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ABSTRACT 

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms 

driving cancer etiology. Using genome-wide association study summary statistics across six cancer 

types based on a total of 296,215 cases and 301,319 controls of European ancestry, we estimate the pair-

wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and 

between cancers and 38 other diseases. We observed statistically significant genetic correlations 

between lung and head/neck cancer (��=0.57, p=4.6×10-8), breast and ovarian cancer (��=0.24, p=7×10-

5), breast and lung cancer (��=0.18, p=1.5×10-6) and breast and colorectal cancer (��=0.15, p=1.1×10-4). 

We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, 

psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant 

excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive 

analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a 

common germline genetic basis. 
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INTRODUCTION 

Inherited genetic variation plays an important role in cancer etiology. Large twin studies have 

demonstrated an excess familial risk for cancer sites including, but not limited to, breast, colorectal, 

head/neck, lung, ovary and prostate with heritability estimates ranging between 9% (head/neck) to 57% 

(prostate).1–3 Data from nation-wide and multi-generation registries further show that elevated cancer 

risks go beyond nuclear families and isolated types, as family history of a specific cancer can increase 

risk for other cancers.4–6 Additional evidence for a shared genetic component have been demonstrated 

by cross-cancer genome-wide association study (GWAS) meta-analyses, which set out to identify 

genetic variants associated with more than one cancer type. Fehringer et al. studied breast, colorectal, 

lung, ovarian and prostate cancer, and identified a novel locus at 1q22 associated with both breast and 

lung cancer.7 Kar et al. focused on three hormone-related cancers (breast, ovarian and prostate), and 

identified seven novel susceptibility loci shared by at least two cancers.8 

Previous attempts to estimate the genetic correlation across cancers using GWAS data9–12 have mostly 

relied on restricted maximum likelihood (REML) implemented in GCTA (genome-wide complex trait 

analysis)13 and individual-level genotype data. However, these studies have had limited sample sizes, 

yielding inconclusive results. Sampson et al. quantified genetic correlations across 13 cancers in 

European ancestry populations and identified four cancer pairs with nominally significant genetic 

correlations (bladder-lung, testis-kidney, lymphoma-osteosarcoma, lymphoma-leukemia).9 They did not 

observe any significant genetic correlations across common solid tumors including cancers of the breast, 

lung and prostate.9 REML becomes computationally challenging for large sample sizes and is sensitive 

to technical artifacts. LD score regression (LDSC)14,15 overcomes these issues by leveraging the 

relationship between association statistics and LD patterns across the genome. We recently used cross-

trait LDSC to quantify genetic correlations across six cancers based on a subset of the data included here 

and found moderate correlations between colorectal and pancreatic cancer as well as between lung and 
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colorectal cancer.16 However, the average sample size was only 11,210 cases and 13,961 controls per 

cancer, resulting in imprecise estimates with wide confidence intervals. 

In addition to the development of novel analytical methods tailored to genomic data, several high-

quality functional annotations have recently been released into the public domain through large-scale 

efforts. For example, the ENCODE consortium has built a comprehensive and informative parts list of 

functional elements in the human genome (http://www.nature.com/encode/#/threads), which allows for 

the analysis of components of SNP-heritability to unravel the functional architecture of complex traits. 

Here, we use summary statistics from the largest-to-date European ancestry GWAS of breast, colorectal, 

head/neck, lung, ovary and prostate cancer with an average sample size of 49,369 cases and 50,219 

controls per cancer, to quantify genetic correlations between cancers and their subtypes. We also use 

GWAS summary statistics for 38 non-cancer traits (average N=113,808 per trait), to quantify the genetic 

correlations between the six cancers and other diseases. Furthermore, we assessed the proportion of 

cancer heritability attributable to specific functional categories, with the goal of identifying functional 

elements that are enriched for SNP-heritability. 

Our comprehensive analysis identifies statistically significant genetic correlations between lung and 

head/neck cancer, breast and ovarian cancer, breast and lung cancer and breast and colorectal cancer. 

We also find multiple cancers to be genetically correlated with non-cancer traits including smoking, 

psychiatric diseases and metabolic traits. Functional enrichment analysis reveals a significant 

contribution of conserved and regulatory regions to cancer heritability. Our results suggest that solid 

tumors arising across tissues share in part a common germline genetic basis. 

RESULTS 

Heritability estimates across cancers 

We first estimated cancer-specific heritability causally explained by common SNPs (���) using LDSC 

(note that this quantity is slightly different from the ��� as defined in Yang et al.17 which estimates the 

heritability due to genotyped and imputed SNPs) (see Methods). Estimates of ��� on the liability scale 

ranged from 0.03 (ovarian) to 0.25 (prostate) (Supplementary Table 1). After removing genome-wide 

significant (p<5×10-8) loci, defined as all SNPs within 500kb of the most significant SNP in a given 

region (Supplementary Table 2), we observed an ~50% decrease in SNP-heritability for prostate and 

breast cancer, and ~20% decrease for lung, ovarian and colorectal cancer, despite the fact that we were 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/453480doi: bioRxiv preprint 

https://doi.org/10.1101/453480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

only excluding 1% (colorectal cancer) to 5% (breast cancer) of the genome. In contrast, the SNP-

heritability for head/neck cancer was not affected by removing genome-wide significant loci (Fig. 1A). 

For most of the cancers, the GWAS significant loci for that particular cancer explained most of the 

heritability. For some cancers, however, significant GWAS loci of other cancers also explained a non-

trivial part of its heritability. For example, the significant breast cancer GWAS loci explained 10%, 15% 

and 22% heritability of colorectal, ovarian and prostate cancer, respectively; the significant colorectal 

cancer GWAS loci explained 11% heritability of prostate cancer; the significant lung cancer GWAS loci 

explained 10% heritability of head/neck cancer; and the significant prostate cancer GWAS loci 

explained 11% and 15% heritability of breast and ovarian cancer, respectively (Supplementary Table 3). 

