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ABSTRACT
Background: DNA methylation may be one of the mechanisms by which alcohol consumption is

associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA
methylation association study of alcohol consumption and a longitudinal analysis of repeated

measurements taken several years apart.

Methods: Using the lllumina Infinium HumanMethylation450 BeadChip, DNA methylation measures
were determined using baseline peripheral blood samples from 5,606 adult Melbourne Collaborative
Cohort Study (MCCS) participants. For a subset of 1,088 of them, these measures were repeated using
blood samples collected at follow-up, a median of 11 years later. Associations between alcohol intake
and blood DNA methylation were assessed using linear mixed-effects regression models adjusted for
batch effects and potential confounders. Independent data from the LOLIPOP (N=4,042) and KORA

(N=1,662) cohorts were used to replicate associations discovered in the MCCS.

Results: Cross-sectional analyses identified 1,414 CpGs associated with alcohol intake at P<107,
1,243 of which had not been reported previously. Of these 1,243 novel associations, 1,078 were
replicated (P<0.05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated
(P<0.05) 403 of 518 associations that had been reported previously. Interaction analyses suggested
that associations were stronger for women, non-smokers, and participants genetically predisposed to
consume less alcohol. Of the 1,414 CpGs, 530 were differentially methylated (P<0.05) in former
compared with current drinkers. Longitudinal associations between the change in alcohol intake and

the change in methylation were observed for 513 of the 1,414 cross-sectional associations.

Conclusion: Our study indicates that, for middle-aged and older adults, alcohol intake is associated
with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that
the methylation status of alcohol-associated CpGs may change with changes in alcohol consumption.
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INTRODUCTION

DNA methylation is the addition of methyl groups to the 5’carbon of cytosine in CpG dinucleotides
(CpGs) and is thought to play a role in the development of disease through its influence on gene
expression and cellular function (1-4). DNA methylation is strongly affected by the underlying genetic
DNA sequence (5), sex, age and ethnicity (5-8) and is modified by lifestyle factors and environmental

exposures such as smoking and adiposity (9-15).

Alcohol consumption is a major lifestyle risk factor contributing to the worldwide burden of disease,
responsible for an estimated 2.7 million deaths and 4% of the global burden of disease annually (16).
Even modest use of alcohol may increase disease risk, but greatest risks are observed with heavy and
long-term drinking. Alcohol consumption is a potentially modifiable risk factor that can be targeted
with preventive interventions at both the policy and the individual levels (17). Although there is a
plausible relationship between alcohol intake and altered one-carbon metabolism and DNA
methylation (18-20), to our knowledge only one large methylome-wide association study (herein
referred to as EWAS) of alcohol consumption has been conducted (21). Genes have been reported to
be differentially methylated in alcohol abusers, but most evidence comes from studies that either had
small sample size, were not specific to humans or were carried out using tissues other than blood (22-
33). Molecular mechanisms such as DNA methylation may underlie or enhance a predisposition to

addictions and substance abuse, including alcohol drinking (23, 27, 29, 31-34).

In the present study, we sought to (i) identify novel associations between alcohol consumption and
blood DNA methylation, (ii) replicate previously reported associations, (iii) assess the reversibility of
associations, and (iv) assess associations with changes in alcohol consumption using longitudinally
collected data. We used samples from the Melbourne Collaborative Cohort Study (MCCS) to discover
potential associations and sought to replicate the findings using samples from the Cooperative Health
Research in the Augsburg Region (KORA) and London Life Sciences Prospective Population
(LOLIPOP) studies.

MATERIALS AND METHODS
Study participants

Between 1990 and 1994 (baseline), 41,513 participants were recruited to the Melbourne Collaborative
Cohort study (MCCS). The majority (99%) were aged 40 to 69 years and 41% were men. Southern
European migrants were oversampled to extend the range of lifestyle-related exposures (35).
Participants were contacted again between 2003 and 2007. Blood samples were taken at baseline and
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follow-up from 99% and 64% of participants, respectively. Baseline samples were stored as dried
blood spots on Guthrie cards for the majority (73%), as mononuclear cell samples for 25% and as buffy
coat samples for 2% of the participants. Follow-up samples were stored as buffy coat aliquots and
dried blood spots on Guthrie cards.

All participants provided written informed consent and the study protocols were approved by the

Cancer Council Victoria Human Research Ethics Committee.

The present study sample comprised MCCS participants selected for inclusion in one of seven
previously conducted nested case-control studies of DNA methylation (36-40). Controls were matched
to incident cases of prostate, colorectal, gastric, lung or kidney cancer, urothelial cell carcinoma or
mature B-cell neoplasms on: sex, year of birth, country of birth, baseline sample type and smoking
status (the latter for the lung cancer study only). Participants included in each nested case-control study
were free of cancer at baseline. After quality control, methylation data for baseline blood samples
(baseline study) were available for 5,606 MCCS participants. Methylation measures were repeated in
DNA extracted from blood samples collected on Guthrie cards at follow-up (longitudinal study) and,
after quality control, were available for a subset of 1,088 of the controls who also had their baseline
sample collected on a Guthrie card (Table 1).

