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ABSTRACT 

Background: DNA methylation may be one of the mechanisms by which alcohol consumption is 

associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA 

methylation association study of alcohol consumption and a longitudinal analysis of repeated 

measurements taken several years apart. 

Methods: Using the Illumina Infinium HumanMethylation450 BeadChip, DNA methylation measures 

were determined using baseline peripheral blood samples from 5,606 adult Melbourne Collaborative 

Cohort Study (MCCS) participants. For a subset of 1,088 of them, these measures were repeated using 

blood samples collected at follow-up, a median of 11 years later. Associations between alcohol intake 

and blood DNA methylation were assessed using linear mixed-effects regression models adjusted for 

batch effects and potential confounders. Independent data from the LOLIPOP (N=4,042) and KORA 

(N=1,662) cohorts were used to replicate associations discovered in the MCCS. 

Results: Cross-sectional analyses identified 1,414 CpGs associated with alcohol intake at P<10-7, 

1,243 of which had not been reported previously. Of these 1,243 novel associations, 1,078 were 

replicated (P<0.05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated 

(P<0.05) 403 of 518 associations that had been reported previously. Interaction analyses suggested 

that associations were stronger for women, non-smokers, and participants genetically predisposed to 

consume less alcohol. Of the 1,414 CpGs, 530 were differentially methylated (P<0.05) in former 

compared with current drinkers. Longitudinal associations between the change in alcohol intake and 

the change in methylation were observed for 513 of the 1,414 cross-sectional associations.  

Conclusion: Our study indicates that, for middle-aged and older adults, alcohol intake is associated 

with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that 

the methylation status of alcohol-associated CpGs may change with changes in alcohol consumption. 
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INTRODUCTION 

DNA methylation is the addition of methyl groups to the 5’carbon of cytosine in CpG dinucleotides 

(CpGs) and is thought to play a role in the development of disease through its influence on gene 

expression and cellular function (1-4). DNA methylation is strongly affected by the underlying genetic 

DNA sequence (5), sex, age and ethnicity (5-8) and is modified by lifestyle factors and environmental 

exposures such as smoking and adiposity (9-15). 

Alcohol consumption is a major lifestyle risk factor contributing to the worldwide burden of disease, 

responsible for an estimated 2.7 million deaths and 4% of the global burden of disease annually (16). 

Even modest use of alcohol may increase disease risk, but greatest risks are observed with heavy and 

long-term drinking. Alcohol consumption is a potentially modifiable risk factor that can be targeted 

with preventive interventions at both the policy and the individual levels (17). Although there is a 

plausible relationship between alcohol intake and altered one-carbon metabolism and DNA 

methylation (18-20), to our knowledge only one large methylome-wide association study (herein 

referred to as EWAS) of alcohol consumption has been conducted (21). Genes have been reported to 

be differentially methylated in alcohol abusers, but most evidence comes from studies that either had 

small sample size, were not specific to humans or were carried out using tissues other than blood (22-

33). Molecular mechanisms such as DNA methylation may underlie or enhance a predisposition to 

addictions and substance abuse, including alcohol drinking (23, 27, 29, 31-34). 

In the present study, we sought to (i) identify novel associations between alcohol consumption and 

blood DNA methylation, (ii) replicate previously reported associations, (iii) assess the reversibility of 

associations, and (iv) assess associations with changes in alcohol consumption using longitudinally 

collected data. We used samples from the Melbourne Collaborative Cohort Study (MCCS) to discover 

potential associations and sought to replicate the findings using samples from the Cooperative Health 

Research in the Augsburg Region (KORA) and London Life Sciences Prospective Population 

(LOLIPOP) studies.  

 

MATERIALS AND METHODS 

Study participants 

Between 1990 and 1994 (baseline), 41,513 participants were recruited to the Melbourne Collaborative 

Cohort study (MCCS). The majority (99%) were aged 40 to 69 years and 41% were men. Southern 

European migrants were oversampled to extend the range of lifestyle-related exposures (35). 

Participants were contacted again between 2003 and 2007. Blood samples were taken at baseline and 
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follow-up from 99% and 64% of participants, respectively. Baseline samples were stored as dried 

blood spots on Guthrie cards for the majority (73%), as mononuclear cell samples for 25% and as buffy 

coat samples for 2% of the participants. Follow-up samples were stored as buffy coat aliquots and 

dried blood spots on Guthrie cards.  

All participants provided written informed consent and the study protocols were approved by the 

Cancer Council Victoria Human Research Ethics Committee. 

The present study sample comprised MCCS participants selected for inclusion in one of seven 

previously conducted nested case-control studies of DNA methylation (36-40). Controls were matched 

to incident cases of prostate, colorectal, gastric, lung or kidney cancer, urothelial cell carcinoma or 

mature B-cell neoplasms on: sex, year of birth, country of birth, baseline sample type and smoking 

status (the latter for the lung cancer study only). Participants included in each nested case-control study 

were free of cancer at baseline. After quality control, methylation data for baseline blood samples 

(baseline study) were available for 5,606 MCCS participants. Methylation measures were repeated in 

DNA extracted from blood samples collected on Guthrie cards at follow-up (longitudinal study) and, 

after quality control, were available for a subset of 1,088 of the controls who also had their baseline 

sample collected on a Guthrie card (Table 1). 