Comparing the liability-scale SNP-heritability to corresponding estimates from twin studies suggests 

that common SNPs can almost entirely explain the classical heritability of head/neck cancer, whereas for 

other cancers, only 30–40% of heritability can be explained (Fig. 1B). 

Genetic correlations between cancers 

We then estimated the genetic correlation between cancers using cross-trait LDSC (see Methods). After 

adjusting for the number of tests (p<0.05/15=0.003), we found multiple significant genetic correlations 

Fig. 1C, Supplementary Table 1), with the strongest result observed for lung and head/neck cancer 

(��=0.57, se=0.10). In addition, colorectal and lung cancer (��=0.28, se=0.06), breast and ovarian cancer 

(��=0.24, se=0.06), breast and lung cancer (��=0.18, se=0.04), and breast and colorectal cancer (��=0.15, 

se=0.04) showed statistically significant genetic correlations. We also observed nominally significant 

genetic correlations (p<0.05) between lung and ovarian cancer (��=0.16, se=0.08), prostate cancer and 

head/neck (��=0.15, se=0.08), colorectal (��=0.11, se=0.05) and breast cancer (��=0.07, se=0.03) (Fig. 

1C). Some cancer pairs showed minimal correlations with estimates close to 0 (ovarian and prostate: 

��=0.02, se=0.07; lung and prostate: ��= −0.03, se=0.04; breast and head/neck: ��=0.03, se=0.06). We 

further calculated the cross-cancer genetic correlation based on data after excluding the GWAS 

significant regions of each cancer. The estimates were mostly consistent with the results calculated 

based on all SNPs (data not shown). 

We conducted subtype-specific analysis for breast, lung, ovarian and prostate cancer (Supplementary 

Table 1). Estrogen receptor (ER)+ and ER− breast cancer showed a genetic correlation of 0.60 (se=0.03), 

indicating that the genetic contributions to these two subtypes are in part distinct. The genetic correlation 

between the two common lung cancer subtypes adenocarcinoma and squamous cell carcinoma was 
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similarly 0.58 (se=0.10). Further, we observed a significantly larger genetic correlation of lung cancer 

with ER− (��=0.29, se=0.06) than with ER+ breast cancer (��=0.13, se=0.04) (pdifference=0.002). This also 

held true for lung squamous cell carcinoma, which showed statistically stronger genetic correlation with 

ER− (��=0.33, se=0.08) than with ER+ breast cancer (��=0.11, se=0.05) (pdifference=0.0019). We observed 

no other statistically significant differential genetic correlations across subtypes (all pdifference>0.1). 

We then estimated local genetic correlations between cancers using ρ-HESS, dividing the genome into 

1,703 regions (see Methods) (Fig. 2 and Supplementary Fig 1). We found that although the genome-

wide genetic correlation between breast and prostate cancer was modest ( �� =0.07), chr10:123M 

(10q26.13, p=1.0×10-7) and chr9:20-22M (9p21, p=1.0×10-6), two previously known pleiotropic 

regions18, showed significant genetic correlations (��= −0.00098 and ��= 0.00046). Similarly, although 

the genome-wide genetic correlation between lung and prostate cancer was negligible (��= −0.03), two 

previously identified pleiotropic regions (chr6:30-31M or 6p21.33, p=5.7×10-7 and chr20:62M or 

20q13.33, p=2.8×10-6) exhibited significant local genetic correlations (��= −0.00060 and ��= 0.00067). 

Overall, local genetic correlation analysis reinforced shared effects for 44% (31/71) of previously 

reported pleiotropic cancer regions (Supplementary Table 4). It also identified novel pleiotropic signals. 

For example, the breast and prostate cancer pleiotropic region at 2q33.1 showed significant local genetic 

correlation between breast and ovarian cancer (p=2.3×10-6). Additionally, 6p21.32, a region indicated 

for head/neck and prostate cancer, showed highly significant local genetic correlation for head/neck and 

lung cancer (p=8.6×10-8). 

Genetic correlations between cancer and other traits 

Significant genetic correlations (p<0.05/228=0.0002) between the six cancers and 38 non-cancer traits 

reflected several known associations (Fig. 3 and Supplementary Table 5). We observed a strong genetic 

correlation between smoking and lung cancer (��=0.56, se=0.06), and similarly for head/neck cancer 

(��=0.47, se=0.08), both cancers having smoking as its primary risk factor.19,20 Educational attainment 

was negatively genetically correlated with colorectal (��= −0.17, se=0.04), head/neck (��= −0.42, 

se=0.07) and lung cancer (��= −0.39, se=0.04) (all p<5×10-6). Body mass index (BMI) showed a positive 

genetic correlation with colorectal cancer (��=0.15, se=0.03) and also suggestive but weak negative 

correlations with prostate (��= −0.07, se=0.03) and breast cancer (��= −0.06, se=0.03). Lung cancer 
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showed a negative genetic correlation with lung function (��= −0.15, se=0.04) and age at natural 

menopause (��= −0.25, se=0.05), and moderate positive genetic correlations with depressive symptoms 

(��=0.25, se=0.06) and waist-to-hip ratio (��=0.16, se=0.04). Breast cancer showed a positive genetic 

correlation with schizophrenia (��=0.14, se=0.03). 