Alcohol and other variables

At both baseline and follow-up, participants completed questionnaires that included detailed questions
on demographic characteristics, medical history, cigarette smoking, alcohol consumption, physical
activity and diet, the latter using food frequency questionnaires. On both occasions, anthropometric
measurements were obtained by trained personnel using standard procedures. Height was only

measured at baseline.

Alcohol intake at baseline was recorded as frequency and quantity of intake per drinking occasion by
type (beer, wine, spirits) and by decade of age starting from 20 years. Participants were also asked
about their alcohol intake on each day during the previous week, in terms of the number, measure and
type of drink (e.g. two glasses of wine). At follow-up, the frequency and quantity of intake, by type of
drink, during the previous calendar year were assessed as described above. Grams per day (g/day) were
calculated as reported previously (41). Participants who reported a weekly or current intake >200g/day
were excluded. Four alcohol consumption variables were considered: g/day in the last week
(continuous), g/day in the current decade (continuous), g/day over the lifetime (continuous), and

drinking status (never, former, current; based on current decade and lifetime variables).
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DNA methylation and genetic data

Methods relating to DNA extraction and bisulfite conversion, DNA methylation data processing,

normalisation and quality control, and genotyping are described in the Supplementary Methods.
Methylome-wide association study

We assessed cross-sectional associations at each individual CpG by regressing DNA methylation M-
values on alcohol consumption using linear mixed-effects regression models, using the function Imer
from the R package Ime4. Alcohol intake was represented using three continuous variables
(consumption in the previous year, consumption in the previous week, and lifetime consumption, in
g/day) that were modelled separately. Models were adjusted by fitting fixed effects for age
(continuous), sex, smoking status (never, former >15 years ago, former <15 years ago, current <20
cigarettes per day, current >20 cigarettes per day), BMI (<25 kg/m?, >25 to <30, >30), country of birth
(Australia/New-Zealand, Italy, Greece, United Kingdom), sample type (peripheral blood mononuclear
cells, dried blood spots, buffy coats) and white blood cell composition (percentage of CD4+ T cells,
CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm
(42)), and random effects for study, plate, and chip. A significance threshold of P-value<10~ was used
to account for multiple testing (12). The False Discovery Rate (FDR) was used to identify suggestive

associations.

Interaction terms were tested between alcohol consumption (previous week) and each of age
(continuous), sex, smoking status (pseudo-continuous variable 1: Never, to 5: Current smoker >20
cigarettes/day), BMI (continuous), country of birth (as categorised above), future cancer case status,
and a polygenic score for alcohol consumption, the latter derived as described below. These analyses
were restricted to CpGs associated at P<107 in the cross-sectional analysis with any of the three

continuous alcohol variables (‘last week’, ‘current decade’ and ‘lifetime’ intake).

Associations for each type of alcohol (beer, wine, spirits) were assessed by including the three
variables in a same model, so that intake of each type was adjusted for the two others. This was done
for the ‘current decade’, and ‘lifetime’ alcohol intake variables because type of alcoholic beverage was

not determined for the ‘alcohol last week’ variable.

Sensitivity analyses were conducted to assess potential confounding by: 1) fitting the same models
without adjustment for smoking or BMI; ii) fitting the same models with additional adjustment for
socioeconomic status, educational attainment, a physical activity score based on metabolic equivalents
(43), and a score of healthy dietary habits (44); and iii) examining whether methylation was associated

with these covariates.
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Replication of novel associations

CpGs found to be associated with alcohol intake at P<10~ in the MCCS were selected for replication
using data from the KORA cohort (N=1,662, assessed in 1999-2001) including German participants
and the LOLIPOP cohort (N=4,042, assessed in 2003-2008), including predominantly Asian
participants, respectively (2, 45). Alcohol intake in KORA was defined as the average of ‘alcohol in
previous day’ and ‘alcohol in previous week’. Alcohol intake in LOLIPOP was defined over a week
(Supplementary Methods). Each cohort applied a normalisation method based on control probes (46)
and adjusted models for the same covariates defined in a similar way to those used in the MCCS
analyses, Supplementary Table 1, Supplementary Methods. Results from the two cohorts were pooled
using fixed-effects meta-analysis with inverse-variance weights (47). An association was considered

replicated if P<0.05 and the direction of association was the same as in the MCCS (12).
Polygenic score for alcohol consumption

A polygenic score for alcohol consumption was constructed using MCCS data based on the genome-
wide association study by Clarke and colleagues, which identified 14 single nucleotide polymorphisms
(SNPs) associated with alcohol consumption using UK Biobank data (48). Data for 13 out of the 14
SNPs were available and were combined using the formula: Polygenic score[i] =bi*dyi + ... b13* d13;i,
where dk; is the imputed allele dosage of variant k for person i, and by the per-allele regression
coefficient reported for SNP k (59, 60).