Alcohol and other variables 

At both baseline and follow-up, participants completed questionnaires that included detailed questions 

on demographic characteristics, medical history, cigarette smoking, alcohol consumption, physical 

activity and diet, the latter using food frequency questionnaires. On both occasions, anthropometric 

measurements were obtained by trained personnel using standard procedures. Height was only 

measured at baseline.  

Alcohol intake at baseline was recorded as frequency and quantity of intake per drinking occasion by 

type (beer, wine, spirits) and by decade of age starting from 20 years. Participants were also asked 

about their alcohol intake on each day during the previous week, in terms of the number, measure and 

type of drink (e.g. two glasses of wine). At follow-up, the frequency and quantity of intake, by type of 

drink, during the previous calendar year were assessed as described above. Grams per day (g/day) were 

calculated as reported previously (41). Participants who reported a weekly or current intake >200g/day 

were excluded. Four alcohol consumption variables were considered: g/day in the last week 

(continuous), g/day in the current decade (continuous), g/day over the lifetime (continuous), and 

drinking status (never, former, current; based on current decade and lifetime variables). 
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DNA methylation and genetic data 

Methods relating to DNA extraction and bisulfite conversion, DNA methylation data processing, 

normalisation and quality control, and genotyping are described in the Supplementary Methods. 

Methylome-wide association study 

We assessed cross-sectional associations at each individual CpG by regressing DNA methylation M-

values on alcohol consumption using linear mixed-effects regression models, using the function lmer 

from the R package lme4. Alcohol intake was represented using three continuous variables 

(consumption in the previous year, consumption in the previous week, and lifetime consumption, in 

g/day) that were modelled separately. Models were adjusted by fitting fixed effects for age 

(continuous), sex, smoking status (never, former ≥15 years ago, former <15 years ago, current <20 

cigarettes per day, current ≥20 cigarettes per day), BMI (≤25 kg/m2, >25 to ≤30, >30), country of birth 

(Australia/New-Zealand, Italy, Greece, United Kingdom), sample type (peripheral blood mononuclear 

cells, dried blood spots, buffy coats) and white blood cell composition (percentage of CD4+ T cells, 

CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm 

(42)), and random effects for study, plate, and chip. A significance threshold of P-value<10-7 was used 

to account for multiple testing (12). The False Discovery Rate (FDR) was used to identify suggestive 

associations. 

Interaction terms were tested between alcohol consumption (previous week) and each of age 

(continuous), sex, smoking status (pseudo-continuous variable 1: Never, to 5: Current smoker >20 

cigarettes/day), BMI (continuous), country of birth (as categorised above), future cancer case status, 

and a polygenic score for alcohol consumption, the latter derived as described below. These analyses 

were restricted to CpGs associated at P<10-7 in the cross-sectional analysis with any of the three 

continuous alcohol variables (‘last week’, ‘current decade’ and ‘lifetime’ intake). 

Associations for each type of alcohol (beer, wine, spirits) were assessed by including the three 

variables in a same model, so that intake of each type was adjusted for the two others. This was done 

for the ‘current decade’, and ‘lifetime’ alcohol intake variables because type of alcoholic beverage was 

not determined for the ‘alcohol last week’ variable. 

Sensitivity analyses were conducted to assess potential confounding by: i) fitting the same models 

without adjustment for smoking or BMI; ii) fitting the same models with additional adjustment for 

socioeconomic status, educational attainment, a physical activity score based on metabolic equivalents 

(43), and a score of healthy dietary habits (44); and iii) examining whether methylation was associated 

with these covariates. 
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Replication of novel associations 

CpGs found to be associated with alcohol intake at P<10-7 in the MCCS were selected for replication 

using data from the KORA cohort (N=1,662, assessed in 1999-2001) including German participants 

and the LOLIPOP cohort (N=4,042, assessed in 2003-2008), including predominantly Asian 

participants, respectively (2, 45). Alcohol intake in KORA was defined as the average of ‘alcohol in 

previous day’ and ‘alcohol in previous week’. Alcohol intake in LOLIPOP was defined over a week 

(Supplementary Methods). Each cohort applied a normalisation method based on control probes (46) 

and adjusted models for the same covariates defined in a similar way to those used in the MCCS 

analyses, Supplementary Table 1, Supplementary Methods. Results from the two cohorts were pooled 

using fixed-effects meta-analysis with inverse-variance weights (47). An association was considered 

replicated if P<0.05 and the direction of association was the same as in the MCCS (12). 

Polygenic score for alcohol consumption 

A polygenic score for alcohol consumption was constructed using MCCS data based on the genome-

wide association study by Clarke and colleagues, which identified 14 single nucleotide polymorphisms 

(SNPs) associated with alcohol consumption using UK Biobank data (48). Data for 13 out of the 14 

SNPs were available and were combined using the formula: Polygenic score[i] = b1*d1,i + … b13* d13,i, 

where dk,i is the imputed allele dosage of variant k for person i, and bk the per-allele regression 

coefficient reported for SNP k (59, 60). 

