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Abstract

Background: Deep sequencing of targeted genomic regions is becoming a common tool for
understanding the dynamics and complexity of Plasmodium infections, but its lower limit of
detection is currently unknown. Here, a new amplicon analysis tool, the Parallel Amplicon
Sequencing Error Correction (PASEC) pipeline, is used to evaluate the performance of
amplicon sequencing on low-density Plasmodium DNA samples. [llumina-based sequencing
of two P. falciparum genomic regions (CSP and SERAZ2) was performed on two types of
samples: in vitro DNA mixtures mimicking low-density infections (1-200 genomes/ul) and
extracted blood spots from a combination of symptomatic and asymptomatic individuals
(44-653,080 parasites/pl). Three additional analysis tools—DADAZ2, HaplotypR, and
SeekDeep—were applied to both datasets and the precision and sensitivity of each tool
were evaluated..

Results: Amplicon sequencing can contend with low-density samples, showing reasonable
detection accuracy down to a concentration of 5 Plasmodium genomes/pl. Due to increased
stochasticity and background noise, however, all four tools showed reduced sensitivity and
precision on samples with very low parasitemia (<5 copies/ul) or low read count (<100
reads per amplicon). PASEC could distinguish major from minor haplotypes with an
accuracy of 90% in samples with at least 30 Plasmodium genomes/pl, but only 61% at low
Plasmodium concentrations (<5 genomes/ul) and 46% at very low read counts (<25 reads
per amplicon). The four tools were additionally used on a panel of extracted parasite-
positive blood spots from natural malaria infections. While all four identified concordant
patterns of complexity of infection (COI) across four sub-Saharan African countries, the COI
values obtained for individual samples differed in some cases.

Conclusions: Amplicon deep sequencing can be used to determine the complexity and
diversity of low-density Plasmodium infections. Despite differences in their approach, four
state-of-the-art tools resolved known haplotype mixtures with similar sensitivity and
precision. Researchers can therefore choose from multiple robust approaches for analyzing
amplicon data, however, error filtration approaches should not be uniformly applied across
samples of varying parasitemia. Samples with very low parasitemia and very low read
count have higher false positive rates and call for read count thresholds that are higher
than current recommendations.
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Background

Amplicon deep sequencing is an increasingly utilized genotyping approach that
provides a cost-effective strategy to profile the genetic diversity of pathogen infections.
Like single nucleotide polymorphism (SNP)-based genotyping methods, both the data-
generation and data-analysis steps of amplicon sequencing are highly scalable, allowing for
studies of hundreds to thousands of samples. Additionally, amplicons can be designed to
cover long genetic segments composed of multiple variants, allowing for the identification
of complete DNA sequences (or haplotypes) in a targeted genomic region. When targeting a
highly polymorphic genomic region, a single amplicon can distinguish among hundreds of
unique haplotypes [1], providing higher resolution than either SNP-based or length-based
genotyping approaches. This improves estimates of the number of lineages within
polyclonal infections (or complexity of infection; COI) [2-4], permits the discovery of
unknown alleles [5-7], and provides increased information for haplotype-based analyses of
epistasis and linkage disequilibrium [8].

Amplicon analysis in Plasmodium has been adapted to multiple sequencing
platforms depending on the desired cost, sample size, and sequence length [3, 9-11].
Because of this high resolution and flexibility, amplicon-based methods have been utilized
in a range of applications, including studies of allele-specific vaccine efficacy [1], disease
severity [10], clearance rate [12], within-host competition [13], relapse rate [9], drug
resistance [5-7], host selection [8], and population structure [8, 14]. Amplicon sequencing
has high sensitivity for the detection of minority parasite lineages within an infection, and
is of particular interest in longitudinal studies that track intra-host dynamics [3, 4].

When used to detect known single variant markers, amplicon sequences can be
analyzed with relatively straightforward approaches. Longer, complex haplotypes,
however, require more sophisticated analysis methods. Amplicon sequencing data are
known to be subject to PCR and sequencing artifacts, particularly for genomic regions with
high A/T-content and high rates of homopolymerism [15, 16]. In addition, library
preparation method and primer choice can influence the types and extent of errors [17].
Correctly identifying sequence errors is therefore a challenge when applying amplicon
sequencing to P. falciparum. Fortunately, several new analytical tools have been developed
in recent years to address these challenges [18-21]. Unlike approaches that use reference
datasets or cluster sequences with hard percent-identity thresholds, these new methods
are more flexible and can distinguish among sequences that differ by only a single
nucleotide change [22]. When Plasmodium concentrations are reasonably high, these
approaches have been demonstrated to be robust. To date, however, none of these
methods have been tested on low-density Plasmodium samples. It is therefore unclear
whether additional considerations are required when interpreting amplicon sequencing
data from infections with low parasitemia.