Replication of previously reported associations with alcohol consumption

Using MCCS data, we assessed replication (P<0.05) of associations with alcohol consumption (g/day)
reported in a recent pooled, large-scale analysis of Europeans and African Americans (21). A total of
518 CpGs were considered, comprising 363 identified for participants of European ancestry

participants and a further 155 CpGs identified for those of African ancestry.
Reversibility of associations

We calculated regression coefficients for comparisons of ‘former’to ‘never’, ‘current’to ‘never’, and
‘current” to ‘former’ drinkers using MCCS data. As there were too few never-drinkers in the KORA
data (N=22), we only considered the comparison ‘former’ to ‘current’; we pooled the latter using

fixed-effects meta-analysis.

In the MCCS, we calculated a ‘reversibility coefficient’, expressed as a percentage defined as:
coefficient (‘former’ compared with ‘current’) / coefficient (‘never’ compared with ‘current’). These
analyses were undertaken for CpGs with P<107 in the MCCS EWAS.
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Longitudinal associations

We further examined longitudinal associations with alcohol consumption for CpGs with P<107 in the
MCCS EWAS, incorporating data from follow-up. Linear mixed-effects regression models were used
to assess the association between changes in DNA methylation (outcome) and changes in alcohol
consumption (exposure) at each CpG. The change in alcohol consumption was computed in g/day as
the difference between follow-up (alcohol intake in previous year) and baseline (previous week
intake); study was included as a random effect and the following variables were included as fixed
effects: baseline alcohol intake, baseline BMI and change in BMI (continuous), baseline age and
change in age (continuous), sex, smoking status at baseline (as defined previously), smoking status at
follow-up (yes/no), country of birth (as defined previously), baseline cell composition (as defined
previously), change in each cell type composition (continuous) and baseline methylation M-value. The
change in methylation was calculated as the difference between follow-up and baseline ComBat-
normalised methylation M-values. The same analyses were conducted for the KORA cohort, in which
methylation measures taken approximately seven years later (2006-2008) were available for 1,332
participants (Supplementary Methods). As adjustment for baseline methylation in analyses of change
in methylation may lead to bias in some circumstances (49), we conducted a sensitivity analysis using

models without adjustment for baseline methylation in the MCCS.
Pathway analyses

We used the gometh function from the missMethyl package (50) for pathway analyses assessing over-
representation relative to all KEGG pathways (51). To investigate potentially different biological
pathways underlying i) acute compared with chronic alcohol-associated consumption and ii) most
dynamic compared with least dynamic methylation sites, gometh was applied, respectively, to i) CpGs
associated with ‘last week’ and ‘lifetime” alcohol intake, and ii) CpGs with a reversibility coefficient
greater and lower than 50%. A P-value lower than 0.05 was considered to indicate a potentially

relevant pathway.

All statistical analyses were performed using the software R (version 3.4.0).

RESULTS

Altogether, 5,606 MCCS participants were included in the cross-sectional analysis; their median age
was 61 years (IQR: 54-65), 68% were males, and alcohol intakes were wide-ranging (Table 1). There
were moderate-to-high correlations between the baseline alcohol variables, as well as between the

baseline and follow-up variables, with Spearman correlations ranging from 0.68 to 0.76
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(Supplementary Table 2). Participants in the longitudinal analysis were younger and generally had

healthier lifestyle.
< Insert Table 1 here >
Methylome-wide association study

Across the three cross-sectional continuous alcohol variables considered, we observed 1,414
associations with P<10~. The most statistically significant associations are presented in Table 2. There
were 1,318, 358, and 392 CpGs associated with alcohol intake over the last week, decade and lifetime,
respectively (Supplementary Table 3, Supplementary Figure 1). Associations were consistently

stronger for alcohol intake in the previous week (Supplementary Figure 2).

Of these 1,414 associations, 1,243 were novel (i.e. not reported in Liu et al. (21)), and the CpGs were
located in 831 genes; 241 CpGs were intergenic. Compared to the rest of the HM450 assay, alcohol-
associated CpGs were over-represented in gene bodies (binomial proportion test, P=0.001), promoter
regions TSS1500 (P=5x10°) and 5°UTR (P=3x107%); unannotated regions were underrepresented
(P=2x10"). These 1,414 associations corresponded to 1,084 unique clusters when considering that
CpGs separated by less than 50kb of each other formed a single genomic region (Supplementary Table
4). For the overwhelming majority (99%) of associations, greater alcohol intake was associated with
lower methylation. The number of CpGs associated with alcohol intake over the last week, decade and
lifetime was 16,732, 5,751 and 6,585, respectively when considering an FDR-adjusted P<0.05
(Supplementary Table 3).

