

1 **Discovery of the role of a SLOG superfamily biological conflict systems  
2 associated protein IodA (YpsA) in oxidative stress protection and cell  
3 division inhibition in Gram-positive bacteria**

4 Robert S. Brzozowski<sup>1</sup>, Gianni Graham<sup>1</sup>, A. Maxwell Burroughs<sup>2</sup>, Mirella Huber<sup>1</sup>, Merryck  
5 Walker<sup>1</sup>, Sameeksha S. Alva<sup>1</sup>, L. Aravind<sup>2</sup>, and Prahathees J. Eswara<sup>1,\*</sup>

6 <sup>1</sup>Department of Cell Biology, Microbiology and Molecular Biology, University of South  
7 Florida, Tampa, FL 33620, USA

8 <sup>2</sup>National Center for Biotechnology Information, National Library of Medicine, National  
9 Institutes of Health, Bethesda, MD 20894, USA

10

11 \*To whom correspondence should be addressed. Email: eswara@usf.edu

12

13 Keywords: FtsZ; GpsB; *Bacillus subtilis*; oxidative stress; cell division; NAD; SLOG

14

15 Running title: Role of YpsA in *Bacillus subtilis* and *Staphylococcus aureus*

16

17 **ABSTRACT**

18 Bacteria adapt to different environments by regulating cell division and several  
19 conditions that modulate cell division have been documented. Understanding how  
20 bacteria transduce environmental signals to control cell division is critical to comprehend  
21 the global network of cell division regulation. In this article we describe a role for *Bacillus*  
22 *subtilis* YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and  
23 ligand-binding proteins, in cell division. We observed that YpsA provides protection  
24 against oxidative stress as cells lacking *ypsA* show increased susceptibility to hydrogen  
25 peroxide treatment. We found that increased expression of *ypsA* leads to cell division  
26 inhibition due to defective assembly of FtsZ, the tubulin-like essential protein that marks  
27 the sites of cell division. We showed that cell division inhibition by YpsA is linked to  
28 glucose availability. We generated YpsA mutants that are no longer able to inhibit cell  
29 division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as

30 overproduction of YpsA in *Staphylococcus aureus* also impairs cell division. Therefore,  
31 we propose *ypsA* to be renamed as *iodA* for inhibitor of division.

32

### 33 **IMPORTANCE**

34 Although key players of cell division in bacteria have been largely characterized, the  
35 factors that regulate these division proteins are still being discovered and evidence for  
36 the presence of yet-to-be discovered factors has been accumulating. How bacteria  
37 sense the availability of nutrients and how that information is used to regulate cell  
38 division positively or negatively is less well-understood even though some examples  
39 exist in the literature. We discovered that a protein of hitherto unknown function  
40 belonging to the SLOG superfamily of nucleotide/ligand-binding proteins, YpsA,  
41 influences cell division in *Bacillus subtilis* by integrating metabolic status such as the  
42 availability of glucose. We showed that YpsA is important for oxidative stress response  
43 in *B. subtilis*. Furthermore, we provide evidence that cell division inhibition function of  
44 YpsA is also conserved in another Firmicute *Staphylococcus aureus*. This first report on  
45 the role of YpsA (IodA) brings us a step closer in understanding the complete tool set  
46 that bacteria have at their disposal to regulate cell division precisely to adapt to varying  
47 environmental conditions.

48

### 49 **INTRODUCTION**

50 Cell division in bacteria is a well-orchestrated event that is achieved by the concerted  
51 action of approximately a dozen different key division proteins (1). Amongst them a  
52 protein central to cell division in most bacteria is the tubulin homolog, FtsZ, which marks  
53 the site of cytokinesis (2, 3). In addition to standard spatial regulators of septum  
54 positioning (4), factors that sense nutrient availability (5, 6), DNA damage (7-9), alternate  
55 external environment (10, 11), have been shown to influence cell division. The

56 observation that cell division in model organisms *Escherichia coli* and *Bacillus subtilis*  
57 lacking well-studied Min and nucleoid occlusion regulatory systems undergo cell division  
58 largely unperturbed (12), prompted us to investigate the presence of other factors  
59 involved in cell division regulation. Here we describe the role of IodA (YpsA), a protein  
60 conserved in several members of the Firmicutes phylum.

61

62 The genes *iodA* (*ypsA*) and *gpsB* (formerly *ypsB*) are in a syntenous relationship in  
63 many Firmicute genomes (Fig. 1A). GpsB is a cell division protein that regulates  
64 peptidoglycan synthesis in *B. subtilis* (13, 14), *Streptococcus pneumoniae* (15, 16), and  
65 *Listeria monocytogenes* (17). More recently our group showed that *Staphylococcus*  
66 *aureus* GpsB affects the polymerization kinetics of FtsZ directly (18). As genes in a  
67 syntenous arrangement across multiple genomes, often referred to as conserved gene  
68 neighborhoods, are commonly indicative of functional relationships (19, 20), we were  
69 curious to study the function of YpsA in *B. subtilis*. Prior to our investigation, the crystal  
70 structure of *B. subtilis* YpsA was solved by a structural genomics group (PDB ID: 2NX2).  
71 Based on unique structure and sequence features (Fig. 1B), YpsA was classified as the  
72 founding member of the “YpsA proper” clade in the SMF/DprA/LOG (SLOG) protein  
73 superfamily (21). The SLOG superfamily contains a specific form of the Rossmannoid  
74 fold, and is involved in a range of nucleotide-related functions. These include the binding  
75 of low-molecule weight biomolecules, nucleic acids, free nucleotides, and the catalyzing  
76 of nucleotide-processing reactions (22-24). Recently, several members of the SLOG  
77 superfamily were further identified as key components in a newly-defined class of  
78 biological conflict systems centered on the production of nucleotide signals. In these  
79 systems, SLOG proteins are predicted to function either as sensors binding nucleotide  
80 signals or as nucleotide-processing enzymes generating nucleotide derivatives which

81 function as signals (21). Despite these new reports, the precise function of YpsA and its  
82 namesake family have yet to be experimentally investigated.

83

84 Here we report that (i) YpsA provides protection against oxidative stress; (ii)  
85 overexpression of *ypsA* causes mislocalization of FtsZ-GFP that results in cell  
86 filamentation which is dependent on glucose availability; (iii) YpsA-GFP forms dynamic  
87 foci that is likely mediated by nucleotide binding; and finally (iv) overexpression of *ypsA*  
88 in *S. aureus* results in cell enlargement, typical of cell division inhibition in cocci (25),  
89 suggesting a conserved function of YpsA across Firmicutes with very different cell-  
90 morphologies. In sum, these results constitute the first report on YpsA and its role in  
91 oxidative stress response and cell division regulation. Therefore, we propose to rename  
92 YpsA as IodA (inhibitor of division) to best describe the function of YpsA.

93

94 **RESULTS**

95

96 **YpsA provides oxidative stress protection**

97 As a first step to study the significance of YpsA, we studied the phenotype of *ypsA* null  
98 strain in several stress-inducing conditions through standard disc-diffusion assay. As  
99 shown in Fig. 2A, we noticed that *ypsA* null cells exhibited a larger zone of inhibition in  
100 comparison to WT when incubated with discs soaked in 1 M H<sub>2</sub>O<sub>2</sub> (WT: 1.8 ± 0.45 mm;  
101 Δ*ypsA*: 7.6 ± 0.54 mm). It is noteworthy that *ypsA* transcript level is elevated upon  
102 hydrogen peroxide treatment (26, 27). To further evaluate this phenotype, we monitored  
103 the cells grown in liquid culture in the absence or presence of 1 mM H<sub>2</sub>O<sub>2</sub> using  
104 fluorescence microscopy (Fig. 2B). Untreated cells lacking *ypsA* appear morphologically  
105 similar to WT. Although WT cells were tolerant to H<sub>2</sub>O<sub>2</sub> treatment, Δ*ypsA* cells displayed  
106 obvious signs of “sick cells” en route to lysis such as membrane thickening, cell

107 morphology change, condensed DNA (Fig. 2B; compare right top and middle panels).  
108 Quantification of H<sub>2</sub>O<sub>2</sub>-treated cells revealed that 27% of WT and 79% of  $\Delta$ YpsA cells  
109 were sick (n =100). To test if this phenotype is specifically due to absence of YpsA, we  
110 introduced an inducible copy of *ypsA* at an ectopic locus. In the presence of inducer,  
111 H<sub>2</sub>O<sub>2</sub>-treated cells resemble WT (Fig. 2B, bottom panel; 23% sick cells, n =100)  
112 indicating that YpsA is responsible for providing protection against H<sub>2</sub>O<sub>2</sub>-induced  
113 oxidative stress.

114

### 115 **Increased production of YpsA inhibits cell division**

116 Next, we examined *ypsA* overexpression phenotype. For this purpose, we constructed  
117 an otherwise WT-strain to ectopically express either *ypsA* or *ypsA-gfp* upon addition of  
118 inducer. Quantification of GFP fluorescence revealed that there was 3-fold  
119 overproduction of YpsA-GFP in the presence of inducer (2415  $\pm$  1296 arbitrary units; n  
120 =50) when compared to YpsA-GFP produced under the control of its native promoter  
121 (732  $\pm$  692 arbitrary units; n =50). We then monitored the cell morphology of cells  
122 overproducing YpsA or YpsA-GFP. To our surprise, as shown in Fig. 3, when compared  
123 to the cell lengths of inducible strains grown in the absence of inducer [YpsA: 2.92  $\pm$   
124 0.81  $\mu$ m (Fig. 3A); YpsA-GFP: 3.89  $\pm$  0.98  $\mu$ m (Fig. 3C); n =100], cells overproducing  
125 YpsA or YpsA-GFP appeared elongated [YpsA: 8.92  $\pm$  4.89  $\mu$ m (Fig. 3B); YpsA-GFP:  
126 9.57  $\pm$  4.99  $\mu$ m (Fig. 3D); n =100] implying cell division is inhibited by YpsA. Also, this  
127 result indicated that the fluorescent protein tagged fusion of YpsA is functional. Tracking  
128 fluorescence of YpsA-GFP showed that YpsA assembles into discrete foci (Fig. 3D).  
129 Time-lapse microscopy conducted at 2 min interval for 10 min revealed that YpsA foci  
130 are highly dynamic (Fig. 3I-L). Since YpsA-GFP retains fluorescence as a focus and that  
131 the foci are mobile, and focus disruption occurs in some YpsA mutants (Fig. 6), we  
132 conclude that the foci are not artifacts of non-functional misfolded aggregates.