This study assesses amplicon sequencing’s lower limit of detection using four
analysis tools, and further evaluates each tool’s accuracy and capacity to recover
quantitative information on the relative abundance of different haplotypes within
infections. Three of these tools—DADA2 [18], HaplotypR [19], and SeekDeep [20]—were
previously published and developed to contend with any Plasmodium amplicon. The
fourth—the Parallel Amplicon Sequencing Error Correction (PASEC) pipeline—is a
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distance- and abundance-based error-correction tool that was specifically tailored for use
with CSP and SERAZ2 amplicons [1] and is formally presented here for the first time.
Amplicon sequencing of densely polymorphic regions in the P. falciparum CSP and SERAZ
genes was applied to two sample collections. The first—a set of in vitro human/parasite
DNA mixtures that mimic low density parasite infections—was designed to test the limit of
detection for amplicon sequencing. The second sample set consisted of DNA extracted from
dried blood spots from malaria-infected individuals collected on filter paper in sub-Saharan
Africa. This allowed a comparison of analysis approaches using conditions under which
samples are typically collected and processed. All four tools detected P. falciparum
haplotypes with high sensitivity, and additionally were able to discriminate between major
and minor haplotypes with reasonable accuracy. Additionally, PASEC was able to identify a
SERAZ indel in patient samples due to its incorporation of prior knowledge on sequence
composition. Overall, the results show that low parasitemia does not preclude amplicon
analysis of P. falciparum samples, although researchers should expect reduced sensitivity
and reduced precision with low read-count samples (<100 reads/amplicon) and at parasite
densities under 5 genomes/pl.

Methods

Sample assembly and composition

Mock Plasmodium/human DNA mixtures: Mixtures of DNA from cultured P. falciparum
parasites were combined with human genomic DNA to construct samples that mimic
human infections. DNA from up to five culture-adapted parasite lines were combined in
various proportions and number (Figure 1; exact sample composition is in Additional File
1, Table S1). Stock mixtures of 200 genomic copies/pl were prepared by real-time PCR
quantification of copies/pl in triplicate relative to a plasmid containing a single copy of the
quantification target gene [23]. These stock solutions were then diluted to the indicated
concentrations in sequencing-grade water and 10 ng commercial human DNA (Promega
Corp cat#G3041) was added to all samples. After mixing and dilution, a subset of samples
were re-quantified using the same qPCR protocol and reported sample concentrations
were adjusted as needed. Plasmodium-free negative control samples were also constructed.
These contained either 10 ng of human DNA or only water.

Natural infections: Previously extracted DNA from 95 blood spots, obtained from
individuals infected with P. falciparum, was re-amplified and re-sequenced as part of this
study. These samples were acquired from both symptomatic and asymptomatic individuals
from four countries in sub-Saharan Africa as part of the RTS,S malaria vaccine Phase 3 trial
and had parasite densities that ranged from 44-653,080 parasites/ul as determined by
blood smear (Figure 1; [24]). Full details on sampling and extraction, including human
subjects approval for use of these samples, are provided in Neafsey et al., 2015 [1]. In brief,
samples were collected as blood spots on Whatman FTA cards, shipped to the Broad
Institute, and stored in desiccators until processing. DNA was extracted in batches of 95
samples plus one blank control card using the automated Chemagen Chemagic bead-based
extraction platform. Total DNA was stored at -80°C until re-amplification and sequencing.



https://doi.org/10.1101/453472
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/453472; this version posted February 19, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

5

o

) N 100 100
%40' .MOCk Samp|es % BCsP NSERAZ
%30_ % 75 - 75-
(7] n
S 201 S 9507 501
E  —
O 10 8 25 - 25 1
g £
=]
Z 01 T T T T =z 0+ — T T T 0- T T T
0 2 4 6 1234 123 4
logqo(Genomes/pul) Haplotype count
C. g
e Natural
E o0{ Minfections
()
©
% 101
o]
£
Z O- T T T T
0 2 4 6

logo(Parasites/ul)

Figure 1. Mock and natural infection sample composition. (A) Mock infection samples were
constructed from mixtures of P. falciparum and human DNA to mimic the parasite DNA
concentrations found in extracted low-density infections. (B) DNA from up to five clonal cultured
parasite lines was combined to create each mock sample, leading to within-sample haplotype
counts of one to four. (C) Natural infection samples were previously collected and extracted from a
combination of symptomatic patients and asymptomatic carriers [1]. Parasite densities were
determined by blood smear.