Replication of novel associations using external data: Of the 1,243 novel associations, 1,078 (87%)
were replicated using data from KORA and LOLIPOP. Replication rates were 87%, 89% and 93% for
CpGs associated with alcohol intake over the last week, decade and lifetime, respectively (P<0.05;

Table 2 and Supplementary Table 5).
< Insert Table 2 here >

Interaction analyses: Using the Bonferroni correction for multiple testing (P=0.05/1,414=3.5x107)
and the ‘last week’ alcohol intake variable, we observed stronger associations for women at
€g13446906 (MIR548F5), and cg22363327 (SFRS13B), and weaker associations for smokers at
cg05104080 (ILKAP), cgl17058475 (CPT1A), and cg01395047 (TLR9). At P<0.05, stronger
associations were observed for women at 200 CpGs (test for binomial proportions, P=6x10%°); weaker
associations were observed for participants with a higher smoking score (N= 159, P=6x10?°) and a
higher BMI (N=165, P=0.003) (Table 3).
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For the MCCS sample with genetic and DNA methylation data (N=3,859), the polygenic score was
positively associated with alcohol intake in previous week (P=9x10°) (Supplementary Table 12).
Weaker associations (P<0.05) for participants with higher polygenic score were observed for 156
CpGs (P=2x1079), although none passed the Bonferroni correction (Table 3 and Supplementary
Tables 12-13).

< Insert Table 3 here >

Alcohol types: For alcohol intake in the previous decade, the regression coefficients were the greatest
for beer intake for 917 (65%) CpGs, for spirit intake for 309 (22%) CpGs and for wine intake for 188
(13%) CpGs, whereas these percentages were 27%, 32% and 41%, respectively, for lifetime alcohol

intake (Supplementary Table 14).

Sensitivity analyses: Age, sex, smoking, BMI, country of birth, and cell composition were associated
with methylation at many alcohol-associated CpG sites. Adjustment for smoking, but not BMI, made
a substantial difference to the estimated coefficients; for the ‘previous week’ alcohol intake variable,
1,985 associations were observed when no adjustment for smoking was made. Adjustment for
additional health-related variables made virtually no difference to the results (Supplementary
Material).

Replication of previously reported associations using MCCS data

We examined the replication of the associations between alcohol intake and whole-blood DNA
methylation previously reported in Liu et al. with P<107 (21). Of the 518 associations, we replicated
403 (78%) at P<0.05, using the MCCS ‘previous week’ alcohol intake variable; 169 reached genome-
wide significance P<10” (Table 4, Supplementary Table 5). Replication was substantially higher for
associations identified in European-ancestry individuals (335/363, 92%), compared with those of
African ancestry (68/155, 44%).

< Insert Table 4 here >
Reversibility of associations

The ‘current decade’ alcohol consumption variable of the MCCS was classified into current, former,
and never. Of the 1,414 CpGs considered, 280 were differentially methylated (P<0.05) between former
and never drinkers, and 282 were differentially methylated (P<0.05) between former and current
drinkers, with only 2 overlapping CpGs. The reversibility coefficients comparing former to never and
current to never drinkers were wide-ranging (median: 47%, IQR=19% to 79%) (Supplementary Table

7). In KORA, there was also substantial reversibility, as 332 CpGs were differentially methylated when
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comparing former to current drinkers. A total of 86 CpGs were differentially methylated in both
datasets for the comparison of former to current drinkers, and 530 CpGs when pooling results from

both cohorts (P<0.05); the most significant associations are presented in Table 5.
< Insert Table 5 here >
Longitudinal associations

We further tested the 1,414 CpGs with cross-sectional associations for longitudinal associations using
the MCCS and KORA. Repeated methylation measures and alcohol information were available a
median of 11 and 7 years apart in the MCCS and KORA, respectively. Change in alcohol intake was
associated with change in methylation (P<0.05) for 267 CpGs in the MCCS, and for 331 CpGs in
KORA, with 92 overlapping associations. After pooling the results, we observed evidence of change
over time for 513 CpG sites (Supplementary Table 8). The most statistically significant longitudinal
associations are shown in Table 6. Fewer associations were observed in the MCCS when no adjustment
for baseline methylation levels was made (N=125, Supplementary Material). The analyses of alcohol
cessation (N=88 participants, 8%) and uptake (N=107, 10%) revealed 147 and 40 associations,
respectively, overlapping little with the 513 identified CpGs (N=65 and N=19, respectively). CpG sites
that showed stronger evidence of association in the longitudinal analysis appeared somewhat more
reversible in the cross-sectional analysis (Supplementary Figure 5) and 245 CpGs appeared

differentially methylated in both analyses (Supplementary Table 10).
< Insert Table 6 here >
Pathway analyses

