
	
	
	
	
	
	
	
	
	
	

Detection	of	low-density	Plasmodium	falciparum	infections	using	
amplicon	deep	sequencing	

	
	
Angela	M.	Early1,2*,	Rachel	F.	Daniels1,2,	Timothy	M.	Farrell1,2,	Jonna	Grimsby3,	Sarah	K.	

Volkman1,2,4,	Dyann	F.	Wirth1,2,	Bronwyn	L.	MacInnis1,2,	Daniel	E.	Neafsey1,2	
	
	
	
1.	Infectious	Disease	and	Microbiome	Program,	Broad	Institute	of	MIT	and	Harvard,	
Cambridge,	MA,	02142	USA	
2.	Department	of	Immunology	and	Infectious	Diseases,	Harvard	T.H.	Chan	School	of	Public	
Health,	Boston,	MA,	02115	USA	
3.	Genomics	Platform,	Broad	Institute	of	MIT	and	Harvard,	Cambridge,	MA,	02142	USA	
4.	Simmons	University,	College	of	Natural,	Behavioral,	and	Health	Sciences,	Boston,	MA,	
02115	USA	
	
	
	
*	Corresponding	author:	early@broadinstitute.org	(AME)	
	
	
	
	
Keywords:	(3-10)	
Targeted	amplicon	deep	sequencing,	Haplotype	calling,	Multiplicity	of	infection,	Multiclonal	
infection,	Within-host	diversity,	Molecular	epidemiology,	Molecular	surveillance,	Malaria,	
Plasmodium

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/453472doi: bioRxiv preprint 

https://doi.org/10.1101/453472
http://creativecommons.org/licenses/by-nc/4.0/


	 2	

Abstract	
	
Background:	Deep	sequencing	of	targeted	genomic	regions	is	becoming	a	common	tool	for	
understanding	the	dynamics	and	complexity	of	Plasmodium	infections,	but	its	lower	limit	of	
detection	is	currently	unknown.	Here,	a	new	amplicon	analysis	tool,	the	Parallel	Amplicon	
Sequencing	Error	Correction	(PASEC)	pipeline,	is	used	to	evaluate	the	performance	of	
amplicon	sequencing	on	low-density	Plasmodium	DNA	samples.	Illumina-based	sequencing	
of	two	P.	falciparum	genomic	regions	(CSP	and	SERA2)	was	performed	on	two	types	of	
samples:	in	vitro	DNA	mixtures	mimicking	low-density	infections	(1-200	genomes/μl)	and	
extracted	blood	spots	from	a	combination	of	symptomatic	and	asymptomatic	individuals	
(44-653,080	parasites/μl).	Three	additional	analysis	tools—DADA2,	HaplotypR,	and	
SeekDeep—were	applied	to	both	datasets	and	the	precision	and	sensitivity	of	each	tool	
were	evaluated..	
	
Results:	Amplicon	sequencing	can	contend	with	low-density	samples,	showing	reasonable	
detection	accuracy	down	to	a	concentration	of	5	Plasmodium	genomes/μl.	Due	to	increased	
stochasticity	and	background	noise,	however,	all	four	tools	showed	reduced	sensitivity	and	
precision	on	samples	with	very	low	parasitemia	(<5	copies/μl)	or	low	read	count	(<100	
reads	per	amplicon).	PASEC	could	distinguish	major	from	minor	haplotypes	with	an	
accuracy	of	90%	in	samples	with	at	least	30	Plasmodium	genomes/μl,	but	only	61%	at	low	
Plasmodium	concentrations	(<5	genomes/μl)	and	46%	at	very	low	read	counts	(<25	reads	
per	amplicon).	The	four	tools	were	additionally	used	on	a	panel	of	extracted	parasite-
positive	blood	spots	from	natural	malaria	infections.	While	all	four	identified	concordant	
patterns	of	complexity	of	infection	(COI)	across	four	sub-Saharan	African	countries,	the	COI	
values	obtained	for	individual	samples	differed	in	some	cases.	
	
Conclusions:	Amplicon	deep	sequencing	can	be	used	to	determine	the	complexity	and	
diversity	of	low-density	Plasmodium	infections.	Despite	differences	in	their	approach,	four	
state-of-the-art	tools	resolved	known	haplotype	mixtures	with	similar	sensitivity	and	
precision.	Researchers	can	therefore	choose	from	multiple	robust	approaches	for	analyzing	
amplicon	data,	however,	error	filtration	approaches	should	not	be	uniformly	applied	across	
samples	of	varying	parasitemia.	Samples	with	very	low	parasitemia	and	very	low	read	
count	have	higher	false	positive	rates	and	call	for	read	count	thresholds	that	are	higher	
than	current	recommendations.		
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Background	
	

Amplicon	deep	sequencing	is	an	increasingly	utilized	genotyping	approach	that	
provides	a	cost-effective	strategy	to	profile	the	genetic	diversity	of	pathogen	infections.	
Like	single	nucleotide	polymorphism	(SNP)-based	genotyping	methods,	both	the	data-
generation	and	data-analysis	steps	of	amplicon	sequencing	are	highly	scalable,	allowing	for	
studies	of	hundreds	to	thousands	of	samples.	Additionally,	amplicons	can	be	designed	to	
cover	long	genetic	segments	composed	of	multiple	variants,	allowing	for	the	identification	
of	complete	DNA	sequences	(or	haplotypes)	in	a	targeted	genomic	region.	When	targeting	a	
highly	polymorphic	genomic	region,	a	single	amplicon	can	distinguish	among	hundreds	of	
unique	haplotypes	[1],	providing	higher	resolution	than	either	SNP-based	or	length-based	
genotyping	approaches.	This	improves	estimates	of	the	number	of	lineages	within	
polyclonal	infections	(or	complexity	of	infection;	COI)	[2–4],	permits	the	discovery	of	
unknown	alleles	[5–7],	and	provides	increased	information	for	haplotype-based	analyses	of	
epistasis	and	linkage	disequilibrium	[8].		

