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Abstract— Advances in molecular oncology research
culminated in the development of targeted therapies that act on
defined molecular targets either on tumor cells directly (such as
inhibitors of oncogenic kinases), or indirectly by targeting the
tumor microenvironment (such as anti-angiogenesis drugs).
These therapies can induce strong clinical responses, when
properly matched to patients. Unfortunately, most targeted
therapies ultimately fail as tumors evolve resistance. Tumors
consist not only of neoplastic cells, but also of stroma, whereby
“stroma” is the umbrella term for non-tumor cells and
extracellular matrix (ECM) within the tumor
microenvironment, possibly excluding immune cells'. We know
that tumor stroma is an important player in the development of
resistance. We also know that stromal architecture is spatially
complex, differs from patient to patient and changes with
therapy. However, to this date we do not understand the link
between spatial and temporal changes in stromal architecture
and response of tumors to therapy, in space and time. In this
project we sought to address this gap of knowledge using a
combination of mathematical and statistical modeling,
experimental in vivo studies, and analysis of clinical samples in
therapies that target tumor cells directly (in lung and breast
cancers) and indirectly (in kidney cancer). This knowledge will
inform therapy choices and offer new angles for therapeutic
interventions. Our main question is: how does spatial
architecture of stroma impact the emergence or evolution of
resistance to targeted therapies, and how can we use this
knowledge clinically?

1. INTRODUCTION

Tumors are complex, abnormal tissues, comprised of nests
of tumor cells surrounded by stroma. The stroma is the
connective tissue, composed of cancer-associated fibroblasts
(CAFs), extracellular matrix (produced primarily by CAFs),
vasculature, lymphatics and immune cells. A growing body of
pre-clinical studies indicates that stroma in general, and CAFs
in particular, can have profound impacts on tumor growth,
progression and therapy responses’®. Physical barriers
imposed by stroma can restrain tumor growth and progression.
Stroma provides therapy protection in a wide range of targeted
therapies®®. This protection is mediated by paracrine pro-
survival signals acting over short distance; therefore, spatial
patterns of stroma and cancer cell localization are expected to
have a profound impact on stromal protection. Yet, the specific
architecture of the stroma is generally ignored during clinical
diagnosis and therapy decision-making. The major reason for
this omission is that we lack approaches to extract meaning
from the relevant data, despite almost universal availability of
data on stromal content and spatial CAF-distribution in
diagnostic clinical samples. The situation is further
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complicated by the fact that stroma is spatially complex and
heterogeneous and dynamically changing during disease
progression and therapy response. This lack of attention to
tumor stroma is also fully applicable to clinical diagnostics and
decision-making in clear cell renal cell carcinoma (ccRCC), an
aggressive epithelial malignancy. Despite availability of
targeted therapy directed against neoplastic cells directly
(mTOR inhibitors) or indirectly (anti-angiogenic agents), late
stage ccRCC remains incurable”®. The different stages of this
disease show distinct stromal architectures (Figure 1).

We explored several computational and mathematical
modeling approaches, in order to address the following
hypothesis. Within tumors, such as ccRCCs, the abundance
and spatial distribution of stroma, and of CAFs in particular
(“stromal architecture”), impacts tumor growth, risk of
progression and response to targeted therapies. Thus, we
sought to decipher the geometry and impact of cancer’s
stromal architecture through the development of novel
quantitative analyses. Our analyses focused on positioning of
cancer-associated fibroblasts (CAFs). In the future, these
analyses could be extended to the topology of other important
stromal cells that often reside in the tumor microenvironment,
as well as to immune cells, e.g. T-cells and macrophages’.
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Figure 1: Low (A) and high (B) grade clear cell renal cell carcinoma
(ccRCC), in which the stromal architectures are markedly different.
Collagen/fibroblast in pink (light shaded), cancer cell nuclei in dark. Both
content and distribution of fibroblasts are different between grades.

II. APPROACHES AND RESULTS

CAFs shape tumor growth and therapy response, but key
mechanisms of these processes are elusive: we lack
quantitative methods to account for dynamical spatial
distribution of CAFs and ecological interactions between
CAFS and tumor!®. Studies that integrate experimental and
clinical data with mathematical modeling will inform spatial
ecological processes. Such work could deepen our
understanding of the impact of CAFs on tumor evolution in
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space and time, inform clinical choice of treatment regimens
in both adjuvant and neoadjuvant settings, and offer novel
angles for therapeutic interventions. To these ends, we here
explored different approaches that could elucidate how spatial
information of stroma and cancer cells can be analyzed, and
how one could gain understanding in their temporal evolution
through modeling.