Positive control plasmid: A plasmid containing synthetic target amplicon sequences for
both CSP and SERAZ was obtained from a commercial vendor (Invitrogen/Thermo Fisher
Scientific) and served as a positive control during the PCR amplification step. Outside the
primer regions, the plasmid sequence contains nucleotide variants not observed in natural
P. falciparum isolates so that any instances of contamination can be readily identified. The
plasmid map can be found in Additional File 1, Figure S1.

PCR and sequencing

Two regions from the CSP (PF3D7_0304600) and SERAZ (PF3D7_0207900) genes
were PCR amplified as previously described [1]. In brief, 5 pl of DNA were amplified at the
targeted regions then indexed in two separate rounds of PCR. The final CSP and SERA2
amplicons cover 288 and 258 nucleotides, respectively (Pf3D7_03_v3:221,352-221,639;
Pf3D7_02_v3:320,763-321,020). Both amplicons overlap sequence regions of high
nucleotide diversity in sub-Saharan Africa to maximize the number of distinct haplotypes
that can be detected across samples from this geographic area.

All DNA samples and negative controls were amplified and sequenced in duplicate.
Paired-end 250-bp reads were generated in one MiSeq run conducted on a pool of 384 PCR
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products. Unless otherwise noted, each PCR/sequencing technical replicate was analyzed
as a distinct sample. Before downstream analysis, raw sequencing data were demultiplexed
and aligned to amplicon reference sequences to remove all non-Plasmodium sequences.

Sample analysis with PASEC

For each sample, paired-end reads were merged using FLASH [25] and aligned with
BWA-MEM v0.7.12-r1039 [26] to the amplicon regions of the P. falciparum reference
genome assembly (PlasmoDB v.9.0 3D7). Two short homopolymeric tracts in CSP were
masked from analysis, as such regions are highly error-prone in [llumina sequencing and
these specific tracts were not known to harbor natural polymorphisms. Masked
coordinates are given in Additional File 3.

Within each sample, haplotypes were filtered according to a set of pre-specified
thresholds developed by Neafsey et al [1]. Haplotypes were required to (1) cover the entire
amplicon region, (2) have no uncalled bases, (3) be supported by at least two sets of
merged read pairs (henceforth referred to simply as “reads”), and (4) have an intra-sample
frequency = 0.01. To account for potential PCR and sequencing errors, the filtered
haplotypes were clustered based on nucleotide distance and read depth. If two haplotypes
within the same sample differed by only one nucleotide and had a read coverage ratio 28:1,
they were merged, maintaining the identity of the more common haplotype. Previous
implementations of this pipeline removed all potential chimeric reads and required
samples to contain at least 200 reads for one of the two amplicons [1, 8]. In this analysis,
these metrics were analyzed, but hard filters were not applied to the samples before
downstream analysis.

Full details on the PASEC pipeline, its customizable parameters, and its
implementation in this study are found in Additional Files 2 and 3 and at
https://github.com/tmfarrell /pasec.

Sample analysis with DADA2, HaplotypR, and SeekDeep

All samples were independently analyzed using three additional amplicon analysis
tools: DADA2 [18], HaplotypR [19], and SeekDeep [20]. Beyond the changes detailed below,
input parameters deviated only modestly from the default settings. Parameters and scripts
used for executing each pipeline can be found in Additional File 3. While previous
implementations of PASEC applied a 200 reads/sample threshold, no read count filters
were applied at the sample level in the analysis comparisons.

SeekDeep gives the option of grouping data from technical PCR/sequencing
replicates of the same sample and applying clustering and filtering to this grouped data to
increase confidence in final calls. The pipeline was therefore run under two conditions:
grouping technical replicates (the recommended, default SeekDeep approach;
“SeekDeep2x”) and treating each PCR/sequencing replicate independently (“SeekDeep1x”).
This permitted more equivalent comparisons among pipelines that do not incorporate
replicate information and allowed for a determination of whether a single replicate is
sufficient for making accurate haplotype calls.

For HaplotypR, the command-line interface was extended in two ways. First, it was
altered to return full haplotype sequences as opposed to only bases at variant positions.
Second, the trimming input command was expanded to allow each amplicon to have
different lengths. The version of HaplotypR used in this analysis can be found at
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https://github.com/tmfarrell/HaplotypR. After running the pipeline, the authors’
recommended sample-level filtering was applied to the data. Specifically, each sample was
required to have a minimum of 25 reads, and individual haplotypes needed to have a
minimum of 3 reads and a within-host frequency of at least 0.1%.

Comparison of analysis tools

All four tools were assessed for their ability to resolve haplotypes at within-sample
frequencies down to 1% using the mock low-parasitemia samples. Two performance
metrics were computed by comparing expected vs. observed haplotypes in each sample:
sensitivity (proportion of all expected haplotypes that were observed) and precision
(proportion of all observed haplotypes that were expected). For sensitivity calculations,
only haplotypes present at a concentration of at least 1 copy/ul were considered. For each
tool, samples were only included in the performance metric calculation if at least one
haplotype was identified. Except for the SeekDeep2x implementation, each
PCR/sequencing replicate was analyzed as a distinct sample.

