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17 ABSTRACT

18 Bacteria adapt to different environments by regulating cell division and several

19  conditions that modulate cell division have been documented. Understanding how

20  bacteria transduce environmental signals to control cell division is critical to comprehend
21  the global network of cell division regulation. In this article we describe a role for Bacillus
22 subtilis YpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and

23  ligand-binding proteins, in cell division. We observed that YpsA provides protection

24 against oxidative stress as cells lacking ypsA show increased susceptibility to hydrogen

25  peroxide treatment. We found that increased expression of ypsA leads to cell division

26  inhibition due to defective assembly of FtsZ, the tubulin-like essential protein that marks

27  the sites of cell division. We showed that cell division inhibition by YpsA is linked to

28  glucose availability. We generated YpsA mutants that are no longer able to inhibit cell

29 division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as
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30 overproduction of YpsA in Staphylococcus aureus also impairs cell division. Therefore,
31  we propose ypsA to be renamed as iodA for inhibitor of division.

32

33 IMPORTANCE

34  Although key players of cell division in bacteria have been largely characterized, the

35 factors that regulate these division proteins are still being discovered and evidence for
36 the presence of yet-to-be discovered factors has been accumulating. How bacteria

37  sense the availability of nutrients and how that information is used to regulate cell

38  division positively or negatively is less well-understood even though some examples

39 existin the literature. We discovered that a protein of hitherto unknown function

40  belonging to the SLOG superfamily of nucleotide/ligand-binding proteins, YpsA,

41  influences cell division in Bacillus subtilis by integrating metabolic status such as the

42  availability of glucose. We showed that YpsA is important for oxidative stress response
43 in B. subtilis. Furthermore, we provide evidence that cell division inhibition function of
44 YpsA is also conserved in another Firmicute Staphylococcus aureus. This first report on
45  the role of YpsA (lodA) brings us a step closer in understanding the complete tool set
46  that bacteria have at their disposal to regulate cell division precisely to adapt to varying
47  environmental conditions.

48

49 INTRODUCTION

50 Cell division in bacteria is a well-orchestrated event that is achieved by the concerted
51  action of approximately a dozen different key division proteins (1). Amongst them a

52  protein central to cell division in most bacteria is the tubulin homolog, FtsZ, which marks
53 the site of cytokinesis (2, 3). In addition to standard spatial regulators of septum

54  positioning (4), factors that sense nutrient availability (5, 6), DNA damage (7-9), alternate

55 external environment (10, 11), have been shown to influence cell division. The
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observation that cell division in model organisms Escherichia coli and Bacillus subtilis
lacking well-studied Min and nucleoid occlusion regulatory systems undergo cell division
largely unperturbed (12), prompted us to investigate the presence of other factors
involved in cell division regulation. Here we describe the role of lodA (YpsA), a protein

conserved in several members of the Firmicutes phylum.

The genes iodA (ypsA) and gpsB (formerly ypsB) are in a syntenous relationship in
many Firmicute genomes (Fig. 1A). GpsB is a cell division protein that regulates
peptidoglycan synthesis in B. subtilis (13, 14), Streptococcus pneumoniae (15, 16), and
Listeria monocytogenes (17). More recently our group showed that Staphylococcus
aureus GpsB affects the polymerization kinetics of FtsZ directly (18). As genes in a
syntenous arrangement across multiple genomes, often referred to as conserved gene
neighborhoods, are commonly indicative of functional relationships (19, 20), we were
curious to study the function of YpsA in B. subtilis. Prior to our investigation, the crystal
structure of B. subtilis YpsA was solved by a structural genomics group (PDB ID: 2NX2).
Based on unique structure and sequence features (Fig. 1B), YpsA was classified as the
founding member of the “YpsA proper” clade in the SMF/DprA/LOG (SLOG) protein
superfamily (21). The SLOG superfamily contains a specific form of the Rossmannoid
fold, and is involved in a range of nucleotide-related functions. These include the binding
of low-molecule weight biomolecules, nucleic acids, free nucleotides, and the catalyzing
of nucleotide-processing reactions (22-24). Recently, several members of the SLOG
superfamily were further identified as key components in a newly-defined class of
biological conflict systems centered on the production of nucleotide signals. In these
systems, SLOG proteins are predicted to function either as sensors binding nucleotide

signals or as nucleotide-processing enzymes generating nucleotide derivatives which
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81 function as signals (21). Despite these new reports, the precise function of YpsA and its

82  namesake family have yet to be experimentally investigated.