A. Geometry and distribution of cells

As a first step, we wanted to gain some understanding about
the nature and impact of different geometrical arrangements
between at least two different cell types that can be observed
in tissues. As shown in Figure 2 (A and B), tumors might
indeed evolve very different stromal architectures and
resulting clustering of cells. While at this point it is unclear
whether this emerges as a direct or indirect effect of CAFs
themselves on tumor cells, we wanted to know how spatial
measurements in the simplest settings determine the cell-to-
CAF distance distributions. Cell populations surrounded by a
layer of CAFs, or a regularly patterned “CAF-grid”, would
result in rather different distributions (Figure 2 C and D).
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Figure 2: A, B: Two example images from mouse tumors from Marysyk et
al.!!, where tumor areas enriched in CAFs are shown in blue, and cancer cells
are shown in purple. These two very different stromal geometries were shown
to emerge in rather different tumors. C, D: Different geometries of CAFs lead
to markedly different distributions of CAFs-cancer cell distances. Thus, if
CAFs provide benefits to tumor cells during targeted treatment, these
distance-statistics can have important consequences for the tumor.

Further, one could then use labeled tumor imaging
information to initialize digitalized versions that could serve
as the starting point for statistical, computational and
mathematical analyses and predictions (Figure 3 A and B).
Indeed, in an example of breast tumor tissue, proliferating
cells could be found in closer proximity to CAFs (Figure 3 C
and D). All together, these examples highlight the need to
establish better norms of tumor image scoring that then serve

to initialize predictive modeling. As the following three
examples show, such modeling can be entirely computational,
entirely analytical, or in hybrid form, and thus highlight
different important aspects of the dynamics of non-genetically
driven therapy resistance acquisition in spatially

heterogeneous tumors.
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Figure 3: Cellular behavior in relation to stromal presence. A: Fluorescently-
stained cancer tissue slide, blue: CAFs, green: proliferating cancer cells, red:
non-proliferating cancer cells. B: Computational analysis of minimal
distances (red), using a pre-defined radius of cancer cell-CAF interactions
(gray). C: Proliferating cells’ distance to the nearest CAF. D: Non-
proliferating cells’ distance to the nearest CAF.

B. The dynamics of stromal architecture: Agent-based off-
lattice approach

As a next step, we present an agent-based computational
model, which has allowed us to determine the impact of
fibroblast location on the evolution of pre-existing resistance
to treatment in a growing or homeostatic tumor cell
population. Our model contains two populations of tumor
cells, labelled “sensitive” and “resistant”. Under homeostatic
conditions, resistant cells have a lower growth rate than
sensitive cells. Cells proliferate stochastically, with
proliferation times uniformly distributed around a specified
average growth rate. Under an assumption of contact-
inhibition, cells may only proliferate if there is sufficient
space, which (in this example) can only be made available by
cell death.

The treatment we considered inhibits the proliferation of the
sensitive tumor cell population, while leaving the resistant
population unaffected. This confers an evolutionary
advantage on the resistant cell population after treatment.
However, we critically assumed that sensitive cells are able to
resist the treatment in the presence of substances provided by
CAFs, for example called Fibroblast Growth Factor, FGF. We
here assume that FGF exists at sufficient concentrations to
encourage sensitive cell proliferation only within a specified
radius of a fibroblast, hence giving sensitive cells the
advantage over their resistant counterparts when they are
within 4 cell widths of a fibroblast.

We seeded the domain with a fixed number of fibroblasts, and
varied their spatial distribution between simulation runs over
time. Such initial distributions could be obtained from tumor
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images, as shown in Figure 4A—this will be a critical step in
using agent-based modeling to simulate, test and validate
evolutionary models and assumptions about CAF mediated
resistance evolution. However, certain extremes of CAF
distributions could also be explored: Figure 4 shows two
manually generated stromal architectures as initial conditions
for simulations. Our model was then used to simulate these
cancer cell populations forward in time (with the CAF
distribution being static). This shows that highly structured
stromal architectures, e.g. in which fibroblasts are distributed
in distinct clusters, permit the resistant cell population to
achieve dominance much more quickly than more diverse
stromal structures. Figure 4C shows the results of this time-
forward modeling applied to a range of stromal architectures,
indicating that random CAF distributions suppress resistant
cells for longer than their more highly structured counterparts.
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Figure 4: Off-lattice agent-based computation approach (using Chaste: An
Open Source C++ Library for Computational Physiology and Biology'?) in
two dimensions. A: obtaining physically observed distributions of CAFs
from fluorescence imaging (same as Fig. 3 A), to initialize the model. B: two
examples of differing stromal architecture at the beginning of the simulation
(left: “sparse grid”, right: “circles”). CAFs were assumed to evolve very
slowly and not move. Treatment was “on” all the time, giving an advantage
to resistant cells However, we also assumed that CAFs mitigate the selective
pressure, e.g. via Fibroblast Growth Factor, at least within a radius of 4 cells.
C: graphs showing the proportion of sensitive tumor cells in the population
over time after treatment that started at t = 10. Resistant cells dominate the
population much more quickly when stromal architecture, i.e. the CAFs,
forms larger structures (e.g. circles, clusters, grids). Random CAF placement
leads to slower extinction of sensitive cells.