Amplicon	analysis	in	Plasmodium	has	been	adapted	to	multiple	sequencing	
platforms	depending	on	the	desired	cost,	sample	size,	and	sequence	length	[3,	9–11].	
Because	of	this	high	resolution	and	flexibility,		amplicon-based	methods	have	been	utilized	
in	a	range	of	applications,	including	studies	of	allele-specific	vaccine	efficacy	[1],	disease	
severity	[10],	clearance	rate	[12],	within-host	competition	[13],	relapse	rate	[9],	drug	
resistance	[5–7],	host	selection	[8],	and	population	structure	[8,	14].	Amplicon	sequencing	
has	high	sensitivity	for	the	detection	of	minority	parasite	lineages	within	an	infection,	and	
is	of	particular	interest	in	longitudinal	studies	that	track	intra-host	dynamics	[3,	4].	
	 When	used	to	detect	known	single	variant	markers,	amplicon	sequences	can	be	
analyzed	with	relatively	straightforward	approaches.	Longer,	complex	haplotypes,	
however,	require	more	sophisticated	analysis	methods.	Amplicon	sequencing	data	are	
known	to	be	subject	to	PCR	and	sequencing	artifacts,	particularly	for	genomic	regions	with	
high	A/T-content	and	high	rates	of	homopolymerism	[15,	16].	In	addition,	library	
preparation	method	and	primer	choice	can	influence	the	types	and	extent	of	errors	[17].	
Correctly	identifying	sequence	errors	is	therefore	a	challenge	when	applying	amplicon	
sequencing	to	P.	falciparum.	Fortunately,	several	new	analytical	tools	have	been	developed	
in	recent	years	to	address	these	challenges	[18–21].	Unlike	approaches	that	use	reference	
datasets	or	cluster	sequences	with	hard	percent-identity	thresholds,	these	new	methods	
are	more	flexible	and	can	distinguish	among	sequences	that	differ	by	only	a	single	
nucleotide	change	[22].	When	Plasmodium	concentrations	are	reasonably	high,	these	
approaches	have	been	demonstrated	to	be	robust.	To	date,		however,	none	of	these	
methods	have	been	tested	on	low-density	Plasmodium	samples.	It	is	therefore	unclear	
whether	additional	considerations	are	required	when	interpreting		amplicon	sequencing	
data	from	infections	with	low	parasitemia.		

This	study	assesses	amplicon	sequencing’s	lower	limit	of	detection	using	four	
analysis	tools,	and	further	evaluates	each	tool’s	accuracy	and	capacity	to	recover	
quantitative	information	on	the	relative	abundance	of	different	haplotypes	within	
infections.	Three	of	these	tools—DADA2	[18],	HaplotypR	[19],	and	SeekDeep	[20]—were	
previously	published	and	developed	to	contend	with	any	Plasmodium	amplicon.	The	
fourth—the	Parallel	Amplicon	Sequencing	Error	Correction	(PASEC)	pipeline—is	a	

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2019. ; https://doi.org/10.1101/453472doi: bioRxiv preprint 

https://doi.org/10.1101/453472
http://creativecommons.org/licenses/by-nc/4.0/


	 4	

distance-	and	abundance-based	error-correction	tool	that	was	specifically	tailored	for	use	
with	CSP	and	SERA2	amplicons	[1]	and	is	formally	presented	here	for	the	first	time.	
Amplicon	sequencing	of	densely	polymorphic	regions	in	the	P.	falciparum	CSP	and	SERA2	
genes	was	applied	to	two	sample	collections.	The	first—a	set	of	in	vitro	human/parasite	
DNA	mixtures	that	mimic	low	density	parasite	infections—was	designed	to	test	the	limit	of	
detection	for	amplicon	sequencing.	The	second	sample	set	consisted	of	DNA	extracted	from	
dried	blood	spots	from	malaria-infected	individuals	collected	on	filter	paper	in	sub-Saharan	
Africa.	This	allowed	a	comparison	of	analysis	approaches	using	conditions	under	which	
samples	are	typically	collected	and	processed.	All	four	tools	detected	P.	falciparum	
haplotypes	with	high	sensitivity,	and	additionally	were	able	to	discriminate	between	major	
and	minor	haplotypes	with	reasonable	accuracy.	Additionally,	PASEC	was	able	to	identify	a	
SERA2	indel	in	patient	samples	due	to	its	incorporation	of	prior	knowledge	on	sequence	
composition.	Overall,	the	results	show	that	low	parasitemia	does	not	preclude	amplicon	
analysis	of	P.	falciparum	samples,	although	researchers	should	expect	reduced	sensitivity	
and	reduced	precision	with	low	read-count	samples	(<100	reads/amplicon)	and	at	parasite	
densities	under	5	genomes/μl.	
	
	
Methods	
	
Sample	assembly	and	composition	
Mock	Plasmodium/human	DNA	mixtures:	Mixtures	of	DNA	from	cultured	P.	falciparum	
parasites	were	combined	with	human	genomic	DNA	to	construct	samples	that	mimic	
human	infections.	DNA	from	up	to	five	culture-adapted	parasite	lines	were	combined	in	
various	proportions	and	number	(Figure	1;	exact	sample	composition	is	in	Additional	File	
1,	Table	S1).	Stock	mixtures	of	200	genomic	copies/μl	were	prepared	by	real-time	PCR	
quantification	of	copies/μl	in	triplicate	relative	to	a	plasmid	containing	a	single	copy	of	the	
quantification	target	gene	[23].	These	stock	solutions	were	then	diluted	to	the	indicated	
concentrations	in	sequencing-grade	water	and	10	ng	commercial	human	DNA	(Promega	
Corp	cat#G3041)	was	added	to	all	samples.	After	mixing	and	dilution,	a	subset	of	samples	
were	re-quantified	using	the	same	qPCR	protocol	and	reported	sample	concentrations	
were	adjusted	as	needed.	Plasmodium-free	negative	control	samples	were	also	constructed.	
These	contained	either	10	ng	of	human	DNA	or	only	water.	
	
Natural	infections:	Previously	extracted	DNA	from	95	blood	spots,	obtained	from	
individuals	infected	with	P.	falciparum,	was	re-amplified	and	re-sequenced	as	part	of	this	
study.	These	samples	were	acquired	from	both	symptomatic	and	asymptomatic	individuals	
from	four	countries	in	sub-Saharan	Africa	as	part	of	the	RTS,S	malaria	vaccine	Phase	3	trial	
and	had	parasite	densities	that	ranged	from	44-653,080	parasites/μl	as	determined	by	
blood	smear	(Figure	1;	[24]).	Full	details	on	sampling	and	extraction,	including	human	
subjects	approval	for	use	of	these	samples,	are	provided	in	Neafsey	et	al.,	2015	[1].	In	brief,	
samples	were	collected	as	blood	spots	on	Whatman	FTA	cards,	shipped	to	the	Broad	
Institute,	and	stored	in	desiccators	until	processing.	DNA	was	extracted	in	batches	of	95	
samples	plus	one	blank	control	card	using	the	automated	Chemagen	Chemagic	bead-based	
extraction	platform.	Total	DNA	was	stored	at	-80°C	until	re-amplification	and	sequencing.		
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Figure	1.	Mock	and	natural	infection	sample	composition.	(A)	Mock	infection	samples	were	
constructed	from	mixtures	of	P.	falciparum	and	human	DNA	to	mimic	the	parasite	DNA	
concentrations	found	in	extracted	low-density	infections.	(B)	DNA	from	up	to	five	clonal	cultured	
parasite	lines	was	combined	to	create	each	mock	sample,	leading	to	within-sample	haplotype	
counts	of	one	to	four.	(C)	Natural	infection	samples	were	previously	collected	and	extracted	from	a	
combination	of	symptomatic	patients	and	asymptomatic	carriers	[1].	Parasite	densities	were	
determined	by	blood	smear.	
	