Results

Sequencing coverage for low-density mock infections and natural infections from
sub-Saharan Africa

In total, 148 DNA mixtures of known haplotypic composition, 190 blood samples
from sub-Saharan Africa, 12 positive-control plasmid samples, and 4 negative-control
samples without Plasmodium DNA were PCR amplified for CSP and SERAZ and sequenced
on a single [llumina MiSeq run.

The 148 mock infections were constructed to mimic infections with low parasite
density and contained between 1 and 200 P. falciparum genomes/pl (Figure 1A). These
values roughly correspond to parasite densities of 1 and 200 parasites/pl as mature, multi-
nucleated blood-stage parasites are generally absent from sampled peripheral blood.
Samples at the lowest end of this distribution (1 genome/ul) should have had, on average,
five genomic copies transferred to the initial PCR reaction. After sequencing, 145 samples
had full-length read coverage for at least one of the two amplicons. For each amplicon,
initial raw coverage across these samples ranged from 0 to 280,876. After implementing
the PASEC pipeline, coverage ranged from 0 to 31,787 reads. Coverage was sufficient for
both amplicons, although median coverage was higher for CSP than for SERA2 (1872 vs.
909; Figure 2A). All samples with low coverage (<100 reads) had Plasmodium DNA
concentrations below 21 genomes/pl. Overall, however, coverage and genome copy
number were only weakly correlated (Spearman’s p = 0.55, P = 9.3x10-14; Figure 2B),
suggesting that stochastic factors influence read counts for low parasitemia samples in
general.

Sequence coverage was higher for the samples from natural infections (Figure 2C).
These samples were extracted from dried blood spots and had parasite densities that
ranged from 44-653,080 parasites/pl as determined by microscopy of blood smears. As
with the mock infections, coverage was generally higher for samples with higher parasite
loads, but this correlation was low (Spearman’s p = 0.31, P = 1.1x10-%; Figure 2D). While
sequencing coverage was higher, overall sequencing success was lower for the natural than
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for the mock infections (Figure 2C), a likely result of difficulties with extracting high quality
DNA from the stored filter paper blood spots. As would be expected under this scenario,
failure rate was not evenly distributed across the natural infection samples, suggesting
some experienced a higher degree of degradation. Each of the 95 blood samples was PCR
amplified and sequenced in duplicate, yielding two CSP and two SERAZ technical replicates
per initial blood sample extraction, or 340 total amplicon samples. Of these 340 amplicon
samples, 94 (25%) had low read counts (<100 reads). These failures clustered in a small
number of blood samples, suggesting that amplification and sequencing success is
dependent on sample quality: only 33 (35%) of the blood samples experienced any
amplicon failure and 18 samples (19%) received low read counts for all 4 amplicon
attempts.
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Figure 2. Sequencing coverage of mock and natural infection samples. Overall sequencing
coverage was lower for mock infection (A) than natural infection (C) samples (Mann-Whitney U
Test, P = 1x10-7) although natural infections had a higher proportion of samples with no reads.
Total read coverage (reads combined from both amplicons) correlated weakly with parasite
genome concentration for mock infections (B) and parasitemia for natural infections (D).

Absolute haplotype concentration affects the probability of sequencing success
One challenge of amplicon sequencing analysis is to correctly resolve individual
haplotypes present within an infection at varying concentrations. Each mock sample
contained between one and four unique haplotypes at the CSP and SERAZ2 amplicons
present at concentrations of 1-200 copies/pl (Figure 1B). Overall, there was a high
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recovery of these expected haplotypes from each of the samples. PASEC correctly identified
all haplotypes present at a concentration of 30 copies/pl or higher and 96% of haplotypes
with concentrations over 20 copies/pl. Conversely, only 41% of haplotypes with 1-5
copies/ul were recovered (Figure 3A). As discussed in the tool comparison below, this
haplotype sensitivity is only slightly influenced by the post-sequencing analysis method
and instead is driven by a failure to initially amplify and/or sequence these low frequency
haplotypes.
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Figure 3. Identification of haplotypes in mock samples. (A) Detection of known haplotypes
within the mock samples was dependent on the haplotype concentration (copies/l) within the
sample. Error bars represent the binomial-estimated standard deviation. (B) Across all mock
samples, 31% of identified haplotypes were erroneous, but these haplotypes were generally
supported by fewer reads than correct haplotypes. The number of nucleotide (nt) errors per
haplotype was calculated as the nucleotide distance between an observed haplotype and the closest
expected haplotype within the sample.