133

134 Since genes coding for YpsA and GpsB, a known cell division protein, are in a  
135 syntenous relationship we aimed to test whether YpsA overproduction-mediated  
136 filamentation is dependent on GpsB. As shown in Figs. 3E-H, cells lacking *gpsB* also  
137 formed filaments upon overexpression of *ypsA* or *ypsA-gfp*, suggesting that YpsA-  
138 mediated cell division inhibition is independent of GpsB.

139

140 Typically, filamentation is a result of impaired FtsZ ring assembly. To test whether FtsZ  
141 ring assembly is affected by YpsA overproduction, we engineered a strain that  
142 constitutively produces FtsZ-GFP (28, 29), to also produce either *ypsA* or *ypsA-mCherry*  
143 under the control of an inducible promoter. In FtsZ-GFP producing otherwise WT cells,  
144 the cell length appeared normal and FtsZ assembled into FtsZ rings at mid-cell in 90% of  
145 the cells (Fig. 4A and 4B; top panels). In the strain capable of producing both FtsZ-GFP  
146 and YpsA or YpsA-mCherry, when cells were grown in the absence of inducer, FtsZ-  
147 GFP localization appeared similar to the control strain (Fig. 4A and 4B; middle panels).  
148 In striking contrast, when cells were grown in the presence of inducer FtsZ-GFP did not  
149 assemble into rings and instead appeared diffused (Fig. 4A and 4B; bottom panels).

150

### 151 **Filamentation is dependent on glucose availability**

152 As *cotD*, which codes for a spore coat protein is immediately upstream of *ypsA* (Fig.  
153 S1A), we were curious to see if *ypsA* has any role in sporulation. To address this, we  
154 performed a sporulation assay using Casein Hydrolysate (CH)-based growth medium  
155 and Sterlini-Mandelstam sporulation medium in triplicates (30). The average sporulation  
156 frequency of  $\Delta$ YpsA strain was 176% relative to WT (100%), which is a modest 2-fold  
157 increase in frequency suggesting YpsA has no appreciable role in sporulation. To study  
158 whether YpsA overproduction-mediated filamentation impairs sporulation, we conducted

159 a similar sporulation assay and found that cells overexpressing *ypsA* (98%) or *ypsA-gfp*  
160 (127%) also displayed sporulation frequency similar to WT. To fully comprehend how  
161 filamentous cells achieve WT-like sporulation efficiency, we observed the cell  
162 morphology of *ypsA* overexpressing cells grown in the presence of inducer in CH  
163 medium using fluorescence microscopy. The cell lengths of *ypsA* or *ypsA-gfp*  
164 overexpressing cells appeared similar when grown with or without the inducer [YpsA:  
165  $2.85 \pm 0.72 \mu\text{m}$  (Fig. 5A) vs  $3.23 \pm 0.93 \mu\text{m}$  (Fig. 5B); YpsA-GFP:  $3.01 \pm 0.59 \mu\text{m}$  (Fig.  
166 5E) vs  $3.51 \pm 1.21 \mu\text{m}$  (Fig. 5F);  $n = 100$ ], unlike what we observed when cells were  
167 grown in LB medium (compare Figs. 5AB and Figs. 5EF with Figs. 3A-D). Although cells  
168 were not filamentous, YpsA foci still formed in CH (Fig. 5F).

169  
170 We hypothesized that lack of nutrients in CH compared to LB might be the reason for  
171 lack of filamentation. To test our hypothesis, we externally added 1% glucose to the CH  
172 medium. Intriguingly, cells grown in CH in the presence of glucose and inducer to  
173 overproduce YpsA or YpsA-GFP lead to filamentation [YpsA:  $3.31 \pm 0.79 \mu\text{m}$  (Fig. 5C)  
174 vs  $6.49 \pm 2.95 \mu\text{m}$  (Fig. 5D); YpsA-GFP:  $3.34 \pm 0.94 \mu\text{m}$  (Fig. 5G) vs  $9.48 \pm 4.05 \mu\text{m}$   
175 (Fig. 5H);  $n = 100$ ], suggesting that filamentation is dependent on metabolic status:  
176 specifically glucose availability in this case.

177

### 178 **Identification of amino acid residues important for YpsA function**

179 Aided by the crystal structure and computational analysis of the YpsA family of SLOG  
180 domains we identified the conserved residues that are predicted to be important for  
181 maintaining the function of YpsA (Fig. 1B; see arrows). We performed site-directed  
182 mutagenesis of two of these key residues and generated GFP-tagged *ypsA* variants  
183 G53A and E55Q. We also generated other mutants to more generally explore YpsA  
184 function namely, G42A, E44Q, W45A, W57A, or W87A. We ensured that all mutants

185 were stably produced through immunoblotting (Fig. 6B). Microscopic examination  
186 revealed that all YpsA variants except W57A were unable to trigger filamentation upon  
187 overexpression (Fig. 6A), suggesting that YpsA function is compromised in all these  
188 cases. We also noticed that G53A, E55Q, W45A, and W87A mutants displayed impaired  
189 ability to form foci. This is consistent with the observation that the first two of these  
190 mutations disrupt the conserved, predicted nucleotide-binding site of the YpsA family  
191 (21), and the latter two likely disrupt a key strand and helix of the Rossmannoid fold.  
192

### 193 **Putative interaction partners of YpsA**

194 To understand the role of YpsA via identifying its potential interaction partners, we  
195 conducted FLAG-immunoprecipitation using YpsA-FLAG and YpsA-GFP-FLAG  
196 constructs as baits. Untagged YpsA served as our negative control. After confirming the  
197 enrichment of proteins in the eluate fractions through silver staining and anti-Flag  
198 immunoblotting, the samples were submitted for protein identification via mass  
199 spectrometry. To identify proteins that specifically interact with YpsA, we eliminated all  
200 proteins that also appeared in our negative control, as they are likely non-specifically  
201 bound proteins and retained only proteins that were present specifically in both YpsA-  
202 FLAG and YpsA-GFP-FLAG eluates. A selective list of protein interaction partners of  
203 YpsA is shown in Table 1. The entire list is provided in Table S2. In addition to our bait,  
204 FLAG-tagged versions of YpsA and presumably native copies of YpsA due to self-  
205 assembly, we noticed many proteins whose genes are under nutrient availability-sensing  
206 CcpA (31) or CodY (32) or AbrB (33) regulon(s) in our IP results. Interestingly, several of  
207 the proteins that associate with YpsA bind NAD or its derivatives and/or play a role in  
208 redox-sensing. However, given that these are abundant metabolic enzymes we cannot  
209 be sure of the significance of these interactions at this time.  
210

211 **Overproduction of YpsA inhibits cell division in *S. aureus***

212 To investigate if the role of YpsA is conserved in other Firmicutes, we chose to study the  
213 function of YpsA in *S. aureus*. Cells lacking intact *ypsA* in *S. aureus* (34), are viable and  
214 their cell morphology appear similar to WT control suggesting *ypsA* is not an essential  
215 gene (Fig. 7AB). Next, we placed *S. aureus* *ypsA* (*ypsA*<sup>SA</sup>) under the control of xylose-  
216 inducible promoter in a *S. aureus* plasmid vector. As shown in Fig. 6, the cell diameter of  
217 WT control ( $0.86 \pm 0.18 \mu\text{m}$ ;  $n = 100$ ; Fig. 7A) and vector control strain grown in the  
218 absence of inducer ( $0.99 \pm 0.21 \mu\text{m}$ ;  $n = 100$ ; Fig. 7C) and presence of inducer ( $1.12 \pm$   
219  $0.21 \mu\text{m}$ ;  $n = 100$ ; Fig. 7D), resembled inducible *ypsA*<sup>SA</sup> strain grown in the absence of  
220 inducer ( $1.19 \pm 0.30 \mu\text{m}$ ;  $n = 100$ ; Fig. 7E). Interestingly, cells overexpressing *ypsA*<sup>SA</sup>  
221 were unable to undergo septation and displayed clear cell enlargement ( $1.72 \pm 0.37 \mu\text{m}$ ;  
222  $n = 100$ ; Fig. 7F), a telltale sign of cell division inhibition in this organism. Thus, the  
223 function of YpsA in inhibiting cell division is conserved in *S. aureus*, and possibly in other  
224 Firmicutes which code for it despite the differences in their cell-morphology.

225

226 **DISCUSSION**

227 Bacterial cell division is a highly regulated process and many division factors have  
228 already been characterized especially in model organisms *E. coli* and *B. subtilis*. Yet,  
229 cell division is only mildly affected even in the absence of a combination of known  
230 division regulators in these organisms (12), thus predicting the presence of other  
231 proteins that could affect the cell division process. Here, we discuss the role of YpsA, a  
232 protein of hitherto unknown function conserved in diverse Firmicutes. We show that  
233 YpsA offers protection against oxidative stress. However, the precise mechanism of how  
234 this is achieved remains to be elucidated. Next, we show that YpsA overproduction leads  
235 to impaired FtsZ ring assembly and ultimately cell division inhibition.