83

84  Here we report that (i) YpsA provides protection against oxidative stress; (ii)

85  overexpression of ypsA causes mislocalization of FtsZ-GFP that results in cell

86 filamentation which is dependent on glucose availability; (iii) YpsA-GFP forms dynamic

87  foci that is likely mediated by nucleotide binding; and finally (iv) overexpression of ypsA

88 in S. aureus results in cell enlargement, typical of cell division inhibition in cocci (25),

89  suggesting a conserved function of YpsA across Firmicutes with very different cell-

90 morphologies. In sum, these results constitute the first report on YpsA and its role in

91  oxidative stress response and cell division regulation. Therefore, we propose to rename

92  YpsA as lodA (inhibitor of division) to best describe the function of YpsA.

93

94 RESULTS

95

96  YpsA provides oxidative stress protection

97  As afirst step to study the significance of YpsA, we studied the phenotype of ypsA null

98  strain in several stress-inducing conditions through standard disc-diffusion assay. As

99  shown in Fig. 2A, we noticed that ypsA null cells exhibited a larger zone of inhibition in
100  comparison to WT when incubated with discs soaked in 1 M H2O2 (WT: 1.8 £ 0.45 mm;
101  AypsA: 7.6 £ 0.54 mm). It is noteworthy that ypsA transcript level is elevated upon
102  hydrogen peroxide treatment (26, 27). To further evaluate this phenotype, we monitored
103  the cells grown in liquid culture in the absence or presence of 1 mM H>O- using
104  fluorescence microscopy (Fig. 2B). Untreated cells lacking ypsA appear morphologically
105  similar to WT. Although WT cells were tolerant to HO; treatment, AypsA cells displayed

106  obvious signs of “sick cells” en route to lysis such as membrane thickening, cell
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morphology change, condensed DNA (Fig. 2B; compare right top and middle panels).
Quantification of H2O2-treated cells revealed that 27% of WT and 79% of AypsA cells
were sick (n =100). To test if this phenotype is specifically due to absence of YpsA, we
introduced an inducible copy of ypsA at an ectopic locus. In the presence of inducer,
H>O2-treated cells resemble WT (Fig. 2B, bottom panel; 23% sick cells, n =100)
indicating that YpsA is responsible for providing protection against H.O»-induced

oxidative stress.

Increased production of YpsA inhibits cell division

Next, we examined ypsA overexpression phenotype. For this purpose, we constructed
an otherwise WT-strain to ectopically express either ypsA or ypsA-gfp upon addition of
inducer. Quantification of GFP fluorescence revealed that there was 3-fold
overproduction of YpsA-GFP in the presence of inducer (2415 + 1296 arbitrary units; n
=50) when compared to YpsA-GFP produced under the control of its native promoter
(732 = 692 arbitrary units; n =50). We then monitored the cell morphology of cells
overproducing YpsA or YpsA-GFP. To our surprise, as shown in Fig. 3, when compared
to the cell lengths of inducible strains grown in the absence of inducer [YpsA: 2.92 +
0.81 um (Fig. 3A); YpsA-GFP: 3.89 £ 0.98 um (Fig. 3C); n =100], cells overproducing
YpsA or YpsA-GFP appeared elongated [YpsA: 8.92 + 4.89 um (Fig. 3B); YpsA-GFP:
9.57 + 4.99 ym (Fig. 3D); n =100] implying cell division is inhibited by YpsA. Also, this
result indicated that the fluorescent protein tagged fusion of YpsA is functional. Tracking
fluorescence of YpsA-GFP showed that YpsA assembles into discrete foci (Fig. 3D).
Time-lapse microscopy conducted at 2 min interval for 10 min revealed that YpsA foci
are highly dynamic (Fig. 3I-L). Since YpsA-GFP retains fluorescence as a focus and that
the foci are mobile, and focus disruption occurs in some YpsA mutants (Fig. 6), we

conclude that the foci are not artifacts of non-functional misfolded aggregates.
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133

134  Since genes coding for YpsA and GpsB, a known cell division protein, are in a

135  syntenous relationship we aimed to test whether YpsA overproduction-mediated

136 filamentation is dependent on GpsB. As shown in Figs. 3E-H, cells lacking gpsB also
137  formed filaments upon overexpression of ypsA or ypsA-gfp, suggesting that YpsA-

138  mediated cell division inhibition is independent of GpsB.