The gometh function was applied separately to CpG sites associated with ‘lifetime’ (N=392) and ‘last
week’ alcohol intake (N=1,318), and for associations with reversibility coefficients lower and greater
than 50% (N=753 and N=661, respectively) (Supplementary Table 11). The most significant KEGG
pathways were for the ‘last week’ variable: ‘Chronic myeloid leukemia’, ‘Ribosome’,
‘Glycosaminoglycan biosynthesis’; lifetime variable: ‘Regulation of actin cytoskeleton’, ‘Biosynthesis
of amino acids’, ‘Platelet activation’; persistent associations: ‘Ribosome’, ‘Human cytomegalovirus
infection’; reversible associations: “Cellular senescence”, “MAPK signaling pathway”. A few
nominally significant associations were observed for other pathways directly relevant to alcohol

drinking such as ‘GABAergic synapse’.
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DISCUSSION

Our study identified 1,481 methylation sites associated with alcohol consumption, including 1,078
discovered in the MCCS and replicated in independent cohorts and 403 replicated from a previous
large EWAS. An additional 513 CpGs discovered in the cross-sectional analysis were indirectly
replicated in the longitudinal analysis. The findings using a less conservative significance threshold
(FDR) indicate that many more alcohol-associated CpGs are likely to exist across the genome. The

majority of CpG sites we identified were hypomethylated with increased alcohol intake.

Alcohol-related hypomethylation appears to be largely reversible upon alcohol cessation; this was
inferred from three analyses. First, we observed substantially more and stronger associations with
alcohol consumed in the last week than in the last decade or lifetime, indicating that the alcohol intake
most relevant to DNA methylation was that closest to blood draw. Similar data were not available from
other cohorts to replicate this finding. Second, the cross-sectional comparison of current and former to
never drinkers revealed that the difference in terms of DNA methylation between former and current
drinkers was on average half that between never and current drinkers, with wide-ranging estimates;
we also identified CpG sites that were consistently differentially methylated in former compared with
current drinkers in MCCS and KORA. Third, using longitudinal data taken several years apart (11
years in the MCCS and 7 years in KORA), we identified a set of 513 CpG sites that varied with change
in alcohol consumption, and 245 of these corresponded to differentially methylated sites in the
comparison of former to current drinkers (cross-sectional). The longitudinal analysis had less power
due to a lower number of included participants and relatively small variation in drinking status over
the periods considered, and because the variable reflecting changes in alcohol drinking may have been
measured with error. These findings taken together indicate a substantial degree of reversibility in the

associations, which was not assessed by previous studies.

Another potential limitation of our study is residual confounding, most notably by smoking or white
blood cell type composition, which are both strongly associated with alcohol drinking and DNA
methylation (15). We observed that many CpG sites associated with alcohol drinking were also
associated with other factors such as smoking, white blood cell composition, BMI and other factors,
which may indicate that these loci are very sensitive to the environment. Cell composition was
estimated with the widely used Houseman algorithm modified by Jaffe and Irizarry (42, 52) and we
did not assess sensitivity to the method used for deriving cell composition (53). Although our
adjustment for smoking was relatively comprehensive, our sensitivity analyses demonstrate that

alcohol and smoking may exert joint influences on many CpGs across the genome.
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We observed less substantial replication for CpGs discovered in individuals of African ancestry, which
may indicate that alcohol-associated methylation changes are not generalizable to all human
populations. Associations in individuals of African ancestry in the study by Liu et al. were discovered
by pooling data from a smaller number of studies so might have been less replicable by nature.

The associations between alcohol consumption and methylation were stronger for people with genetic
predisposition to consume less alcohol, as defined by a 13-SNP polygenic score. Several genes
included in the polygenic score are involved in alcohol metabolism, for example those of the alcohol
dehydrogenase family (ADH1B, ADH1C, and ADH5) and GCKR (glucokinase regulatory protein,
involved in glucose metabolism), which could provide a biological explanation for the interaction
between the polygenic score and alcohol intake, given links between alcohol metabolism pathway and
epigenetic mechanisms (54). The polygenic score explained 0.5% of variance in total alcohol
consumption, which is consistent with other studies (0.6% in (48), and 0.11% in (55)). In comparison,
the predictors of alcohol consumption presented in Liu et al. explained 5-10% and 12-14% of variance
with 5 and 144 CpGs, respectively (21).

Associations appeared weaker for smokers and men, consistent with the observation that these
population subgroups tend to drink more alcohol in most cultures, perhaps due to being less susceptible
to the harmful effects of alcohol (56). Women have previously been reported to have slower alcohol
metabolism than men (57). These findings should be confirmed by further studies. We included in the
analysis participants who later developed cancer, which could give rise to collider bias when both
DNA methylation and alcohol are associated with cancer risk (58). We found no evidence of
differences in associations by case/control status in our study. Further, that most discovered
associations were replicated in independent cohorts of healthy participants with distinct ethnic origin

is a strong testament that our findings were not driven by the inclusion of future cancer cases.