236

237 It has been reported that *cotD*-*ypsA* transcriptional unit is repressed by the regulator  
238 essential for entry into sporulation, Spo0A (35), which binds to a region upstream of *cotD*  
239 (36). It has been shown that *cotD* is also repressed by a late stage sporulation-specific  
240 transcriptional regulator, SpolIID (37). Both *cotD* and *ypsA* transcripts are at similar  
241 levels in various growth conditions except in those that promote sporulation [Fig. S1B;  
242 (26, 27)]. The function of CotD during normal growth, if any, needs to be evaluated. It  
243 has been reported that *cotD* level increases in a concentration-dependent manner in  
244 response to antibiotic treatment (38). In this report we show that cells lacking *ypsA* or  
245 overexpressing *ypsA* show no obvious sporulation defect and that YpsA-mediated cell  
246 division inhibition is dependent on glucose availability. Other reports exist that show a  
247 clear connection between glucose availability and cell division (1, 39). One such factors  
248 that inhibit cell division depending on the presence of glucose is UgtP which is a UDP-  
249 glucose diacylglycerol glucosyltransferase (40). However, as shown in Fig. S2, cell  
250 lacking *ugtP* also undergo filamentation upon increased production of YpsA, suggesting  
251 that cell division inhibition by YpsA is independent of UgtP.

252  
253 YpsA mutants generated based on the crystal structure and sequence analysis revealed  
254 the importance of certain key residues for YpsA function (Fig. 6). Interestingly, G53 and  
255 E55 of *B. subtilis* YpsA which form a conserved signature GxD/E motif, are predicted to  
256 be important for substrate-binding in YpsA clade of proteins in SLOG superfamily [Figure  
257 1B; (21)]. Since foci-formation was disrupted in both G53A and E55Q mutants, it is  
258 plausible substrate-binding allows for multimeric complex formation. It is noteworthy that  
259 mutants such as G42A and E44Q which are able to form foci, therefore likely bind  
260 substrate, lack the ability to elicit filamentation. Also, YpsA-GFP overproducing cells  
261 grown in CH medium were able to form foci but unable to induce filamentation (Fig. 5F).  
262 These observations support a model in which substrate binding by YpsA is a

263 prerequisite for cell division inhibition but substrate binding alone is not sufficient to  
264 induce filamentation, assuming foci formation is indicative of substrate binding. It is  
265 possible YpsA executes cell division inhibition function through interactions with other  
266 protein partners.

267

268 Consistent with this our pull-down assay identified multiple putative interaction partners  
269 of YpsA, including multiple NAD-binding proteins. Interestingly, the connection between  
270 NAD or its derivative ADP-ribose and the members of SLOG superfamily of proteins that  
271 belong to YpsA clade has been previously suggested (21). Given that ADP-ribosylation  
272 affects FtsZ polymerization (41, 42), and YpsA is in close association with biological  
273 conflict systems and phosphoribosyl transferases (Fig. 1B), it is possible that YpsA-  
274 mediated inhibition of cell division may involve ADP-ribosylation. Similarly, oxidative  
275 stress protection provided by YpsA might involve sensing or binding NAD or its  
276 derivatives as well. The link between metabolism of nicotinamide nucleotide, glucose  
277 availability, and oxidative stress has been reported previously (43, 44).

278

279 Lastly, we show that YpsA in another Firmicute, *S. aureus*, also inhibits cell division,  
280 hinting at a conserved role for YpsA in these Gram-positive organisms. In *B. subtilis*, a  
281 prophage associated protein of unknown function, YoqJ, also belongs to the YpsA family  
282 (Fig. 1B). Given that there are clear examples of phage proteins affecting bacterial cell  
283 division (45-48), it would be interesting to see if YoqJ also influences cell division.

284 Although the GxD/E motif is conserved in YoqJ, several residues we identified to be  
285 essential in YpsA are not conserved in YoqJ (Fig. 1B and Fig. 6). The Firmicutes-specific  
286 conserved gene coupling between *ypsA* and *gpsB* starkly contrasts the diversity of the  
287 gene neighborhoods found in other branches of YpsA family phylogenetic tree.  
288 Superposition of conserved gene-neighborhoods onto the phylogenetic tree (Fig. 1A)

289 revealed a stark compartmentalization in conserved genome contexts. The *ypsA* and  
290 *gpsB* gene coupling is found only in one of the four major branches in the tree. Each of  
291 three others display distinct conserved neighborhood proclivities: 1) a branch where  
292 YpsA couples strongly in a gene pair relationship with a phosphoribosyltransferase  
293 (PRTase) domain, 2) a branch where YpsA is found in scattered associations with  
294 various components of NAD processing and salvage pathways, and 3) a diverse  
295 collection of contexts across a broad class of bacterial lineages representative of the  
296 aforementioned nucleotide-centered biological conflict systems, where YpsA is likely to  
297 act in nucleotide signal-generation or nucleotide-sensing [Fig. 1B; (21)]. These  
298 observations suggest that the *B. subtilis* YpsA may have acquired a more  
299 institutionalized role in cell division within the Firmicutes phylum. Nevertheless,  
300 understanding the precise biochemical mechanism by which *B. subtilis* YpsA executes  
301 its function would potentially shed light on the more general function of YpsA across a  
302 wide range of organisms and biological conflict systems.

303

## 304 MATERIALS AND METHODS

### 305 Strain construction and general methods

306 All *B. subtilis* strains used in this study are isogenic derivatives of PY79 (49). See table  
307 S1A for strain information. Overproduction of YpsA was achieved by PCR amplifying  
308 *ypsA* using primer pairs oP106/oP108 (see table S1B for oligonucleotide information)  
309 and ligating the fragment generated cut with Sall and Nhel with IPTG-inducible *amyE*  
310 locus integration vector pDR111 (D. Rudner) also cut with Sall and Nhel and the  
311 resulting plasmid was named pGG27. To construct a GFP fusion, *ypsA* fragment that  
312 was amplified with primer pairs oP106/oP107 and digested with Sall and Nhel was  
313 ligated with *gfp* fragment generated with oP46/oP24 and cut with Nhel/SphI and cloned  
314 into pDR111 digested with Sall/SphI resulting in plasmid pGG28. The G42A, E44Q,

315 W45A, G53A, E55Q, W57A, and W87A mutations were introduced using the  
316 QuikChange site-directed mutagenesis kit (Agilent) using pGG28 as template. *ypsA-*  
317 *3xflag* was constructed via two step PCR using pGG27 as a template. Round one PCR  
318 was completed using primers oP106 and oP291. The PCR product from round one was  
319 then used as a template for round two PCR, which was completed using primer pairs  
320 oP106 and oP292. The final PCR product was then cloned into pDR111 using Sall and  
321 Nhel restriction sites, making plasmid pRB33. Similarly, *ypsA-gfp-3xflag* was constructed  
322 via two step PCR using pGG28 as a template. Round one PCR was completed using  
323 primers oP106 and oP349. The PCR product from round one was then used as a  
324 template for round two PCR, which was completed using primers oP106 and oP350. The  
325 final PCR product was then cloned into pDR111 using Sall and SphI restriction sites,  
326 making plasmid pRB34. The engineered plasmids were then used to introduce genes of  
327 interest via double crossover homologous recombination into the *amyE* locus of the *B.*  
328 *subtilis* chromosome. Expression of *ypsA-his* in BL21-DE3 *Escherichia coli* cells was  
329 achieved by PCR amplifying *ypsA-his* with primer pairs oRB9 and oRB33, and cloning  
330 into XbaI and BamHI restriction sites of pET28a, producing plasmid pRB21. YpsA-his  
331 was purified using standard protocol involving nickel column-based affinity  
332 chromatography. To produce *S. aureus* YpsA in *S. aureus* strain SH1000, *ypsA*<sup>SA</sup>  
333 fragment (PCR amplified with oRB27/oP314 primer pairs) was cloned into xylose-  
334 inducible pEPSA5 plasmid using EcoRI and BamHI restriction sites (50), generating  
335 plasmid pRB36. Plasmids were first introduced into *S. aureus* RN4220 via  
336 electroporation, and then transduced into SH1000 (18).

337

### 338 **Media and culture conditions**

339 Overnight *B. subtilis* cultures grown at 22 °C in Luria-Bertani (LB) growth medium were  
340 diluted 1:10 into fresh LB medium and grown to mid-logarithmic growth phase (OD<sub>600</sub> =

341 0.5), unless otherwise stated. Expression of genes under IPTG-controlled promoter was  
342 induced by addition of 1 mM IPTG (final concentration) to the culture medium unless  
343 noted otherwise. Overnight *S. aureus* cultures were grown at 22°C in tryptic soy broth  
344 (TSB) supplemented with 15 µg/ml chloramphenicol and/or 5 µg/ml erythromycin where  
345 required for plasmid maintenance. Cultures were then diluted 1:10 into fresh medium  
346 containing appropriate antibiotics and grown to mid-logarithmic growth phase (OD<sub>600</sub> =  
347 0.5), unless otherwise stated. Expression of genes under xylose-controlled promoter  
348 was induced by the addition of 1% xylose when required.

349

### 350 **Sporulation assay**

351 Sporulation assay was conducted using resuspension protocol as described previously  
352 (30). Briefly, overnight cultures of *B. subtilis* cells were grown in LB medium at 22°C,  
353 were diluted 1:10 in fresh casein hydrolysate medium (CH, KD Medical) and grown to  
354 mid-log phase twice before culture was resuspended in Sterlini-Mandelstam sporulation  
355 medium (SM, KD Medical) to induce sporulation (51). Growth in CH medium and entry  
356 into sporulation in SM medium were monitored via fluorescence microscopy. Total viable  
357 cell counts (CFU/ml prior to heat treatment) and spore counts (CFU/ml after incubation  
358 at 80°C for 10 min) were obtained for calculating sporulation frequency (spore  
359 count/viable count).