	
Positive	control	plasmid:	A	plasmid	containing	synthetic	target	amplicon	sequences	for	
both	CSP	and	SERA2	was	obtained	from	a	commercial	vendor	(Invitrogen/Thermo	Fisher	
Scientific)	and	served	as	a	positive	control	during	the	PCR	amplification	step.	Outside	the	
primer	regions,	the	plasmid	sequence	contains	nucleotide	variants	not	observed	in	natural	
P.	falciparum	isolates	so	that	any	instances	of	contamination	can	be	readily	identified.	The	
plasmid	map	can	be	found	in	Additional	File	1,	Figure	S1.	
	
PCR	and	sequencing	

Two	regions	from	the	CSP	(PF3D7_0304600)	and	SERA2	(PF3D7_0207900)	genes	
were	PCR	amplified	as	previously	described	[1].	In	brief,	5	μl	of	DNA	were	amplified	at	the	
targeted	regions	then	indexed	in	two	separate	rounds	of	PCR.	The	final	CSP	and	SERA2	
amplicons	cover	288	and	258	nucleotides,	respectively	(Pf3D7_03_v3:221,352-221,639;	
Pf3D7_02_v3:320,763-321,020).	Both	amplicons	overlap	sequence	regions	of	high	
nucleotide	diversity	in	sub-Saharan	Africa	to	maximize	the	number	of	distinct	haplotypes	
that	can	be	detected	across	samples	from	this	geographic	area.	
	 All	DNA	samples	and	negative	controls	were	amplified	and	sequenced	in	duplicate.	
Paired-end	250-bp	reads	were	generated	in	one	MiSeq	run	conducted	on	a	pool	of	384	PCR	
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products.	Unless	otherwise	noted,	each	PCR/sequencing	technical	replicate	was	analyzed	
as	a	distinct	sample.	Before	downstream	analysis,	raw	sequencing	data	were	demultiplexed	
and	aligned	to	amplicon	reference	sequences	to	remove	all	non-Plasmodium	sequences.		
	
Sample	analysis	with	PASEC	

For	each	sample,	paired-end	reads	were	merged	using	FLASH	[25]	and	aligned	with	
BWA-MEM	v0.7.12-r1039	[26]	to	the	amplicon	regions	of	the	P.	falciparum	reference	
genome	assembly	(PlasmoDB	v.9.0	3D7).	Two	short	homopolymeric	tracts	in	CSP	were	
masked	from	analysis,	as	such	regions	are	highly	error-prone	in	Illumina	sequencing	and	
these	specific	tracts	were	not	known	to	harbor	natural	polymorphisms.	Masked	
coordinates	are	given	in	Additional	File	3.	

Within	each	sample,	haplotypes	were	filtered	according	to	a	set	of	pre-specified	
thresholds	developed	by	Neafsey	et	al	[1].	Haplotypes	were	required	to	(1)	cover	the	entire	
amplicon	region,	(2)	have	no	uncalled	bases,	(3)	be	supported	by	at	least	two	sets	of	
merged	read	pairs	(henceforth	referred	to	simply	as	“reads”),	and	(4)	have	an	intra-sample	
frequency	≥	0.01.	To	account	for	potential	PCR	and	sequencing	errors,	the	filtered	
haplotypes	were	clustered	based	on	nucleotide	distance	and	read	depth.	If	two	haplotypes	
within	the	same	sample	differed	by	only	one	nucleotide	and	had	a	read	coverage	ratio	≥8:1,	
they	were	merged,	maintaining	the	identity	of	the	more	common	haplotype.	Previous	
implementations	of	this	pipeline	removed	all	potential	chimeric	reads	and	required	
samples	to	contain	at	least	200	reads	for	one	of	the	two	amplicons	[1,	8].	In	this	analysis,	
these	metrics	were	analyzed,	but	hard	filters	were	not	applied	to	the	samples	before	
downstream	analysis.	

Full	details	on	the	PASEC	pipeline,	its	customizable	parameters,	and	its	
implementation	in	this	study	are	found	in	Additional	Files	2	and	3	and	at	
https://github.com/tmfarrell/pasec.		
	
Sample	analysis	with	DADA2,	HaplotypR,	and	SeekDeep	

All	samples	were	independently	analyzed	using	three	additional	amplicon	analysis	
tools:	DADA2	[18],	HaplotypR	[19],	and	SeekDeep	[20].	Beyond	the	changes	detailed	below,	
input	parameters	deviated	only	modestly	from	the	default	settings.	Parameters	and	scripts	
used	for	executing	each	pipeline	can	be	found	in	Additional	File	3.	While	previous	
implementations	of	PASEC	applied	a	200	reads/sample	threshold,	no	read	count	filters	
were	applied	at	the	sample	level	in	the	analysis	comparisons.	

SeekDeep	gives	the	option	of	grouping	data	from	technical	PCR/sequencing	
replicates	of	the	same	sample	and	applying	clustering	and	filtering	to	this	grouped	data	to	
increase	confidence	in	final	calls.	The	pipeline	was	therefore	run	under	two	conditions:	
grouping	technical	replicates	(the	recommended,	default	SeekDeep	approach;	
“SeekDeep2x”)	and	treating	each	PCR/sequencing	replicate	independently	(“SeekDeep1x”).	
This	permitted	more	equivalent	comparisons	among		pipelines	that	do	not	incorporate	
replicate	information	and	allowed	for	a	determination	of	whether	a	single	replicate	is	
sufficient	for	making	accurate	haplotype	calls.	