We did not find evidence of genetic correlations between cancer and several previously suggested risk 

factors21–23 including cardiovascular traits (coronary artery disease, hypertension and blood pressure) or 

sleep characteristics (chronotype, duration and insomnia). Further, we did not observe genetic 

correlations between cancer and circulating lipids (HDL, LDL, triglycerides) or type 2 diabetes-related 

traits except a significant negative correlation between HDL and lung cancer (��= −0.14, se=0.04). We 

observed no significant genetic correlation between breast cancer and age at menarche (��= −0.03, 

se=0.03) or age at natural menopause (��= −0.01, se=0.03). We also did not observe notable genetic 

correlations between cancer and autoimmune inflammatory diseases or height. 

Subtype analysis revealed that smoking and educational attainment showed genetic correlations with all 

lung cancer subtypes (Supplementary Table 5). Educational attainment, forced vital capacity and 

depressive symptoms showed genetic correlations with ER− but not ER+ breast cancer, whilst the 

observed genetic correlation between schizophrenia and breast cancer was limited to ER+ disease, and 

the genetic correlation between depressive symptoms and lung cancer was observed only for lung 

squamous cell carcinoma. 

We further assessed the support for mediated or pleiotropic causal models for non-cancer traits and 

cancer using the correlation between trait-specific effect sizes of genome-wide significant SNPs for 

pairs of phenotypes. We detected four putative directional genetic correlations (defined as p<0.05 from a 

likelihood ratio (LR) comparing the best non-causal model to the best causal model) (Fig. 4), where 

SNPs associated with the non-cancer trait showed correlated effect estimates with cancer but the reverse 

was not true (circulating HDL concentrations and breast cancer, LRnon-causal vs. causal=0.04, schizophrenia 

and breast cancer, LRnon-causal vs. causal=0.003, age at natural menopause and breast cancer, LRnon-causal vs. 

causal=0.04, lupus and prostate cancer, LRnon-causal vs. causal=0.0006). 

Functional enrichment analysis of cancer heritability 

Finally, we partitioned SNP-heritability of each cancer by using 24 genomic functional annotations (the 

baseline-LD model described in Gazal et al.24) and 220 cell-type-specific histone mark annotations (the 
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cell-type-specific model described in Finucane et al.14). Meta-analysis across the six cancers revealed 

statistical significant enrichments for multiple functional categories. We observed the highest 

enrichment for conserved regions (Table 1, Supplementary Table 6) which overlapped with only 2.6% 

of SNPs but explained 25% of cancer SNP-heritability (9.8-fold enrichment, p=2.3×10-5). Transcription 

factor binding sites showed the second highest enrichment (4.0-fold, 13% of SNPs explaining 40% of 

SNP-heritability, p=1.4×10-7). Further, super-enhancers (groups of putative enhancers in close genomic 

proximity with unusually high levels of mediator binding) showed a significant 2.6-fold enrichment 

(p=2.0×10-20). Additional enhancers, including regular enhancers (3.2-fold), weak enhancers (3.1-fold) 

and FANTOM5 enhancers (3.1-fold), presented similar enrichments but were not statistically significant. 

In addition, multiple histone modifications of epigenetic markers H3K9ac, H3K4me3 and H3K27ac, 

were all significantly enriched for cancer heritability. Repressed regions exhibited depletion (0.34-fold, 

p=1.2×10-6). Enrichment analysis of functional categories for each cancer subtype are shown in 

Supplementary Table 7. 

Overall, cell-type-specific analysis of histone marks identified significant enrichments specific to 

individual cancers (Supplementary Fig. 2). For breast cancer, 3 out of 8 statistically significant tissues 

were adipose nuclei (H3K4me1, H3K9ac) and breast myoepithelial (H3K4me1) cells. For colorectal 

cancer, 15 out of the 18 statistical significant enrichments were observed in either colon or rectal tissues 

(colon/rectal mucosa, duodenum mucosa, small/large intestine and colon smooth muscle). We observed 

no significant enrichments for head/neck, lung and ovarian cancer, but we noted that for both lung (9 out 

of 10) and ovarian cancer (6 out of 10), the most enriched cell types were immune cells; while in 

head/neck cancer, 6 out of 10 most highly enriched cell types belonged to CNS (Supplementary Fig. 3, 

Supplementary Table 8). Cell-type-specific analysis for cancer subtypes are shown in Supplementary 

Table 9. Comparing cell-type-specific enrichment for cancers to the additional 38 non-cancer traits 

revealed notably differential clustering patterns (Supplementary Fig. 4). Breast, colorectal and prostate 

cancer showed enrichment mostly for adipose and epithelial tissues, in contrast to autoimmune diseases 

(enriched for immune/hematopoietic cells) or psychiatric disorders (enriched for brain tissues).  

DISCUSSION 

We performed a comprehensive analysis quantifying the heritability and genetic correlation of six 

cancers, leveraging summary statistics from the largest cancer GWAS conducted to date. Our study 

demonstrates shared genetic components across multiple cancer types. These results contrast with a prior 
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study conducted by Sampson et al. which reported an overall negligible genetic correlation among 

common solid tumors.9 Our results are, however, in line with a recent study16 which analyzed a subset of 

the data included here, and identified a significant genetic correlation between lung and colorectal 

cancer. 

Our data support, and for the first time quantify, the strong genetic correlation (��=0.57) between lung 

and head/neck cancer, two cancers linked to tobacco use.20,25 We also for the first time observed a 

significant genetic correlation between breast and ovarian cancer ���=0.24), two cancers that are known 

to share rare genetic factors including BRCA1/2 mutations, and environmental exposures associated with 

endogenous and exogenous hormone exposures.26 Prostate cancer is also considered as hormone-

dependent and associated with BRCA1/2 mutations, but interestingly, we only observed a nominally 

significant and modest (��=0.07) genetic correlation between breast and prostate cancer, whilst ovarian 

and prostate cancer showed no genetic correlation (��=0.02, se=0.07). 