360

### 361 **Disc diffusion assay**

362 All disc diffusion assays were completed on LB agar plates. Strains PY79 and RB42  
363 were grown until OD<sub>600</sub>=0.5, and then 100µl of each culture was added to the respective  
364 plates. Briefly, 15µl of 1M hydrogen peroxide was added to 7mm Whatman paper discs,  
365 which were then placed equidistant from each other on top of the inoculated media. A

366 disc containing no hydrogen peroxide was used as a negative control. Plates were then  
367 incubated overnight at 37°C. The diameter of the disc (7mm) was subtracted for the  
368 zone of inhibition measurements.

369

370 **Immunoprecipitation and mass spectrometry**

371 The YpsA-FLAG immunoprecipitation was performed using  
372 FLAGIPT1 immunoprecipitation kit (Sigma-Aldrich) as described previously (52). Briefly,  
373 1 ml cell lysates of cells harvested from 20 ml LB culture induced with 1 mM IPTG (final  
374 concentration) grown for 2 h post-induction to produce FLAG-tagged proteins or  
375 untagged negative control were generated by sonication. Cell extracts were then  
376 incubated overnight with 50 µl anti-FLAG M2 affinity beads supplied by the  
377 manufacturer. The beads were then washed 3 times with 1x wash buffer and the  
378 supernatant was removed by pipetting. Proteins bound to the beads were stripped by  
379 adding 80 µl of 2x sample buffer supplied by the manufacturer and heating at 100 °C for  
380 five minutes. The supernatants were collected and subjected to SDS-PAGE analysis  
381 prior to mass spectrometry. Western blot using anti-Flag antibody (Invitrogen) was used  
382 to detect Flag-tagged proteins in all fractions collected.

383

384 For mass spectrometry, protein extracts were separated by SDS-PAGE and silver-  
385 stained for visualization. The gel was divided into 3 fractions, and each gel section was  
386 minced and de-stained before being reduced with dithiothreitol (DTT), alkylated with  
387 iodoacetamide (IAA), and finally digested with Trypsin/Lys-C overnight at 37  
388 °C. Peptides were extracted using 50/50 acetonitrile (ACN)/H<sub>2</sub>O/0.1% formic acid and  
389 dried in a vacuum concentrator. Peptides were resuspended in 98%H<sub>2</sub>O/2%ACN/0.1%  
390 formic acid for LC-MS/MS analysis. Peptides were separated using a 50 cm C18  
391 reversed-phase HPLC column (Thermo Scientific) on an Ultimate3000 UHPLC (Thermo

392 Scientific) with a 60 min gradient (2-32% acetonitrile with 0.1% formic acid) and  
393 analyzed on a hybrid quadrupole-Orbitrap mass spectrometer (Q Exactive Plus, Thermo  
394 Fisher Scientific) using data-dependent acquisition in which the top 10 most abundant  
395 ions are selected for MS/MS analysis. Raw data files were processed in MaxQuant  
396 [19029910] and searched against the current UniprotKB *Bacillus subtilis* 168 protein  
397 sequence database. Search parameters include constant modification of cysteine by  
398 carbamidomethylation and the variable modification, methionine oxidation. Proteins are  
399 identified using the filtering criteria of 1% protein and peptide false discovery rate.

400

#### 401 **Microscopy**

402 Aliqouts containing 1 ml of culture (*B. subtilis* and *S. aureus*) were washed in phosphate  
403 buffered saline (PBS) and then resuspended in 100  $\mu$ l of PBS containing 1  $\mu$ g/ml FM4-  
404 64 (membrane stain) and/or 2  $\mu$ g/ml DAPI (DNA stain). For imaging, 5  $\mu$ l of sample was  
405 then spotted onto a glass bottom dish (MatTek) and it was covered with an 1% agarose  
406 pad made with sterile water. Still imaging was completed at room temperature. For time-  
407 lapse microscopy, 5  $\mu$ l aliquots of culture were spotted onto a glass bottom dish, and the  
408 sample was covered with 1% agarose pad made with LB culture medium. Agarose pads  
409 were supplemented with FM4-64 and/or DAPI to stain the cell membrane and DNA  
410 respectively during the course of data collection, and inducer where required to induce  
411 the expression of desired genes. Microscopy was performed using GE Applied Precision  
412 DeltaVision Elite deconvolution fluorescence microscope equipped with a Photometrics  
413 CoolSnap HQ2 camera and environmental chamber. Typically, 17 planes (Z-stacks)  
414 every 200 nm was acquired of all static image data sets and 5 planes every 200 nm was  
415 acquired for time-lapse microscopy to minimize phototoxicity. The images were then  
416 deconvolved using SoftWorx software provided by the manufacturer.

417

418 **Sequence Analysis**

419 YpsA sequence similarity searches were performed using the PSI-BLAST program (53)  
420 against the non-redundant (NR) database of the National Center for Biotechnology  
421 Information (NCBI). Multiple sequence alignments were built by the MUSCLE and  
422 KALIGN programs (54, 55), followed by manual adjustments on the basis of profile–  
423 profile and structural alignments. Genes residing in conserved neighborhoods were  
424 identified through clustering carried out with the BLASTCLUST program  
425 (<ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html>). Phylogenetic analysis was  
426 conducted using an approximately-maximum-likelihood method implemented in the  
427 FastTree 2.1 program under default parameters (56), and resulting trees were visualized  
428 initially in the FigTree program [<http://tree.bio.ed.ac.uk/software/figtree/>].

429

430 **ACKNOWLEDGEMENTS**

431 We thank our lab members and K. Ramamurthi for comments on the manuscript;  
432 University of South Florida (USF) Department of Cell Biology, Microbiology and  
433 Molecular Biology - Mass Spectrometry Core Facility for proteomics support. This work  
434 was funded by a start-up grant from USF (P.J.E.) and the National Institutes of Health  
435 (NIH) grant (R01GM128037; P.J.E.). A.M.B and L.A. are supported by the Intramural  
436 Research Program of the National Library of Medicine, NIH, USA.

437

438 **AUTHOR CONTRIBUTIONS**

439 R.S.B. and P.J.E. designed the study. R.S.B, G.G., S.S.A., M.H., M.W., and P.J.E.  
440 constructed strains and performed experiments. A.M.B. and L.A. conducted  
441 bioinformatics analysis. R.S.B., M.W., A.M.B, L.A., and P.J.E. analyzed data. R.S.B. and  
442 P.J.E. wrote the paper. All authors read and commented on the final manuscript.

443

444

445 **FIGURE LEGENDS**

446 **Figure 1.** (A) Phylogenetic tree of the YpsA family, key branches with greater than 70%  
447 bootstrap support are denoted with yellow circles. Reproducible clades within the family  
448 are color-coded according to their phyletic distribution and labeled with names and  
449 representative conserved domain architectures and gene neighborhoods. For these  
450 genome context depictions, colored polygons represent discrete protein domains within  
451 a protein, while boxed arrows represent individual genes within a neighborhood. Each  
452 context is labeled with NCBI accession and organism name, separated by an  
453 underscore. For gene neighborhoods, the labeled gene contains the YpsA domain.

454 Abbreviations: A/G\_cyclase, adenylyl/guanylyl cyclase. (B) Multiple sequence alignment  
455 of the YpsA family of proteins. Secondary structure and amino acid biochemical property  
456 consensus are provided on the top and bottom lines, respectively. Black arrows at top of  
457 alignment denote positions subject to site-directed mutagenesis. Sequences are labeled  
458 to left with NCBI accession and organism name separated by vertical bars. Gene names  
459 from the text are provided after organism name, shaded in orange. Selected members of  
460 the IodA (YpsA) clade, which associate with GpsB, are enclosed in a purple box.  
461 Alignment coloring and consensus abbreviations as follows: b, big and gray; c, charged  
462 and blue; h, hydrophobic and yellow; l, aliphatic and yellow; p, polar and blue; s, small  
463 and green; u, tiny and green. The conserved aromatic position in the first loop,  
464 abbreviated 'a', and the conserved negatively-charged position in the second helix,  
465 abbreviated '–', are both colored in red with white lettering to distinguish predicted,  
466 conserved positions located within the active site pocket.

467

468 **Figure 2.** YpsA plays a role in oxidative stress response. (A) Disc diffusion assay with  
469 lawns made of WT (PY79) or a strain lacking *ypsA* (RB42) treated with blank disc and 1  
470 M H<sub>2</sub>O<sub>2</sub> are shown. (B) Fluorescence micrographs showing cells of WT (PY79),  $\Delta$ YpsA  
471 (RB42), and  $\Delta$ YpsA complemented with a copy of inducible *ypsA* at an ectopic locus  
472 (RB160) grown with or without 1 mM H<sub>2</sub>O<sub>2</sub> and stained with FM4-64 (membrane, red)  
473 and DAPI (DNA, blue). Arrow indicates aberrantly shaped cell. Scale bar: 1  $\mu$ m.

474

475 **Figure 3.** Elevated production of YpsA or YpsA-GFP leads to inhibition of cell division.  
476 (A-D) Morphology of cells containing inducible *ypsA* (GG82) or *ypsA-gfp* (GG83) grown  
477 in the absence of inducer IPTG (A and C) or in the presence of inducer (B and D). (E-H)  
478 Cells morphology of strains lacking *gpsB* and containing either inducible *ypsA* (RB43) or  
479 *ypsA-gfp* (RB44) grown in the absence (E and G) or presence (F and H) of inducer. (I-L)  
480 Timelapse micrographs of *ypsA-gfp* expressing cells (GG83) and time intervals are  
481 indicated at the bottom. Arrow indicates foci that are mobile. DIC (gray) and  
482 fluorescence of membrane dye (FM4-64; red), GFP (green) are shown. Scale bar: 1  $\mu$ m.