For	HaplotypR,	the	command-line	interface	was	extended	in	two	ways.	First,	it	was	
altered	to	return	full	haplotype	sequences	as	opposed	to	only	bases	at	variant	positions.	
Second,	the	trimming	input	command	was	expanded	to	allow	each	amplicon	to	have	
different	lengths.	The	version	of	HaplotypR	used	in	this	analysis	can	be	found	at	
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https://github.com/tmfarrell/HaplotypR.	After	running	the	pipeline,	the	authors’	
recommended	sample-level	filtering	was	applied	to	the	data.	Specifically,	each	sample	was	
required	to	have	a	minimum	of	25	reads,	and	individual	haplotypes	needed	to	have	a	
minimum	of	3	reads	and	a	within-host	frequency	of	at	least	0.1%.	
	
Comparison	of	analysis	tools	
	 All	four	tools	were	assessed	for	their	ability	to	resolve	haplotypes	at	within-sample	
frequencies	down	to	1%	using	the	mock	low-parasitemia	samples.	Two	performance	
metrics	were	computed	by	comparing	expected	vs.	observed	haplotypes	in	each	sample:	
sensitivity	(proportion	of	all	expected	haplotypes	that	were	observed)	and	precision	
(proportion	of	all	observed	haplotypes	that	were	expected).	For	sensitivity	calculations,	
only	haplotypes	present	at	a	concentration	of	at	least	1	copy/μl	were	considered.	For	each	
tool,	samples	were	only	included	in	the	performance	metric	calculation	if	at	least	one	
haplotype	was	identified.	Except	for	the	SeekDeep2x	implementation,	each	
PCR/sequencing	replicate	was	analyzed	as	a	distinct	sample.	
	
Results	
	
Sequencing	coverage	for	low-density	mock	infections	and	natural	infections	from	
sub-Saharan	Africa	

In	total,	148	DNA	mixtures	of	known	haplotypic	composition,	190	blood	samples	
from	sub-Saharan	Africa,	12	positive-control	plasmid	samples,	and	4	negative-control	
samples	without	Plasmodium	DNA	were	PCR	amplified	for	CSP	and	SERA2	and	sequenced	
on	a	single	Illumina	MiSeq	run.	

The	148	mock	infections	were	constructed	to	mimic	infections	with	low	parasite	
density	and	contained	between	1	and	200	P.	falciparum	genomes/μl	(Figure	1A).	These	
values	roughly	correspond	to	parasite	densities	of	1	and	200	parasites/μl	as	mature,	multi-
nucleated	blood-stage	parasites	are	generally	absent	from	sampled	peripheral	blood.	
Samples	at	the	lowest	end	of	this	distribution	(1	genome/μl)	should	have	had,	on	average,	
five	genomic	copies	transferred	to	the	initial	PCR	reaction.	After	sequencing,	145	samples	
had	full-length	read	coverage	for	at	least	one	of	the	two	amplicons.	For	each	amplicon,	
initial	raw	coverage	across	these	samples	ranged	from	0	to	280,876.	After	implementing	
the	PASEC	pipeline,	coverage	ranged	from	0	to	31,787	reads.	Coverage	was	sufficient	for	
both	amplicons,	although	median	coverage	was	higher	for	CSP	than	for	SERA2	(1872	vs.	
909;	Figure	2A).	All	samples	with	low	coverage	(<100	reads)	had	Plasmodium	DNA	
concentrations	below	21	genomes/μl.	Overall,	however,	coverage	and	genome	copy	
number	were	only	weakly	correlated	(Spearman’s	ρ	=	0.55,	P	=	9.3x10-14;	Figure	2B),	
suggesting	that	stochastic	factors	influence	read	counts	for	low	parasitemia	samples	in	
general.		
	 Sequence	coverage	was	higher	for	the	samples	from	natural	infections	(Figure	2C).	
These	samples	were	extracted	from	dried	blood	spots	and	had	parasite	densities	that	
ranged	from	44-653,080	parasites/μl	as	determined	by	microscopy	of	blood	smears.		As	
with	the	mock	infections,	coverage	was	generally	higher	for	samples	with	higher	parasite	
loads,	but	this	correlation	was	low	(Spearman’s	ρ	=	0.31,	P	=	1.1x10-9;	Figure	2D).	While	
sequencing	coverage	was	higher,	overall	sequencing	success	was	lower	for	the	natural	than	
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for	the	mock	infections	(Figure	2C),	a	likely	result	of	difficulties	with	extracting	high	quality	
DNA	from	the	stored	filter	paper	blood	spots.	As	would	be	expected	under	this	scenario,	
failure	rate	was	not	evenly	distributed	across	the	natural	infection	samples,	suggesting	
some	experienced	a	higher	degree	of	degradation.	Each	of	the	95	blood	samples	was	PCR	
amplified	and	sequenced	in	duplicate,	yielding	two	CSP	and	two	SERA2	technical	replicates	
per	initial	blood	sample	extraction,	or	340	total	amplicon	samples.	Of	these	340	amplicon	
samples,	94	(25%)	had	low	read	counts	(<100	reads).	These	failures	clustered	in	a	small	
number	of	blood	samples,	suggesting	that	amplification	and	sequencing	success	is	
dependent	on	sample	quality:	only	33	(35%)	of	the	blood	samples	experienced	any	
amplicon	failure	and	18	samples	(19%)	received	low	read	counts	for	all	4	amplicon	
attempts.	
	
	

	
Figure	2.	Sequencing	coverage	of	mock	and	natural	infection	samples.	Overall	sequencing	
coverage	was	lower	for	mock	infection	(A)	than	natural	infection	(C)	samples	(Mann-Whitney	U	
Test,	P	=	1x10-7)	although	natural	infections	had	a	higher	proportion	of	samples	with	no	reads.		
Total	read	coverage	(reads	combined	from	both	amplicons)	correlated	weakly	with	parasite	
genome	concentration	for	mock	infections	(B)	and	parasitemia	for	natural	infections	(D).	
	
	
	
Absolute	haplotype	concentration	affects	the	probability	of	sequencing	success	

One	challenge	of	amplicon	sequencing	analysis	is	to	correctly	resolve	individual	
haplotypes	present	within	an	infection	at	varying	concentrations.	Each	mock	sample	
contained	between	one	and	four	unique	haplotypes	at	the	CSP	and	SERA2	amplicons	
present	at	concentrations	of	1-200	copies/μl	(Figure	1B).	Overall,	there	was	a	high	
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recovery	of	these	expected	haplotypes	from	each	of	the	samples.	PASEC	correctly	identified	
all	haplotypes	present	at	a	concentration	of	30	copies/μl	or	higher	and	96%	of	haplotypes	
with	concentrations	over	20	copies/μl.	Conversely,	only	41%	of	haplotypes	with	1-5	
copies/μl	were	recovered	(Figure	3A).	As	discussed	in	the	tool	comparison	below,	this	
haplotype	sensitivity	is	only	slightly	influenced	by	the	post-sequencing	analysis	method	
and	instead	is	driven	by	a	failure	to	initially	amplify	and/or	sequence	these	low	frequency	
haplotypes.		
	