Amplicon sequencing retains some information on within-sample haplotype
frequencies, even at low concentrations

When performing direct short-read sequencing, relative read depth can be used to
infer sample features like genotype ratios or genome copy number variations. During
construction of amplicon libraries, however, PCR amplification prior to sequencing
introduces stochastic variation in the final read counts. Nevertheless, analysis of the final
read ratios in the mock samples shows that some information about the original haplotype
ratios can be recovered. For samples with at least 100 reads, the correlation between the
haplotypic ratio in the template DNA and final read ratio was moderate (Pearson’s r = 0.82,
P <0.001, Additional File 1, Figure S2). As a result, in 73% of samples with at least a 4%
margin between the two most prevalent haplotypes, read ratio correctly identified the
most prevalent haplotype in the starting DNA mixture. Again, low read count reduced the
probability of identifying the correct major haplotype (Figure 4A). Similarly, major
haplotype identification was less accurate in samples with very low total Plasmodium DNA
concentration (<5 genomes/ul; Figure 4B).
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Figure 4. Proportion of mock samples where the major haplotype was correctly identified.
Identification of the major haplotype within a sample was less reliable at (A) low read counts and
(B) low parasite genome concentrations. Samples were excluded from the analysis if the difference
in prevalence between the top two haplotypes was less than 4%. Error bars represent the binomial-
estimated standard deviation.

Erroneous haplotypes have lower read support than correct haplotypes

Read support is a useful indicator of the likelihood that a called haplotype is correct.
Haplotypes with single-read support were largely sequencing artifacts, with only 0.030%
matching a haplotype sequence known to be present in the sample mixtures. The default
PASEC pipeline therefore requires haplotypes to have read support 22, a filter that
eliminated 89.0% of CSP and 85.8% of SERAZ initially called haplotypes from the dataset.

After filtration with the full PASEC pipeline, some erroneous haplotypes remained,
but they continued to show lower read support than true haplotypes (Figure 3B). In the
final filtered dataset, 31% of the identified haplotypes were erroneous, although combined
these haplotypes only accounted for 0.75% of the total reads. Of note, the same percentage
of erroneous reads (0.8%) was previously reported by Hathaway et al on a different
dataset analyzed with their tool SeekDeep [20]. Reads supporting erroneous haplotypes
were more prevalent in samples with low read depth and low parasite concentration
(Additional File 1, Figure S3).

In order to decrease the false positive rate, users can increase the read support
threshold per haplotype or the minimum read depth per sample. Striving to completely
eliminate false positives, however, would decrease sensitivity, especially for low-frequency
haplotypes. For instance, 41% of samples contained at least one erroneous haplotype for
one of the two amplicons. In 42% of these cases, the most common erroneous haplotype
contained higher read support than the least prevalent true haplotype within the sample.

Frequency and source of haplotype errors in the mock samples

The PASEC pipeline contains customized filtration and error-correction steps to
remove erroneous CSP and SERAZ haplotypes. The filtration and error-correction steps in
PASEC were designed to address three main sources of erroneous haplotypes: sequencing
errors, chimeric reads, and sample contamination. The frequency of these error types and
the efficacy of the various PASEC filters are discussed in more detail below.
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Nucleotide sequence errors: The majority of erroneous haplotypes are expected to result
from sequence errors (nucleotide substitutions or indels) that occur during Illumina
sequencing or the initial rounds of PCR. The PASEC pipeline accounted for these errors
with two approaches: (1) hard masking of error-prone sequence regions and (2) clustering
of haplotypes that differed by a single nucleotide and had a read coverage ratio =8:1. Hard
masking was applied to two homopolymeric regions in CSP composed of 9 and 6 poly-Ts. In
the raw data, erroneous indels within these two regions were detected in 5.7% and 1.2% of
full-length reads. While true indels might occur in these sequences in natural populations,
this high artifactual indel rate suggests that inference of variants in these regions would be
too unreliable using [llumina sequencing. Compared to masking, the clustering of
haplotypes had an even greater impact on reducing nucleotide errors: 57.0% of CSP
haplotypes and 47.9% of SERAZ haplotypes were eliminated at this step.

In the final filtered dataset, approximately half of the erroneous haplotypes (51%)
differed from a true haplotype by one or two nucleotide changes and were likely the result
of [llumina sequencing or PCR errors. As discussed above, these haplotypes were
supported by fewer reads than true haplotypes (Figure 3B).