Replication of previously reported associations with alcohol consumption 

Using MCCS data, we assessed replication (P<0.05) of associations with alcohol consumption (g/day) 

reported in a recent pooled, large-scale analysis of Europeans and African Americans (21). A total of 

518 CpGs were considered, comprising 363 identified for participants of European ancestry 

participants and a further 155 CpGs identified for those of African ancestry.  

Reversibility of associations  

We calculated regression coefficients for comparisons of ‘former’ to ‘never’, ‘current’ to ‘never’, and 

‘current’ to ‘former’ drinkers using MCCS data. As there were too few never-drinkers in the KORA 

data (N=22), we only considered the comparison ‘former’ to ‘current’; we pooled the latter using 

fixed-effects meta-analysis.  

In the MCCS, we calculated a ‘reversibility coefficient’, expressed as a percentage defined as: 

coefficient (‘former’ compared with ‘current’) / coefficient (‘never’ compared with ‘current’). These 

analyses were undertaken for CpGs with P<10-7 in the MCCS EWAS. 
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Longitudinal associations 

We further examined longitudinal associations with alcohol consumption for CpGs with P<10-7 in the 

MCCS EWAS, incorporating data from follow-up. Linear mixed-effects regression models were used 

to assess the association between changes in DNA methylation (outcome) and changes in alcohol 

consumption (exposure) at each CpG. The change in alcohol consumption was computed in g/day as 

the difference between follow-up (alcohol intake in previous year) and baseline (previous week 

intake); study was included as a random effect and the following variables were included as fixed 

effects: baseline alcohol intake, baseline BMI and change in BMI (continuous), baseline age and 

change in age (continuous), sex, smoking status at baseline (as defined previously), smoking status at 

follow-up (yes/no), country of birth (as defined previously), baseline cell composition (as defined 

previously), change in each cell type composition (continuous) and baseline methylation M-value. The 

change in methylation was calculated as the difference between follow-up and baseline ComBat-

normalised methylation M-values. The same analyses were conducted for the KORA cohort, in which 

methylation measures taken approximately seven years later (2006-2008) were available for 1,332 

participants (Supplementary Methods). As adjustment for baseline methylation in analyses of change 

in methylation may lead to bias in some circumstances (49), we conducted a sensitivity analysis using 

models without adjustment for baseline methylation in the MCCS. 

Pathway analyses 

We used the gometh function from the missMethyl package (50) for pathway analyses assessing over-

representation relative to all KEGG pathways (51). To investigate potentially different biological 

pathways underlying i) acute compared with chronic alcohol-associated consumption and ii) most 

dynamic compared with least dynamic methylation sites, gometh was applied, respectively, to i) CpGs 

associated with ‘last week’ and ‘lifetime’ alcohol intake, and ii) CpGs with a reversibility coefficient 

greater and lower than 50%. A P-value lower than 0.05 was considered to indicate a potentially 

relevant pathway. 

All statistical analyses were performed using the software R (version 3.4.0). 

 

RESULTS 

Altogether, 5,606 MCCS participants were included in the cross-sectional analysis; their median age 

was 61 years (IQR: 54-65), 68% were males, and alcohol intakes were wide-ranging (Table 1). There 

were moderate-to-high correlations between the baseline alcohol variables, as well as between the 

baseline and follow-up variables, with Spearman correlations ranging from 0.68 to 0.76 
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(Supplementary Table 2). Participants in the longitudinal analysis were younger and generally had 

healthier lifestyle. 

< Insert Table 1 here > 

Methylome-wide association study  

Across the three cross-sectional continuous alcohol variables considered, we observed 1,414 

associations with P<10-7. The most statistically significant associations are presented in Table 2. There 

were 1,318, 358, and 392 CpGs associated with alcohol intake over the last week, decade and lifetime, 

respectively (Supplementary Table 3, Supplementary Figure 1). Associations were consistently 

stronger for alcohol intake in the previous week (Supplementary Figure 2). 

Of these 1,414 associations, 1,243 were novel (i.e. not reported in Liu et al. (21)), and the CpGs were 

located in 831 genes; 241 CpGs were intergenic. Compared to the rest of the HM450 assay, alcohol-

associated CpGs were over-represented in gene bodies (binomial proportion test, P=0.001), promoter 

regions TSS1500 (P=5x10-6) and 5’UTR (P=3x10-8); unannotated regions were underrepresented 

(P=2x10-5). These 1,414 associations corresponded to 1,084 unique clusters when considering that 

CpGs separated by less than 50kb of each other formed a single genomic region (Supplementary Table 

4). For the overwhelming majority (99%) of associations, greater alcohol intake was associated with 

lower methylation. The number of CpGs associated with alcohol intake over the last week, decade and 

lifetime was 16,732, 5,751 and 6,585, respectively when considering an FDR-adjusted P<0.05 

(Supplementary Table 3). 

Replication of novel associations using external data: Of the 1,243 novel associations, 1,078 (87%) 

were replicated using data from KORA and LOLIPOP. Replication rates were 87%, 89% and 93% for 

CpGs associated with alcohol intake over the last week, decade and lifetime, respectively (P<0.05; 

Table 2 and Supplementary Table 5). 