	
	

	
Figure	3.	Identification	of	haplotypes	in	mock	samples.	(A)	Detection	of	known	haplotypes	
within	the	mock	samples	was	dependent	on	the	haplotype	concentration	(copies/μl)	within	the	
sample.	Error	bars	represent	the	binomial-estimated	standard	deviation.	(B)	Across	all	mock	
samples,	31%	of	identified	haplotypes	were	erroneous,	but	these	haplotypes	were	generally	
supported	by	fewer	reads	than	correct	haplotypes.	The	number	of	nucleotide	(nt)	errors	per	
haplotype	was	calculated	as	the	nucleotide	distance	between	an	observed	haplotype	and	the	closest	
expected	haplotype	within	the	sample.	
	
	
Amplicon	sequencing	retains	some	information	on	within-sample	haplotype	
frequencies,	even	at	low	concentrations	

When	performing	direct	short-read	sequencing,	relative	read	depth	can	be	used	to	
infer	sample	features	like	genotype	ratios	or	genome	copy	number	variations.	During	
construction	of	amplicon	libraries,	however,	PCR	amplification	prior	to	sequencing	
introduces	stochastic	variation	in	the	final	read	counts.	Nevertheless,	analysis	of	the	final	
read	ratios	in	the	mock	samples	shows	that	some	information	about	the	original	haplotype	
ratios	can	be	recovered.	For	samples	with	at	least	100	reads,	the	correlation	between	the	
haplotypic	ratio	in	the	template	DNA	and	final	read	ratio	was	moderate	(Pearson’s	r	=	0.82,	
P	<	0.001,	Additional	File	1,	Figure	S2).	As	a	result,	in	73%	of	samples	with	at	least	a	4%	
margin	between	the	two	most	prevalent	haplotypes,	read	ratio	correctly	identified	the	
most	prevalent	haplotype	in	the	starting	DNA	mixture.	Again,	low	read	count	reduced	the	
probability	of	identifying	the	correct	major	haplotype	(Figure	4A).	Similarly,	major	
haplotype	identification	was	less	accurate	in	samples	with	very	low	total	Plasmodium	DNA	
concentration	(<5	genomes/μl;	Figure	4B).	
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Figure	4.	Proportion	of	mock	samples	where	the	major	haplotype	was	correctly	identified.	
Identification	of	the	major	haplotype	within	a	sample	was	less	reliable	at	(A)	low	read	counts	and	
(B)	low	parasite	genome	concentrations.	Samples	were	excluded	from	the	analysis	if	the	difference	
in	prevalence	between	the	top	two	haplotypes	was	less	than	4%.	Error	bars	represent	the	binomial-
estimated	standard	deviation.	
	
	
Erroneous	haplotypes	have	lower	read	support	than	correct	haplotypes	

Read	support	is	a	useful	indicator	of	the	likelihood	that	a	called	haplotype	is	correct.	
Haplotypes	with	single-read	support	were	largely	sequencing	artifacts,	with	only	0.030%	
matching	a	haplotype	sequence	known	to	be	present	in	the	sample	mixtures.	The	default	
PASEC	pipeline	therefore	requires	haplotypes	to	have	read	support	≥2,	a	filter	that	
eliminated	89.0%	of	CSP	and	85.8%	of	SERA2	initially	called	haplotypes	from	the	dataset.	

After	filtration	with	the	full	PASEC	pipeline,	some	erroneous	haplotypes	remained,	
but	they	continued	to	show	lower	read	support	than	true	haplotypes	(Figure	3B).	In	the	
final	filtered	dataset,	31%	of	the	identified	haplotypes	were	erroneous,	although	combined	
these	haplotypes	only	accounted	for	0.75%	of	the	total	reads.	Of	note,	the	same	percentage	
of	erroneous	reads	(0.8%)	was		previously	reported	by	Hathaway	et	al	on	a	different	
dataset	analyzed	with	their	tool	SeekDeep	[20].		Reads	supporting	erroneous	haplotypes	
were	more	prevalent	in	samples	with	low	read	depth	and	low	parasite	concentration	
(Additional	File	1,	Figure	S3).	

In	order	to	decrease	the	false	positive	rate,	users	can	increase	the	read	support	
threshold	per	haplotype	or	the	minimum	read	depth	per	sample.	Striving	to	completely	
eliminate	false	positives,	however,	would	decrease	sensitivity,	especially	for	low-frequency	
haplotypes.	For	instance,	41%	of	samples	contained	at	least	one	erroneous	haplotype	for	
one	of	the	two	amplicons.	In	42%	of	these	cases,	the	most	common	erroneous	haplotype	
contained	higher	read	support	than	the	least	prevalent	true	haplotype	within	the	sample.	
	
Frequency	and	source	of	haplotype	errors	in	the	mock	samples	

The	PASEC	pipeline	contains	customized	filtration	and	error-correction	steps	to	
remove	erroneous	CSP	and	SERA2	haplotypes.	The	filtration	and	error-correction	steps	in	
PASEC	were	designed	to	address	three	main	sources	of	erroneous	haplotypes:	sequencing	
errors,	chimeric	reads,	and	sample	contamination.	The	frequency	of	these	error	types	and	
the	efficacy	of	the	various	PASEC	filters	are	discussed	in	more	detail	below.	
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Nucleotide	sequence	errors:	The	majority	of	erroneous	haplotypes	are	expected	to	result	
from	sequence	errors	(nucleotide	substitutions	or	indels)	that	occur	during	Illumina	
sequencing	or	the	initial	rounds	of	PCR.	The	PASEC	pipeline	accounted	for	these	errors	
with	two	approaches:	(1)	hard	masking	of	error-prone	sequence	regions	and	(2)	clustering	
of	haplotypes	that	differed	by	a	single	nucleotide	and	had	a	read	coverage	ratio	≥8:1.	Hard	
masking	was	applied	to	two	homopolymeric	regions	in	CSP	composed	of	9	and	6	poly-Ts.	In	
the	raw	data,	erroneous	indels	within	these	two	regions	were	detected	in	5.7%	and	1.2%	of	
full-length	reads.	While	true	indels	might	occur	in	these	sequences	in	natural	populations,	
this	high	artifactual	indel	rate	suggests	that	inference	of	variants	in	these	regions	would	be	
too	unreliable	using	Illumina	sequencing.	Compared	to	masking,	the	clustering	of	
haplotypes	had	an	even	greater	impact	on	reducing	nucleotide	errors:	57.0%	of	CSP	
haplotypes	and	47.9%	of	SERA2	haplotypes	were	eliminated	at	this	step.	