Chimeric reads: Chimeric reads are false recombinant haplotypes generated during PCR
amplification. While a necessary consideration when performing amplicon sequencing,
their overall impact on the mock sample analysis was minimal. Potential chimeras were
identified with the isBimera function in DADAZ2 [18], which identifies all haplotypes that
could be constructed from a simple combination of two other haplotypes within the same
sample. This analysis flagged 7 CSP and 16 SERAZ samples as containing a total of 36
chimeric haplotypes. Eleven (31%) of the flagged haplotypes were in fact true haplotypes
known to be within the given sample. Further analysis showed that 20 of the 25 flagged
erroneous haplotypes were only one nucleotide change away from another haplotype in
the sample, and the remaining five were related by two nucleotide changes. This suggests
that these haplotypes may have resulted from PCR or sequencing error instead of chimeric
read formation. Eighteen (78%) of the flagged samples had total read counts under 200,
the read threshold previously used with the PASEC pipeline [1]. The increased stochasticity
associated with low-read samples may explain why these haplotypes were not merged as
part of the PASEC sequencing error filter.

Correctly identifying chimeric reads in natural infections presents an additional
challenge, especially in regions of high malaria prevalence where recombination among
haplotypes will be higher. Of the 50 most common CSP sequences detected in sub-Saharan
Africa [8], 38 (76%) were flagged as chimeric combinations by DADAZ2. Researchers must
therefore consider additional factors like population-level haplotype frequency when
identifying chimeric reads in natural infections [19, 20].

Cross-sample or environmental contamination: A large percentage (49%) of erroneous
haplotypes had no evidence of chimerism and were unlikely to have resulted from
sequencing errors as they were 23 nucleotide changes away from any true haplotype
within a given sample. 68% of these haplotypes were present in other samples from the
same MiSeq run, suggesting cross-sample or environmental contamination. The remaining
haplotypes occurred only once in the whole dataset and may have resulted from
environmental contamination. A small amount of cross-sample or environmental
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contamination was also observed in the negative control samples that contained either
water (N=2) or human DNA (N=2). These four Plasmodium-free samples contained 5, 7, 16,
and 20 reads, respectively. All of these read counts fell well below the 200-read quality
threshold previously used with the PASEC pipeline [1].

Comparison of PASEC with three state-of-the-art amplicon analysis tools

The performance of PASEC—a pipeline that has been carefully tuned for use with
the CSP and SERAZ amplicons in P. falciparum—was compared to that of three analysis
tools that were developed to be applied to amplicons from any genomic region: DADA2
[18], HaplotypR [19], and SeekDeep [20]. All four of these tools were designed to detect
low-frequency haplotypes and differentiate unique haplotypes with single-nucleotide
resolution. There are, however, differences in the analytical approaches. For instance,
during error filtration PASEC and HaplotypR rely mainly on variant frequency and read
depth, while SeekDeep incorporates k-mer frequencies and base quality scores and DADA2
further models sequencer-specific error likelihoods. SeekDeep additionally allows users to
incorporate replicate PCR and sequencing runs into the analysis. This approach provides
higher confidence for differentiating between sequencing errors and true haplotypes that
differ at only a single nucleotide. As all haplotypes used in the mock samples differed by
more than one nucleotide, however, this SeekDeep feature was not evaluated in the trial.

While all these tools have undergone rigorous testing, no previous study has
focused on their performance under extremely low parasite densities. Here, each tool was
applied to the mock samples and it was evaluated on (1) the proportion of all expected
haplotypes that were observed (sensitivity) and (2) the proportion of observed haplotypes
that were expected (precision).

Sensitivity and precision: Overall, the four tools performed comparably on the mock
sample panel, although they showed more variability in precision than in sensitivity
(Figure 5). This shows that what differs most between pipelines is their ability to filter out
erroneous haplotypes, not identify correct haplotypes. For instance, while the sensitivity of
SeekDeep1lx—the SeekDeep implementation using only one technical replicate— was
comparable to the other four pipelines, its precision was substantially lower, driven by the
identification of a high number of erroneous haplotypes. The use of replicate samples in
SeekDeep2x greatly decreased the tool’s false positive rate, increasing precision with a
small cost in sensitivity.

Each tool’s performance varied to some extent across amplicons. This variation was
not consistent across pipelines, and as a result, the pipelines’ rank order for precision and
sensitivity was different for CSP and SERAZ (Table 1; Additional File 1, Figure S4).

Effect of sample read depth and genome copy number: All five pipelines showed reduced
performance at very low read depths (<25 reads/sample) and low parasite concentrations
(<5 genomes/ul; Additional File 1, Figure S5). In particular, SeekDeep2x performed best on
samples with at least 100 reads (Figure 5B). Parasite genome copy number also affected
the tools’ success at resolving at least one haplotype within a sample. Overall, the pipelines
reported haplotypes within 78% (HaplotypR), 81% (DADAZ2), 84% (SeekDeep2x), 89%
(PASEC), and 96% (SeekDeep1x) of the samples (Additional File 1, Figure S6A). The
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Figure 5. Sensitivity and precision of five analysis pipelines for the detection of haplotypes in
mock samples. (A) Analysis approaches vary more in precision than in sensitivity. (B)
Performance of all pipelines improves when considering only samples that had at least 100 reads
for an individual amplicon. Data shown include results from both the CSP and SERAZ2 amplicons.

