

1 **Sperm gatekeeping: 3D imaging reveals a constricted**  
2 **entrance to zebra finch sperm storage tubules**

3

4 **Authors:** T. Mendonca, A. J. Cadby and N. Hemmings

5

6 **Short Title:** Sperm gatekeeping

7 **Abstract:**

8 Females across many internally fertilising taxa store sperm, often in specialised storage  
9 organs in their reproductive tracts. In birds, several hundred sperm storage tubules  
10 exist in the utero-vaginal junction of the oviduct and there is growing evidence that  
11 sperm storage in these tubules is selective. The mechanisms underlying female sperm  
12 storage in birds remain unknown due to our limited ability to make three dimensional,  
13 live observations inside the large, muscular avian oviduct. Here, we describe a new  
14 application of fluorescence selective plane illumination microscopy to optically section  
15 oviduct tissue from zebra finch *Taeniopygia guttata* females label-free, by harnessing  
16 tissue autofluorescence. Our data provide the first description of the 3D structure of  
17 sperm storage organs in any vertebrate and reveal the presence of gate-like constricted  
18 openings that may play a role in sperm selection.

19

20 **Statement of Significance:**

21 Female birds can store sperm in microscopic tubular structures in their reproductive  
22 tract for up to several months, depending on species. Studying these sperm storage  
23 tubules has been a major challenge due to the muscular and opaque nature of  
24 reproductive tracts in birds. We have developed a new method for imaging live  
25 reproductive tract tissue using selective plane illumination microscopy, a fluorescence  
26 microscopy technique. From these images, we could extract three-dimensional  
27 measurements of sperm storage tubules and found these structures to have a gate-like  
28 constriction, providing evidence that females can actively select sperm at storage and  
29 ultimately influence the paternity of her offspring. Understanding these reproductive  
30 adaptations can help improve captive breeding programs and similar conservation  
31 strategies.

32

33 **Introduction:**

34 Across many internal fertilisers, females have evolved the capacity to maintain viable  
35 sperm in specialised sperm storage organs in their reproductive tract as a strategy to  
36 maximise fertility. Sperm storage ensures the female has sufficient sperm for  
37 fertilisation when copulation and ovulation are not synchronised (1). Since female  
38 promiscuity is common across taxa (e.g. birds (2), mammals (3–5), reptiles (6), fishes  
39 (7) and insects (8–10)), storage also provides the opportunity for females to exert  
40 control over post-copulatory processes (11–13). Post-copulatory sexual selection has  
41 driven the diversification of sperm storage organs, which vary from single bean-shaped  
42 structures in damselflies (14, 15) or one or more sac-like spermathecae in certain fly  
43 species (16) (17), to multiple epithelial crypts in snakes (18), lizards (19), turtles (20)  
44 and birds (21, 22).

45

46 In birds, epithelial sperm storage crypts are called sperm storage tubules (SSTs) and are  
47 located in the utero-vaginal junction (UVJ) of the oviduct (23). The number of SSTs  
48 possessed by a single female ranges from around 500 in the budgerigar (*Melopsittam*  
49 *undulatus*) to 20,000 in the turkey (*Meleagris gallopavo*) (24). A growing body of  
50 evidence suggests that avian SSTs are an important site of sperm selection. Steele and  
51 Wishart (25) experimentally demonstrated that chicken (*Gallus domesticus*) sperm  
52 without surface membrane proteins could not enter the SSTs after normal intra-vaginal  
53 artificial insemination, even though these sperm were capable of fertilising the ovum  
54 when inseminated beyond the vagina and UVJ. Bobr *et al.* (23) also noted a lack of  
55 abnormal sperm in chicken SSTs, suggesting that abnormal sperm are unable to reach  
56 or enter sperm storage sites. The large number of SSTs present in the avian oviduct may

57 also allow spatio-temporal segregation of sperm from competing ejaculates (26–28).

58

59 Despite evidence that SSTs may act as a filter for high quality sperm, the mechanisms by  
60 which sperm are selected at the time of storage remain poorly understood, and how  
61 sperm enter and exit the SSTs is unknown. Froman (29) proposed a model where sperm  
62 motility, rather than SST function, is pivotal in sperm retention in SSTs. According to  
63 this model, sperm must maintain an optimum swimming velocity to maintain their  
64 position and counter a fluid current within the SST. This model was supported by  
65 evidence that faster sperm emerged out of SSTs later than slower sperm (30), and that  
66 passive loss of sperm from storage might be sufficient to explain last male precedence in  
67 the domestic fowl, turkeys, and zebra finches (*Taeniopygia guttata*) [31,32; but see 27].  
68 However, there have been no published observations of sperm swimming inside the  
69 SSTs, and our own unpublished observations suggest sperm are not motile in storage  
70 (see Supplementary Material). Several studies have detected the presence of sperm  
71 motility suppressors such as lactic acid in Japanese quail (*Coturnix japonica*) SSTs (33),  
72 calcium and zinc in the SSTs of chicken, turkeys and Japanese quail (34, 35), and  
73 carbonic anhydrase in the SSTs of turkeys, common quail (*Coturnix coturnix*) and  
74 ostriches (*Struthio camelus*) (36–38), and the neurotransmitter acetylcholine, released  
75 by nerve endings detected in the vicinity of SSTs (39), has been shown to enhance  
76 sperm motility (40), implying a nervous control on sperm mobilisation at ejection from  
77 SSTs. Additionally, Hiyama *et al.* (41) presented evidence for the potential role of heat  
78 shock protein 70 (HSP70) (42) in enhancing sperm motility at the point of sperm  
79 release. The presence of such sperm motility suppressors and activators within or near  
80 the SSTs suggests that release of sperm from storage may not be as passive as Froman  
81 (29) suggested.

82

83 Rather than acting as passive refugia, SSTs may instead be dynamic structures, capable  
84 of active constriction and dilation to mediate the entrance and exit of sperm. Although  
85 numerous studies have failed to find smooth muscle fibres or myoepithelial cells (39,  
86 43, 44) around SSTs, Freedman *et al.* (39) detected fibroblast-like cells and an F-actin  
87 rich cytoskeletal mesh called the “terminal web” in turkey SST epithelia. The terminal  
88 web is composed of contractile proteins (actin and myosin) and has been shown to  
89 contribute to contractility in other tissues, such as intestinal brush border cells (45, 46)  
90 and embryonic pigmented epithelia in chickens (47). Freedman *et al.* (39) also found  
91 terminal innervations in the turkey UVJ, suggesting there may be some degree of  
92 nervous control over SST function. Recent evidence also suggests the possibility of SST  
93 contraction, influenced hormonally by the action of progesterone (48, 49). It is  
94 therefore possible that the passage of sperm into and out of storage is controlled, to  
95 some degree, by the physical structure of SSTs themselves.