In	the	final	filtered	dataset,	approximately	half	of	the	erroneous	haplotypes	(51%)	
differed	from	a	true	haplotype	by	one	or	two	nucleotide	changes	and	were	likely	the	result	
of	Illumina	sequencing	or	PCR	errors.	As	discussed	above,	these	haplotypes	were	
supported	by	fewer	reads	than	true	haplotypes	(Figure	3B).	
	
Chimeric	reads:	Chimeric	reads	are	false	recombinant	haplotypes	generated	during	PCR	
amplification.	While	a	necessary	consideration	when	performing	amplicon	sequencing,	
their	overall	impact	on	the	mock	sample	analysis	was	minimal.	Potential	chimeras	were	
identified	with	the	isBimera	function	in	DADA2	[18],	which	identifies	all	haplotypes	that	
could	be	constructed	from	a	simple	combination	of	two	other	haplotypes	within	the	same	
sample.	This	analysis	flagged	7	CSP	and	16	SERA2	samples	as	containing	a	total	of	36	
chimeric	haplotypes.	Eleven	(31%)	of	the	flagged	haplotypes	were	in	fact	true	haplotypes	
known	to	be	within	the	given	sample.	Further	analysis	showed	that	20	of	the	25	flagged	
erroneous	haplotypes	were	only	one	nucleotide	change	away	from	another	haplotype	in	
the	sample,	and	the	remaining	five	were	related	by	two	nucleotide	changes.	This	suggests	
that	these	haplotypes	may	have	resulted	from	PCR	or	sequencing	error	instead	of	chimeric	
read	formation.	Eighteen	(78%)	of	the	flagged	samples	had	total	read	counts	under	200,	
the	read	threshold	previously	used	with	the	PASEC	pipeline	[1].	The	increased	stochasticity	
associated	with	low-read	samples	may	explain	why	these	haplotypes	were	not	merged	as	
part	of	the	PASEC	sequencing	error	filter.	

Correctly	identifying	chimeric	reads	in	natural	infections	presents	an	additional	
challenge,	especially	in	regions	of	high	malaria	prevalence	where	recombination	among	
haplotypes	will	be	higher.	Of	the	50	most	common	CSP	sequences	detected	in	sub-Saharan	
Africa	[8],	38	(76%)	were	flagged	as	chimeric	combinations	by	DADA2.	Researchers	must	
therefore	consider	additional	factors	like	population-level	haplotype	frequency	when	
identifying	chimeric	reads	in	natural	infections	[19,	20].		
	
Cross-sample	or	environmental	contamination:	A	large	percentage	(49%)	of	erroneous	
haplotypes	had	no	evidence	of	chimerism	and	were	unlikely	to	have	resulted	from	
sequencing	errors	as	they	were	≥3	nucleotide	changes	away	from	any	true	haplotype	
within	a	given	sample.	68%	of	these	haplotypes	were	present	in	other	samples	from	the	
same	MiSeq	run,	suggesting	cross-sample	or	environmental	contamination.	The	remaining	
haplotypes	occurred	only	once	in	the	whole	dataset	and	may	have	resulted	from	
environmental	contamination.	A	small	amount	of	cross-sample	or	environmental	
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contamination	was	also	observed	in	the	negative	control	samples	that	contained	either	
water	(N=2)	or	human	DNA	(N=2).	These	four	Plasmodium-free	samples	contained	5,	7,	16,	
and	20	reads,	respectively.	All	of	these	read	counts	fell	well	below	the	200-read	quality	
threshold	previously	used	with	the	PASEC	pipeline	[1].	
	
Comparison	of	PASEC	with	three	state-of-the-art	amplicon	analysis	tools	

The	performance	of	PASEC—a	pipeline	that	has	been	carefully	tuned	for	use	with	
the	CSP	and	SERA2	amplicons	in	P.	falciparum—was	compared	to	that	of	three	analysis	
tools	that	were	developed	to	be	applied	to	amplicons	from	any	genomic	region:	DADA2	
[18],	HaplotypR	[19],	and	SeekDeep	[20].	All	four	of	these	tools	were	designed	to	detect	
low-frequency	haplotypes	and	differentiate	unique	haplotypes	with	single-nucleotide	
resolution.	There	are,	however,	differences	in	the	analytical	approaches.	For	instance,	
during	error	filtration	PASEC	and	HaplotypR	rely	mainly	on	variant	frequency	and	read	
depth,	while	SeekDeep	incorporates	k-mer	frequencies	and	base	quality	scores	and	DADA2	
further	models	sequencer-specific	error	likelihoods.	SeekDeep	additionally	allows	users	to	
incorporate	replicate	PCR	and	sequencing	runs	into	the	analysis.	This	approach	provides	
higher	confidence	for	differentiating	between	sequencing	errors	and	true	haplotypes	that	
differ	at	only	a	single	nucleotide.	As	all	haplotypes	used	in	the	mock	samples	differed	by	
more	than	one	nucleotide,	however,	this	SeekDeep	feature	was	not	evaluated	in	the	trial.	

While	all	these	tools	have	undergone	rigorous	testing,	no	previous	study	has	
focused	on	their	performance	under	extremely	low	parasite	densities.	Here,	each	tool	was	
applied	to	the	mock	samples	and	it	was	evaluated	on	(1)	the	proportion	of	all	expected	
haplotypes	that	were	observed	(sensitivity)	and	(2)	the	proportion	of	observed	haplotypes	
that	were	expected	(precision).	
	
Sensitivity	and	precision:	Overall,	the	four	tools	performed	comparably	on	the	mock	
sample	panel,	although	they	showed	more	variability	in	precision	than	in	sensitivity	
(Figure	5).	This	shows	that	what	differs	most	between	pipelines	is	their	ability	to	filter	out	
erroneous	haplotypes,	not	identify	correct	haplotypes.	For	instance,	while	the	sensitivity	of	
SeekDeep1x—the	SeekDeep	implementation	using	only	one	technical	replicate—	was	
comparable	to	the	other	four	pipelines,	its	precision	was	substantially	lower,	driven	by	the	
identification	of	a	high	number	of	erroneous	haplotypes.	The	use	of	replicate	samples	in	
SeekDeep2x	greatly	decreased	the	tool’s	false	positive	rate,	increasing	precision	with	a	
small	cost	in	sensitivity.	