483

484 **Figure 4.** YpsA inhibits FtsZ ring assembly. (A) Fluorescence micrographs of cells that  
485 either constitutively produce FtsZ-GFP in otherwise wild type strain (PE92; top panel)  
486 and cells that constitutively produce FtsZ-GFP and additionally harbor a copy of  
487 inducible *ypsA* (RB15) grown in the absence (middle panel) or presence of inducer IPTG  
488 are shown. Fluorescence of FM4-64 membrane dye (red) and GFP (green) are shown.  
489 (B) Cellular morphologies of cells that constitutively produce FtsZ-GFP (PE92) and cells  
490 that additionally contain a copy of inducible *ypsA-mCherry* (RB97) grown in the absence  
491 (middle panel) or presence of inducer are shown. DIC (gray) and fluorescence of GFP  
492 (green) and mCherry (red) are shown. Scale bars: 1  $\mu$ m.

493

494 **Figure 5.** YpsA-mediated cell division inhibition is dependent on glucose availability. (A-  
495 D) Fluorescence micrographs of cells containing inducible *ypsA* (GG82) or *ypsA-gfp*  
496 (GG83) grown in the absence of (A and C; E and G) or in the presence of inducer IPTG  
497 (B and D; F and H). The cells were grown either in the absence (A and B; E and F) or  
498 presence (C and D; G and H) of 1% D-glucose. Fluorescence of membrane dye (FM4-  
499 64; red), GFP (green) are shown. Scale bar: 1  $\mu$ m.

500

501 **Figure 6.** Site-directed mutagenesis reveals key residues in YpsA. (A) Cell  
502 morphologies of YpsA-GFP (WT; GG83) and GFP-fusions of G42A (RB119), E44Q  
503 (RB115), G53A (RB120), E55Q (RB116), W45A (RB35), W57A (RB26), and W87A  
504 (RB37) are shown. The cells were grown either in the absence (left panels) or presence  
505 (right panels) of inducer IPTG. Fluorescence of membrane stain FM4-64 (red) and GFP  
506 (green) are shown. Scale bar: 1  $\mu$ m. (B) Production of GFP-tagged YpsA variants were  
507 detected by immunoblot of cell extracts of strains shown in (A) grown in the presence of  
508 inducer using anti-GFP and corresponding anti-SigA (loading control) antisera.

509

510 **Figure 7.** Production of YpsA<sup>SA</sup> inhibits cell division in *S. aureus*. (A-B) Fluorescence  
511 micrographs of wild type (SH1000; A), transposon-disrupted *ypsA* (RB162; B) strains.  
512 (C-F) Morphologies of SH1000 cells harboring plasmid encoded xylose-inducible copy of  
513 *ypsA*<sup>SA</sup> (pRB36; E and F) or empty vector (pEPSA5; C and D) grown in the absence (C  
514 and E) and presence (D and F) of inducer are shown. Membranes were visualized using  
515 FM4-64 dye (red). Scale bar: 1  $\mu$ m.

516

517 **Table 1.** Selective list of putative interaction partners of YpsA

518

519

520 **Supplemental data**

521 **Figure S1.** (A) Cartoon representation of *ypsA* gene neighborhood. (B) Transcript levels  
522 of *cotD* and *ypsA* in *B. subtilis* at various growth conditions (26, 27).

523

524 **Figure S2.** Cell morphologies of inducible *ypsA* cells (GG82) grown in the absence (A)  
525 or presence (B) of inducer. Also shown are the cell morphologies of inducible *ypsA* in a  
526 strain lacking *ugtP* (RB212) grown in the absence (C) or presence (D) of inducer.

527

528 **Table S1.** Strains and oligonucleotides used in this study

529 **Table S2.** Putative interaction partners of YpsA

530

531 **REFERENCES**

- 532 1. Haeusser DP & Margolin W (2016) Splitsville: structural and functional insights  
533 into the dynamic bacterial Z ring. *Nat Rev Microbiol* 14(5):305-319.
- 534 2. Busiek KK & Margolin W (2015) Bacterial actin and tubulin homologs in cell  
535 growth and division. *Curr Biol* 25(6):R243-R254.
- 536 3. Du S & Lutkenhaus J (2017) Assembly and activation of the *Escherichia coli*  
537 divisome. *Mol Microbiol* 105(2):177-187.
- 538 4. Eswara PJ & Ramamurthi KS (2017) Bacterial Cell Division: Nonmodels Poised  
539 to Take the Spotlight. *Annu Rev Microbiol* 71:393-411.
- 540 5. Monahan LG, Hajduk IV, Blaber SP, Charles IG, & Harry EJ (2014) Coordinating  
541 bacterial cell division with nutrient availability: a role for glycolysis. *MBio*  
542 5(3):e00935-00914.
- 543 6. Wang JD & Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle.  
544 *Nat Rev Microbiol* 7(11):822-827.
- 545 7. Mo AH & Burkholder WF (2010) YneA, an SOS-induced inhibitor of cell division  
546 in *Bacillus subtilis*, is regulated posttranslationally and requires the  
547 transmembrane region for activity. *J Bacteriol* 192(12):3159-3173.
- 548 8. Modell JW, Kambara TK, Perchuk BS, & Laub MT (2014) A DNA damage-  
549 induced, SOS-independent checkpoint regulates cell division in *Caulobacter*  
550 *crescentus*. *PLoS Biol* 12(10):e1001977.
- 551 9. Dajkovic A, Mukherjee A, & Lutkenhaus J (2008) Investigation of regulation of  
552 FtsZ assembly by SulA and development of a model for FtsZ polymerization. *J*  
553 *Bacteriol* 190(7):2513-2526.
- 554 10. Justice SS, Hunstad DA, Cegelski L, & Hultgren SJ (2008) Morphological  
555 plasticity as a bacterial survival strategy. *Nat Rev Microbiol* 6(2):162-168.
- 556 11. Khandige S, et al. (2016) DamX Controls Reversible Cell Morphology Switching  
557 in Uropathogenic *Escherichia coli*. *MBio* 7(4).
- 558 12. Monahan LG, Liew AT, Bottomley AL, & Harry EJ (2014) Division site positioning  
559 in bacteria: one size does not fit all. *Front Microbiol* 5:19.

560 13. Claessen D, *et al.* (2008) Control of the cell elongation-division cycle by shuttling  
561 of PBP1 protein in *Bacillus subtilis*. *Mol Microbiol* 68(4):1029-1046.

562 14. Tavares JR, de Souza RF, Meira GL, & Gueiros-Filho FJ (2008) Cytological  
563 characterization of YpsB, a novel component of the *Bacillus subtilis* divisome. *J  
564 Bacteriol* 190(21):7096-7107.

565 15. Fleurie A, *et al.* (2014) Interplay of the serine/threonine-kinase StkP and the  
566 paralogs DivIVA and GpsB in pneumococcal cell elongation and division. *PLoS  
567 Genet* 10(4):e1004275.

568 16. Rued BE, *et al.* (2017) Suppression and synthetic-lethal genetic relationships of  
569 DeltagsB mutations indicate that GpsB mediates protein phosphorylation and  
570 penicillin-binding protein interactions in *Streptococcus pneumoniae* D39. *Mol  
571 Microbiol* 103(6):931-957.

572 17. Rismondo J, *et al.* (2016) Structure of the bacterial cell division determinant  
573 GpsB and its interaction with penicillin-binding proteins. *Mol Microbiol* 99(5):978-  
574 998.

575 18. Eswara PJ, *et al.* (2018) An essential *Staphylococcus aureus* cell division protein  
576 directly regulates FtsZ dynamics. *Elife* 7.

577 19. Aravind L (2000) Guilt by association: contextual information in genome analysis.  
578 *Genome Res* 10(8):1074-1077.

579 20. Huynen M, Snel B, Lathe W, 3rd, & Bork P (2000) Predicting protein function by  
580 genomic context: quantitative evaluation and qualitative inferences. *Genome Res*  
581 10(8):1204-1210.

582 21. Burroughs AM, Zhang D, Schaffer DE, Iyer LM, & Aravind L (2015) Comparative  
583 genomic analyses reveal a vast, novel network of nucleotide-centric systems in  
584 biological conflicts, immunity and signaling. *Nucleic Acids Res* 43(22):10633-  
585 10654.

586 22. Mortier-Barriere I, *et al.* (2007) A key presynaptic role in transformation for a  
587 widespread bacterial protein: DprA conveys incoming ssDNA to RecA. *Cell*  
588 130(5):824-836.

589 23. Fischer K, *et al.* (2006) Function and structure of the molybdenum cofactor  
590 carrier protein from *Chlamydomonas reinhardtii*. *J Biol Chem* 281(40):30186-  
591 30194.

592 24. Samanovic MI, *et al.* (2015) Proteasomal control of cytokinin synthesis protects  
593 *Mycobacterium tuberculosis* against nitric oxide. *Mol Cell* 57(6):984-994.

594 25. Pinho MG & Errington J (2003) Dispersed mode of *Staphylococcus aureus* cell  
595 wall synthesis in the absence of the division machinery. *Mol Microbiol* 50(3):871-  
596 881.

597 26. Nicolas P, *et al.* (2012) Condition-dependent transcriptome reveals high-level  
598 regulatory architecture in *Bacillus subtilis*. *Science* 335(6072):1103-1106.

599 27. Zhu B & Stulke J (2018) SubtiWiki in 2018: from genes and proteins to functional  
600 network annotation of the model organism *Bacillus subtilis*. *Nucleic Acids Res*  
601 46(D1):D743-D748.

602 28. Eswaramoorthy P, *et al.* (2011) Cellular architecture mediates DivIVA  
603 ultrastructure and regulates min activity in *Bacillus subtilis*. *MBio* 2(6).

604 29. Gregory JA, Becker EC, & Pogliano K (2008) *Bacillus subtilis* MinC destabilizes  
605 FtsZ-rings at new cell poles and contributes to the timing of cell division. *Genes  
606 Dev* 22(24):3475-3488.