96

97 Our understanding of how SST structure influences sperm storage is limited by our  
98 relatively basic knowledge of SST morphology. The avian oviduct is convoluted, with  
99 opaque, muscular walls, creating numerous practical limitations for making  
100 observations of tubules in living epithelial tissue using conventional microscopy  
101 techniques. Empirical studies of SST morphology have so far used histology (23, 50, 51)  
102 and electron microscopy (34, 43, 52) on fixed tissue sections, but these approaches not  
103 only remove functional information, but typically provide two-dimensional information  
104 only. Moreover, serial sectioning is laborious, and loss of material can be difficult to  
105 avoid. Commonly used light microscopy techniques rely on thin sections and squash

106 preparations (26, 53), which are inappropriate for large tissue samples since they  
107 distort structures of interest and allow only limited imaging depths.

108

109 In this study we developed a novel method for live, *ex vivo* 3D imaging of SST structure  
110 using selective plane illumination microscopy (SPIM). SPIM is highly suitable for  
111 imaging large samples at cellular resolution and has lower phototoxicity levels than  
112 with other optical sectioning methods which makes it a viable option for imaging living  
113 tissue (54, 55). Using SPIM, we were able to optically section UVJ mucosal tissue up to  
114 depths of 100  $\mu\text{m}$  without distorting or damaging their structure. We provide the first  
115 quantitative estimates of the 3D structure of sperm storage tubules in living tissue,  
116 including the relationship between SST length and diameter, and report the existence of  
117 a previously undescribed gate-like constriction at the entrance to tubules that may act  
118 to regulate sperm transport into and out of storage.

119

120 **Materials and Methods:**

121

122 *Animals*

123 This study was approved by the University of Sheffield, UK. All procedures performed  
124 conform to the legal requirements for animal research in the UK and were conducted  
125 under a project licence (PPL 40/3481) issued by the Home Office.

126

127 Zebra finches were from a captive population kept at the University of Sheffield (56,  
128 57). Females (all between one to three years old) were placed in unisex housing for  
129 at least two weeks before being paired with males, in double-cages (dimensions of  
130 each individual cage: 0.6m x 0.5m x 0.4m) separated by a wire-mesh with the male

131 and female on either side. Each double-cage had a modified nest-box, also with a  
132 wire-mesh partition, to allow both birds to enter the nest. This set up allowed the  
133 male and female to establish a normal breeding pair bond and enter breeding  
134 condition, while preventing them from copulating and therefore ensuring the female  
135 had no sperm in her SSTs (sperm can be stored for up to 12 days after mating in  
136 zebra finches (24)). Females were only included in the study once they had started  
137 to lay eggs, to ensure their oviduct was in full reproductive condition. After they laid  
138 their second egg, females were euthanized (in accordance with Schedule 1 [Animals  
139 (Scientific Procedures) Act 1986]) and dissected immediately.

140

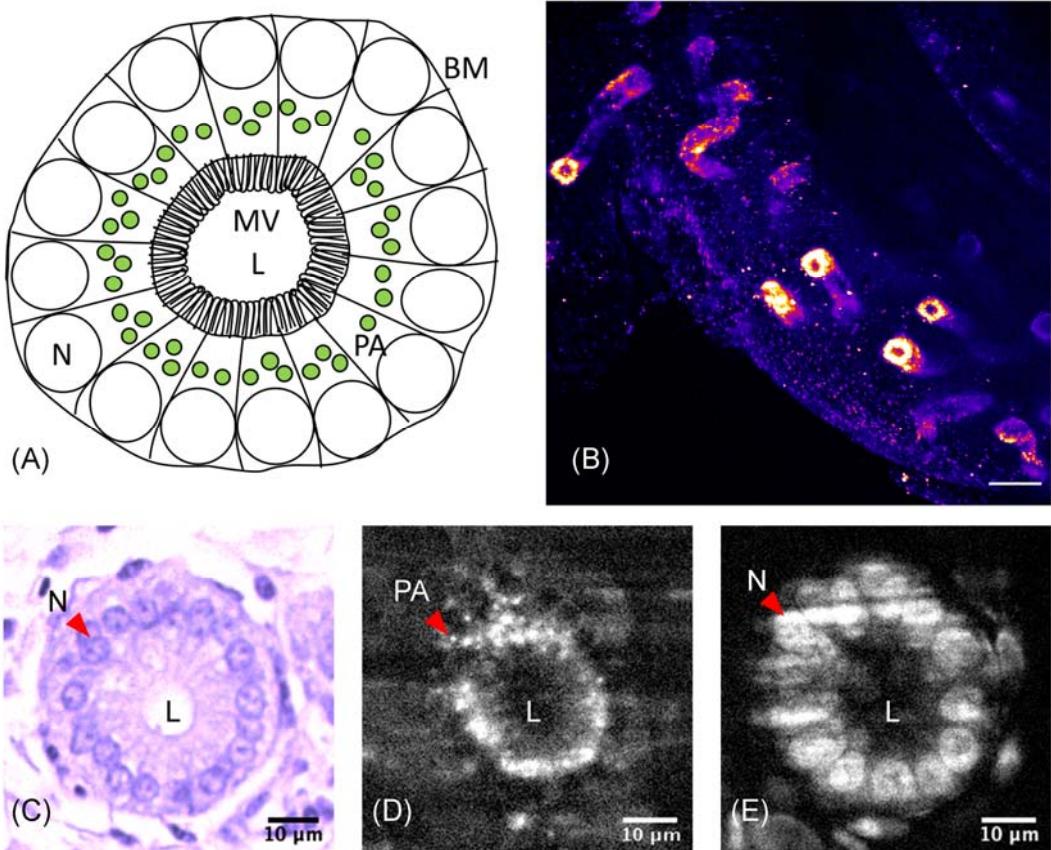
141 *Sample preparation*

142 The oviduct, including the cloaca, was immediately removed from the female and the  
143 connective tissue surrounding it was cleared to uncoil and straighten the vagina and  
144 the UVJ. The lower end of the oviduct was cut through the middle of the uterus to  
145 obtain a segment that included the UVJ, vagina and cloaca. This piece of the oviduct  
146 was then cut open lengthwise and pinned flat on a petri-dish filled with silicone  
147 elastomer (SYLGARD® 184; Dow Corning). A sufficient quantity of Ham's F10  
148 Nutrient Mix (Invitrogen, UK) was added to keep the tissue moist but not submerged.  
149 For SPIM imaging, UVJ folds were cut individually with iris scissors and mounted one  
150 at a time, on a custom-made sample holder (see Supplementary Material) using fine  
151 insect needles. The sample holder, with the UVJ fold mounted, was immersed in  
152 phenol-free DMEM/F12 media, at 37° C during imaging.