Our large sample sizes allowed us to conduct well-powered analyses for cancer subtypes. While 

head/neck cancer showed negligible genetic correlation with overall (��=0.03, se=0.06) and ER+ breast 

cancer (��= −0.02, se=0.07), it showed a stronger genetic correlation with ER− breast cancer (��=0.21, 

se=0.09). Similarly, lung cancer showed a statistically more pronounced genetic correlation with ER− 

(��=0.29, se=0.06) than ER+ breast cancer (��=0.13, se=0.04). A recent pooled analysis of smoking and 

breast cancer risk demonstrated a smoking-related increased risk for ER+ but not for ER− breast 

cancer,27 and thus it is unlikely that the stronger genetic correlation between ER− subtype and lung and 

head/neck cancer is due to smoking behavior. Perhaps surprisingly, despite literature suggesting 

substantial similarities between ER− breast cancer and serous ovarian cancer in particular,28 we did not 

observe statistically significant different genetic correlations between ER− or ER+ breast cancer and 

serous ovarian cancer (��=0.17, se=0.08 vs. ��=0.11, se=0.06). This suggests that rare high penetrance 

variants may play a more important role in driving the similarities behind ER− breast cancer and serous 

ovarian cancer than common genetic variation. 

Heritability analysis confirms that common cancers have a polygenic component that involves a large 

number of variants. Although susceptibility variants identified at genome-wide significance explain an 

appreciable fraction of the heritability for some cancers, we estimate that the majority of the polygenic 

effect is attributable to other, yet undiscovered variants, presumably with effects that are too weak to 
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have been identified with current sample sizes. We found the genetic component that could be attributed 

to genome-wide significant loci varied greatly from ~0% for head/neck cancer to ~50% for breast and 

prostate cancer. These results reflect in part the strong correlation between number of GWAS-identified 

loci and sample size, as we had more than twice as many breast and prostate cancer samples compared 

to the other cancers. One corollary is that larger GWAS are likely to identify new susceptibility loci that 

could help our understanding of disease development, improve prediction power of genetic risk scores 

and hence contribute to screening and personalized risk prediction.29 

Among the genetic correlations between cancer and non-cancer traits, we observed positive correlations 

for psychiatric disorders (depressive symptoms, schizophrenia) with lung and breast cancer, where 

findings from epidemiological studies have been suggestive but inconclusive. It has been proposed that 

the linkage between psychiatric traits and cancers are more likely to be mediated through cancer-

associated risk phenotypes such as smoking, excessive alcohol consumption in depressed populations,30 

and reduced fertility patterns (e.g., nulliparous) in psychiatric populations.31 Detailed analyses 

considering confounding traits like reproductive history and smoking are needed to make inference 

about the mechanisms involved. GWAS have identified pleiotropic regions influencing both lung cancer 

and nicotine dependence, such as 15q25.1.32,33 In line with those results, we identified a strong genetic 

correlation between smoking and both lung (��=0.56) and head/neck cancer (��=0.47). It remains unclear 

whether this genetic correlation is completely explained by the direct influence of smoking or if the 

shared genetic component affects the traits through separate pathways. Interestingly, a genetic 

correlation (��=0.35, se=0.14) between lung and bladder cancer, another smoking-associated cancer, has 

been identified previously.9 Due to the small numbers of GWAS-identified smoking-associated SNPs, 

we were unable to assess a directional correlation between smoking and cancer, but we expect such 

analyses to become feasible as additional smoking-related SNPs are identified. We found modest 

positive, yet significant genetic correlations between adiposity-related measures (as reflected by waist-

to-hip ratio, circulating HDL levels and BMI) and both colorectal and lung cancer, but negative genetic 

correlations between BMI and prostate and breast cancer, consistent with previous reported findings34 

and reinforce the complex dynamics between obesity and cancer where multiple factors including age, 

smoking, endogenous hormones and reproductive status play a role. 

We did not observe genetic correlations between breast cancer and age at menarche or age at natural 

menopause. These null observations were largely driven by ER+ breast cancer (ER+: ��= 0.006, se=0.03 
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vs. ER−: ��= −0.09, se=0.04 for age at menarche. ER+: ��= 0.0005, se=0.04 vs. ER−: ��= −0.10, se=0.05 

for age at natural menopause), and were unexpected given that both factors play pivotal roles in breast 

cancer etiology35 and previous Mendelian randomization (MR) analyses have identified a link.36,37 An 

important difference between genetic correlation and MR analyses is that the latter only considers 

genome-wide significant SNPs while the former incorporates the entire genome. It is possible that a 

relatively small overlap in strongly associated SNPs can result in significant MR results despite low 

evidence of an overall genetic correlation. Indeed, the directional genetic correlations we observed for 

age at natural menopause, schizophrenia and HDL with breast cancer, and for lupus with prostate cancer, 

highlight again that although an overall genetic correlation may be negligible, there can still be genetic 

links between traits. It is important to note that we cannot rule out unmeasured confounding, including 

the possibility that these genetic variants affect an intermediate phenotype that is pleiotropic for both 

target traits. Given the observational nature of our data, these putative causal directions should be 

interpreted with caution. 