C. An ordinary differential equation approach to explore
CAF mediated protection against targeted therapy

Tumor response to targeted therapy within a tumor is affected
by the interactions between cancer cells and local
microenvironments, including cancer-associated fibroblasts
(CAFs). The intercellular communication between cancer and

fibroblasts can be mediated by secreted growth factors or
cytokines that may protect cancer cells surrounded by
fibroblasts from therapy effects!®. In order to gain valuable
analytical insights, we designed an ordinary differential
equation (ODE) model to describe dynamic tumor-stroma
interactions in response to targeted therapy.

The tumor is classified into two subpopulations with respect
to their sensitivity to targeted therapy. The tumor consists of
sensitive (S) and resistant (R) cells. The stroma is implicitly
defined in the model as a means to classify sensitivity
populations further into two sub-populations. That is, we
further refined the sensitive cell population as being sensitive
and close to fibroblasts (Sy) and sensitive but away from
fibroblasts (S,). In absence of therapy, both sensitive cell
populations, S, and S, grow at the same rate (gg), while the
resistant cells R grow at smaller rate (gs > gg). We
introduced a global density-dependence effect: the three
populations share a carrying capacity K, representing the
maximum packing capacity of the tumor at hand, which could
be co-determined by other microenvironmental factors (such
as angiogenic factors), and by the current number of dominant
driver mutations (resistance mechanisms not included). By
fixing K, we focus on short term evolution (e.g. during
treatment), as clearly in the long term the whole tumour could
grow further. The effect of fibroblast migration between the
sensitive populations (S, and Sr) is modeled by introducing
transition rates a and 8, with @ = 8 (Figure 5).

The three populations die at rates of &, O and &y,
respectively (which could be equal in absence of therapy). We
then assumed that targeted therapy induces significant cell
deaths of S,. During therapy, resistance to the therapy thus
emerges at a small rate, possibly due to stochastic alteration
(epigenetic changes, cell-signaling changes, mutations, etc.)
in the sensitive cells away from fibroblasts (S, = R with a
rate, ¥). All these dynamics can be cast into the following
ordinary differential equations:

ds S,+Sz+R
(1) d_tA: S(l_ATF)SA_(a+Y)SA+BSF_6ASA

ds Sy+Sp+R
(2) &r_ S( —A7F)5F+as,4—ﬁsp—5psp

dt K
and
dR Si+S.+R
(3) E:gR(l—ATF)R+ySA—6RR

This nonlinear dynamical system is schematically drawn in
Figure 5 A. Figure 5 B depicts a typical temporal response of
these three populations upon targeted therapy. Sy and R are
more protected than S, under the pressure of the targeted
therapy which is accounted by 6 z < ds. However, R grows
in limited fashion in a short-term period due to the initial
absence of resistant cells (R(t = 0) = 0) and the modeled
“cost of resistance” (gz < gs). For many choices of the model
parameters, total population (or tumor size; S, + Sp + R)
decreases initially, because of the decline of S, (especially
when S,(0) » Sz(0)). However, tumor regrows soon after
due to both the fast growth of sensitive cells close to CAFs,
Sp(t) and the emergence of resistant cells R(t). The tumor
eventually relapses. We focused on time to relapse following
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targeted therapy. In this example, we defined the time taken
to reach to 120% of the initial tumor size as the relapse time.
We thus observed the effect of initial proportion of S on
treatment relapse time. As expected, the more cells are
protected by fibroblasts at the initial time (Sz(0) > S,(0),
with R(0) = 0), the sooner the cancer relapses (Figure 5 C).
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Figure 5: A: Schematic of the ODE two-compartment model in which therapy
sensitive cells can be shielded if they are close enough to CAFs, see also
Equations (1)-(3). B: simulation histories of Sa (sensitive cells away from
CAFs), Sr (sensitive cells close to CAFs), R (resistant cells), and summation
of them with the relapse in the example (blue, “Total”). Parameters:
(gs,gr,K)=(1,0.5,100), (3a,0r,0r)=(2,0.05,0.05),(a=B,y)=(0.05,0.01), and
(Sa(0),Sr(0),R(0))=(0.8,0.2,0). C: Relapse times for different initial
population structures (Sr(0): x-axis, SA(0)=1- Sr(0), R(0)=0). For each
structure, distribution of 100 simulations with 100 random transition rates
(chosen from uniform distributions: a~U[0,1], y~U[0,1]) are shown by each
box/whisker plot. The values for all the other parameters are same with the
panel B. The time unit, 6 months, is consistent to the doubling time of renal
cell carcinoma'*,