139

140  Typically, filamentation is a result of impaired FtsZ ring assembly. To test whether FtsZ
141 ring assembly is affected by YpsA overproduction, we engineered a strain that

142  constitutively produces FtsZ-GFP (28, 29), to also produce either ypsA or ypsA-mCherry
143 under the control of an inducible promoter. In FtsZ-GFP producing otherwise WT cells,
144  the cell length appeared normal and FtsZ assembled into FtsZ rings at mid-cell in 90% of
145  the cells (Fig. 4A and 4B; top panels). In the strain capable of producing both FtsZ-GFP
146 and YpsA or YpsA-mCherry, when cells were grown in the absence of inducer, FtsZ-
147  GFP localization appeared similar to the control strain (Fig. 4A and 4B; middle panels).
148  In striking contrast, when cells were grown in the presence of inducer FtsZ-GFP did not
149  assemble into rings and instead appeared diffused (Fig. 4A and 4B; bottom panels).
150

151 Filamentation is dependent on glucose availability

152  As cotD, which codes for a spore coat protein is immediately upstream of ypsA (Fig.
153  S1A), we were curious to see if ypsA has any role in sporulation. To address this, we
154  performed a sporulation assay using Casein Hydrolysate (CH)-based growth medium
155  and Sterlini-Mandelstam sporulation medium in triplicates (30). The average sporulation
156  frequency of AypsA strain was 176% relative to WT (100%), which is a modest 2-fold
157  increase in frequency suggesting YpsA has no appreciable role in sporulation. To study

158  whether YpsA overproduction-mediated filamentation impairs sporulation, we conducted
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a similar sporulation assay and found that cells overexpressing ypsA (98%) or ypsA-gfp
(127%) also displayed sporulation frequency similar to WT. To fully comprehend how
filamentous cells achieve WT-like sporulation efficiency, we observed the cell
morphology of ypsA overexpressing cells grown in the presence of inducer in CH
medium using fluorescence microscopy. The cell lengths of ypsA or ypsA-gfp
overexpressing cells appeared similar when grown with or without the inducer [YpsA:
2.85+ 0.72 ym (Fig. 5A) vs 3.23 + 0.93 pm (Fig. 5B); YpsA-GFP: 3.01 + 0.59 pym (Fig.
5E) vs 3.51 £ 1.21 ym (Fig. 5F); n =100], unlike what we observed when cells were
grown in LB medium (compare Figs. 5AB and Figs. 5EF with Figs. 3A-D). Although cells

were not filamentous, YpsA foci still formed in CH (Fig. 5F).

We hypothesized that lack of nutrients in CH compared to LB might be the reason for
lack of filamentation. To test our hypothesis, we externally added 1% glucose to the CH
medium. Intriguingly, cells grown in CH in the presence of glucose and inducer to
overproduce YpsA or YpsA-GFP lead to filamentation [YpsA: 3.31 £ 0.79 uym (Fig. 5C)
vs 6.49 £ 2.95 um (Fig. 5D); YpsA-GFP: 3.34 £ 0.94 pm (Fig. 5G) vs 9.48 + 4.05 ym
(Fig. 5H); n =100], suggesting that filamentation is dependent on metabolic status:

specifically glucose availability in this case.

Identification of amino acid residues important for YpsA function

Aided by the crystal structure and computational analysis of the YpsA family of SLOG
domains we identified the conserved residues that are predicted to be important for
maintaining the function of YpsA (Fig. 1B; see arrows). We performed site-directed
mutagenesis of two of these key residues and generated GFP-tagged ypsA variants
G53A and E55Q. We also generated other mutants to more generally explore YpsA

function namely, G42A, E44Q, W45A, W57A, or W87A. We ensured that all mutants
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were stably produced through immunoblotting (Fig. 6B). Microscopic examination
revealed that all YpsA variants except W57A were unable to trigger filamentation upon
overexpression (Fig. 6A), suggesting that YpsA function is compromised in all these
cases. We also noticed that G53A, E55Q, W45A, and W87A mutants displayed impaired
ability to form foci. This is consistent with the observation that the first two of these
mutations disrupt the conserved, predicted nucleotide-binding site of the YpsA family

(21), and the latter two likely disrupt a key strand and helix of the Rossmannoid fold.

Putative interaction partners of YpsA

To understand the role of YpsA via identifying its potential interaction partners, we
conducted FLAG-immunoprecipitation using YpsA-FLAG and YpsA-GFP-FLAG
constructs as baits. Untagged YpsA served as our negative control. After confirming the
enrichment of proteins in the eluate fractions through silver staining and anti-Flag
immunoblotting, the samples were submitted for protein identification via mass
spectrometry. To identify proteins that specifically interact with YpsA, we eliminated all
proteins that also appeared in our negative control, as they are likely non-specifically
bound proteins and retained only proteins that were present specifically in both YpsA-
FLAG and YpsA-GFP-FLAG eluates. A selective list of protein interaction partners of
YpsA is shown in Table.1. The entire list is provided in Table. S2. In addition to our bait,
FLAG-tagged versions of YpsA and presumably native copies of YpsA due to self-
assembly, we noticed many proteins whose genes are under nutrient availability-sensing
CcpA (31) or CodY (32) or AbrB (33) regulon(s) in our IP results. Interestingly, several of
the proteins that associate with YpsA bind NAD or its derivatives and/or play a role in
redox-sensing. However, given that these are abundant metabolic enzymes we cannot

be sure of the significance of these interactions at this time.
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Overproduction of YpsA inhibits cell division in S. aureus