The newly discovered CpG sites with strongest evidence of association with alcohol consumption were
all located in genes, including in the regulatory regions of, for example, SFRS13A, CPNE1, SLC1A5,
FAM49A, PRELP, ANKRD11, PRDM10, COMT, on which to our knowledge little research has been
conducted in relation to alcohol metabolism or consumption. Some studies of alcohol-associated
methylation changes have used tissues other than blood, particularly from the brain, and reported that
DNA methylation might be the cause rather than the consequence of alcohol consumption, at least at
certain loci. We did not examine causality in our study; we hypothesise that if DNA methylation were
the cause of alcohol drinking, it would likely be at a restricted number of loci involved in addiction
mechanisms and alcohol metabolism. We did not identify strongly enriched biological pathways that
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are key to alcohol metabolism or alcohol-related diseases such as cancer, cardiovascular disease, and
mental health and addiction pathologies.

Our study shows that alcohol consumption is associated with widespread changes in blood DNA
methylation. These changes appear more pronounced in women, non-smokers, and individuals with

lower genetic predisposition to drink alcohol, and are at least partially reversible.
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Table 1. Characteristics of participants in the Melbourne Collaborative Cohort Study (MCCS) at

baseline and follow-up visits

Cross-sectional

Longitudinal analysis

analysis
(all) Baseline data Follow-up data
(N=5,606) (N=1,088) (N=1,088)
Age in years, median [IQR] 61 [54-65] 59 [51-64] 70 [63-76]
Sex, male 3,793 68% 740 68% 740 68%
Country of birth
AU/NZ/Other 3,744 67% 831 76% 831 76%
Greece 434 8% 44 4% 44 4%
Italy 819 15% 89 8% 89 8%
UK 609 11% 124 11% 124 11%

BMI (kg/m?), median [range]
Smoking status

26.9 [24.5-29.5]

26.3 [24.1-29.0]

26.8 [24.2-29.4]

Never 2,519 45% 549 50% 545 50%
Former >15 years ago 1,152 21% 230 21% 485 45%
Former <15 years ago 1,100 20% 196 18%
Current <20 cig/day 322 6% 62 6% 58 504
Current >20 cig/day 513 9% 51 5%
Drinking status
Lifetime abstainers 1,314 24% 209 20% 168 16%
Former drinkers 569 10% 94 9% 111 11%
Current drinkers 3,626 66% 759 71% 744 73%
Median [IQR] for intake in last week (g/day) 4.3 [0.0-18.7] 4.3 [0.0-18.6]
Median [IQR] for lifetime intake (g/day) 8.0 [0.3-23.0] 8.1[0.4-23.4]
Median [IQR] for intake in last year (g/day) 7.9 0.3-22.7]
Difference F-Up baseline (last week) (g/day) 0.0 [-2.5-6.4]
Difference F-Up baseline (lifetime) (g/day) 0.0 [-5.5-5.0]
Alcohol_ uptake (non-drinkers at baseline who 107 10%
were drinkers at follow-up) (yes)
Alcohol cessation (drinkers at baseline who 88 8%

were non-drinkers at follow-up) (yes)
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Table 2. The 15 most statistically significant novel associations (N=1,243) between alcohol intake and blood DNA methylation discovered in the
MCCS and replication in external cohorts KORA and LOLIPOP

Discovery dataset (MCCS)

Replication datasets (KORA and LOLIPOP)

CpG Chr  Position Gene Location Mean | _ Current .