Each	tool’s	performance	varied	to	some	extent	across	amplicons.	This	variation	was	
not	consistent	across	pipelines,	and	as	a	result,	the	pipelines’	rank	order	for	precision	and	
sensitivity	was	different	for	CSP	and	SERA2	(Table	1;	Additional	File	1,	Figure	S4).	
	
Effect	of	sample	read	depth	and	genome	copy	number:	All	five	pipelines	showed	reduced	
performance	at	very	low	read	depths	(<25	reads/sample)	and	low	parasite	concentrations	
(<5	genomes/μl;	Additional	File	1,	Figure	S5).	In	particular,	SeekDeep2x	performed	best	on	
samples	with	at	least	100	reads	(Figure	5B).	Parasite	genome	copy	number	also	affected	
the	tools’	success	at	resolving	at	least	one	haplotype	within	a	sample.	Overall,	the	pipelines	
reported	haplotypes	within	78%	(HaplotypR),	81%	(DADA2),	84%	(SeekDeep2x),	89%	
(PASEC),	and	96%	(SeekDeep1x)	of	the	samples	(Additional	File	1,	Figure	S6A).	The		
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Figure	5.	Sensitivity	and	precision	of	five	analysis	pipelines	for	the	detection	of	haplotypes	in	
mock	samples.	(A)	Analysis	approaches	vary	more	in	precision	than	in	sensitivity.	(B)	
Performance	of	all	pipelines	improves	when	considering	only	samples	that	had	at	least	100	reads	
for	an	individual	amplicon.	Data	shown	include	results	from	both	the	CSP	and	SERA2	amplicons.	
95%	confidence	intervals	were	estimated	with	1000	bootstrapped	data	set	replicates.		
	
	
Table	1.	Sensitivity	and	precision	of	each	pipeline	(Mean	[95%	CI])	
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Sa
m
pl
es
	w
ith

	≥
	1
00

	re
ad

s	

Se
ns
iti
vi
ty
	 All	 0.83	[0.80,	0.86]	 0.84	[0.81,	0.86]	 0.83	[0.81,	0.86]	 0.83	[0.80,	0.86]	 0.78	[0.78,	0.87]	

CSP	 0.82	[0.78,	0.86]	 0.82	[0.77,	0.86]	 0.82	[0.78,	0.86]	 0.82	[0.78,	0,86]	 0.84	[0.78,	0,	89]	

SERA2	 0.85	[0.80,	0.89]	 0.86	[0.81,	0.90]	 0.85	[0.80,	0.89]	 0.85	[0.81,	0.89]	 0.82	[0.75,	0.88]	

Pr
ec
is
io
n	 All	 0.83	[0.80,	0.86]	 0.89	[0.87,	0.92]	 0.92	[0.90,	0.94]	 0.26	[0.24,	0.28]	 0.79	[0.74,	0.84]	

CSP	 0.75	[0.70,	0.79]	 0.94	[0.91,	0.96]	 0.95	[0.92,	0.97]	 0.27	[0.24,	0.30]	 0.88	[0.83,	0.93]	

SERA2	 0.92	[0.88,	0.95]	 0.84	[0.80,	0.88]	 0.90	[0.86,	0.93]	 0.25	[0.22,	0.28]	 0.71	[0.63,	0.78]	
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majority	of	the	samples	returning	no	data	contained	Plasmodium	DNA	concentrations	
under	5	genomes/μl	(Additional	File	1,	Figure	S6B).	
	
Determination	of	major	haplotype	frequency:	As	reported	above,	PASEC	correctly	
identified	the	expected	major	haplotype	in	73%	of	the	mock	samples.	Misidentification	of	
the	expected	haplotype	could	result	from	errors	in	the	pipeline	or	stochasticity	during	
sample	construction,	PCR	amplification	and	sequencing.	Strongly	suggesting	that	
stochasticity	in	sample	processing	and	sequencing	plays	a	role,	the	frequency	estimate	for	
each	sample’s	major	haplotype	was	highly	correlated	between	tools	(Pearson’s	r	for	all	
pairs	>	0.85,	P	<	0.001;	Additional	File	1,	Figure	S7A).	The	correlation	between	tools	was	
even	higher	when	limiting	the	analysis	to	samples	with	at	least	100	reads	(Pearson’s	r	for	
all	pairs	>	0.97,	P	<	0.001;	Additional	File	1,	Figure	S7B).	All	tools	therefore	arrive	at	
comparable	frequency	estimates	based	on	the	number	of	reads	produced	per	haplotype.	
	
Analysis	of	natural	infection	samples	from	Sub-Saharan	Africa	with	the	four	tools	

All	five	pipelines	were	then	applied	to	newly	generated	amplicon	data	from	95	
previously	extracted	parasite	positive	blood	spots	from	four	countries	in	sub-Saharan	
Africa	(Figure	1C)	[1].	These	biological	samples	were	PCR	amplified	and	sequenced	in	
duplicate,	yielding	190	independently	sequenced	samples	for	each	of	the	two	amplicons.	
With	the	exception	of	SeekDeep2x,	the	technical	replicates	were	again	treated	as	separate	
samples	in	the	analysis	step.	All	tools	were	run	with	the	same	parameters	used	for	the	
mock	samples.	

The	tools	differed	in	the	total	number	of	unique	haplotypes	identified	across	the	
samples,	with	estimates	ranging	from	48	to	336	for	CSP	and	38	to	412	for	SERA2	
(Additional	File	1,	Figure	S8).	For	both	amplicons,	SeekDeep1x	and	DADA2	identified	
substantially	more	haplotypes	than	the	other	approaches,	although	a	large	percentage	of	
these	haplotypes	were	found	at	within-sample	frequencies	under	1%,	raising	the	
possibility	that	they	were	artifacts.	Only	PASEC	identified	a	three	nucleotide	indel	in	SERA2	
that	was	found	on	seven	different	haplotypic	backgrounds.	This	was	because	the	PASEC	
hard	filters	permitted	this	indel	to	remain	based	on	its	prior	observation	in	African	
parasites	[1].	