153

154 *SPIM imaging*

155 Live UVJ tissue samples, prepared as above, were imaged using a custom-built SPIM  
156 microscope (at the University of Sheffield) with laser excitation at 473 nm and a 520  
157 nm long pass (LP) fluorescence emission filter (Semrock, Inc.). The microscope  
158 hardware and optical components was based on the OpenSPIM platform (58) but  
159 with modifications detailed in Mendonca *et al.* [59; supplementary materials]. The  
160 camera, detection and illumination objectives, and magnification were fixed for the  
161 system, ensuring that the imaging results were reproduceable. The autofluorescence  
162 image stacks were acquired using 500 ms exposure, starting at the outer surface and  
163 moving up to 100  $\mu$ m deep into the tissue fold.


164

165 *Characterisation of autofluorescence*

166 SSTs were clearly identifiable in live UVJ tissue during fluorescence imaging on the  
167 SPIM and had a punctate appearance on account of autofluorescent granules (Figure  
168 1) which appeared to be mostly confined to SST epithelial cells and were present  
169 along the entire length of the SST from orifice to blind end. No other cell structure or  
170 organelle was visible in these autofluorescence images.

171

172 To determine the organisation of the autofluorescent granules in the SST epithelium,  
173 label-free images from live UVJ folds ( $n = 10$  birds) were compared to those of fixed  
174 UVJ folds that had been stained for nucleic acids ( $n = 3$  birds). Folds were also  
175 examined on a bright-field microscope after histological sectioning and general  
176 histochemical staining ( $n = 3$  birds) (Supplementary Material).

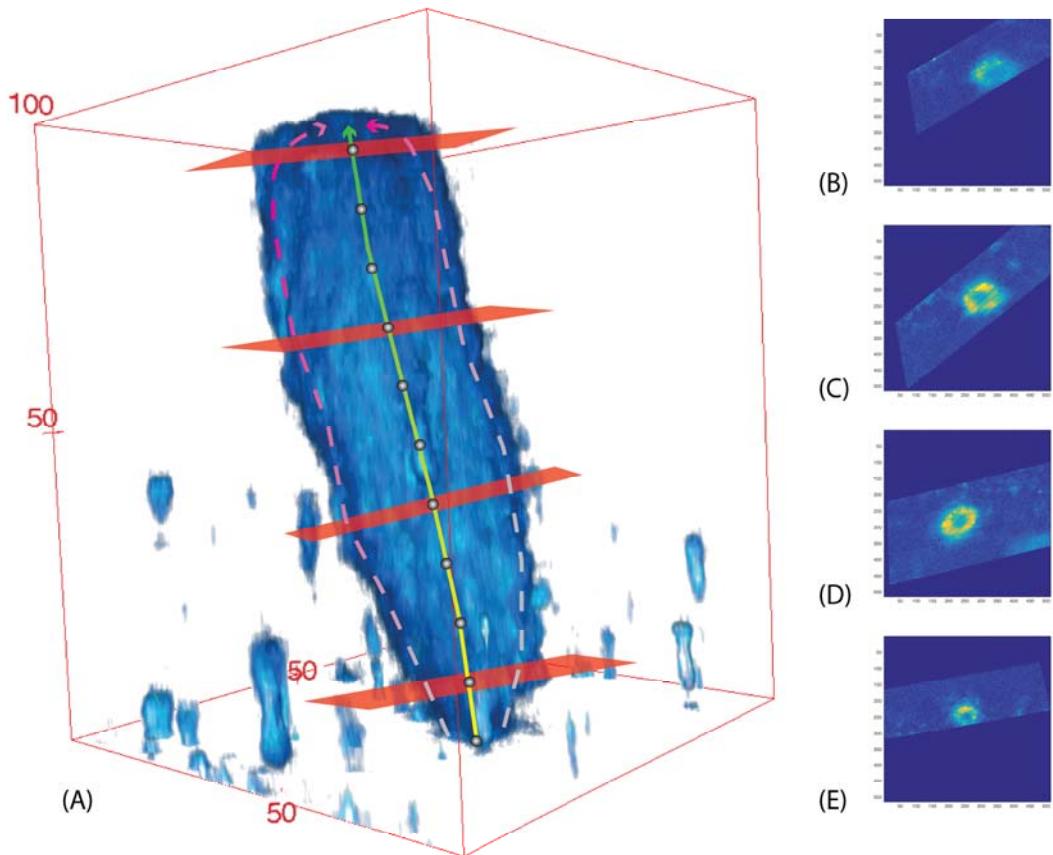


177

178 **Figure 1:** (A) Schematic of SST transverse section showing cellular polarisation with nuclei (N)  
179 towards the basement membrane (BM) and microvilli (MV) at the apical end of the epithelium. The  
180 punctate autofluorescence (PA) detected by the SPIM is present proximal to the nucleus but not at  
181 the apical end of the epithelium near the lumen (L). (B) Max intensity projection of a UVJ fold with  
182 multiple detectable SSTs imaged on the SPIM. Scale – 50  $\mu\text{m}$  (C)-(E) Cross section of SST from  
183 histology, autofluorescence imaged on the SPIM, and SYTO-13 labelled nuclei imaged on the SPIM  
184 respectively. Scale – 10  $\mu\text{m}$ .

185 *Image Analysis*

186 The image stacks acquired using the SPIM were used to reconstruct 480  $\mu\text{m}$  x 480  
187  $\mu\text{m}$  x 100  $\mu\text{m}$  tissue sections containing 3D information on SST structure (n = 10  
188 females, one SST per female). SST shape information was extracted by measuring the  
189 diameter enclosed by the autofluorescence from images of live tissue, at ten  
190 equidistant points along the length of the SST.


191

192 UVJ tissue image stacks were first pre-processed in Fiji (60). Individual unbranched  
193 SSTs were selected from each female such that the entire SST structure was included  
194 in the 3D image stacks. The SSTs follow convoluted paths through the UVJ fold tissue,  
195 so in order to measure cross-sectional diameter at multiple points, it was necessary  
196 to slice the image volume at arbitrary angles to ensure the measurement planes  
197 were perpendicular to the direction of the SST structure. This was accomplished by  
198 first tracing the direction of the SST structure using a dilated version of the SST  
199 image (generated using the 'MorphoLibJ' plugin (61) followed by the application of  
200 Gaussian blur), to smooth the punctate autofluorescence. Two outlines for each SST  
201 were then semi-automatically traced in 3D, from the orifice to the blind end and  
202 along opposite sides of the SST lumen, using the 'Simple Neurite Tracer' (62) plugin  
203 in Fiji.