Lifetime decade Previous week | KORA LOLIPOP Pooled

Est. P Est. P Est. P Est. P Est. P Est. P Replicated
€g26856289 1 24307516 SFRS13A TSS1500 0.34 -1.8  4x10Y7 | -1.6 5x10%® | -2.1 3x10% | -1.3 4x10° -2.1  3x10%° | -1.8 2x10% | yes
€g00422488 9 100747767 ANP32B Body 0.11 -2.4  2x10%? | -23 3x10® | -3.3 7x10% |-1.9 4x10* -2.9 8x10Y | -2.6 3x10™° | yes
€g11826008 20 34249284 CPNE1 5UTR 0.30 -1.7  3x10® | -1.3 8x10 | -2.2 1x10% |-0.9 3x10? -1.4  5x10%° | -1.3 6x10" | yes
cg03607573 11 93471889  TAF1D Body 039 |-15 1x10™ |-14 8x10%? |-21 2x102t |-1.7 2x10° |-2.1 1x10% |-2.0 8x102 | yes
€g20625334 2 152991620 STAM2 Body 058 |-1.9 9x10® |-16 2x10%? |-24 6x102t |-1.7 3x10% |-1.9 3x10%* |-19 3x10%7 | yes
€g23684449 16 46919194  GPT2 Body 053 |-1.0 5x10° |-09 3x10° |-15 8x10% |-0.8 2x10% |-0.9 5x10% |-09 4x108 | yes
cgl5114651 19 47289410 SLC1A5 TSS1500 0.56 -1.0 3x10% | -0.8 6x10'?* |-1.1 2x10%®° |-1.0 8x10°® -1.0  2x10! | -1.0 7x107'® | yes
cg06829760 2 16845412 FAM49A 5'UTR 0.48 -1.3  5x101 | -1.2 2x10* |-15 6x10%° |-0.7 4x10°% -1.1 3x10%° | -0.9 1x10'! | yes
€g26841068 1 203456691 PRELP 3UTR 0.41 -1.2  1x10%? | -1.0 3x10*?* |-14 6x10%° |-1.1 6x10° -1.4  7x10% | -1.3  3x10° | yes
€g05288253 16 89552259  ANKRD11 5UTR 0.59 -1.1 4x10%? | -1.1  3x10% | -14 1x10%° | -1.1  5x10°8 -1.1 1x10%? | -1.1 3x10™° | yes
€g13408712 11 129817591 PRDM10 TSS200 0.61 -0.8 3x10%° | -09 3x10® |-1.2 4x10%° |-0.9 4x107 -0.4 2x10° -0.6 5x10°% yes
€g04367503 19 13121571 NFIX Body 0.52 -3.1  4x10® | -2.8 2x10 | -3.7 6x10%° | -2.6 4x10° -3.7  2x10" | -3.3 9x107'® | yes
€g08899105 15 93450671 CHD2 Body 0.47 -0.9 4x10°8 -0.9 3x10° -1.4  1x10'® | -0.2 4x10% -0.8  3x10° -0.7 1x10°% yes
cg04261072 13 79977499 RBM26 Body 0.49 -1.4  2x10° -1.3  7x10 | -1.9 2x10%® | -0.4 4x107 -1.1  6x10°8 -1.0  2x107 yes
cg07577824 20 17943403  SNX5 Body 038 |-11 2x10® |-11 1x10° |-1.7 3x10% |-07 2x102 |-13 1x107 [-1.0 2x10% | yes

Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).

All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T

cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.
Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP.
Regression coefficients are given for intakes in grams per day and multiplied by 1000.

The full results are presented in the Supplementary file.
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Table 3: Interaction between alcohol intake and other factors in association with DNA methylation changes for 1,414 alcohol-related CpG sites

Variable Positive Negative p**
interaction interaction
(P<0.05) (P<0.05)

Genes annotated to CpGs for which strongest evidence of interaction observed
(P<0.001)

Full results in Supplementary Table 13

Sex (F vs M) 200 5 6x102°
Age 53 11 0.07
Smoking score* 7 159 6x102%°
Body mass index 7 65 0.003
Case status (Case vs. control) 35 16 1

PRS for alcohol consumption 8 156 2x101°

MIR548F5, SFRS13B, MIR548F5, MGAT5B, NSD1, ABI3, SARM1, NFIX, SC65,
NTF3, ADRA2A, ESRP2, ZNF532

SLC7A11

TLRY9, CPT1A, ILKAP, MYB, SLC7A11, HDAC1, GPR39, AKR1A1, RPP21,
C6orf227

BCAN, JAK1, TOPIMT

RPL6, DOPEY2, NPM1, MSI2, VPS54

@ Smoking was coded as a pseudo-continuous score: 0: Never, 1: Former, >15 years ago, 2: Former <15 years ago, 3: Current <20 cig/day, 4: Current >20 cig/day.

** P-value from test of binomial proportions that the greatest number (e.g. 200 for sex) is greater than 35 (number of associations expected by chance), assuming

independence between CpGs.
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Table 4. Replication of the strongest associations (P<107°) reported in Liu et al., Mol. Psychiatry, 2016 using MCCS data.

Discovery set Est. P P for alcohol intake in
CpG Chr. Position Gene Location ancestry Liu Liu previous week (MCCS) Replicated
cgl1610002 3 126080368 African -0.10 1x1028 0.06
cg15061231 3 186353575 African -0.09 9x102%8 0.6
€g22524735 8 144779094  BREA2 TSS200 African -0.03 1x10% 0.8
€g25729907 3 146263345  PLSCR1 TSS1500 African -0.05 4x10% 0.7
€g25120484 3 197186156 African -0.05 2x102 1
cg07710247 18 55268669 NARS 3UTR African -0.04 1x10% 0.8
cg05538701 6 116866658  FAM26D 5UTR African -0.04 1x10%° 0.5
cg02583484 12 54677008 HNRNPA1 Body white -0.39 2x10°%° 2x10% yes
cgl3729116 4 1859262 LETM1 TSS1500 white -0.18 7x10718 1x10°6 yes
cgl3057576 14 64692154 SYNE2 Body African -0.04 9x10718 0.1
cg07470207 8 132828746 African 0.04 1x10Y7 0.5
cg09935388 1 92947588 GFI1 Body African -0.17 2x10°Y 2x10°® yes
cg05593667 6 35490744 white -0.25 4x10°6 3x107 yes
cg02003183 14 103415882  CDC42BPB  Body African 0.10 7x10°16 0.04 yes
cgl3620705 17 73559492 LLGL2 Body African -0.09 9x10% 0.2

Abbreviations: Chr.: chromosome; Est. Liu: regression coefficient reported in the study by Liu et al., Mol. Psychiatry, 2016

The full results are presented in the Supplementary file.
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Table 5. Reversibility of associations (cross-sectional Current vs Former vs Never) for the fifteen most significant associations in the MCCS

EWAS for the ‘current decade’ alcohol intake variable.