To investigate if the role of YpsA is conserved in other Firmicutes, we chose to study the
function of YpsA in S. aureus. Cells lacking intact ypsA in S. aureus (34), are viable and
their cell morphology appear similar to WT control suggesting ypsA is not an essential
gene (Fig. 7AB). Next, we placed S. aureus ypsA (ypsA>*) under the control of xylose-
inducible promoter in a S. aureus plasmid vector. As shown in Fig. 6, the cell diameter of
WT control (0.86 + 0.18 um; n =100; Fig. 7A) and vector control strain grown in the
absence of inducer (0.99 + 0.21 ym; n =100; Fig. 7C) and presence of inducer (1.12 £
0.21 ym; n =100; Fig. 7D), resembled inducible ypsA> strain grown in the absence of
inducer (1.19 = 0.30 um; n =100; Fig. 7E). Interestingly, cells overexpressing ypsA™
were unable to undergo septation and displayed clear cell enlargement (1.72 + 0.37 pm;
n =100; Fig. 7F), a telltale sign of cell division inhibition in this organism. Thus, the
function of YpsA in inhibiting cell division is conserved in S. aureus, and possibly in other

Firmicutes which code for it despite the differences in their cell-morphology.

DISCUSSION

Bacterial cell division is a highly regulated process and many division factors have
already been characterized especially in model organisms E. coli and B. subtilis. Yet,
cell division is only mildly affected even in the absence of a combination of known
division regulators in these organisms (12), thus predicting the presence of other
proteins that could affect the cell division process. Here, we discuss the role of YpsA, a
protein of hitherto unknown function conserved in diverse Firmicutes. We show that
YpsA offers protection against oxidative stress. However, the precise mechanism of how
this is achieved remains to be elucidated. Next, we show that YpsA overproduction leads

to impaired FtsZ ring assembly and ultimately cell division inhibition.
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It has been reported that cotD-ypsA transcriptional unit is repressed by the regulator
essential for entry into sporulation, Spo0OA (35), which binds to a region upstream of cotD
(36). It has been shown that cotD is also repressed by a late stage sporulation-specific
transcriptional regulator, SpolllD (37). Both cotD and ypsA transcripts are at similar
levels in various growth conditions except in those that promote sporulation [Fig. S1B;
(26, 27)]. The function of CotD during normal growth, if any, needs to be evaluated. It
has been reported that cotD level increases in a concentration-dependent manner in
response to antibiotic treatment (38). In this report we show that cells lacking ypsA or
overexpressing ypsA show no obvious sporulation defect and that YpsA-mediated cell
division inhibition is dependent on glucose availability. Other reports exist that show a
clear connection between glucose availability and cell division (1, 39). One such factors
that inhibit cell division depending on the presence of glucose is UgtP which is a UDP-
glucose diacylglycerol glucosyltransferase (40). However, as shown in Fig. S2, cell
lacking ugtP also undergo filamentation upon increased production of YpsA, suggesting

that cell division inhibition by YpsA is independent of UgtP.

YpsA mutants generated based on the crystal structure and sequence analysis revealed
the importance of certain key residues for YpsA function (Fig. 6). Interestingly, G53 and
E55 of B. subtilis YpsA which form a conserved signature GxD/E motif, are predicted to
be important for substrate-binding in YpsA clade of proteins in SLOG superfamily [Figure
1B; (21)]. Since foci-formation was disrupted in both G53A and E55Q mutants, it is
plausible substrate-binding allows for multimeric complex formation. It is noteworthy that
mutants such as G42A and E44Q which are able to form foci, therefore likely bind
substrate, lack the ability to elicit filamentation. Also, YpsA-GFP overproducing cells
grown in CH medium were able to form foci but unable to induce filamentation (Fig. 5F).

These observations support a model in which substrate binding by YpsA is a
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prerequisite for cell division inhibition but substrate binding alone is not sufficient to
induce filamentation, assuming foci formation is indicative of substrate binding. It is
possible YpsA executes cell division inhibition function through interactions with other

protein partners.

Consistent with this our pull-down assay identified multiple putative interaction partners
of YpsA, including multiple NAD-binding proteins. Interestingly, the connection between
NAD or its derivative ADP-ribose and the members of SLOG superfamily of proteins that
belong to YpsA clade has been previously suggested (21). Given that ADP-ribosylation
affects FtsZ polymerization (41, 42), and YpsA is in close association with biological
conflict systems and phosphoribosyl transferases (Fig. 1B), it is possible that YpsA-
mediated inhibition of cell division may involve ADP-ribosylation. Similarly, oxidative
stress protection provided by YpsA might involve sensing or binding NAD or its
derivatives as well. The link between metabolism of nicotinamide nucleotide, glucose

availability, and oxidative stress has been reported previously (43, 44).