204

205 The next stage of image analysis was performed using MATLAB<sup>®</sup> (2015b, version  
206 8.6, MathWorks, Natick, MA). An average trace which passed through the SST lumen  
207 was computed from the two traces for each SST. SST lengths were measured from  
208 these average traces. For each SST (n = 10), the average trace was interpolated at ten  
209 equidistant points (the first at the orifice and the tenth point before the blind end of

210 the tubule) and at each interpolated point a vector describing the direction of the  
211 SST at that point was computed using its nearest neighbouring points on the trace  
212 (Figure 2). By using these vectors and the interpolated points, slicing planes normal  
213 to the vectors were defined. The indices for these slicing planes were used to extract  
214 2D image sections from the un-dilated original image stacks using the  
215 ‘ExtractSlice.m’ (63) function. For every extracted slice, its distance from the orifice  
216 along the luminal trace of the SST was computed using the ‘Arclength.m’ (64)  
217 function, and the major axis diameter (d1) and the minor axis diameter (d2) of the  
218 SST (enclosed by autofluorecence) were measured.



219

220

**Figure 2: Illustration of the image analysis pipeline.** (A) 3D rendering of an SST overlaid with  
221 traces along the sides (dotted lines), the computed trace through the centre and slices perpendicular  
222 to the direction of the SST at 4 example positions (SSTs were sampled at 10 positions represented by  
223 grey dots). (B-E) Corresponding slices through the SST. Measurements were taken of the major axis  
224 and minor axis diameter for each of the slices. Axis units in pixels (converted to microns before data  
225 analysis).

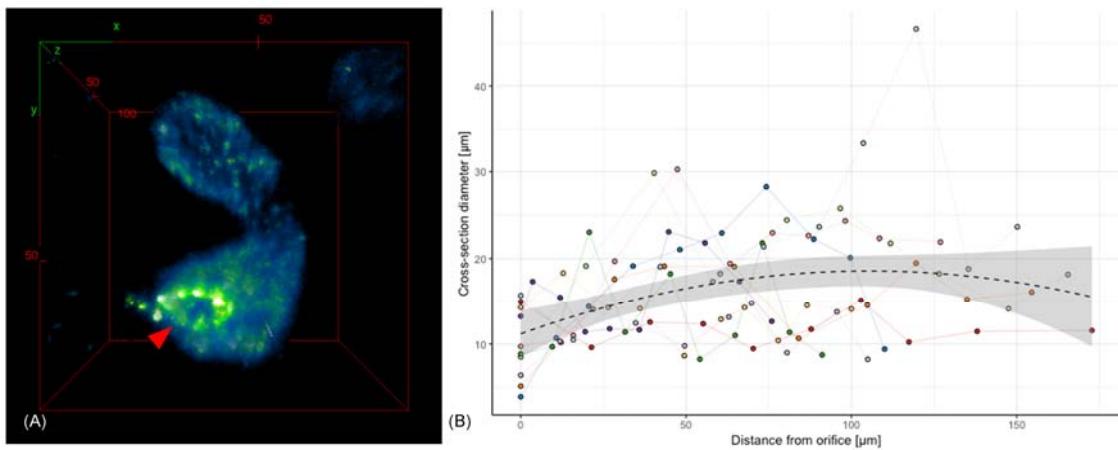
226 **Statistical Analysis:**

227 Data analysis was performed using the statistical package R, version 3.2.3 (65). We  
228 tested whether SST diameter varied with SST length using a mixed effects model  
229 ('lmer' function from the 'lme4' package (66) along with the 'lmerTest' package (67))  
230 with average SST diameter  $[(d1 + d2) / 2]$  at the sampled point as the dependent  
231 variable, the distance of sampled point from SST orifice and the SST total length as  
232 fixed effects, and the bird ID as a random effect to account for repeated measures  
233 from each female.

234

235 We also assessed if the SST was elliptical or circular in cross-section (the former  
236 providing greater epithelial apical surface area for increased contact with sperm)  
237 and whether any such ellipticity changed in response to SST length. A circularity  
238 index was first calculated by dividing the major axis diameter ( $d1$ ) by the minor axis  
239 diameter ( $d2$ ), where a circularity index of one indicates a circular SST cross-section.

240 Data were then analysed via a mixed effects model using the 'lmer' function (66),  
241 with the circularity index as the dependent variable and the total length of the SST as  
242 a fixed effect. The sum of the major and minor axis diameters ( $d1 + d2$ ) was also  
243 incorporated as a fixed effect to account for magnitude of change in diameter along  
244 each axis, as well as the distance of sampled point from SST orifice, with an  
245 interaction term between them. As before, bird ID was included as a random effect to  
246 account for repeated measures from each female.


247

248 **Results:**

249 The diameter of SSTs was found to be notably constricted at their orifice, suggestive  
250 of a structural 'barrier' for entry and exit (Figure 3 (A)). Beyond this constricted

251 entrance, SSTs were largely tubular in shape, with diameter increasing marginally  
252 along the SST's length until its mid-point, after which diameter decreased again  
253 towards the blind end of the SST. This shape can be described by a significant  
254 quadratic relationship between SST diameter and the distance from the SST orifice  
255 (estimated effect = -16.761,  $t = -3.085$ ,  $p = 0.003$ ; Figure 3 (B)). The relationship  
256 between SST diameter and distance from the SST orifice was also found using data  
257 from labelled tissue (Supplementary Figure S4), confirming that the shape measured  
258 from autofluorescence images was not an artefact resulting from the distribution of  
259 the autofluorescence granules. Long SSTs were neither wider nor thinner than short  
260 SSTs (estimated effect = 0.038,  $t = 1.058$ ,  $p = 0.319$ ).

261



262

263 **Figure 3: (A)** 3D rendering of an SST showing its constricted orifice (arrowhead). **(B)** SST diameter  
264 has a quadratic relationship with distance from the SST opening suggesting a constriction at the  
265 orifice and a slight increase in diameter along its length up to the middle of the SST. Each colour on  
266 the plot represents measurements from the same SST ( $n = 10$ ). Scale on red bounding box is in  
267 microns.

268

269 SSTs were found to be slightly elliptical in cross-section, with the major axis  
270 diameter being  $1.642 \pm 0.168$  times larger than the minor axis diameter. The

271 circularity of the SST in cross-section did not vary significantly with SST diameter  
272 (estimated effect = 0.014,  $t = 0.979$ ,  $p = 0.330$ ), distance from orifice (estimated  
273 effect = 0.003,  $t = 0.587$ ,  $p = 0.558$ ), or the interaction between these two variables  
274 (estimated effect = -0.00009,  $t = -0.587$ ,  $p = 0.559$ ). Circularity was also not related  
275 to SST total length (estimated effect = -0.004,  $t = -1.14$ ,  $p = 0.282$ ).

276

277 Comparisons between the SST measurements from histology and SPIM images  
278 indicate that the autofluorescent granules are present in the supranuclear region of  
279 the SST epithelium (Figure 1). The size of the lumen diameter scaled linearly with  
280 the width of the SST (Supplementary Figure S4), indicating that epithelial cells  
281 remained the same thickness in cross-section with increasing SST diameter. This  
282 allowed us to extrapolate shape information from the above analyses to the SST  
283 lumen, and using this method, we estimated the diameter of the SST orifice to be  
284  $3.278 \pm 1.115 \mu\text{m}$  (mean  $\pm$  SD; Table 1).