< Insert Table 2 here > 

Interaction analyses: Using the Bonferroni correction for multiple testing (P=0.05/1,414=3.5x10-5) 

and the ‘last week’ alcohol intake variable, we observed stronger associations for women at 

cg13446906 (MIR548F5), and cg22363327 (SFRS13B), and weaker associations for smokers at 

cg05104080 (ILKAP), cg17058475 (CPT1A), and cg01395047 (TLR9). At P<0.05, stronger 

associations were observed for women at 200 CpGs (test for binomial proportions, P=6x10-29); weaker 

associations were observed for participants with a higher smoking score (N= 159, P=6x10-20) and a 

higher BMI (N=165, P=0.003) (Table 3).  
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For the MCCS sample with genetic and DNA methylation data (N=3,859), the polygenic score was 

positively associated with alcohol intake in previous week (P=9x10-5) (Supplementary Table 12). 

Weaker associations (P<0.05) for participants with higher polygenic score were observed for 156 

CpGs (P=2x10-19), although none passed the Bonferroni correction (Table 3 and Supplementary 

Tables 12-13).  

< Insert Table 3 here > 

Alcohol types: For alcohol intake in the previous decade, the regression coefficients were the greatest 

for beer intake for 917 (65%) CpGs, for spirit intake for 309 (22%) CpGs and for wine intake for 188 

(13%) CpGs, whereas these percentages were 27%, 32% and 41%, respectively, for lifetime alcohol 

intake (Supplementary Table 14). 

Sensitivity analyses: Age, sex, smoking, BMI, country of birth, and cell composition were associated 

with methylation at many alcohol-associated CpG sites. Adjustment for smoking, but not BMI, made 

a substantial difference to the estimated coefficients; for the ‘previous week’ alcohol intake variable, 

1,985 associations were observed when no adjustment for smoking was made. Adjustment for 

additional health-related variables made virtually no difference to the results (Supplementary 

Material). 

Replication of previously reported associations using MCCS data 

We examined the replication of the associations between alcohol intake and whole-blood DNA 

methylation previously reported in Liu et al. with P<10-7 (21). Of the 518 associations, we replicated 

403 (78%) at P<0.05, using the MCCS ‘previous week’ alcohol intake variable; 169 reached genome-

wide significance P<10-7 (Table 4, Supplementary Table 5). Replication was substantially higher for 

associations identified in European-ancestry individuals (335/363, 92%), compared with those of 

African ancestry (68/155, 44%).  

< Insert Table 4 here > 

Reversibility of associations 

The ‘current decade’ alcohol consumption variable of the MCCS was classified into current, former, 

and never. Of the 1,414 CpGs considered, 280 were differentially methylated (P<0.05) between former 

and never drinkers, and 282 were differentially methylated (P<0.05) between former and current 

drinkers, with only 2 overlapping CpGs. The reversibility coefficients comparing former to never and 

current to never drinkers were wide-ranging (median: 47%, IQR=19% to 79%) (Supplementary Table 

7). In KORA, there was also substantial reversibility, as 332 CpGs were differentially methylated when 
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comparing former to current drinkers. A total of 86 CpGs were differentially methylated in both 

datasets for the comparison of former to current drinkers, and 530 CpGs when pooling results from 

both cohorts (P<0.05); the most significant associations are presented in Table 5. 

< Insert Table 5 here > 

Longitudinal associations 

We further tested the 1,414 CpGs with cross-sectional associations for longitudinal associations using 

the MCCS and KORA. Repeated methylation measures and alcohol information were available a 

median of 11 and 7 years apart in the MCCS and KORA, respectively. Change in alcohol intake was 

associated with change in methylation (P<0.05) for 267 CpGs in the MCCS, and for 331 CpGs in 

KORA, with 92 overlapping associations. After pooling the results, we observed evidence of change 

over time for 513 CpG sites (Supplementary Table 8). The most statistically significant longitudinal 

associations are shown in Table 6. Fewer associations were observed in the MCCS when no adjustment 

for baseline methylation levels was made (N=125, Supplementary Material). The analyses of alcohol 

cessation (N=88 participants, 8%) and uptake (N=107, 10%) revealed 147 and 40 associations, 

respectively, overlapping little with the 513 identified CpGs (N=65 and N=19, respectively). CpG sites 

that showed stronger evidence of association in the longitudinal analysis appeared somewhat more 

reversible in the cross-sectional analysis (Supplementary Figure 5) and 245 CpGs appeared 

differentially methylated in both analyses (Supplementary Table 10). 

< Insert Table 6 here > 

Pathway analyses 

The gometh function was applied separately to CpG sites associated with ‘lifetime’ (N=392) and ‘last 

week’ alcohol intake (N=1,318), and for associations with reversibility coefficients lower and greater 

than 50% (N=753 and N=661, respectively) (Supplementary Table 11). The most significant KEGG 

pathways were for the ‘last week’ variable: ‘Chronic myeloid leukemia’, ‘Ribosome’, 

‘Glycosaminoglycan biosynthesis’; lifetime variable: ‘Regulation of actin cytoskeleton’, ‘Biosynthesis 

of amino acids’, ‘Platelet activation’; persistent associations: ‘Ribosome’, ‘Human cytomegalovirus 

infection’; reversible associations: “Cellular senescence”, “MAPK signaling pathway”. A few 

nominally significant associations were observed for other pathways directly relevant to alcohol 

drinking such as ‘GABAergic synapse’. 
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DISCUSSION 

Our study identified 1,481 methylation sites associated with alcohol consumption, including 1,078 

discovered in the MCCS and replicated in independent cohorts and 403 replicated from a previous 

large EWAS. An additional 513 CpGs discovered in the cross-sectional analysis were indirectly 

replicated in the longitudinal analysis. The findings using a less conservative significance threshold 

(FDR) indicate that many more alcohol-associated CpGs are likely to exist across the genome. The 

majority of CpG sites we identified were hypomethylated with increased alcohol intake. 