Lastly, we show that YpsA in another Firmicute, S. aureus, also inhibits cell division,
hinting at a conserved role for YpsA in these Gram-positive organisms. In B. subtilis, a
prophage associated protein of unknown function, YoqJ, also belongs to the YpsA family
(Fig. 1B). Given that there are clear examples of phage proteins affecting bacterial cell
division (45-48), it would be interesting to see if Yoqd also influences cell division.
Although the GxD/E motif is conserved in YoqJ, several residues we identified to be
essential in YpsA are not conserved in YoqJ (Fig. 1B and Fig. 6). The Firmicutes-specific
conserved gene coupling between ypsA and gpsB starkly contrasts the diversity of the
gene neighborhoods found in other branches of YpsA family phylogenetic tree.

Superposition of conserved gene-neighborhoods onto the phylogenetic tree (Fig. 1A)
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289  revealed a stark compartmentalization in conserved genome contexts. The ypsA and
290  gpsB gene coupling is found only in one of the four major branches in the tree. Each of
291 three others display distinct conserved neighborhood proclivities: 1) a branch where
292  YpsA couples strongly in a gene pair relationship with a phosphoribosyltransferase
293 (PRTase) domain, 2) a branch where YpsA is found in scattered associations with

294  various components of NAD processing and salvage pathways, and 3) a diverse

295  collection of contexts across a broad class of bacterial lineages representative of the
296  aforementioned nucleotide-centered biological conflict systems, where YpsA is likely to
297 actin nucleotide signal-generation or nucleotide-sensing [Fig. 1B; (21)]. These

298  observations suggest that the B. subtilis YpsA may have acquired a more

299 institutionalized role in cell division within the Firmicutes phylum. Nevertheless,

300 understanding the precise biochemical mechanism by which B. subtilis YpsA executes
301 its function would potentially shed light on the more general function of YpsA across a
302  wide range of organisms and biological conflict systems.

303

304 MATERIALS AND METHODS

305 Strain construction and general methods

306  All B. subtilis strains used in this study are isogenic derivatives of PY79 (49). See table
307  S1A for strain information. Overproduction of YpsA was achieved by PCR amplifying
308  ypsA using primer pairs o0P106/0P108 (see table S1B for oligonucleotide information)
309 and ligating the fragment generated cut with Sall and Nhel with IPTG-inducible amyE
310 locus integration vector pDR111 (D. Rudner) also cut with Sall and Nhel and the

311  resulting plasmid was named pGG27. To construct a GFP fusion, ypsA fragment that
312  was amplified with primer pairs oP106/0P107 and digested with Sall and Nhel was

313 ligated with gfp fragment generated with oP46/0P24 and cut with Nhel/Sphl and cloned

314 into pDR111 digested with Sall/Sphl resulting in plasmid pGG28. The G42A, E44Q,
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W45A, G53A, E55Q, W57A, and W87A mutations were introduced using the
QuikChange site-directed mutagenesis kit (Agilent) using pGG28 as template. ypsA-
3xflag was constructed via two step PCR using pGG27 as a template. Round one PCR
was completed using primers oP106 and oP291. The PCR product from round one was
then used as a template for round two PCR, which was completed using primer pairs
oP106 and oP292. The final PCR product was then cloned into pDR111 using Sall and
Nhel restriction sites, making plasmid pRB33. Similarly, ypsA-gfp-3xflag was constructed
via two step PCR using pGG28 as a template. Round one PCR was completed using
primers oP106 and oP349. The PCR product from round one was then used as a
template for round two PCR, which was completed using primers oP106 and oP350. The
final PCR product was then cloned into pDR111 using Sall and Sphl restriction sites,
making plasmid pRB34. The engineered plasmids were then used to introduce genes of
interest via double crossover homologous recombination into the amyE locus of the B.
subtilis chromosome. Expression of ypsA-his in BL21-DE3 Escherichia coli cells was
achieved by PCR amplifying ypsA-his with primer pairs oRB9 and oRB33, and cloning
into Xbal and BamHI resticition sites of pET28a, producing plasmid pRB21. YpsA-his
was purified using standard protocol involving nickel column-based affinity
chromatography. To produce S. aureus YpsA in S. aureus strain SH1000, ypsASA
fragment (PCR amplified with oRB27/0P314 primer pairs) was cloned into xylose-
inducible pEPSA5 plasmid using EcoRI and BamHI restriction sites (50), generating
plasmid pRB36. Plasmids were first introduced into S. aureus RN4220 via

electroporation, and then transduced into SH1000 (18).