607 30. Eswaramoorthy P, Guo T, & Fujita M (2009) In vivo domain-based functional  
608 analysis of the major sporulation sensor kinase, KinA, in *Bacillus subtilis*. *J  
609 Bacteriol* 191(17):5358-5368.

610 31. Gorke B & Stulke J (2008) Carbon catabolite repression in bacteria: many ways  
611 to make the most out of nutrients. *Nat Rev Microbiol* 6(8):613-624.  
612 32. Brinsmade SR, Kleijn RJ, Sauer U, & Sonenshein AL (2010) Regulation of CodY  
613 activity through modulation of intracellular branched-chain amino acid pools. *J  
614 Bacteriol* 192(24):6357-6368.  
615 33. Chumsakul O, *et al.* (2011) Genome-wide binding profiles of the *Bacillus subtilis*  
616 transition state regulator AbrB and its homolog Abh reveals their interactive role  
617 in transcriptional regulation. *Nucleic Acids Res* 39(2):414-428.  
618 34. Fey PD, *et al.* (2013) A genetic resource for rapid and comprehensive phenotype  
619 screening of nonessential *Staphylococcus aureus* genes. *MBio* 4(1):e00537-  
620 00512.  
621 35. Fujita M & Losick R (2003) The master regulator for entry into sporulation in  
622 *Bacillus subtilis* becomes a cell-specific transcription factor after asymmetric  
623 division. *Genes Dev* 17(9):1166-1174.  
624 36. Molle V, *et al.* (2003) The Spo0A regulon of *Bacillus subtilis*. *Mol Microbiol*  
625 50(5):1683-1701.  
626 37. Halberg R & Kroos L (1994) Sporulation regulatory protein SpolIID from *Bacillus*  
627 *subtilis* activates and represses transcription by both mother-cell-specific forms of  
628 RNA polymerase. *J Mol Biol* 243(3):425-436.  
629 38. Lin JT, Connelly MB, Amolo C, Otani S, & Yaver DS (2005) Global transcriptional  
630 response of *Bacillus subtilis* to treatment with subinhibitory concentrations of  
631 antibiotics that inhibit protein synthesis. *Antimicrob Agents Chemother*  
632 49(5):1915-1926.  
633 39. Monahan LG & Harry EJ (2016) You Are What You Eat: Metabolic Control of  
634 Bacterial Division. *Trends Microbiol* 24(3):181-189.  
635 40. Weart RB, *et al.* (2007) A metabolic sensor governing cell size in bacteria. *Cell*  
636 130(2):335-347.  
637 41. Ohashi Y, *et al.* (1999) The lethal effect of a benzamide derivative, 3-  
638 methoxybenzamide, can be suppressed by mutations within a cell division gene,  
639 *ftsZ*, in *Bacillus subtilis*. *J Bacteriol* 181(4):1348-1351.  
640 42. Ting SY, *et al.* (2018) Bifunctional Immunity Proteins Protect Bacteria against  
641 FtsZ-Targeting ADP-Ribosylating Toxins. *Cell*.  
642 43. Imlay JA & Linn S (1988) DNA damage and oxygen radical toxicity. *Science*  
643 240(4857):1302-1309.  
644 44. Brumaghim JL, Li Y, Henle E, & Linn S (2003) Effects of hydrogen peroxide upon  
645 nicotinamide nucleotide metabolism in *Escherichia coli*: changes in enzyme  
646 levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H  
647 by Fe(III). *J Biol Chem* 278(43):42495-42504.  
648 45. Zhou H & Lutkenhaus J (2005) MinC mutants deficient in MinD- and DicB-  
649 mediated cell division inhibition due to loss of interaction with MinD, DicB, or a  
650 septal component. *J Bacteriol* 187(8):2846-2857.  
651 46. Ballesteros-Plaza D, Holguera I, Scheffers DJ, Salas M, & Munoz-Espin D (2013)  
652 Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of  
653 the divisome in *Bacillus subtilis*. *Proc Natl Acad Sci U S A* 110(30):12313-12318.  
654 47. Kiro R, *et al.* (2013) Gene product 0.4 increases bacteriophage T7  
655 competitiveness by inhibiting host cell division. *Proc Natl Acad Sci U S A*  
656 110(48):19549-19554.  
657 48. Haeusser DP, *et al.* (2014) The Kil peptide of bacteriophage lambda blocks  
658 *Escherichia coli* cytokinesis via ZipA-dependent inhibition of FtsZ assembly.  
659 *PLoS Genet* 10(3):e1004217.

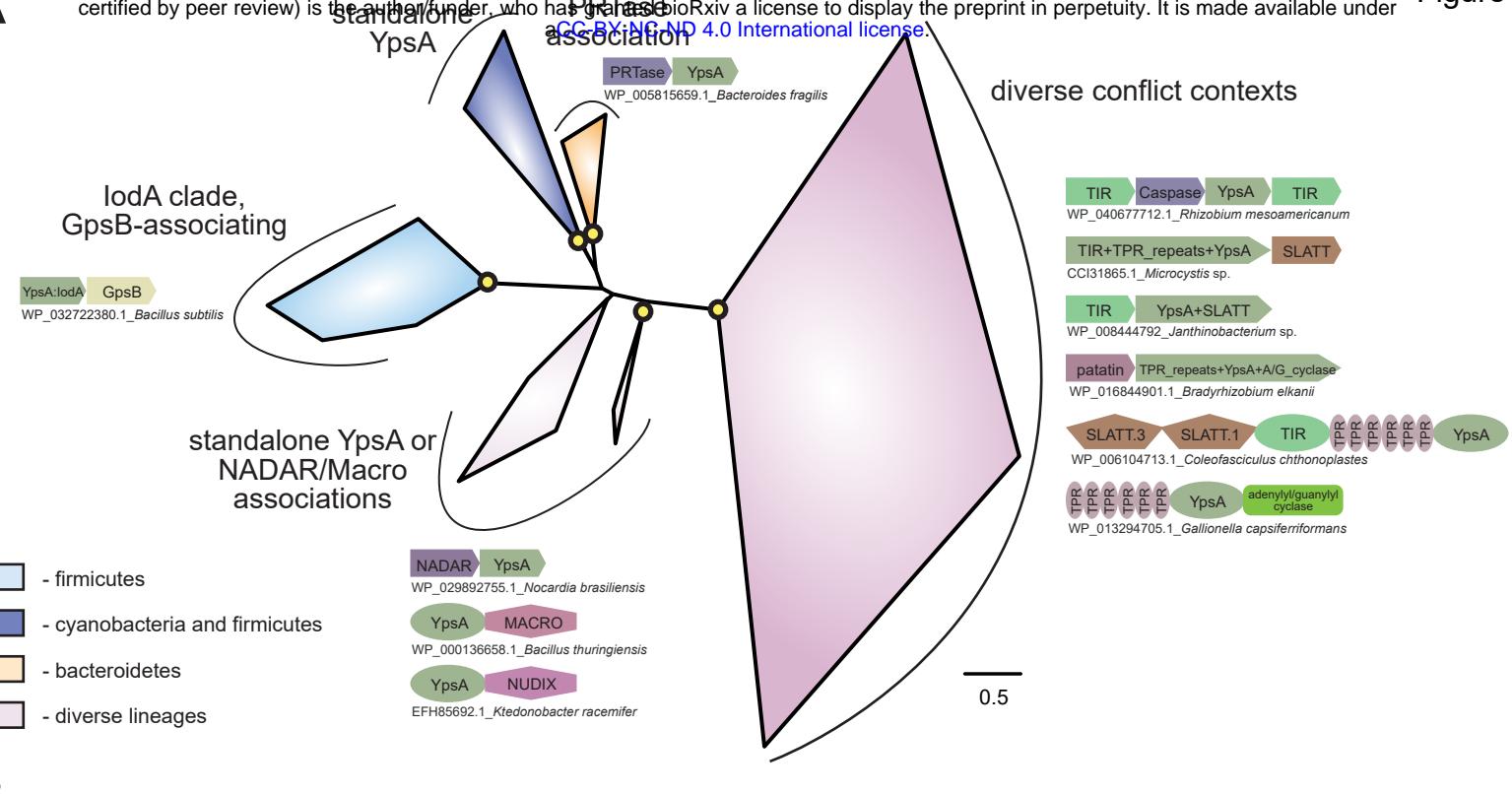
660 49. Youngman P, Perkins JB, & Losick R (1984) Construction of a cloning site near  
661 one end of Tn917 into which foreign DNA may be inserted without affecting  
662 transposition in *Bacillus subtilis* or expression of the transposon-borne erm gene.  
663 *Plasmid* 12(1):1-9.

664 50. Forsyth RA, *et al.* (2002) A genome-wide strategy for the identification of  
665 essential genes in *Staphylococcus aureus*. *Mol Microbiol* 43(6):1387-1400.