Alcohol-related hypomethylation appears to be largely reversible upon alcohol cessation; this was 

inferred from three analyses. First, we observed substantially more and stronger associations with 

alcohol consumed in the last week than in the last decade or lifetime, indicating that the alcohol intake 

most relevant to DNA methylation was that closest to blood draw. Similar data were not available from 

other cohorts to replicate this finding. Second, the cross-sectional comparison of current and former to 

never drinkers revealed that the difference in terms of DNA methylation between former and current 

drinkers was on average half that between never and current drinkers, with wide-ranging estimates; 

we also identified CpG sites that were consistently differentially methylated in former compared with 

current drinkers in MCCS and KORA. Third, using longitudinal data taken several years apart (11 

years in the MCCS and 7 years in KORA), we identified a set of 513 CpG sites that varied with change 

in alcohol consumption, and 245 of these corresponded to differentially methylated sites in the 

comparison of former to current drinkers (cross-sectional). The longitudinal analysis had less power 

due to a lower number of included participants and relatively small variation in drinking status over 

the periods considered, and because the variable reflecting changes in alcohol drinking may have been 

measured with error. These findings taken together indicate a substantial degree of reversibility in the 

associations, which was not assessed by previous studies. 

Another potential limitation of our study is residual confounding, most notably by smoking or white 

blood cell type composition, which are both strongly associated with alcohol drinking and DNA 

methylation (15). We observed that many CpG sites associated with alcohol drinking were also 

associated with other factors such as smoking, white blood cell composition, BMI and other factors, 

which may indicate that these loci are very sensitive to the environment. Cell composition was 

estimated with the widely used Houseman algorithm modified by Jaffe and Irizarry (42, 52) and we 

did not assess sensitivity to the method used for deriving cell composition (53). Although our 

adjustment for smoking was relatively comprehensive, our sensitivity analyses demonstrate that 

alcohol and smoking may exert joint influences on many CpGs across the genome. 
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We observed less substantial replication for CpGs discovered in individuals of African ancestry, which 

may indicate that alcohol-associated methylation changes are not generalizable to all human 

populations. Associations in individuals of African ancestry in the study by Liu et al. were discovered 

by pooling data from a smaller number of studies so might have been less replicable by nature.  

The associations between alcohol consumption and methylation were stronger for people with genetic 

predisposition to consume less alcohol, as defined by a 13-SNP polygenic score. Several genes 

included in the polygenic score are involved in alcohol metabolism, for example those of the alcohol 

dehydrogenase family (ADH1B, ADH1C, and ADH5) and GCKR (glucokinase regulatory protein, 

involved in glucose metabolism), which could provide a biological explanation for the interaction 

between the polygenic score and alcohol intake, given links between alcohol metabolism pathway and 

epigenetic mechanisms (54). The polygenic score explained 0.5% of variance in total alcohol 

consumption, which is consistent with other studies (0.6% in (48), and 0.11% in (55)). In comparison, 

the predictors of alcohol consumption presented in Liu et al. explained 5-10% and 12-14% of variance 

with 5 and 144 CpGs, respectively (21). 

Associations appeared weaker for smokers and men, consistent with the observation that these 

population subgroups tend to drink more alcohol in most cultures, perhaps due to being less susceptible 

to the harmful effects of alcohol (56). Women have previously been reported to have slower alcohol 

metabolism than men (57). These findings should be confirmed by further studies. We included in the 

analysis participants who later developed cancer, which could give rise to collider bias when both 

DNA methylation and alcohol are associated with cancer risk (58). We found no evidence of 

differences in associations by case/control status in our study. Further, that most discovered 

associations were replicated in independent cohorts of healthy participants with distinct ethnic origin 

is a strong testament that our findings were not driven by the inclusion of future cancer cases. 

The newly discovered CpG sites with strongest evidence of association with alcohol consumption were 

all located in genes, including in the regulatory regions of, for example, SFRS13A, CPNE1, SLC1A5, 

FAM49A, PRELP, ANKRD11, PRDM10, COMT, on which to our knowledge little research has been 

conducted in relation to alcohol metabolism or consumption. Some studies of alcohol-associated 

methylation changes have used tissues other than blood, particularly from the brain, and reported that 

DNA methylation might be the cause rather than the consequence of alcohol consumption, at least at 

certain loci. We did not examine causality in our study; we hypothesise that if DNA methylation were 

the cause of alcohol drinking, it would likely be at a restricted number of loci involved in addiction 

mechanisms and alcohol metabolism. We did not identify strongly enriched biological pathways that 
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are key to alcohol metabolism or alcohol-related diseases such as cancer, cardiovascular disease, and 

mental health and addiction pathologies. 