Media and culture conditions
Overnight B. subtilis cultures grown at 22 °C in Luria-Bertani (LB) growth medium were

diluted 1:10 into fresh LB medium and grown to mid-logarithmic growth phase (ODsgo =
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0.5), unless otherwise stated. Expression of genes under IPTG-controlled promoter was
induced by addition of 1 mM IPTG (final concentration) to the culture medium unless
noted otherwise. Overnight S. aureus cultures were grown at 22°C in tryptic soy broth
(TSB) supplemented with 15 ug/ml chloramphenicol and/or 5 ug/ml erythromycin where
required for plasmid maintenance. Cultures were then diluted 1:10 into fresh medium
containing appropriate antibiotics and grown to mid-logarithmic growth phase (ODeggo =
0.5), unless otherwise stated. Expression of genes under xylose-controlled promoter

was induced by the addition of 1% xylose when required.

Sporulation assay

Sporulation assay was conducted using resuspension protocol as described previously
(30). Briefly, overnight cultures of B. subtilis cells were grown in LB medium at 22°C,
were diluted 1:10 in fresh casein hydrolysate medium (CH, KD Medical) and grown to
mid-log phase twice before culture was resuspended in Sterlini-Mandelstam sporulation
medium (SM, KD Medical) to induce sporulation (51). Growth in CH medium and entry
into sporulation in SM medium were monitored via fluorescence microscopy. Total viable
cell counts (CFU/ml prior to heat treatment) and spore counts (CFU/ml after incubation
at 80°C for 10 min) were obtained for calculating sporulation frequency (spore

count/viable count).

Disc diffusion assay

All disc diffusion assays were completed on LB agar plates. Strains PY79 and RB42
were grown until ODep=0.5, and then 100ul of each culture was added to the respective
plates. Briefly, 15ul of 1M hydrogen peroxide was added to 7mm Whatman paper discs,

which were then placed equidistant from each other on top of the inoculated media. A
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disc containing no hydrogen peroxide was used as a negative control. Plates were then
incubated overnight at 37°C. The diameter of the disc (7mm) was subtracted for the

zone of inhibition measurements.

Immunoprecipitation and mass spectrometry

The YpsA-FLAG immunoprecipitation was performed using

FLAGIPT1 immunoprecipitation kit (Sigma-Aldrich) as described previously (52). Briefly,
1 ml cell lysates of cells harvested from 20 ml LB culture induced with 1 mM IPTG (final
concentration) grown for 2 h post-induction to produce FLAG-tagged proteins or
untagged negative control were generated by sonication. Cell extracts were then
incubated overnight with 50 ul anti-FLAG M2 affinity beads supplied by the
manufacturer. The beads were then washed 3 times with 1x wash buffer and the
supernatant was removed by pipetting. Proteins bound to the beads were stripped by
adding 80 pl of 2x sample buffer supplied by the manufacturer and heating at 100 °C for
five minutes. The supernatants were collected and subjected to SDS-PAGE analysis
prior to mass spectrometry. Western blot using anti-Flag antibody (Invitrogen) was used

to detect Flag-tagged proteins in all fractions collected.

For mass spectrometry, protein extracts were separated by SDS-PAGE and silver-
stained for visualization. The gel was divided into 3 fractions, and each gel section was
minced and de-stained before being reduced with dithiothreitol (DTT), alkylated with
iodoacetamide (IAA), and finally digested with Trypsin/Lys-C overnight at 37

°C. Peptides were extracted using 50/50 acetonitrile (ACN)/H20/0.1% formic acid and
dried in a vacuum concentrator. Peptides were resuspended in 98%H>0/2%ACN/0.1%
formic acid for LC-MS/MS analysis. Peptides were separated using a 50 cm C18

reversed-phase HPLC column (Thermo Scientific) on an Ultimate3000 UHPLC (Thermo
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Scientific) with a 60 min gradient (2-32% acetonitrile with 0.1% formic acid) and
analyzed on a hybrid quadrupole-Orbitrap mass spectrometer (Q Exactive Plus, Thermo
Fisher Scientific) using data-dependent acquisition in which the top 10 most abundant
ions are selected for MS/MS analysis. Raw data files were processed in MaxQuant
[19029910] and searched against the current UniprotKB Bacillus subtilis 168 protein
sequence database. Search parameters include constant modification of cysteine by
carbamidomethylation and the variable modification, methionine oxidation. Proteins are

identified using the filtering criteria of 1% protein and peptide false discovery rate.