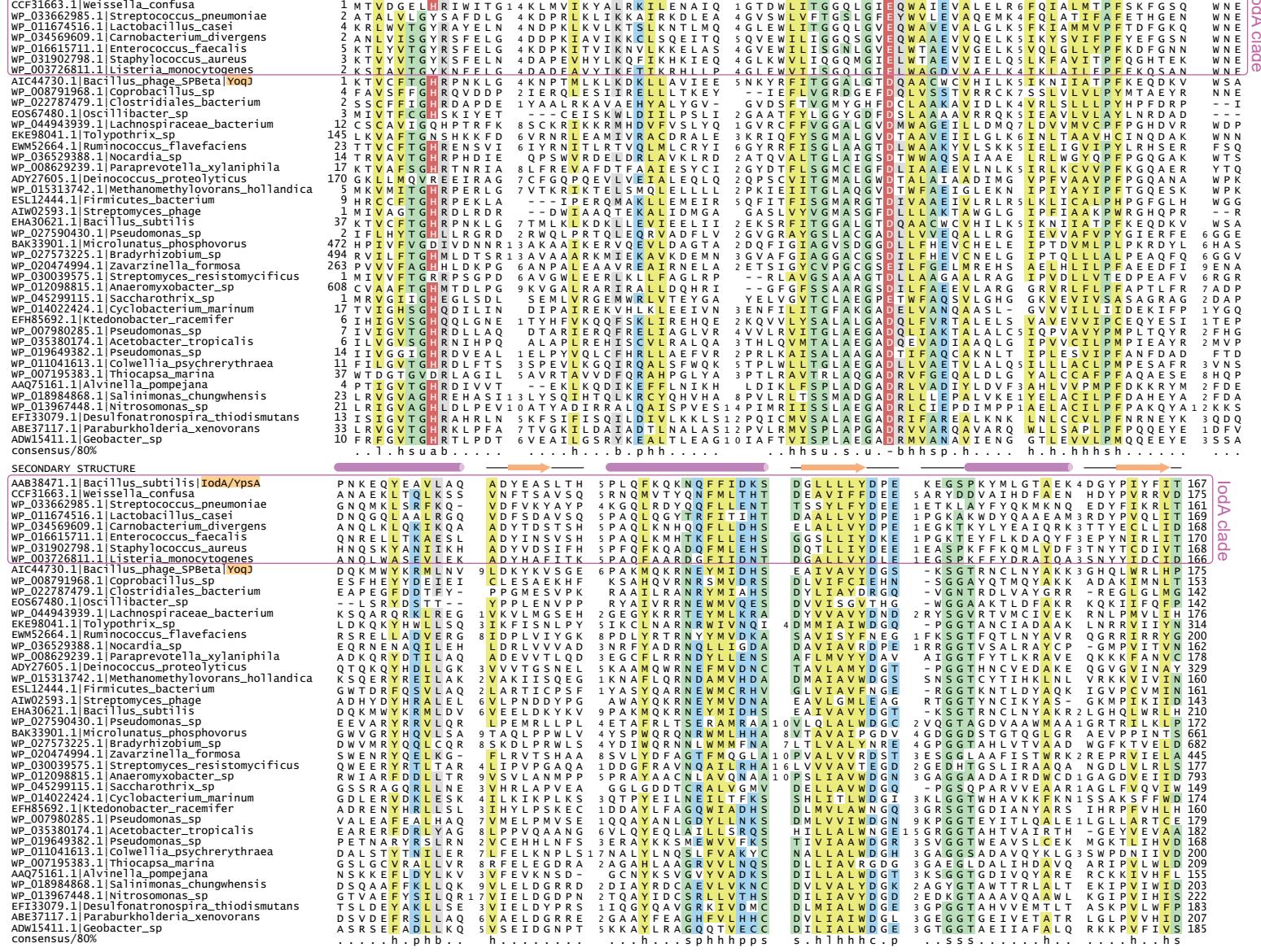
666 51. Sterlini JM & Mandelstam J (1969) Commitment to sporulation in *Bacillus subtilis*  
667 and its relationship to development of actinomycin resistance. *Biochem J*  
668 113(1):29-37.

669 52. Eswaramoorthy P, *et al.* (2014) Asymmetric division and differential gene  
670 expression during a bacterial developmental program requires DivIVA. *PLoS*  
671 *Genet* 10(8):e1004526.

672 53. Altschul SF, *et al.* (1997) Gapped BLAST and PSI-BLAST: a new generation of  
673 protein database search programs. *Nucleic Acids Res* 25(17):3389-3402.


674 54. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and  
675 high throughput. *Nucleic Acids Res* 32(5):1792-1797.

676 55. Lassmann T, Frings O, & Sonnhammer EL (2009) Kalign2: high-performance  
677 multiple alignment of protein and nucleotide sequences allowing external  
678 features. *Nucleic Acids Res* 37(3):858-865.


679 56. Price MN, Dehal PS, & Arkin AP (2010) FastTree 2--approximately maximum-  
680 likelihood trees for large alignments. *PLoS One* 5(3):e9490.