Our study shows that alcohol consumption is associated with widespread changes in blood DNA 

methylation. These changes appear more pronounced in women, non-smokers, and individuals with 

lower genetic predisposition to drink alcohol, and are at least partially reversible. 
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Table 1. Characteristics of participants in the Melbourne Collaborative Cohort Study (MCCS) at 

baseline and follow-up visits 

 

  
Cross-sectional 

analysis 
Longitudinal analysis 

 (all) Baseline data Follow-up data 

  (N=5,606) (N=1,088) (N=1,088) 

Age in years, median [IQR] 61 [54-65] 59 [51-64] 70 [63-76] 

Sex, male 3,793 68% 740 68% 740 68% 

Country of birth       

     AU/NZ/Other 3,744 67% 831 76% 831 76% 

     Greece 434 8% 44 4% 44 4% 

     Italy 819 15% 89 8% 89 8% 

     UK 609 11% 124 11% 124 11% 

BMI (kg/m²), median [range] 26.9 [24.5-29.5] 26.3 [24.1-29.0] 26.8 [24.2-29.4] 

Smoking status       

     Never 2,519 45% 549 50% 545 50% 

     Former ≥15 years ago 1,152 21% 230 21% 
485 45% 

     Former <15 years ago 1,100 20% 196 18% 

     Current <20 cig/day 322 6% 62 6% 
58 5% 

     Current ≥20 cig/day 513 9% 51 5% 

Drinking status       

     Lifetime abstainers 1,314 24% 209 20% 168 16% 

     Former drinkers 569 10% 94 9% 111 11% 

     Current drinkers 3,626 66% 759 71% 744 73% 

Median [IQR] for intake in last week (g/day) 4.3 [0.0-18.7] 4.3 [0.0-18.6]  
Median [IQR] for lifetime intake (g/day) 8.0 [0.3-23.0] 8.1 [0.4-23.4]  
Median [IQR] for intake in last year (g/day)   7.9 [0.3-22.7] 

Difference F-Up baseline (last week) (g/day)   0.0 [-2.5 - 6.4] 

Difference F-Up baseline (lifetime) (g/day)   0.0 [-5.5 - 5.0] 

Alcohol uptake (non-drinkers at baseline who 

were drinkers at follow-up) (yes)     
107 10% 

Alcohol cessation (drinkers at baseline who 

were non-drinkers at follow-up) (yes) 
        88 8% 
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Table 2. The 15 most statistically significant novel associations (N=1,243) between alcohol intake and blood DNA methylation discovered in the 

MCCS and replication in external cohorts KORA and LOLIPOP 

 

CpG Chr Position Gene Location Mean 

Discovery dataset (MCCS) Replication datasets (KORA and LOLIPOP) 

Lifetime  

Current 

decade  Previous week  KORA  LOLIPOP  Pooled  

Est.  P  Est.  P  Est.  P  Est. P  Est.  P  Est.  P  Replicated 

cg26856289 1 24307516 SFRS13A TSS1500 0.34 -1.8 4x10-17 -1.6 5x10-18 -2.1 3x10-25 -1.3 4x10-5 -2.1 3x10-19 -1.8 2x10-22 yes 

cg00422488 9 100747767 ANP32B Body 0.11 -2.4 2x10-12 -2.3 3x10-13 -3.3 7x10-23 -1.9 4x10-4 -2.9 8x10-17 -2.6 3x10-19 yes 

cg11826008 20 34249284 CPNE1 5'UTR 0.30 -1.7 3x10-13 -1.3 8x10-11 -2.2 1x10-22 -0.9 3x10-2 -1.4 5x10-10 -1.3 6x10-11 yes 

cg03607573 11 93471889 TAF1D Body 0.39 -1.5 1x10-11 -1.4 8x10-12 -2.1 2x10-21 -1.7 2x10-5 -2.1 1x10-21 -2.0 8x10-26 yes 

cg20625334 2 152991620 STAM2 Body 0.58 -1.9 9x10-13 -1.6 2x10-12 -2.4 6x10-21 -1.7 3x10-4 -1.9 3x10-14 -1.9 3x10-17 yes 

cg23684449 16 46919194 GPT2 Body 0.53 -1.0 5x10-9 -0.9 3x10-9 -1.5 8x10-21 -0.8 2x10-4 -0.9 5x10-10 -0.9 4x10-13 yes 

cg15114651 19 47289410 SLC1A5 TSS1500 0.56 -1.0 3x10-15 -0.8 6x10-12 -1.1 2x10-20 -1.0 8x10-8 -1.0 2x10-11 -1.0 7x10-18 yes 

cg06829760 2 16845412 FAM49A 5'UTR 0.48 -1.3 5x10-13 -1.2 2x10-14 -1.5 6x10-20 -0.7 4x10-3 -1.1 3x10-10 -0.9 1x10-11 yes 

cg26841068 1 203456691 PRELP 3'UTR 0.41 -1.2 1x10-12 -1.0 3x10-12 -1.4 6x10-20 -1.1 6x10-6 -1.4 7x10-15 -1.3 3x10-19 yes 

cg05288253 16 89552259 ANKRD11 5'UTR 0.59 -1.1 4x10-12 -1.1 3x10-15 -1.4 1x10-19 -1.1 5x10-8 -1.1 1x10-12 -1.1 3x10-19 yes 