Microscopy

Aligouts containing 1 ml of culture (B. subtilis and S. aureus) were washed in phosphate
buffered saline (PBS) and then resuspended in 100 ul of PBS containing 1 ug/ml FM4-
64 (membrane stain) and/or 2 ug/ml DAPI (DNA stain). For imaging, 5 ul of sample was
then spotted onto a glass bottom dish (MatTek) and it was covered with an 1% agarose
pad made with sterile water. Still imaging was completed at room temperature. For time-
lapse microscopy, 5 ul aliquots of culture were spotted onto a glass bottom dish, and the
sample was covered with 1% agarose pad made with LB culture medium. Agarose pads
were supplemented with FM4-64 and/or DAPI to stain the cell membrane and DNA
respectively during the course of data collection, and inducer where required to induce
the expression of desired genes. Microscopy was performed using GE Applied Precision
DeltaVision Elite deconvolution fluorescence microscope equipped with a Photometrics
CoolSnap HQ2 camera and environmental chamber. Typically, 17 planes (Z-stacks)
every 200 nm was acquired of all static image data sets and 5 planes every 200 nm was
acquired for time-lapse microscopy to minimize phototoxicity. The images were then

deconvolved using SoftWorx software provided by the manufacturer.
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Sequence Analysis

YpsA sequence similaritiy searches were performed using the PSI-BLAST program (53)
against the non-redundant (NR) database of the National Center for Biotechnology
Information (NCBI). Multiple sequence alignments were built by the MUSCLE and
KALIGN programs (54, 55), followed by manual adjustments on the basis of profile—
profile and structural alignments. Genes residing in conserved neighborhoods were
identified through clustering carried out with the BLASTCLUST program

(ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html). Phylogenetic analysis was

conducted using an approximately-maximum-likelihood method implemented in the
FastTree 2.1 program under default parameters (56), and resulting trees were visualized

initially in the FigTree program [http://tree.bio.ed.ac.uk/softwaref/figtree/].
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443

444

445  FIGURE LEGENDS

446  Figure 1. (A) Phylogenetic tree of the YpsA family, key branches with greater than 70%

447  bootstrap support are denoted with yellow circles. Reproducible clades within the family
448  are color-coded according to their phyletic distribution and labeled with names and

449  representative conserved domain architectures and gene neighborhoods. For these

450 genome context depictions, colored polygons represent discrete protein domains within
451  a protein, while boxed arrows represent individual genes within a neighborhood. Each
452  context is labeled with NCBI accession and organism name, separated by an

453  underscore. For gene neighborhoods, the labeled gene contains the YpsA domain.

454  Abbreviations: A/G_cyclase, adenylyl/guanylyl cyclase. (B) Multiple sequence alignment
455  of the YpsA family of proteins. Secondary structure and amino acid biochemical property
456  consensus are provided on the top and bottom lines, respectively. Black arrows at top of
457  alignment denote positions subject to site-directed mutagenesis. Sequences are labeled
458  to left with NCBI accession and organism name separated by vertical bars. Gene names
459  from the text are provided after organism name, shaded in orange. Selected members of
460 the lodA (YpsA) clade, which associate with GpsB, are enclosed in a purple box.

461  Alignment coloring and consensus abbreviations as follows: b, big and gray; c, charged
462  and blue; h, hydrophobic and yellow; |, aliphatic and yellow; p, polar and blue; s, small
463 and green; u, tiny and green. The conserved aromatic position in the first loop,

464  abbreviated ‘a’, and the conserved negatively-charged position in the second helix,

465  abbreviated ‘-, are both colored in red with white lettering to distinguish predicted,

466  conserved positions located within the active site pocket.

467
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468  Figure 2. YpsA plays a role in oxidative stress response. (A) Disc diffusion assay with
469 lawns made of WT (PY79) or a strain lacking ypsA (RB42) treated with blank disc and 1
470 M H20- are shown. (B) Fluorescence micrographs showing cells of WT (PY79), AypsA
471 (RB42), and AypsA complemented with a copy of inducible ypsA at an ectopic locus
472  (RB160) grown with or without 1 mM H.O, and stained with FM4-64 (membrane, red)
473  and DAPI (DNA, blue). Arrow indicates aberrantly shaped cell. Scale bar: 1 ym.

474

475  Figure 3. Elevated production of YpsA or YpsA-GFP leads to inhibition of cell division.
476  (A-D) Morphology of cells containing inducible ypsA (GG82) or ypsA-gfp (GG83) grown
477  in the absence of inducer IPTG (A and C) or in the presence of inducer (B and D). (E-H)
478  Cells morphology of strains lacking gpsB and containing either inducible ypsA (RB43) or
479  ypsA-gfp (RB44) grown in the absence (E and G) or presence (F and H) of inducer. (I-L)
480 Timelapse micrographs of ypsA-gfp expressing cells (GG83) and time intervals are

481 indicated at the bottom. Arrow indicates foci that are mobile. DIC (gray) and

482  fluorescence of membrane dye (FM4-64; red), GFP (green) are shown. Scale bar: 1 ym.
483