285

| Diameter (mean $\pm$ SD)                  |                              |                                     |
|-------------------------------------------|------------------------------|-------------------------------------|
|                                           | at orifice ( $\mu\text{m}$ ) | at widest section ( $\mu\text{m}$ ) |
| <b>inter-nuclear diameter<sup>1</sup></b> | $12.060 \pm 1.419$           | $30.830 \pm 11.055$                 |
| <b>autofluorescence<sup>1</sup></b>       | $10.065 \pm 4.288$           | $16.374 \pm 6.610$                  |
| <b>lumen diameter<sup>2</sup></b>         | $3.278 \pm 1.115$            | $9.128 \pm 1.377$                   |

286 **Table 1: SST dimensions at orifice and widest section** - SST diameter is the smallest at its orifice  
287 and widest near the middle along its length.

288 <sup>1</sup>Measurements acquired from SPIM image z-stacks

289 <sup>2</sup>SST lumen diameter values were predicted from the model describing the relationship between lumen  
290 and inter-nuclear diameter.

291

292 **Discussion:**

293 Using novel 3D imaging methods, we have demonstrated for the first time the  
294 existence of a constricted orifice at the entrance/exit of avian SSTs. Such a structure  
295 is likely to play an important role in sperm selection at storage. Zaferani *et al.* (68)  
296 recently used *in vitro* techniques to demonstrate how constrictions can act as gate-  
297 like selective barriers to sperm, allowing only sperm swimming above a threshold  
298 velocity to overcome the shear rate at the constriction and pass through. The narrow  
299 SST orifices we have found have a mean diameter of  $\sim 3 \mu\text{m}$ ; this, with the added  
300 obstruction of microvilli (1-2  $\mu\text{m}$  in length (52)), must act to restrict the rate of  
301 sperm (mean diameter at mid-piece -  $\sim 0.6 \mu\text{m}$  (59)) entering and exiting the SST. We  
302 therefore propose that the constricted opening we have found in SST tubules  
303 provides a mechanism by which sperm storage and release can be regulated. This  
304 supports the idea that avian SSTs play an active and selective role in sperm storage,  
305 regulating sperm uptake and release (33-38). The constricted orifice, together with  
306 its microvilli, may act as a valve, enforcing unidirectional movement of sperm and  
307 preventing them from being flushed back out. The small luminal diameter along the  
308 SST (mean: 9  $\mu\text{m}$ , Table 1) may also limit the ability of sperm to turn around inside  
309 the SST and swim out.

310

311 In terms of overall structure, we found SSTs to be slightly elliptical in cross-section,  
312 with the major axis diameter being about 1.6 times larger than the minor axis  
313 diameter. This ellipticity was independent of SST radius, the distance along the SST  
314 from orifice, or total SST length. Cross-sectional ellipticity increases the surface area  
315 of the SST epithelial apical surface, allowing for a greater number of microvilli (as

316 compared to a circular lumen with the same volume) for increased contact with  
317 sperm and optimum exchange of nutrients and waste.

318

319 We found SST diameter to vary widely across zebra finch SSTs. Birkhead *et al.* (69)  
320 suggested that some SSTs might remain inactive in the zebra finch UVJ, even in its  
321 fully developed state. It is possible that some of the variation in SST shape that we  
322 observed can be explained by the presence of functional and non-functional SSTs,  
323 but it is unclear whether thinner, more uniform SSTs, or more distended morphs  
324 would represent the active state. Mero and Ogasawara (70), and Burke (71)  
325 described 'swollen' tubules in chickens and suggested swelling to be associated with  
326 sperm release. Such swellings might help explain the outliers in our data (Figure 3  
327 (B)). It is possible that conformational changes in SST shape from functional to non-  
328 functional states may be enabled by the F-actin rich terminal web, as seen in turkey  
329 SSTs (39), and caused by neural stimulation (39, 72) and/or hormonal effects (48,  
330 49). Variation in SST shape might also be explained by factors not tested in this  
331 study, including age, hormone levels and location of the SST in the UVJ.

332

333 About 4 – 27% of all the sperm storage tubules in the zebra finch UVJ are branched  
334 (28, 73). Branched tubules were not included in our study, but individual branches  
335 are expected to show similar shapes as unbranched tubules. Hemmings and  
336 Birkhead (28) described sperm from different males differentially stored in separate  
337 branches of an SST (albeit a single observation, since in most cases sperm from  
338 different males were stored in different SSTs). Further study of the 3D structure of  
339 branched SSTs could shed light on mechanisms that prevent sperm mixing in  
340 branched tubules.

341

342 Our novel 3D data on SST structure were made possible by the presence of  
343 punctate/granular autofluorescence, confined to the SST epithelial cells and  
344 uniformly distributed throughout the SST's entire length. These granules were found  
345 to have a supranuclear localisation in the SST epithelial cells (Figure 1). Although  
346 identifying the exact source of the autofluorescence was beyond the scope of this  
347 study, autofluorescence in a similar range has been noted in the ewe (*Ovis aries*)  
348 endometrium ( $\lambda_{\text{ex}}/\lambda_{\text{em}} = 488/525\text{-}575 \text{ nm}$ ) (74) and in human colonic crypts ( $\lambda_{\text{ex}}/\lambda_{\text{em}}$   
349 = 488/580 nm) (75). While such autofluorescence has been attributed to NADH  
350 metabolism in mitochondria (74, 76), another likely source might be lipofuscin in  
351 lysosomes (75). Mitochondria are not confined to the apical cytoplasm of SST  
352 epithelium as observed in turkeys (77) and chickens (78), so it is unlikely that these  
353 granules represent mitochondria. Lysosomes on the other hand, are globular  
354 vesicles similar in size (< 1  $\mu\text{m}$ ) to the autofluorescent granules observed here (79),  
355 and have been detected in the apical cytoplasm of turkey SST epithelia (77), and less  
356 abundantly in chickens (78) and passerine alpine accentor (*Prunella collaris*) (79).  
357 Multiple studies have also detected the presence of acid phosphatase, an enzyme  
358 found in lysosomes, in the supranuclear cytoplasm of SST epithelia in turkeys (21),  
359 quail (80), chickens, (81) and ducks (*Anas sp.*) (82), but not in the SST lumen, which  
360 corresponds with the autofluorescence pattern we observed here in the zebra finch.  
361 Acid phosphatase has been implicated in autolysis associated with oviduct  
362 regression (83) as well as with sperm release (82). If this is true, the label-free  
363 imaging methods developed here may provide exciting new means for investigating  
364 SST functional development throughout the reproductive cycle. Identifying the

365 chemical nature of the autofluorescent substance present in SST granules therefore  
366 represents an important avenue for future research.