cg13408712 11 129817591 PRDM10 TSS200 0.61 -0.8 3x10-10 -0.9 3x10-13 -1.2 4x10-19 -0.9 4x10-7 -0.4 2x10-3 -0.6 5x10-8 yes 

cg04367503 19 13121571 NFIX Body 0.52 -3.1 4x10-13 -2.8 2x10-13 -3.7 6x10-19 -2.6 4x10-5 -3.7 2x10-14 -3.3 9x10-18 yes 

cg08899105 15 93450671 CHD2 Body 0.47 -0.9 4x10-8 -0.9 3x10-9 -1.4 1x10-18 -0.2 4x10-1 -0.8 3x10-9 -0.7 1x10-8 yes 

cg04261072 13 79977499 RBM26 Body 0.49 -1.4 2x10-9 -1.3 7x10-11 -1.9 2x10-18 -0.4 4x10-1 -1.1 6x10-8 -1.0 2x10-7 yes 

cg07577824 20 17943403 SNX5 Body 0.38 -1.1 2x10-8 -1.1 1x10-9 -1.7 3x10-18 -0.7 2x10-2 -1.3 1x10-7 -1.0 2x10-8 yes 

 
Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).  

All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T 

cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.  

Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP. 

Regression coefficients are given for intakes in grams per day and multiplied by 1000. 

The full results are presented in the Supplementary file. 
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Table 3: Interaction between alcohol intake and other factors in association with DNA methylation changes for 1,414 alcohol-related CpG sites 

a Smoking was coded as a pseudo-continuous score: 0: Never, 1: Former, ≥15 years ago, 2: Former <15 years ago, 3: Current <20 cig/day, 4: Current ≥20 cig/day. 

** P-value from test of binomial proportions that the greatest number (e.g. 200 for sex) is greater than 35 (number of associations expected by chance), assuming 

independence between CpGs. 

 

  

Variable Positive 

interaction 

(P<0.05) 

Negative 

interaction 

(P<0.05) 

P** Genes annotated to CpGs for which strongest evidence of interaction observed 

(P<0.001) 

Full results in Supplementary Table 13 

Sex (F vs M) 200 5 6x10-29 MIR548F5, SFRS13B, MIR548F5, MGAT5B, NSD1, ABI3, SARM1, NFIX, SC65, 

NTF3, ADRA2A, ESRP2, ZNF532 

Age 53 11 0.07 SLC7A11 

Smoking score* 7 159 6x10-20 TLR9, CPT1A, ILKAP, MYB, SLC7A11, HDAC1, GPR39, AKR1A1, RPP21, 

C6orf227 

Body mass index 7 65 0.003 BCAN, JAK1, TOP1MT 

Case status (Case vs. control) 35 16 1 - 

PRS for alcohol consumption 8 156 2x10-19 RPL6, DOPEY2, NPM1, MSI2, VPS54 
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Table 4. Replication of the strongest associations (P<10-15) reported in Liu et al., Mol. Psychiatry, 2016 using MCCS data.  

 

CpG Chr. Position Gene Location 

Discovery set 

ancestry 

Est. 

 Liu 

P  

Liu 

P for alcohol intake in 

previous week (MCCS) Replicated 

cg11610002 3 126080368 
  

African -0.10 1x10-28 0.06  

cg15061231 3 186353575 
  

African -0.09 9x10-28 0.6  

cg22524735 8 144779094 BREA2 TSS200 African -0.03 1x10-24 0.8 
 

cg25729907 3 146263345 PLSCR1 TSS1500 African -0.05 4x10-24 0.7 
 

cg25120484 3 197186156 
  

African -0.05 2x10-22 1 
 

cg07710247 18 55268669 NARS 3'UTR African -0.04 1x10-20 0.8 
 

cg05538701 6 116866658 FAM26D 5'UTR African -0.04 1x10-19 0.5 
 

cg02583484 12 54677008 HNRNPA1 Body white -0.39 2x10-19 2x10-29 yes 

cg13729116 4 1859262 LETM1 TSS1500 white -0.18 7x10-18 1x10-6 yes 

cg13057576 14 64692154 SYNE2 Body African -0.04 9x10-18 0.1 
 

cg07470207 8 132828746 
  

African 0.04 1x10-17 0.5 
 

cg09935388 1 92947588 GFI1 Body African -0.17 2x10-17 2x10-6 yes 

cg05593667 6 35490744 
  

white -0.25 4x10-16 3x10-7 yes 

cg02003183 14 103415882 CDC42BPB Body African 0.10 7x10-16 0.04 yes 

cg13620705 17 73559492 LLGL2 Body African -0.09 9x10-16 0.2 
 

 

Abbreviations: Chr.: chromosome; Est. Liu: regression coefficient reported in the study by Liu et al., Mol. Psychiatry, 2016 

The full results are presented in the Supplementary file.  
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Table 5. Reversibility of associations (cross-sectional Current vs Former vs Never) for the fifteen most significant associations in the MCCS 

EWAS for the ‘current decade’ alcohol intake variable. 