95% confidence intervals were estimated with 1000 bootstrapped data set replicates.

Table 1. Sensitivity and precision of each pipeline (Mean [95% CI])

HaplotypR

PASEC

SeekDeeplx

SeekDeep2x

0.66 [0.62, 0.70]

0.64 [0.59, 0.70]

0.68 [0.62, 0.74]

0.71[0.68, 0.75]

0.70 [0.64, 0.75]

0.73[0.68, 0.78]

0.72 [0.68, 0.76]

0.70 [0.65, 0.75]

0.73[0.68, 0.79]

0.62 [0.56, 0.68]

0.61 [0.53, 0.69]

0.63 [0.55, 0.71]

0.88 [0.85, 0.90]
0.94 [0.91, 0.97]

0.82 [0.78, 0.86]

0.81 [0.78, 0.85]
0.86 [0.81, 0.89]

0.77 [0.72, 0.82]

0.25[0.23, 0.27]
0.26 [0.23, 0.28]

0.25[0.22, 0.28]

0.68 [0.63, 0.74]
0.77 [0.69, 0.84]

0.61 [0.53, 0.68]

0.84[0.81, 0.86]
0.82[0.77, 0.86]

0.86 [0.81, 0.90]

0.83[0.81, 0.86]
0.82 [0.78, 0.86]

0.85[0.80, 0.89]

0.83[0.80, 0.86]
0.82[0.78, 0,86]

0.85[0.81, 0.89]

0.78 [0.78, 0.87]
0.84[0.78, 0, 89]

0.82[0.75, 0.88]
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DADA2
All 0.66 [0.62, 0.70]
CSP | 0.66[0.61, 0.71]
SERA2 | 0.65 [0.59, 0.70]
All 0.81[0.77, 0.84]
CSP | 0.72[0.67,0.77]
SERA2 | 0.91[0.87, 0.94]
All 0.83[0.80, 0.86]
CSP | 0.82[0.78, 0.86]
SERA2 | 0.85[0.80, 0.89]
All 0.83 [0.80, 0.86]
CSP | 0.75[0.70, 0.79]
SERA2 | 0.92[0.88, 0.95]

0.89[0.87, 0.92]
0.94 [0.91, 0.96]

0.84 [0.80, 0.88]

0.92 [0.90, 0.94]
0.95[0.92, 0.97]

0.90 [0.86, 0.93]

0.26 [0.24, 0.28]
0.27 [0.24, 0.30]

0.25[0.22, 0.28]

0.79 [0.74, 0.84]
0.88[0.83, 0.93]

0.71 [0.63, 0.78]
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majority of the samples returning no data contained Plasmodium DNA concentrations
under 5 genomes/pl (Additional File 1, Figure S6B).

Determination of major haplotype frequency: As reported above, PASEC correctly
identified the expected major haplotype in 73% of the mock samples. Misidentification of
the expected haplotype could result from errors in the pipeline or stochasticity during
sample construction, PCR amplification and sequencing. Strongly suggesting that
stochasticity in sample processing and sequencing plays a role, the frequency estimate for
each sample’s major haplotype was highly correlated between tools (Pearson’s r for all
pairs > 0.85, P < 0.001; Additional File 1, Figure S7A). The correlation between tools was
even higher when limiting the analysis to samples with at least 100 reads (Pearson’s r for
all pairs > 0.97, P < 0.001; Additional File 1, Figure S7B). All tools therefore arrive at
comparable frequency estimates based on the number of reads produced per haplotype.

Analysis of natural infection samples from Sub-Saharan Africa with the four tools

All five pipelines were then applied to newly generated amplicon data from 95
previously extracted parasite positive blood spots from four countries in sub-Saharan
Africa (Figure 1C) [1]. These biological samples were PCR amplified and sequenced in
duplicate, yielding 190 independently sequenced samples for each of the two amplicons.
With the exception of SeekDeep2x, the technical replicates were again treated as separate
samples in the analysis step. All tools were run with the same parameters used for the
mock samples.

The tools differed in the total number of unique haplotypes identified across the
samples, with estimates ranging from 48 to 336 for CSP and 38 to 412 for SERA2
(Additional File 1, Figure S8). For both amplicons, SeekDeep1x and DADAZ2 identified
substantially more haplotypes than the other approaches, although a large percentage of
these haplotypes were found at within-sample frequencies under 1%, raising the
possibility that they were artifacts. Only PASEC identified a three nucleotide indel in SERAZ
that was found on seven different haplotypic backgrounds. This was because the PASEC
hard filters permitted this indel to remain based on its prior observation in African
parasites [1].