Pan-cancer tumor-based studies have demonstrated that different cancers are sometimes driven by 

similar somatic functional events such as specific copy number abnormalities and mutations.38,39 Our 

enrichment results of germline genetic across functional annotation data shed new light on the biological 

mechanisms leading to cancer development. The more pronounced enrichment identified for conserved 

regions compared with coding regions provides evidence for the biological importance of the former, 

which has been shown to be true for multiple traits.14,40 Even though the biochemical function of many 

conserved regions remains uncharacterized, transcribed ultra-conserved regions have been found to be 

frequently located at fragile sites. Compared to normal cells, cancer cells have a unique spectrum of 

transcribed ultra-conservative regions, suggesting that variation in expression of these regions are 

involved in the malignant process.41,42 These results bridge the link between germline and somatic 

genetics in cancer development, which was also observed in a recent breast cancer GWAS that has 

demonstrated a strong overlap between target genes for GWAS hits and somatic driver genes in breast 

tumors.43 We also found a four-fold enrichment for transcription factor binding sites and a three-fold 

enrichment for super enhancers, consistent with prior observations that breast cancer GWAS loci fall in 

enhancer regions involved in distal regulation of target genes.43 Cell type-specific analysis of histone 

marks demonstrated the importance of tissue specificity, primarily for colorectal and breast cancer. 

Further, our results suggest that immune cells are important for ovarian and lung cancer whilst CNS is 

important to head/neck cancer. Unfortunately, we did not have data on prostate-specific tissues but we 
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note that tissue-specific enrichment of prostate cancer heritability for epigenetic markers has been 

observed previously.10 We note that generation of rich functional annotation is ongoing and we expect to 

include additional tissue-specific functional elements in our future work. 

Our study has several strengths. We were able to robustly quantify pair-wise genetic correlations 

between multiple cancers using the largest available cancer GWAS, comprising almost 600,000 samples 

across six major cancers and subtypes. We were also able to systematically assess the genetic 

correlations between cancer and 38 non-cancer traits. Notwithstanding the large sample sizes, several 

limitations need to be acknowledged. We did not have the sample sizes required to assess relevant 

cancer subgroups including oropharyngeal cancer, clear cell, mucinous and endometrioid ovarian cancer, 

or lung cancer among never smokers (each with ~2,000 cases). In addition, we did not have access to 

GWAS summary statistics for pre- vs. post-menopausal breast cancer. We were not able to consider all 

cancer risk factors when selecting non-cancer traits, since some of the well-established risk factors such 

as infection were either not available, showed no evidence of heritability or were not based on adequate 

sample sizes for robust analyses. SNP-heritability varies with minor allele frequency, linkage 

disequilibrium and genotype certainty; we note that approaches to estimate heritability leveraging 

GWAS data are constantly evolving. We also note that estimate variability needs to be taken into 

account when comparing the SNP-heritability with the classical twin-heritability, in particular for 

cancers with small sample sizes such as head/neck cancer (SNP-heritability varied between 5-14% and 

twin-heritability varied between 0-60%, although both point estimates were 9%). Further, our data were 

based on GWAS meta-analysis from multiple individual GWAS across European ancestry populations 

from Europe, Australia and the US. Intra-European ancestry differences are likely to be a source of bias. 

However, since we limited our analysis to SNPs with MAF>1% and HapMap3 SNPs (which have 

proven to be well-imputed across European ancestry populations), we believe that any population 

structure across cancers will have minimal effect on our results. Finally, as more non-European and 

multi-ethnic GWAS data become available, it is important to examine trans-ethnic genetic correlation in 

cancer. 

In conclusion, results from our comprehensive analysis of heritability and genetic correlations across six 

cancer types indicate that solid tumors arising from different tissues share common germline genetic 

influences. Our results also demonstrate evidence for common genetic risk sharing between cancers and 

smoking, psychiatric and metabolic traits. In addition, functional components of the genome, 

particularly conserved and regulatory regions, are significant contributors to cancer heritability across 
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multiple cancer types. Our results provide a basis and direction for future cross-cancer studies aiming to 

further explore the biological mechanisms underlying cancer development. 

METHODS 

Studies and quality control 

We used summary statistics from six cancer GWASs based on a total of 597,534 participants of 

European ancestry. Cancer-specific sample sizes were: breast cancer: 122,977 cases / 105,974 controls; 

colorectal cancer: 36,948 / 30,864; head/neck cancer (oral and oropharyngeal cancers): 5,452 / 5,984; 

lung cancer: 29,266 / 56,450; ovarian cancer: 22,406 / 40,941; prostate cancer: 79,166 / 61,106. These 

data were generated through the joint efforts of multiple consortia. Details on study characteristics and 

subjects contributed to each cancer-specific GWAS summary dataset have been described elsewhere.43–

49 SNPs were imputed to the 1000 Genomes Project reference panel (1KGP) using a standardized 

protocol for all cancer types.18 We included autosomal SNPs with a minor allele frequency (MAF) larger 

than 1% and present in HapMap3 (NSNPs = ~1 million) because those SNPs are usually well imputed in 

most studies (note that excluding sex chromosomes could reduce the overall heritability estimates). A 

brief overview of the quality control in each cancer dataset are presented in Supplementary Table 10. 

For some of the cancers, we further obtained summary statistics data on subtypes (ER+ and ER− breast 

cancer; lung adenocarcinoma and squamous cell carcinoma; serous invasive ovarian cancer and 

advanced stage prostate cancer, defined as metastatic disease or Gleason score≥8 or PSA>100 or 

prostate cancer death). Sample sizes and more details shown in Supplementary Table 1. 

We additionally assembled European ancestry GWAS summary statistics from 38 traits, which spanned 

a wide range of phenotypes including anthropometric (e.g., height and body mass index (BMI)), 

psychiatric disorder (e.g., depressive symptoms and schizophrenia) and autoimmune disease (e.g., 

rheumatoid arthritis and celiac disease) (Supplementary Table 11). We calculated trait-specific SNP-

heritability and restricted our analysis to traits with a heritable component (Supplementary Table 12) as 

previously proposed.14 We removed the major histocompatibility complex (MHC) region from all 

analysis because of its unusual LD and genetic architecture. 

