881 single nucleotide
polymorphisms (SNPs) to meta-analyse four previously-published
GWAS datasets consisting of 17,008 Alzheimer's disease cases and
37,154 controls (the European Alzheimer's disease Initiative — EADI the
Alzheimer Disease Genetics Consortium — ADGC, the Cohorts for Heart
and Aging Research in Genomic Epidemiology consortium — CHARGE,
the Genetic and Environmental Risk in AD consortium — GERAD). PD

summary statistics were derived from the International Parkinson’s
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Disease Genomics Consortium (IPDGC) previously published data and
included 13,708 cases and 95,282 controls (32).

DLB heritability estimates

We used the GCTA-LDMS method to estimate heritability based on
imputed data (16, 33) using an imputation quality above 0.3 and a disease
prevalence of 0.1%. This method considers the LD-bias that occurs in the
SNP-based estimates and is unbiased regardless of the properties of the
underlying variants. We calculated segment-based LD scores using a
segment length of 200kb (with 100kb overlap between two adjacent
segments), which were used to stratify the SNPs into quartiles. We then
estimated the genetic relationship matrix (GRM) for each sample using
the SNPs in each quartile separately and further stratified by minor allele
frequency bins (0.001-0.01, 0.01-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5).
Lastly, we performed restricted maximum likelihood (REML) analysis

using the multiple GRMs.

DLB dominance variance estimates

To estimate the dominance GRM between pairs of individuals, we used
genome-wide imputed SNPs as implemented in GCTA-GREMLA (14).
This method calculates the additive and dominance GRMs and fits both
GRMs in a mixed linear model to estimate additive and dominance

variance simultaneously.

PRS analyses

Determining the polygenic risk of a given phenotype and applying it to
another trait is an approach that allows to determine shared genetic
aetiology between traits. We calculated PRSs on the base phenotypes (PD
and AD), using GWAS summary statistics, and used these as predictors
of the target phenotype (DLB) in a regression test. To construct and apply
the PRSs we used PRSice v2.1 (34). We performed clumping on the
target data by retaining the SNP with the smallest p-value from each LD
block (excluding SNPs with 2 > 0.1 in 250kb windows). Each allele was
weighted by its effect-size as estimated in the respective study (for PD
and AD). Association of PRSs with case-control status was performed
with logistic regression, and Nagelkerke’s pseudo-R? was calculated to

measure the proportion of variance explained.

Genetic correlation analysis

To estimate the genetic correlation between DLB and other complex

traits and diseases, we used a method based on LD score regression and
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implemented in the online web utility LDHub v1.9.0 (27, 35). The LD
score regression method uses summary statistics from the DLB GWAS
and the other available traits, calculates the cross-product of test statistics
at each SNP, and then regresses the cross-product on the LD score. After
identifying the most significant correlations for DLB (p<0.01), we

estimated the correlation of those traits with PD and AD.
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