484  Figure 4. YpsA inhibits FtsZ ring assembly. (A) Fluorescence micrographs of cells that
485 either constitutively produce FtsZ-GFP in otherwise wild type strain (PE92; top panel)
486  and cells that constitutively produce FtsZ-GFP and additionally harbor a copy of

487  inducible ypsA (RB15) grown in the absence (middle panel) or presence of inducer IPTG
488  are shown. Fluorescence of FM4-64 membrane dye (red) and GFP (green) are shown.
489  (B) Cellular morphologies of cells that constitutively produce FtsZ-GFP (PE92) and cells
490 that additionally contain a copy of inducible ypsA-mCherry (RB97) grown in the absence
491  (middle panel) or presence of inducer are shown. DIC (gray) and fluorescence of GFP
492  (green) and mCherry (red) are shown. Scale bars: 1 um.

493
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Figure 5. YpsA-mediated cell division inhibition is dependent on glucose availability. (A-
D) Fluorescence micrographs of cells containing inducible ypsA (GG82) or ypsA-gfp
(GG83) grown in the absence of (A and C; E and G) or in the presence of inducer IPTG
(B and D; F and H). The cells were grown either in the absence (A and B; E and F) or
presence (C and D; G and H) of 1% D-glucose. Fluorescence of membrane dye (FM4-

64; red), GFP (green) are shown. Scale bar: 1 um.

Figure 6. Site-directed mutagenesis reveals key residues in YpsA. (A) Cell
morphologies of YpsA-GFP (WT; GG83) and GFP-fusions of G42A (RB119), E44Q
(RB115), G53A (RB120), E55Q (RB116), W45A (RB35), W57A (RB26), and W87A
(RB37) are shown. The cells were grown either in the absence (left panels) or presence
(right panels) of inducer IPTG. Fluorescence of membrane stain FM4-64 (red) and GFP
(green) are shown. Scale bar: 1 um. (B) Production of GFP-tagged YpsA variants were
detected by immunoblot of cell extracts of strains shown in (A) grown in the presence of

inducer using anti-GFP and corresponding anti-SigA (loading control) antisera.

Figure 7. Production of YpsAS” inhibits cell division in S. aureus. (A-B) Fluorescence
micrographs of wild type (SH1000; A), transposon-disrupted ypsA (RB162; B) strains.
(C-F) Morphologies of SH1000 cells harboring plasmid encoded xylose-inducible copy of
ypsAS* (pRB36; E and F) or empty vector (pEPSA5; C and D) grown in the absence (C
and E) and presence (D and F) of inducer are shown. Membranes were visualized using

FM4-64 dye (red). Scale bar: 1 ym.

Table 1. Selective list of putative interaction partners of YpsA
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Supplemental data
Figure S81. (A) Cartoon representation of ypsA gene neighborhood. (B) Transcript levels

of cotD and ypsA in B. subtilis at various growth conditions (26, 27).

Figure S2. Cell morphologies of inducible ypsA cells (GG82) grown in the absence (A)
or presence (B) of inducer. Also shown are the cell morphologies of inducible ypsA in a

strain lacking ugtP (RB212) grown in the absence (C) or presence (D) of inducer.

Table S1. Strains and oligonucleotides used in this study

Table S2. Putative interaction partners of YpsA
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Table1l Selective list of putative interaction partners of YpsA

Gene Annotation

ytcl uncharacterized acyl--CoA ligase Ytcl

lysA diaminopimelate decarboxylase

hutU urocanate hydratase, repressed by CcpA and CodY

argF ornithine carbamoyltransferase, repressed by CodY

ymdB uncharacterized protein, phosphodiesterase

uppS isoprenyl transferase (cell wall biosynthesis)

fadH probable 2,4-dienoyl-CoA reductase

yncM uncharacterized secreted protein, repressed by AbrB

yjoB FtsH-like ATPase

gdh glucose 1-dehydrogenase (NAD)

ctak cytochrome-c oxidase (subunit Ill), repressed by CcpA and AbrB
yojK uncharacterized UDP-glucosyltransferase

mpr extracellular metalloprotease, repressed by CodY

yvcN uncharacterized acetyltransferase, repressed by CcpA

ppnkA NAD kinase 1

resk sensor histidine kinase, regulates aerobic and anaerobic respiration, repressed by CcpA
spolllD stage Ill sporulation protein D

IytF peptidoglycan endopeptidase LytF

ykul uncharacterized EAL-domain containing protein, repressed by CcpA
rex redox-sensing transcriptional repressor (NADH sensor)

xlyB N-acetylmuramoyl-L-alanine amidase

XepA phage-like element PBSX protein XepA, lytic exoenzyme

yrrlL UPFO0755 protein YrrL, potential terminase for peptidoglycan polymerization
YqgA cell wall-binding protein YggA

ditD D-alanine transfer protein DItD

maeA probable NAD-dependent malic enzyme
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