Estimation of SNP-heritability and genetic correlation 
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We estimated the SNP-heritability due to genotyped and imputed SNPs ( ��� , the proportion of 

phenotypic variance causally explained by common SNPs) of each cancer using LDSC.15 Briefly, this 

method is based on the relationship between LD score and χ2-statistics: 

    ������ � �����

�
	� 
 1                                 (1) 

where ������ denotes the expected χ2-statistics for the association between the outcome and SNP j, Nj is 

the study sample size available for SNP j, M is the total numbers of variants and 	�  denotes the LD score 

of SNP j defined as 	� � ∑ ����, ���  (k denotes other variants within the LD region). Note that the 

quantity estimated by LDSC is the causal heritability of common SNPs, which is different from the 

SNP-heritability as defined in Yang et al.17 To estimate ���  attributable to undiscovered loci, we 

identified SNPs that were associated with a given cancer at genome-wide significance (p<5×10-8) and 

removed all SNPs +/− 500,000 base-pairs of those loci prior to calculation (number of regions (+/− 500 

kb) for each cancer that reach the 5×10-8 threshold and measures of effect size are shown in 

Supplementary Table 2). We also converted the SNP-heritability from observed scale to liability scale 

by incorporating sample prevalence (P) and population prevalence (F) of each cancer: 

��	
�	�	�
� �  ���������� ������

����������
������

������
            (2) 

We subsequently calculated the genome-wide genetic correlations (��) between different cancers, and 

between cancers and non-cancer traits, using an algorithm as previously described:14  

                                                  � �β�γ�� � �������
�

	� 
 ���

�����
                      (3) 

where βj and γj are the effect sizes of SNP j on traits 1 and 2, ��  is the genetic covariance, M is number of 

SNPs, N1 and N2 are the sample sizes for trait 1 and 2, Ns is the number of overlapping samples, r is the 

phenotypic correlation in overlapping samples and lj is the LD score defined as above. For genetic 

correlation between 6 cancers, the significance level is 0.05/15 = 0.003; for genetic correlation between 

6 cancers and 38 traits, the significance level is 0.05/(6×38) = 0.0002. 

Overall genetic correlations as estimated by LDSC are based on aggregated information across all 

variants in the genome. It is possible that even though two traits show negligible overall genetic 

correlation, there are specific regions in the genome that contribute to both traits. We therefore 
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examined local genetic correlations between cancer pairs using ρ-HESS,50 an algorithm which partitions 

the whole genome into 1,703 regions based on LD-pattern of European populations and quantifies 

correlation between pairs of traits due to genetic variation restricted to these genomic regions. Local 

genetic correlation was considered statistically significant if p<0.05/1,703=2.9×10-5. In particular, we 

assessed the local genetic correlations for previously reported pleiotropic regions18,51 known to harbor 

SNPs affecting multiple cancers. 

Directional genetic correlation analysis 

In addition to the genetic correlation analysis which reflects overall genetic overlaps, we also attempted 

to identify directions of potential genetic correlations using a subset of SNPs as proposed by Pickrell et 

al.52 The method adopts the following assumption: if a trait X influences trait Y, then SNPs influencing 

X should also influence Y, and the SNP-specific effect sizes for the two traits should be correlated. 

Further, since Y does not influence X, but could be influenced by mechanisms independent of X, genetic 

variants that influence Y do not necessarily influence X. Based on this assumption, the method proposes 

two “causal” models and two “non-causal” models, and calculates the relative likelihood ratio (LR) of 

the best non-causal model compared to the best causal model. We determined significant SNPs for each 

given cancer or trait in two independent ways, 1) LD pruned SNPs: we selected genome-wide significant 

(p<5×10-8) SNPs and pruned on LD-pattern in the European populations in Phase1 of 1KGP; 2) 

posterior probability of association (PPA) SNPs: we used a method implemented in “fgwas”53, which 

splits the genome into independent blocks based on LD-patterns in 1KGP and estimates the prior 

probability that any block contains an association. The model outputs posterior probability that the 

region contains a variant that influences the trait. We selected the lead SNP from each of the regions 

with a PPA of at least 0.9. We scanned through all pairs of cancers and traits to identify directional 

correlations. Only pairs of traits with evidence of directional correlations (LR comparing the best non-

causal model over the best causal model<0.05) and without evidence of heteroscedasticity (pleiotropic 

effects)54 were reported as relatively more likely to exhibit mediated causation. 

Functional partitioning of SNP-heritability 

To assess the importance of specific functional annotations in SNP-heritability across cancers, we 

partitioned the cancer-specific heritability using stratified-LDSC.14 This method partitions SNPs into 

functional categories and calculates category-specific enrichments based on the assumption that a 

category of SNPs is enriched for heritability if SNPs with high LD to that category have higher χ2 
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statistics than SNPs with low LD to that category. The analysis was performed using two previously 

described models.14,24 

1) A full baseline-LD model including 24 publicly available annotations that are not specific to any cell 

type. When performing this model, we adjusted for MAF via MAF-stratified quantile-normalized LD 

score, and other LD-related annotations such as predicted allele age and recombination rate, as 

implemented by Gazal et al.24 Briefly, the 24 annotations included coding, 3’UTR and 5’UTR, promoter 

and intronic regions, obtained from UCSC Genome Browser and post-processed by Gusev et al.;55 the 

histone marks mono-methylation (H3K4me1) and tri-methylation of histone H3 at lysine 4 (H3K4me3), 

acetylation of histone H3 at lysine 9 (H3K9ac) processed by Trynka et al.56–58 and two versions of 

acetylation of histone H3 at lysine 27 (H3K27ac, one version processed by Hnisz et al.,59 another used 

by the Psychiatric Genomics Consortium (PGC)60); open chromatin, as reflected by DNase I 

hypersensitivity sites (DHSs and fetal DHSs),55 obtained as a combination of ENCODE and Roadmap 