681

Figure 1



3



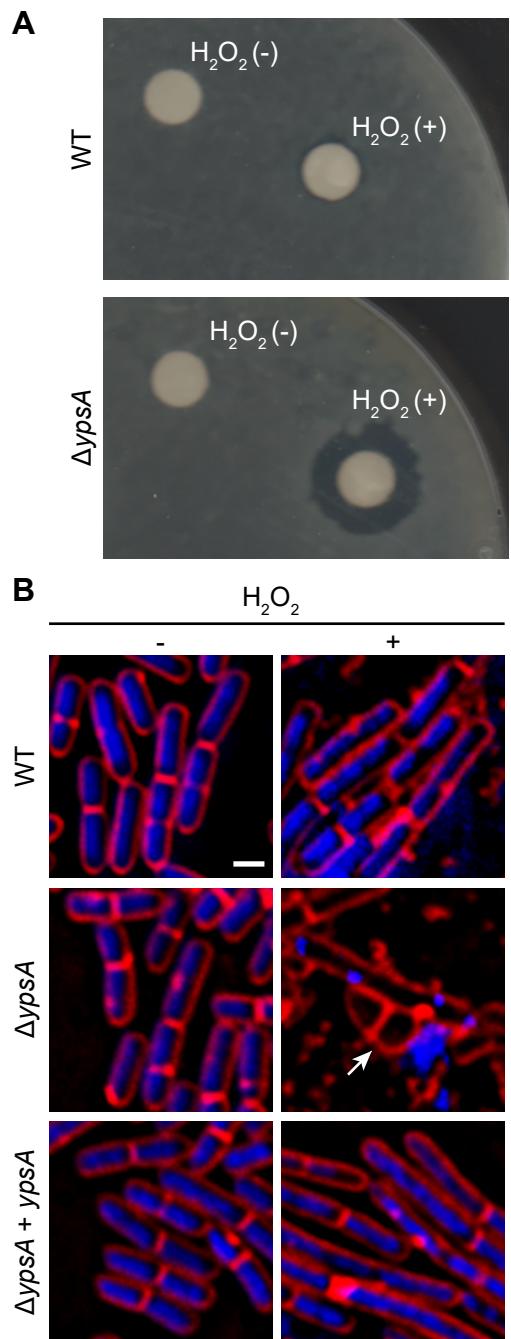



Figure 2

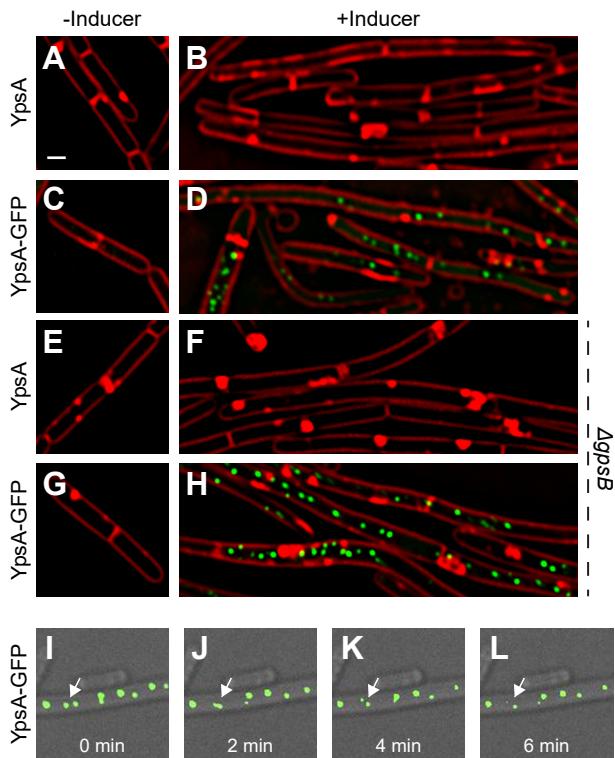



Figure 3

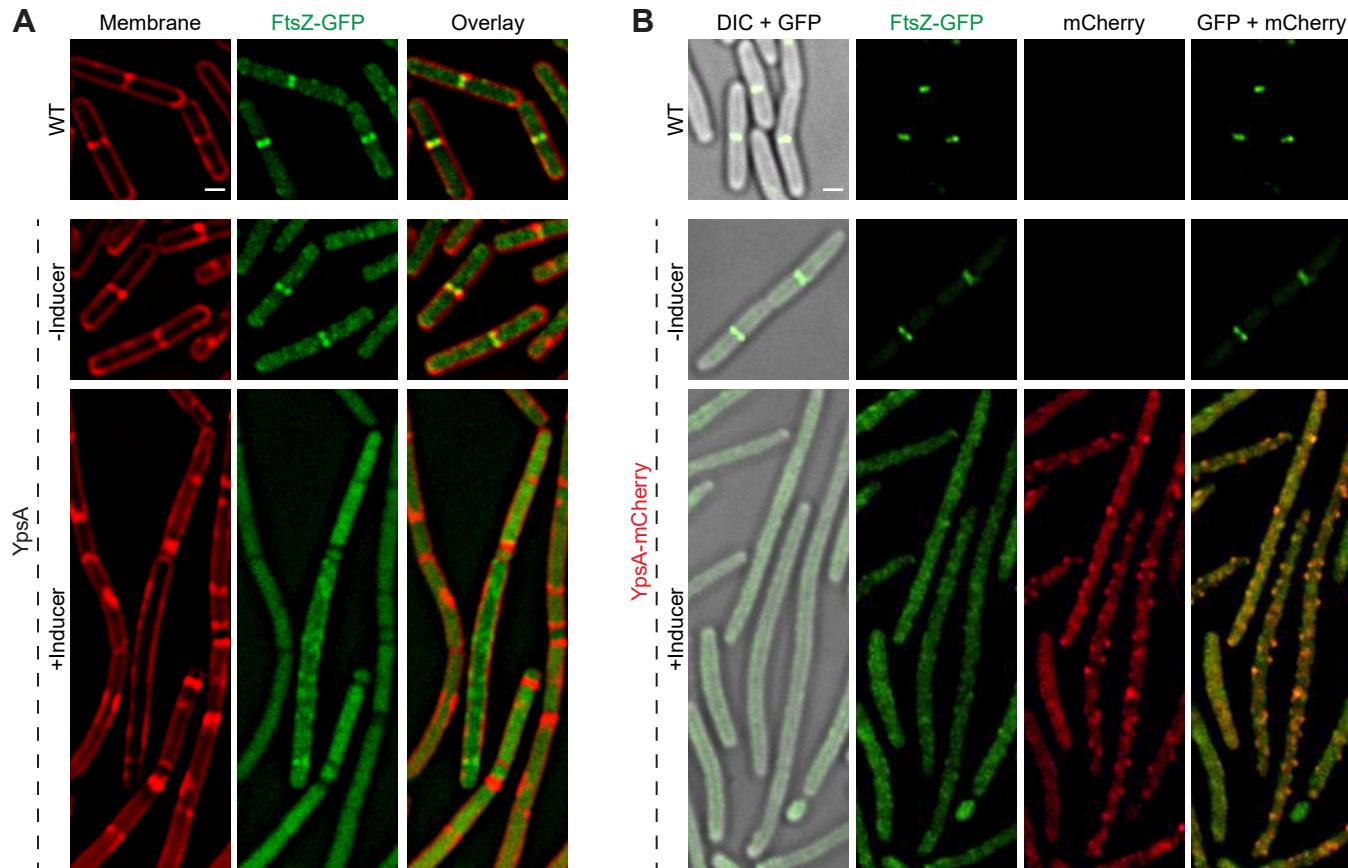



Figure 4

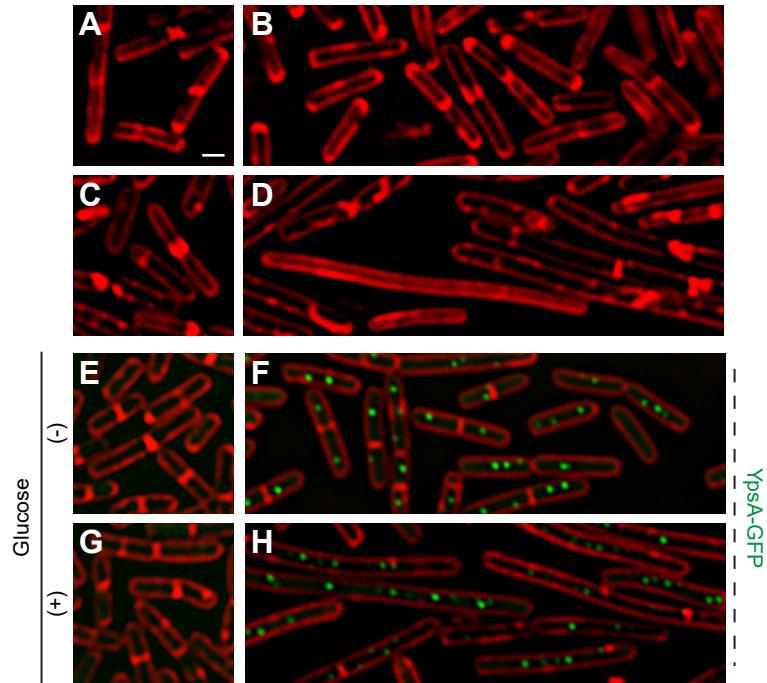



Figure 5

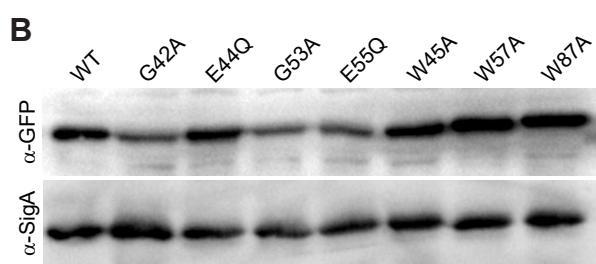
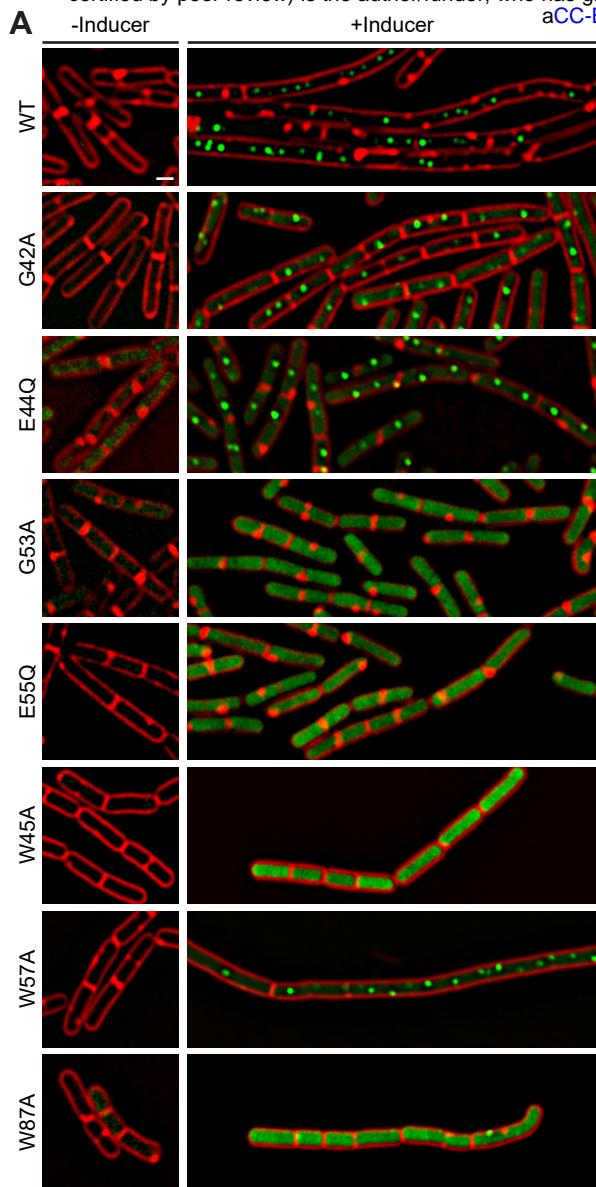




Figure 6

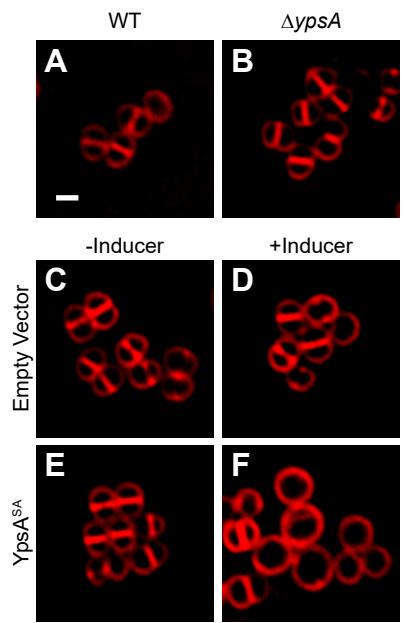



Figure 7

**Table 1** Selective list of putative interaction partners of YpsA

| Gene           | Annotation                                                                              |
|----------------|-----------------------------------------------------------------------------------------|
| <i>ytcl</i>    | uncharacterized acyl-CoA ligase Ytcl                                                    |
| <i>lysA</i>    | diaminopimelate decarboxylase                                                           |
| <i>hutU</i>    | urocanate hydratase, repressed by CcpA and CodY                                         |
| <i>argF</i>    | ornithine carbamoyltransferase, repressed by CodY                                       |
| <i>ymdB</i>    | uncharacterized protein, phosphodiesterase                                              |
| <i>uppS</i>    | isoprenyl transferase (cell wall biosynthesis)                                          |
| <i>fadH</i>    | probable 2,4-dienoyl-CoA reductase                                                      |
| <i>yncM</i>    | uncharacterized secreted protein, repressed by AbrB                                     |
| <i>yjoB</i>    | FtsH-like ATPase                                                                        |
| <i>gdh</i>     | glucose 1-dehydrogenase (NAD)                                                           |
| <i>ctaE</i>    | cytochrome-c oxidase (subunit III), repressed by CcpA and AbrB                          |
| <i>yojK</i>    | uncharacterized UDP-glucosyltransferase                                                 |
| <i>mpr</i>     | extracellular metalloprotease, repressed by CodY                                        |
| <i>yvcN</i>    | uncharacterized acetyltransferase, repressed by CcpA                                    |
| <i>ppnKA</i>   | NAD kinase 1                                                                            |
| <i>resE</i>    | sensor histidine kinase, regulates aerobic and anaerobic respiration, repressed by CcpA |
| <i>spolIID</i> | stage III sporulation protein D                                                         |
| <i>lytF</i>    | peptidoglycan endopeptidase LytF                                                        |
| <i>ykul</i>    | uncharacterized EAL-domain containing protein, repressed by CcpA                        |
| <i>rex</i>     | redox-sensing transcriptional repressor (NADH sensor)                                   |
| <i>xlyB</i>    | N-acetylmuramoyl-L-alanine amidase                                                      |
| <i>xepA</i>    | phage-like element PBSX protein XepA, lytic exoenzyme                                   |
| <i>yrrL</i>    | UPF0755 protein YrrL, potential terminase for peptidoglycan polymerization              |
| <i>yqgA</i>    | cell wall-binding protein YqgA                                                          |
| <i>dltD</i>    | D-alanine transfer protein DltD                                                         |
| <i>maeA</i>    | probable NAD-dependent malic enzyme                                                     |