Consistent with expectations for sub-Saharan Africa, the majority of the natural
infection samples contained multiple P. falciparum parasite haplotypes. COI was estimated
for each sample as the maximum number of unique haplotypes identified at either of the
two amplicons. With the exception of SeekDeep1x, all four tools produced similar trends of
mean COI per country (Figure 6). This is in keeping with the observation that SeekDeep
showed lower precision on the mock samples than the other tools when run with single
replicates (Figure 5).
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Discussion

Amplicon sequencing of complex haplotypic regions is a powerful tool being applied
to an increasing range of questions in malaria research. This highly scalable approach
accurately estimates COI, identifies distinct haplotypes within polyclonal infections, and
permits temporal tracking of distinct clones. Previous applications and evaluations of
amplicon sequencing have focused on moderate to high density infections. Here, the
performance of amplicon sequencing was assessed for the first time under a scenario of
extremely low parasite densities (1-200 genomes/ul), which mimicked samples that could
be obtained from asymptomatic carriers. The results show that amplicon sequencing
remains a viable approach under such challenging scenarios, as it was able to detect 77% of
individual haplotypes present at concentrations of 5-10 genomic copies/pl. The ability of
[llumina-based amplicon sequencing to reliably detect Plasmodium DNA at these extremely
low concentrations shows that it has a limit of detection on par with standard nested PCR
[27] and gPCR [28] methods.

While amplicon sequencing is successful at low parasite densities, analysis of such
samples presents unique challenges, particularly at densities below 5 genomes/ul. At these
ultra-low concentrations, overall sample-level error rates are higher and quantification of
haplotype ratios is less accurate, regardless of the applied analysis tool. Researchers should
therefore take steps to lower false positive rates in this challenging class of samples. Since
erroneous haplotypes are generally supported by fewer reads (Figure 3B) and samples
with lower read counts have a higher proportion of false haplotypes (Additional File 1,
Figure S3), it should be standard practice to raise read thresholds when analyzing low
parasitemia or low coverage samples.

PASEC’s high performance was the result of hand-tuning for use with the amplicons
CSP and SERAZ. This included the hard masking of difficult-to-sequence homopolymer runs
in the CSP amplicon and the a priori identification of indels in SERAZ. As a result of this
customization, it was the only tool to identify a naturally occurring three nucleotide
deletion in SERAZ that is present in Africa. Importantly, however, this study shows that
three other tools—DADAZ2, HaplotypR, and SeekDeep—also provide robust results when
prior knowledge of the error profile of an individual amplicon is unavailable and rapid,
parallelized analysis is not needed.
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While the overall approach is successful, room for methodological development
remains. Improvements in sensitivity will require changes upstream of the analysis stage
as the inability to detect a haplotype generally resulted from a failure to capture it at the
amplification or sequencing stage. This led to roughly equivalent sensitivities for the four
evaluated tools. Precision did vary among tools, reflecting their different approaches
towards error correction. As the rank order of the tools’ precision differed between the
amplicons, however, the relative success of these different approaches seems dependent on
genetic context. With PASEC and SeekDeep, users can easily increase precision by
implementing a simple 100 read threshold at the sample level (Table 1). Additional
increases in precision will require further development, and work in this area is ongoing
[29, 30].

Conclusion

Amplicon sequencing is a versatile approach for exploring a range of intra-host
questions in malaria research. Cost-effective and scalable for use with thousands—or tens
of thousands—of polyclonal samples in high-throughput settings, its use will likely increase
in the coming years. As shown here, amplicon sequencing can be applied to samples with
both low and high parasite densities, although the consistent detection of parasite clones
with very low prevalence (<5 genomes/pl) is challenging. Even at low densities, amplicon
sequencing retained some information on haplotype ratio, allowing PASEC to distinguish
major and minor clones correctly in 73% of the infections. Erroneous haplotypes were
generally supported by fewer reads, and samples with lower read counts had a higher
proportion of false haplotypes. When used under their recommended conditions, three
other versatile analysis tools (DADAZ2, HaplotypR, and SeekDeep) showed similar
performance compared to PASEC. Overall, all tools performed well, and so final choice of
analysis method will depend largely on study design (e.g., the inclusion of technical
PCR/sequencing replicates), the read coverage of the samples, and expectations regarding
the targeted Plasmodium genotypes (e.g., the potential presence of indels or the need to
differentiate between low frequency haplotypes with a single SNP difference). Regardless
of the tool used, however, it should be standard practice to raise read thresholds when
analyzing samples with low parasitemia (<5 parasites/pl) or low coverage (<100 reads).
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