Epigenomics data, processed by Trynka et al.;58 combined chromHMM and Segway predictions 

obtained from Hoffman et al.,61 which make use of many annotations to produce a single partition of the 

genome into seven underlying chromatin states (The CCCTC-binding factor (CTCF), promoter-flanking, 

transcribed, transcription start site (TSS), strong enhancer, weak enhancer categories, and the repressed 

category); regions that are conserved in mammals, obtained from Lindblad-Toh et al.40 and post-

processed by Ward and Kellis;62 super-enhancers, which are large clusters of highly active enhancers, 

obtained from Hnisz et al.;59 FANTOM5 enhancers with balanced bi-directional capped transcripts 

identified using cap analysis of gene expression in the FANTOM5 panel of samples, obtained from 

Andersson et al.;63 digital genomic footprint (DGF) and transcription factor binding site (TFBS) 

annotations obtained from ENCODE and post-processed by Gusev et al.55 

2) In addition to the baseline-LD model, we also performed analyses using 220 cell-type-specific 

annotations for the four histone marks H3K4me1, H3K4me3, H3K9ac and H3K27ac. Each cell-type-

specific annotation corresponds to a histone mark in a single cell type (for example, H3K27ac in CD19 

immune cells), and there were 220 such annotations in total. We further divided these 220 cell-type-

specific annotations into 10 groups (adrenal and pancreas, central nervous system (CNS), cardiovascular, 

connective and bone, gastrointestinal, immune and hematopoietic, kidney, liver, skeletal muscle, and 

other) by taking a union of the cell-type-specific annotations within each group (for example, SNPs with 

any of the four histone modifications in any hematopoietic and immune cells were considered as one big 
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category). When generating the cell-type-specific models, we added annotations individually to the 

baseline model, creating 220 separate models. 

We performed a random-effects meta-analysis of the proportion of heritability over six cancers for each 

functional category. We set significance thresholds for individual annotations at p<0.05/24 for baseline 

model and at p<0.05/220 for cell-type-specific annotation. 

Data availability statement: The datasets generated during and/or analyzed during the current study are 
available from the authors on request. 

Breast cancer: Summary results for all variants are available at http://bcac.ccge.medschl.cam.ac.uk/. 
Requests for further data should be made through the Data Access Coordination Committee 
(http://bcac.ccge.medschl.cam.ac.uk/).  

Ovarian cancer: Summary results are available from the Ovarian Cancer Association Consortium 
(OCAC) (http://ocac.ccge.medschl.cam.ac.uk/). Requests for further data can be made to the Data 
Access Coordination Committee (http://cimba.ccge.medschl.cam.ac.uk/). 

Prostate cancer: Summary results are publicly available at the PRACTICAL website 
(http://practical.icr.ac.uk/blog/). 

Lung cancer: Genotype data for lung cancer are available at the database of Genotypes and 
Phenotypes (dbGaP) under accession phs001273.v1.p1. Readers interested in obtaining a copy of the 
original data can do so by completing the proposal request form at http://oncoarray.dartmouth.edu/ 

Head / neck cancer: Genotype data for the oral and pharyngeal OncoArray study have been deposited at 
the database of Genotypes and Phenotypes (dbGaP) under accession phs001202.v1.p1. 

Colorectal cancer: Genotype data have been deposited at the database of Genotypes and Phenotypes 
(dbGaP) under accession number phs001415.v1.p1 and phs001078.v1.p1. 
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Figure 1. Estimates of SNP-heritability (���) and cross-cancer heritability (��) based on HapMap3 SNPs 

calculated using LD score regression (LDSC) for the six cancer types. A): the solid bar represents 

overall SNP ���  on the liability scale, calculated based on all HapMap3 SNPs. The dark green bar 

represents ���  calculated based on “non-significant” SNPs – the remaining SNPs after excluding 

genome-wide significant hits (p<5×10-8) ± 500kb. The black bar with density texture indicates 

proportion of ��� (as reflected by the percentages displayed on top of each bar) that could be explained 

by top hits ± 500kb surrounded areas. The orange error bars represent 95% confidence intervals. B): the 

solid blue bar represents overall SNP ���  in liability scale (no SNP exclusion), with black error bars 

indicating 95% confidence intervals. The red short lines correspond to classical estimates of �� 

measured in a twin study of Scandinavian countries (Mucci et al. JAMA. 2016;315(1):68). C): genetic 

correlations between cancers. Estimates withstood Bonferroni corrections (p<0.05/15) are marked with 

double stars (**), and nominal significant results (p<0.05) are marked with single star (*). 

Figure 2. QQ-plots showing region-specific p-values for the local genetic covariance for breast and 

prostate cancer (A), and for lung and prostate cancer (B). Each dot presents a specific genomic region. 

In the QQ plots, red color indicates significance after multiple corrections (p<0.05/1,703 regions 

compared), and blue color indicates nominal significance (p<0.05/15 pairs of cancers compared). 

Manhattan-style plots showing the estimates of local genetic covariance for breast and prostate cancer 

(C), and for lung and prostate cancer (D). Although breast and prostate cancer only show modest 

genome-wide genetic correlation, two loci exhibit significant local genetic covariance. Similarly, albeit 

the negligible overall genetic correlation for lung and prostate cancer, three loci present significant local 

genetic covariance. In the Manhattan plots, red color indicates even number chromosomes and blue 

color indicates odd number chromosomes. 