Current decade

Former vs. never

Current vs. never

intake (g/day)
CpG Chr.  Position Est. P Est. P Est. P Rever§|l_)|I|ty
coefficient

cg06690548 4 139162808 -6.6 7x10°7° -0.01 0.8 -0.12 2x108 95%
cgl4476101 1 120255992 -3.4 6x10734 -0.02 0.4 -0.10 2x1010 81%
€g12825509 3 185648568 -2.4 2x1072%° -0.05 0.009 -0.07 2x108 31%
cg02711608 19 47287964 -2.1 2x10°% -0.01 0.5 -0.04 8x107° 76%
cg18120259 6 43894639 -1.9 1x102%0 -0.04 0.009 -0.05 6x10° 14%
cg18336453 6 43082296 -1.3 2x1071° -0.03 0.01 -0.04 5x10°8 32%
€g19693031 1 145441552 -2.5 5x1071° -0.02 0.3 -0.06 3x10* 61%
cgl1376147 11 57261198 -1.5 1x1018 -0.04 0.001 -0.05 3x1077 7%
€g26856289 1 24307516 -1.6 5x10°18 -0.01 0.5 -0.05 4x10°® 78%
cgl7058475 11 68607737 -3.6 9x10718 -0.07 0.03 -0.16 5x10712 56%
€g16246545 1 120255941 -1.7 1x10°Y 0.00 0.9 -0.04 1x10* 104%
cg06644515 1 173834831 -1.6 6x107 0.00 0.9 -0.04 3x10* 106%
cg02583484 12 54677008 -1.4 1x1016 -0.02 0.2 -0.05 3x1077 62%
cg15804598 17 43224418 -1.1 1x10 -0.02 0.1 -0.04 2x1077 52%
900252472 6 150739173 -2.7 1x101 -0.03 0.3 -0.08 5x10° 63%

Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).

All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T
cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.

Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP.

Regression coefficients are given for intakes in grams per day and multiplied by 1000.

The full results are presented in the Supplementary file.
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Table 6. Longitudinal associations (P<10°) assessed in the MCCS and in KORA (data collected 11 and 7 years apart, respectively).

Cross-sectional data

Longitudinal data

MCCS (previous week) MCCS KORA Pooled
CpG Chr. Position Gene Location Est. P Est. P Est. P Est. P
cg06690548 4 139162808 SLC7A11 Body -7.9 1x108¢ -4.7 2x10° -5.4 7x10 5.2 5x10°%°
cg18120259 6 43894639  LOC100132354 Body 2.4 4x10% -1.5 5x10® -1.5 5x10®  -1.5 8x1010
cg02711608 19 47287964  SLC1A5 1stExon -2.6 6x107%° -2.0 4x10* -14 1x10%  -15 3x10°°
cgl14476101 1 120255992 PHGDH Body -4.0 2x10% -2.9 1x10* -1.8 3x10¢  -2.1 3x10°
cg16246545 1 120255941 PHGDH Body -2.2 4x10% -1.7 2x10°® -1.4 7107 -14 4x10°
cgl11376147 11 57261198  SLC43A1 Body 2.1 2x102% -1.0 8x1073 -14 1x10%  -1.3 3x108
cg20732160 3 48590040 PFKFB4 Body -1.7 3x10716 -1.6 3x107 -1.2 1x10°  -1.3 1x10°7
cg03068497 7 30635838  GARS Body -3.0 3x10° -2.0 2x107? -2.4 4x10°  -2.3 2x107
cg07626482 19 47289503  SLC1A5 TSS1500 -1.4 4x1020 -1.2 2x1073 -1.0 4x10°  -1.1 3x107
cg13526915 14 24164078 2.1 8x10™3 -1.2 8x1072 -1.7 1x10°  -1.6 3x108
cg14756878 2 12568736 -1.2 3x10° -1.4 2x10°® -0.9 4x10*  -1.0 3x10°
cg04460609 4 16532808  LDB2 Body -2.2 3x10°%° -1.2 2x107? -1.3 1x10%  -1.3 5x10®
€g21626848 17 39969267  SC65 TSS1500 -1.6 1x1016 -1.8 2x10* -0.8 2x10°  -1.1 8x10°
cg03533472 16 46919112  GPT2 Body -2.2 1x10%° -2.5 9x10* -1.7 2x10°  -2.0 9x10°

Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).
All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T
cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.

Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP.

Regression coefficients are given for intakes in grams per day and multiplied by 1000.

The full results are presented in the Supplementary file.
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