Consistent	with	expectations	for	sub-Saharan	Africa,	the	majority	of	the	natural	
infection	samples	contained	multiple	P.	falciparum	parasite	haplotypes.	COI	was	estimated	
for	each	sample	as	the	maximum	number	of	unique	haplotypes	identified	at	either	of	the	
two	amplicons.	With	the	exception	of	SeekDeep1x,	all	four	tools	produced	similar	trends	of	
mean	COI	per	country	(Figure	6).	This	is	in	keeping	with	the	observation	that	SeekDeep	
showed	lower	precision	on	the	mock	samples	than	the	other	tools	when	run	with	single	
replicates	(Figure	5).		
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Discussion	
	
	 Amplicon	sequencing	of	complex	haplotypic	regions	is	a	powerful	tool	being	applied	
to	an	increasing	range	of	questions	in	malaria	research.	This	highly	scalable	approach	
accurately	estimates	COI,	identifies	distinct	haplotypes	within	polyclonal	infections,	and	
permits	temporal	tracking	of	distinct	clones.	Previous	applications	and	evaluations	of	
amplicon	sequencing	have	focused	on	moderate	to	high	density	infections.	Here,	the	
performance	of	amplicon	sequencing	was	assessed	for	the	first	time	under	a	scenario	of	
extremely	low	parasite	densities	(1-200	genomes/μl),	which	mimicked	samples	that	could	
be	obtained	from	asymptomatic	carriers.	The	results	show	that	amplicon	sequencing	
remains	a	viable	approach	under	such	challenging	scenarios,	as	it	was	able	to	detect	77%	of	
individual	haplotypes	present	at	concentrations	of	5-10	genomic	copies/μl.	The	ability	of	
Illumina-based	amplicon	sequencing	to	reliably	detect	Plasmodium	DNA	at	these	extremely	
low	concentrations	shows	that	it	has	a	limit	of	detection	on	par	with	standard	nested	PCR	
[27]	and	qPCR	[28]	methods.		

While	amplicon	sequencing	is	successful	at	low	parasite	densities,	analysis	of	such	
samples	presents	unique	challenges,	particularly	at	densities	below	5	genomes/μl.	At	these	
ultra-low	concentrations,	overall	sample-level	error	rates	are	higher	and	quantification	of	
haplotype	ratios	is	less	accurate,	regardless	of	the	applied	analysis	tool.	Researchers	should	
therefore	take	steps	to	lower	false	positive	rates	in	this	challenging	class	of	samples.	Since	
erroneous	haplotypes	are	generally	supported	by	fewer	reads	(Figure	3B)	and	samples	
with	lower	read	counts	have	a	higher	proportion	of	false	haplotypes	(Additional	File	1,	
Figure	S3),	it	should	be	standard	practice	to	raise	read	thresholds	when	analyzing	low	
parasitemia	or	low	coverage	samples.	

PASEC’s	high	performance	was	the	result	of	hand-tuning	for	use	with	the	amplicons	
CSP	and	SERA2.	This	included	the	hard	masking	of	difficult-to-sequence	homopolymer	runs	
in	the	CSP	amplicon	and	the	a	priori	identification	of	indels	in	SERA2.	As	a	result	of	this	
customization,	it	was	the	only	tool	to	identify	a	naturally	occurring	three	nucleotide	
deletion	in	SERA2	that	is	present	in	Africa.	Importantly,	however,	this	study	shows	that	
three	other	tools—DADA2,	HaplotypR,	and	SeekDeep—also	provide	robust	results	when	
prior	knowledge	of	the	error	profile	of	an	individual	amplicon	is	unavailable	and	rapid,	
parallelized	analysis	is	not	needed.	
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Figure	6.	Mean	COI	estimates	
for	four	sub-Saharan	African	
study	sites	made	by	the	five	
analysis	pipelines.	COI	was	
defined	as	the	maximum	number	
of	haplotypes	retrieved	for	the	
sample	from	either	of	the	two	
amplicons.	
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While	the	overall	approach	is	successful,	room	for	methodological	development	
remains.	Improvements	in	sensitivity	will	require	changes	upstream	of	the	analysis	stage	
as	the	inability	to	detect	a	haplotype	generally	resulted	from	a	failure	to	capture	it	at	the	
amplification	or	sequencing	stage.	This	led	to	roughly	equivalent	sensitivities	for	the	four	
evaluated	tools.	Precision	did	vary	among	tools,	reflecting	their	different	approaches	
towards	error	correction.	As	the	rank	order	of	the	tools’	precision	differed	between	the	
amplicons,	however,	the	relative	success	of	these	different	approaches	seems	dependent	on	
genetic	context.	With	PASEC	and	SeekDeep,	users	can	easily	increase	precision	by	
implementing	a	simple	100	read	threshold	at	the	sample	level	(Table	1).	Additional	
increases	in	precision	will	require	further	development,	and	work	in	this	area	is	ongoing	
[29,	30].	
	
	
Conclusion	
	

Amplicon	sequencing	is	a	versatile	approach	for	exploring	a	range	of	intra-host	
questions	in	malaria	research.	Cost-effective	and	scalable	for	use	with	thousands—or	tens	
of	thousands—of	polyclonal	samples	in	high-throughput	settings,	its	use	will	likely	increase	
in	the	coming	years.	As	shown	here,	amplicon	sequencing	can	be	applied	to	samples	with	
both	low	and	high	parasite	densities,	although	the	consistent	detection	of	parasite	clones	
with	very	low	prevalence	(<5	genomes/μl)	is	challenging.	Even	at	low	densities,	amplicon	
sequencing	retained	some	information	on	haplotype	ratio,	allowing	PASEC	to	distinguish	
major	and	minor	clones	correctly	in	73%	of	the	infections.	Erroneous	haplotypes	were	
generally	supported	by	fewer	reads,	and	samples	with	lower	read	counts	had	a	higher	
proportion	of	false	haplotypes.	When	used	under	their	recommended	conditions,	three	
other	versatile	analysis	tools	(DADA2,	HaplotypR,	and	SeekDeep)	showed	similar	
performance	compared	to	PASEC.	Overall,	all	tools	performed	well,	and	so	final	choice	of	
analysis	method	will	depend	largely	on	study	design	(e.g.,	the	inclusion	of	technical	
PCR/sequencing	replicates),	the	read	coverage	of	the	samples,	and	expectations	regarding	
the	targeted	Plasmodium	genotypes	(e.g.,	the	potential	presence	of	indels	or	the	need	to	
differentiate	between	low	frequency	haplotypes	with	a	single	SNP	difference).	Regardless	
of	the	tool	used,	however,	it	should	be	standard	practice	to	raise	read	thresholds	when	
analyzing	samples	with	low	parasitemia	(<5	parasites/μl)	or	low	coverage	(<100	reads).	
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