Figure 3. Cross-trait genetic correlation (��) analysis between six cancers and thirty-eight non-cancer 

traits. The traits were divided into four categories: A) Common phenotypes, B) Metabolic or 

cardiovascular related traits, C) Psychiatric traits, D) Autoimmune inflammatory diseases. Pairwise 

genetic correlations withstood Bonferroni corrections (228 tests) are marked with double stars (**), with 

estimates of correlation shown in the cells. Pairwise genetic correlations with significance at p<0.01 are 

marked with a single star (*). The color of cells represents the magnitude of correlation. 

Figure 4. Putative directional relationships between cancers and traits. For each cancer–trait pair 

identified as candidates to be related in a causal manner, the plots show trait-specific effect sizes (beta 
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coefficients) of the included genetic variants. Grey lines represent the relevant standard errors. A) HDL 

and breast cancer. Trait-specific effect sizes for HDL and breast cancer are shown for SNPs associated 

with HDL levels (left) and breast cancer (right). B) Schizophrenia and breast cancer. Trait-specific effect 

sizes for HDL and breast cancer are shown for SNPs associated with schizophrenia (left) and breast 

cancer (right). C) Age at natural menopause and breast cancer. Trait-specific effect sizes for age at 

natural menopause and breast cancer are shown for SNPs associated with age at natural menopause (left) 

and breast cancer (right). D) Lupus and prostate cancer. Trait-specific effect sizes for lupus and prostate 

cancer are shown for SNPs associated with lupus (left) and prostate cancer (right). 

Figure 5. Enrichment p-values of 24 non-cell-type-specific functional categories over six cancer types. 

The x-axis represents each of the 24 functional categories, y-axis represents log-transformed p-values of 

enrichment. Annotations with statistical significance after Bonferroni corrections (p<0.05/24) were 

plotted in orange, otherwise blue. The horizontal grey dash line indicates p-threshold of 0.05; horizontal 

red dash line indicates p-threshold of 0.05/24. From top to bottom are six panels representing six cancers: 

breast cancer, colorectal cancer, head/neck cancer, lung cancer, ovarian cancer and prostate cancer. TSS: 

transcription start site; UTR: untranslated region; TFBS: transcription factor binding sites; DHS: DNase 

I hypersensitive sites; DGF: digital genomic foot printing; CTCF: CCCTC-binding factor. 

Supplementary Figure 1. QQ-plots showing region-specific p-values for the local genetic covariance 

for breast and colorectal cancer (A), breast and head/neck cancer (B), breast and lung cancer (C), breast 

and ovarian cancer (D), breast and prostate cancer (E), colorectal and head/neck cancer (F), colorectal 

and lung cancer (G), colorectal and ovarian cancer (H), colorectal and prostate cancer (I), head/neck and 

lung cancer (J), head/neck and ovarian cancer (K), head/neck and prostate cancer (L), lung and ovarian 

cancer (M), lung and prostate cancer (N), ovarian and prostate cancer (O). Each dot presents a specific 

genomic region. In the QQ plots, red color indicates significance after multiple corrections 

(p<0.05/1,703 regions compared), and blue color indicates nominal significance (p<0.05/15 pairs of 

cancers compared). 

Supplementary Figure 2. A) Enrichment p-values of 220 cell-type-specific annotations in six major 

cancer types. The x-axis represents each of the 220 cell types, y-axis represents the log-transformed p-

values of enrichment. Annotations with statistical significance after Bonferroni corrections (p<0.05/220) 

were plotted in orange, otherwise blue. The horizontal grey dash line indicates p-threshold of 0.05; 

horizontal red dash line indicates p-threshold of 0.05/220. The vertical green dash lines separate 220 cell 
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types into ten cell type groups: adrenal and pancreas, cardiovascular, central nervous system, connective 

and bone, gastrointestinal, immune and hematopoietic system, kidney, liver, skeletal muscle, and others. 

From top to bottom are six panels representing six cancers: breast cancer, colorectal cancer, head/neck 

cancer, lung cancer, ovarian cancer, and prostate cancer. B) Enrichment p-values of the 220 cell-type-

specific annotations meta-analyzed across six cancers. 

Supplementary Figure 3. Enrichment of 220 cell-type-specific annotations in six major cancer types, 

plotted by histone marks (H3K4me1, H3K4me3, H3K9ac, H3K27ac). For each annotation, x-axis 

measures the proportion of SNPs accounted to that annotation, y-axis measures the proportion of 

heritability explained by that annotation. Annotations with statistical significance after Bonferroni 

corrections (p<0.05/220) are marked in red. Annotations with nominal significance (p<0.05) are marked 

in blue, the remaining annotations are marked in grey. A) breast cancer, B) colorectal cancer, C) 

head/neck cancer, D) lung cancer, E) ovarian cancer, and F) prostate cancer. 

Supplementary Figure 4. Heat-maps showing bi-clustering of traits and cell-types over four histone 

marks. We performed 220 cell-type-specific annotation analysis in each of the 38 traits, and compared 

these enrichment results to the enrichment results of six cancers. Each checker reflects the beta 

coefficient z-score, scaled by traits. Red indicates enrichment, blue indicates depletion. Deeper color 

represents stronger magnitude of effects. The category of cell types is color coded to the left. A) 

H3K27ac, B) H3K4me1, C) H3K4me3 and D) H3K9ac. GI: gastrointestinal cell types; CNS: central 

nervous system cell types. 
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