367

368 In summary, we have demonstrated that sperm storage structures in living  
369 vertebrate oviductal tissue can be imaged label-free using SPIM microscopy, and this  
370 novel 3D imaging technique has enabled us to produce the most detailed account of  
371 avian SST structure to date, including the discovery of a previously undescribed  
372 gate-like constriction at the entrance/exit of tubules that is likely to act as a key  
373 selective barrier. The imaging methods described here hold immense potential for  
374 studying *in vivo* sperm storage and sperm-female interactions.

375

376 **Authors' contributions:**

377 T.M. coordinated the study, conducted the experiments and analyses, and wrote the  
378 manuscript; N.H. conceived the study, conducted the sperm motility experiment and  
379 advised on data analyses. All authors participated in the design of the study, helped  
380 draft the manuscript and gave final approval for publication.

381

382 **Acknowledgements:**

383 The authors are grateful to Prof Tim Birkhead and Prof Simon Jones from the University  
384 of Sheffield for support. Thanks to Mark Kinch from Skelet.AL, Phil Young, Lynsey  
385 Gregory, Emily Glendenning and Jamie Thompson from the University of Sheffield for  
386 technical assistance.

387

388 **References:**

389 1. Birkhead, T.R. 1992. Sperm Storage and the Fertile Period in the Bengalese Finch.

390                   Auk. 109: 620–625.

391   2. Birkhead, T.R., and A.P. Møller. 1995. Extra-pair copulation and extra-pair  
392                   paternity in birds. Anim. Behav. 49: 843–848.

393   3. Hanken, J., and P.W. Sherman. 1981. Multiple paternity in Belding's ground  
394                   squirrel litters. Science (80-). 212: 351–353.

395   4. Tegelström, H., J. Searle, J. Brookfield, and S. Mercer. 1991. Multiple paternity in  
396                   wild common shrews (*Sorex araneus*) is confirmed by DNA-fingerprinting.  
397                   Heredity (Edinb). 66 ( Pt 3): 373–379.

398   5. Amos, W., S. Twiss, P.P. Pomeroy, and S.S. Anderson. 1993. Male mating success  
399                   and paternity in the grey seal, *Halichoerus grypus*: a study using DNA  
400                   fingerprinting. Proc. R. Soc. B. 252: 199–207.

401   6. Uller, T., and M. Olsson. 2008. Multiple paternity in reptiles: Patterns and  
402                   processes. Mol. Ecol. 17: 2566–2580.

403   7. Avise, J.C., A.G. Jones, D. Walker, and J.A. DeWoody. 2002. Genetic mating systems  
404                   and reproductive natural histories of fishes: lessons for ecology and evolution.  
405                   Annu. Rev. Genet. 36: 19–45.

406   8. Gromko, M.H., D.G. Gilbert, and R.C. Richmond. 1984. Sperm transfer and use in  
407                   the multiple mating system of *Drosophila*. Sperm Compet. Evol. Anim. mating  
408                   Syst. : 371–426.

409   9. Moritz, R.F.A., P. Kryger, G. Koeniger, N. Koeniger, A. Estoup, and S. Tingek. 1995.  
410                   High degree of polyandry in *Apis dorsata* queens detected by DNA microsatellite  
411                   variability. Behav. Ecol. Sociobiol. 37: 357–363.

412   10. Crozier, R.H., and E.J. Fjerdingstad. 2001. Polyandry in social Hymenoptera -  
413                   disunity in diversity? Ann. Zool. Fennici. 38: 267–285.

414   11. Birkhead, T.R., and A.P. Møller. 1998. Sperm competition and sexual selection.

415 Academic Press.

416 12. Simmons, L.W. 2001. Sperm competition and its evolutionary consequences in the  
417 insects. Princeton University Press.

418 13. Eberhard, W.G. 1996. Female Control: Sexual Selection by Cryptic Female Choice.  
419 Princeton University Press.

420 14. Córdoba-Aguilar, A., E. Uhía, and A.C. Rivera. 2003. Sperm competition in Odonata  
421 (Insecta): the evolution of female sperm storage and rivals' sperm displacement.  
422 J. Zool. 261: 381–398.

423 15. Siva-Jothy, M.T. 1987. The structure and function of the female sperm-storage  
424 organs in libellulid dragonflies. J. Insect Physiol. 33: 559–567.

425 16. Ward, P.I. 1993. Females influence sperm storage and use in the yellow dung fly  
426 *Scathophaga stercoraria* (L.). Behav. Ecol. Sociobiol. 32.

427 17. Pitnick, S., T. Markow, and G.S. Spicer. 1999. Evolution of Multiple Kinds of Female  
428 Sperm-Storage Organs in *Drosophila*. Evolution (N. Y). 53: 1804.

429 18. Fox, W. 1956. Seminal receptacles of snakes. Anat. Rec. 124: 519–539.

430 19. Conner, J., and D. Crews. 1980. Sperm transfer and storage in the lizard *Anolis*  
431 *carolinensis*. J. Morphol. 163: 331–348.

432 20. Gist, D.H., and J.M. Jones. 1989. Sperm storage within the oviduct of turtles. J.  
433 Morphol. 199: 379–384.

434 21. Zavaleta, D., and F. Ogasawara. 1973. A review of the mechanism of the release of  
435 spermatozoa from storage tubules in the fowl and turkey oviduct. Worlds. Poult.  
436 Sci. J. 43: 132–139.

437 22. Bakst, M.R. 1987. Anatomical basis of sperm-storage in the avian oviduct.  
438 Scanning Microsc. 1: 1257.

439 23. Bobr, L.W., F.W. Lorenz, and F.X. Ogasawara. 1964. Distribution of Spermatozoa in

440 the Oviduct and Fertility in Domestic Birds. I. Residence Sites of Spermatozoa in  
441 Fowl Oviducts. *J. Reprod. Fertil.* 8: 39–47.

442 24. Birkhead, T.R., and A.P. Møller. 1992. Numbers and size of sperm storage tubules  
443 and the duration of sperm storage in birds: a comparative study. *Biol. J. Linn. Soc.*  
444 45: 363–372.

445 25. Steele, M.G., and G.J. Wishart. 1996. Demonstration that the removal of sialic acid  
446 from the surface of chicken spermatozoa impedes their transvaginal migration.  
447 *Theriogenology.* 46: 1037–1044.

448 26. King, L.M., J.P. Brillard, W.M. Garrett, M.R. Bakst, and A.M. Donoghue. 2002.  
449 Segregation of spermatozoa within sperm storage tubules of fowl and turkey  
450 hens. *Reproduction.* 123: 79–86.

451 27. Briskie, J. V. 1996. Spatiotemporal patterns of sperm storage and last-male sperm  
452 precedence in birds. *Funct. Ecol.* 10: 375–383.

453 28. Hemmings, N., and T.R. Birkhead. 2017. Differential sperm storage by female  
454 zebra finches *Taeniopygia guttata*. *Proc. R. Soc. B.* 284: 20171032.