 

   
Current decade 

intake (g/day) 
Former vs. never Current vs. never  

CpG Chr. Position Est. P Est. P Est. P 
Reversibility 

coefficient 

cg06690548 4 139162808 -6.6 7x10-70 -0.01 0.8 -0.12 2x10-8 95% 

cg14476101 1 120255992 -3.4 6x10-34 -0.02 0.4 -0.10 2x10-10 81% 

cg12825509 3 185648568 -2.4 2x10-26 -0.05 0.009 -0.07 2x10-8 31% 

cg02711608 19 47287964 -2.1 2x10-24 -0.01 0.5 -0.04 8x10-5 76% 

cg18120259 6 43894639 -1.9 1x10-20 -0.04 0.009 -0.05 6x10-6 14% 

cg18336453 6 43082296 -1.3 2x10-19 -0.03 0.01 -0.04 5x10-8 32% 

cg19693031 1 145441552 -2.5 5x10-19 -0.02 0.3 -0.06 3x10-4 61% 

cg11376147 11 57261198 -1.5 1x10-18 -0.04 0.001 -0.05 3x10-7 7% 

cg26856289 1 24307516 -1.6 5x10-18 -0.01 0.5 -0.05 4x10-6 78% 

cg17058475 11 68607737 -3.6 9x10-18 -0.07 0.03 -0.16 5x10-13 56% 

cg16246545 1 120255941 -1.7 1x10-17 0.00 0.9 -0.04 1x10-4 104% 

cg06644515 1 173834831 -1.6 6x10-17 0.00 0.9 -0.04 3x10-4 106% 

cg02583484 12 54677008 -1.4 1x10-16 -0.02 0.2 -0.05 3x10-7 62% 

cg15804598 17 43224418 -1.1 1x10-15 -0.02 0.1 -0.04 2x10-7 52% 

cg00252472 6 150739173 -2.7 1x10-15 -0.03 0.3 -0.08 5x10-6 63% 
 
Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).  

All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T 

cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.  

Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP. 

Regression coefficients are given for intakes in grams per day and multiplied by 1000.  

The full results are presented in the Supplementary file. 
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Table 6. Longitudinal associations (P<10-5) assessed in the MCCS and in KORA (data collected 11 and 7 years apart, respectively).  

 

     
Cross-sectional data  Longitudinal data 

MCCS (previous week)  MCCS KORA Pooled 

CpG Chr. Position Gene Location Est. P  Est. P Est. P Est. P 

cg06690548 4 139162808 SLC7A11 Body -7.9 1x10-86  -4.7 2x10-5 -5.4 7x10-11 -5.2 5x10-15 

cg18120259 6 43894639 LOC100132354 Body -2.4 4x10-27  -1.5 5x10-3 -1.5 5x10-8 -1.5 8x10-10 

cg02711608 19 47287964 SLC1A5 1stExon -2.6 6x10-30  -2.0 4x10-4 -1.4 1x10-6 -1.5 3x10-9 

cg14476101 1 120255992 PHGDH Body -4.0 2x10-39  -2.9 1x10-4 -1.8 3x10-6 -2.1 3x10-9 

cg16246545 1 120255941 PHGDH Body -2.2 4x10-23  -1.7 2x10-3 -1.4 7x10-7 -1.4 4x10-9 

cg11376147 11 57261198 SLC43A1 Body -2.1 2x10-29  -1.0 8x10-3 -1.4 1x10-6 -1.3 3x10-8 

cg20732160 3 48590040 PFKFB4 Body -1.7 3x10-16  -1.6 3x10-3 -1.2 1x10-5 -1.3 1x10-7 

cg03068497 7 30635838 GARS Body -3.0 3x10-14  -2.0 2x10-2 -2.4 4x10-6 -2.3 2x10-7 

cg07626482 19 47289503 SLC1A5 TSS1500 -1.4 4x10-20  -1.2 2x10-3 -1.0 4x10-5 -1.1 3x10-7 

cg13526915 14 24164078   -2.1 8x10-13  -1.2 8x10-2 -1.7 1x10-5 -1.6 3x10-6 

cg14756878 2 12568736   -1.2 3x10-9  -1.4 2x10-3 -0.9 4x10-4 -1.0 3x10-6 

cg04460609 4 16532808 LDB2 Body -2.2 3x10-19  -1.2 2x10-2 -1.3 1x10-4 -1.3 5x10-6 

cg21626848 17 39969267 SC65 TSS1500 -1.6 1x10-16  -1.8 2x10-4 -0.8 2x10-3 -1.1 8x10-6 

cg03533472 16 46919112 GPT2 Body -2.2 1x10-15  -2.5 9x10-4 -1.7 2x10-3 -2.0 9x10-6 

 
Abbreviations: Chr.: Chromosome; Est.: regression coefficients from linear mixed regression models (MCCS) or linear regression models (KORA and LOLIPOP).  

All models were adjusted by fitting fixed effects for age, sex, smoking status, BMI, country of birth, sample type and white blood cell composition (percentage of CD4+ T 

cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, estimated using the Houseman algorithm), and batch effects.  

Est. pooled and P pooled are results from the fixed-effects meta-analysis of results from KORA and LOLIPOP. 

Regression coefficients are given for intakes in grams per day and multiplied by 1000.  

The full results are presented in the Supplementary file. 
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