455 29. Froman, D.P. 2003. Deduction of a model for sperm storage in the oviduct of the  
456 domestic fowl (*Gallus domesticus*). *Biol. Reprod.* 69: 248–53.

457 30. Froman, D.P., T. Pizzari, A.J. Feltmann, H. Castillo-Juarez, and T.R. Birkhead. 2002.  
458 Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and  
459 phenotypic relationship with male status in the domestic fowl, *Gallus gallus*  
460 *domesticus*. *Proc. R. Soc. B.* 269: 607–12.

461 31. Birkhead, T.R., J.E. Pellatt, and F.M. Hunter. 1988. Extra-pair copulation and sperm  
462 competition in the zebra finch. *Nature.* 334: 60–2.

463 32. Birkhead, T.R., and J.D. Biggins. 1998. Sperm competition mechanisms in birds:  
464 models and data. *Behav. Ecol.* 9: 253–260.

465 33. Matsuzaki, M., S. Mizushima, G. Hiyama, N. Hirohashi, K. Shiba, K. Inaba, T. Suzuki,  
466 H. Dohra, T. Ohnishi, Y. Sato, T. Kohsaka, Y. Ichikawa, Y. Atsumi, T. Yoshimura, and  
467 T. Sasanami. 2015. Lactic acid is a sperm motility inactivation factor in the sperm  
468 storage tubules. *Sci. Rep.* 5: 17643.

469 34. Holm, L., H. Ekwall, G.J. Wishart, Y. Ridderstråle, and Y. Ridderstrale. 2000.  
470 Localization of calcium and zinc in the sperm storage tubules of chicken, quail and  
471 turkey using X-ray microanalysis. *J. Reprod. Fertil.* 118: 331–336.

472 35. Bakst, M.R., and M.P. Richards. 1985. Concentrations of selected cations in turkey  
473 serum and oviductal mucosae. *Poult. Sci.* 64: 555–563.

474 36. Holm, L., and Y. Ridderstråle. 1998. Localization of carbonic anhydrase in the  
475 sperm-storing regions of the turkey and quail oviduct. *Histochem. J.* 30: 481–488.

476 37. Holm, L., and G.J. Wishart. 1998. The effect of pH on the motility of spermatozoa  
477 from chicken, turkey and quail. *Anim. Reprod. Sci.* 54: 45–54.

478 38. Holm, L., S.D. Ruziwa, V. Dantzer, and Y. Ridderstråle. 2000. Carbonic anhydrase  
479 in the utero-vaginal junction of immature and mature ostriches. *Br. Poult. Sci.* 41:  
480 244–9.

481 39. Freedman, S.L., V.G. Akuffo, and M.R. Bakst. 2001. Evidence for the innervation of  
482 sperm storage tubules in the oviduct of the turkey (*Meleagris gallopavo*).  
483 *Reproduction*. 121: 809–814.

484 40. Atherton, R.W., C.M. Cisson, B.W. Wilson, and T.K. Golder. 1980. Quantitation of  
485 avian spermatozoan motility: Neurochemical regulation. *Gamete Res.* 3: 17–24.

486 41. Hiyama, G., M. Matsuzaki, S. Mizushima, H. Dohra, K. Ikegami, T. Yoshimura, K.  
487 Shiba, K. Inaba, and T. Sasanami. 2014. Sperm activation by heat shock protein 70  
488 supports the migration of sperm released from sperm storage tubules in Japanese  
489 quail (*Coturnix japonica*). *Reproduction*. 147: 167–178.

490 42. Lindquist, S., and E.A. Craig. 1988. the Heat -Shock Proteins. *Annu. Rev. Genet.* 22:  
491 631–677.

492 43. Van Krey, H.P., F.X. Ogasawara, and J. Pangborn. 1967. Light and Electron  
493 Microscopic Studies of Possible Sperm Gland Emptying Mechanisms. *Poult. Sci.*  
494 46: 69–78.

495 44. Gilbert, A.B., M.E. Reynolds, and F.W. Lorenz. 1968. Distribution of spermatozoa in  
496 the oviduct and fertility in domestic birds. V. Histochemistry of the uterovaginal  
497 sperm-host glands of the domestic hen. *J. Reprod. Fertil.* 16: 433–44.

498 45. Hirokawa, N., T.C.S. Keller, R. Chasan, and M.S. Mooseker. 1983. Mechanism of  
499 brush border contractility studied by the quick-freeze, deep-etch method. *J. Cell  
500 Biol.* 96: 1325–1336.

501 46. Keller, T.C.S., K.A. Conzelman, R. Chasan, and M.S. Mooseker. 1985. Role of myosin  
502 in terminal web contraction in isolated intestinal epithelial brush borders. *J. Cell  
503 Biol.* 100: 1647–1655.

504 47. Owaribe, K., R. Kodama, and G. Eguchi. 1981. Demonstration of contractility of  
505 circumferential actin bundles and its morphogenetic significance in pigmented  
506 epithelium in vitro and in vivo. *J. Cell Biol.* 90: 507–514.

507 48. Ito, T., N. Yoshizaki, T. Tokumoto, H. Ono, T. Yoshimura, A. Tsukada, N. Kansaku,  
508 and T. Sasanami. 2011. Progesterone is a sperm-releasing factor from the sperm-  
509 storage tubules in birds. *Endocrinology.* 152: 3952–3962.

510 49. Hemmings, N., T.R. Birkhead, J.P. Brillard, P. Froment, and S. Briere. 2015. Timing  
511 associated with oviductal sperm storage and release after artificial insemination  
512 in domestic hens. *Theriogenology.* 83: 1174–1178.

513 50. Bakst, M.R. 1998. Structure of the avian oviduct with emphasis on sperm storage  
514 in poultry. *J. Exp. Zool.* 282: 618–626.

515 51. Van Drimmelen, G.C. 1946. "Sperm nests" in the oviduct of the domestic hen. *J.*  
516 *South African Vet. Med. Assoc.* 17: 42–52.

517 52. Bakst, M.R., and G. Bauchan. 2015. Apical blebs on sperm storage tubule epithelial  
518 cell microvilli: Their release and interaction with resident sperm in the turkey  
519 hen oviduct. *Theriogenology.* 83: 1438–44.

520 53. Bakst, M.R. 1992. Observations on the turkey oviductal sperm-storage tubule  
521 using differential interference contrast microscopy. *J. Reprod. Fertil.* 95: 877–883.

522 54. Huisken, J., J. Swoger, F. Del Bene, J. Wittbrodt, and E.H.K. Stelzer. 2004. Optical  
523 Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy.  
524 *Science (80-.)* 305: 1007–1009.

525 55. Reynaud, E.G., U. Krzic, K. Greger, and E.H.K. Stelzer. 2008. Light sheet-based  
526 fluorescence microscopy: more dimensions, more photons, and less  
527 photodamage. *HFSP J.* 2: 266–75.

528 56. Birkhead, T.R., J.E. Pellatt, P. Brekke, R. Yeates, and H. Castillo-Juarez. 2005.  
529 Genetic effects on sperm design in the zebra finch. *Nature.* 434: 383–7.

530 57. Bennison, C., N. Hemmings, J. Slate, and T. Birkhead. 2015. Long sperm fertilize  
531 more eggs in a bird. *Proc. R. Soc. B.* 282: 20141897.

532 58. Pitron, P.G., J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K.W. Eliceiri, J.  
533 Huisken, and P. Tomancak. 2013. OpenSPIM: an open-access light-sheet  
534 microscopy platform. *Nat. Methods.* 10: 598–599.

535 59. Mendonca, T., T.R. Birkhead, A.J. Cadby, W. Forstmeier, and N. Hemmings. 2018. A  
536 trade-off between thickness and length in the zebra finch sperm mid-piece. *Proc.*  
537 *R. Soc. B Biol. Sci.* 285: 20180865.

538 60. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.  
539 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V.

540 Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: an open-source  
541 platform for biological-image analysis. *Nat. Methods.* 9: 676–82.

542 61. Legland, D., I. Arganda-Carreras, and P. Andrey. 2016. MorphoLibJ: integrated  
543 library and plugins for mathematical morphology with ImageJ. *Bioinformatics.* 32:  
544 3532–3534.

545 62. Longair, M.H., D.A. Baker, and J.D. Armstrong. 2011. Simple neurite tracer: Open  
546 source software for reconstruction, visualization and analysis of neuronal  
547 processes. *Bioinformatics.* 27: 2453–2454.

548 63. Teng, P. 2011. Extract Slice from Volume. .

549 64. D'Errico, J. 2012. arclength. .

550 65. R Development Core Team. 2015. R: A Language and Environment for Statistical  
551 Computing. R Foundation for Statistical Computing, Vienna, Austria.

552 66. Bates, D.M., M. Machler, B.M. Bolker, and S.C. Walker. 2014. Fitting Linear Mixed-  
553 Effects Models using lme4. *J. Stat. Softw.* 67: 1--48.

554 67. Kuznetsova, A., P.B. Brockhoff, and R.H.B. Christensen. 2017. lmerTest Package:  
555 Tests in Linear Mixed Effects Models. *J. Stat. Softw.* 82: 1–26.

556 68. Zaferani, M., G.D. Palermo, and A. Abbaspourrad. 2019. Strictures of a  
557 microchannel impose fierce competition to select for highly motile sperm. *Sci.  
558 Adv.* 5: eaav2111.

559 69. Birkhead, T.R., J.E. Pellatt, and F.M. Hunter. 1990. Numbers and Distribution of  
560 Sperm in the Uterovaginal Sperm Storage Tubules of the Zebra Finch. *Condor.* 92:  
561 508–516.

562 70. Mero, K.N., and F.X. Ogasawara. 1970. Dimensions of uterovaginal sperm-storage  
563 tubules of the chicken and their possible significance in sperm release. *Poult. Sci.*  
564 49: 1304–1308.

565 71. Burke, W.H. 1968. Release of spermatozoa from storage sites in the hen's oviduct.

566 .

567 72. Gilbert, A.B., and P.E. Lake. 1963. Terminal Innervation of the Uterus and Vagina  
568 of the Domestic Hen. *Reproduction*. 5: 41–NP.

569 73. Birkhead, T.R., and F.M. Hunter. 1990. Numbers of sperm-storage tubules in the  
570 Zebra Finch (*Poephila guttata*) and Bengalese Finch (*Lonchura striata*). *Auk*. 107:  
571 193–197.

572 74. Druart, X., J. Cognié, G. Baril, F. Clément, J.L. Dacheux, J.L. Gatti, J. Cognie, G. Baril, F.  
573 Clement, J.L. Dacheux, and J.L. Gatti. 2009. In vivo imaging of in situ motility of  
574 fresh and liquid stored ram spermatozoa in the ewe genital tract. *Reproduction*.  
575 138: 45–53.

576 75. DaCosta, R.S. 2005. Autofluorescence characterisation of isolated whole crypts  
577 and primary cultured human epithelial cells from normal, hyperplastic, and  
578 adenomatous colonic mucosa. *J. Clin. Pathol.* 58: 766–774.

579 76. Brookner, C.K., M. Follen, I. Boiko, J. Galvan, S. Thomsen, A. Malpica, S. Suzuki, R.  
580 Lotan, and R. Richards-Kortum. 2000. Autofluorescence Patterns in Short-term  
581 Cultures of Normal Cervical Tissue. *Photochem. Photobiol.* 71: 730–736.

582 77. Schuppin, G.T., H.P. Van Krey, D.M. Denbow, M.R. Bakst, and G.B. Meyer. 1984.  
583 Ultrastructural analyses of uterovaginal sperm storage glands in fertile and  
584 infertile turkey breeder hens. *Poult Sci.* 63: 1872–1882.

585 78. Burke, W.H., F.X. Ogasawara, and C.L. Fuqua. 1972. A study of the ultrastructure of  
586 the uterovaginal sperm-storage glands of the hen, *Gallus domesticus*, in relation  
587 to a mechanism for the release of spermatozoa. *J. Reprod. Fertil.* 29: 29–36.

588 79. Chiba, A., and M. Nakamura. 2001. Microscopic structure of the sperm storage  
589 tubules in the polygynandrous alpine accentor, *Prunella collaris* (Aves). *Acta Zool.*

590 82: 299–306.

591 80. Renden, J.A., E.B. May, and F.H. Benoff. 1981. Histochemistry of uterovaginal  
592 sperm-host glands in Japanese Quail (*Coturnix coturnix japonica*) with reference  
593 to the period of oviposition. *Poult. Sci.* 60: 2529–2535.

594 81. Gilbert, A.B., M.E. Reynolds, and F.W. Lorenz. 1968. Distribution of spermatozoa in  
595 the oviduct and fertility in domestic birds. 8. The effect of a foreign object in the  
596 uterus on secretions of the sperm-host glands and the survival of spermatozoa in  
597 the oviduct of the domestic hen. *J. Reprod. Fertil.* 17: 311–4.

598 82. Pal, D. 1977. Histochemistry of the utero-vaginal junction with special reference  
599 to the sperm-host glands in the oviduct of the domestic duck. *Folia Histochem.  
600 Cytochem. (Krakow)*. 15: 235–42.

601 83. Heryanto, B., Y. Yoshimura, T. Tamura, and T. Okamoto. 1997. Involvement of  
602 Apoptosis and Lysosomal Hydrolase Activity in the Oviducal Regression During  
603 Induced Molting in Chickens: A Cytochemical Study for End Labeling of  
604 Fragmented DNA and Acid Phosphatase Treatment of Birds and Collection of  
605 Samples. *Poult. Sci.* 76: 67–72.

606