D. Insights from a compartmentalized public goods game

Another approach that is computationally less involved than
a full agent-based model, and might thus lend itself to fast
dynamical forecasting of heterogeneous tumor cell-CAF
populations, is the compartmentalized public goods game
approach. While public goods-relationships might be seen as
a way to describe intrinsic tumor cell interactions (e.g. among
producers and free-riders'”), here the public good emerges in
a more complex fashion. Vascular Endothelial Growth Factor
(VEGF) is provided by CAFs and drives tumor growth or
protects from therapy. In addition, CAF stimulating FGF is
provided by producer cells, leading to an interaction pattern
in which CAFs are necessary but not sufficient providers of
protection from therapy. All tumor cells are sensitive to
treatment, but the more CAFs are in a cell’s vicinity, the lower

the detrimental effect of treatment, which in turn is influenced
by the number of producer cells. In this sense, cells close to
CAF that produce stimulating factors can be labeled
“resistant”—they are protected from therapy’s detrimental
effects. To implicitly incorporate space into this model, we
considered a finite-compartment approach!®!”. In some
compartments, cells are close to many CAFs and if they are
in those compartments with few CAFs and few producer cells,
the benefits of the public goods take less and less effect, or
vanish entirely if no CAFs are present.
B
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Figure 6: Compartmentalized public goods game approach to predict how
therapy might induce higher numbers of sensitive cells near CAFs. A, top:
Frequency-dependent selection and spatial reshuftling, CAFs in green, public
good producer cells in red, passive free-riders in gray. A, bottom: Dynamics
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available. C: Distribution of CAFs near sensitive cells before and after
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We simulated this model forward in time such that within one
time-step, each compartment would experience (i) cell
competitive expansion in resistant and sensitive cells during
therapy, which depended on the number of CAFs present, and
(i1) a random reshuffling, corresponding to cell migration and
spatial heterogeneity. This dynamic is shown in Figure 6 A.
Importantly, as shown in the equations in Figure 6 B, public
good-mediated competition was strongest when the system
was close to homeostatic carrying capacity, whereby each cell
type could also proliferate and die according to their context-
independent birth and death rates. In this approach, the
presence of CAFs modulated the maximally achievable
carrying capacity. More CAFs in one compartment would
decrease the density-dependent effect implied by the carrying
capacity, a form of K-selection'®. Selection and therapy would
then shift the typical number of CAFs near any sensitive cell
(Figure 6 C, D).

III. SUMMARY AND OUTLOOK

We have explored how spatial heterogeneity in cancer-
associated fibroblasts can affect tumor cell dynamics, and
how such interactions could be modeled dynamically, in order
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to understand tumor-stroma co-evolution under targeted
therapy.

In an off-lattice agent-based approach, we could incorporate
tumor imaging of CAFs and proliferating or non-proliferating
cancer cells to get a first sense of the impact of spatial stromal
distributions on the extinction rate of treatment sensitive cells.
This revealed that highly clustered CAF distributions might
be optimal protectors of sensitive cells and subsequently act
as drivers of resistance emergence and therapy failure.

Our analytical calculations have also revealed that tumors
with more cells that are close to CAFs at the beginning of
therapy may relapse faster. In addition, a compartment-based
approach that implemented frequency-dependent selection in
form of a cellular public goods game among cancer cells and
between cancer cells and CAFs. This approach also showed
that treatment might select for proximity to CAFs among
sensitive cell populations, or stimulate CAF recruitment.
Future research should especially focus on identifying the
heterogeneous spatial nature of stromal protection as
observed in different cancer types and stages. On the other
hand, dynamical inference from different tumor and treatment
stages, but within the same patients, should be used to obtain
insights into possible cellular interaction mechanisms that
might be critical to gauging therapy success, or even render
stromal architecture as an important co-determinant for
targeted treatment administration and  multi-drug
considerations. Future effort should also be devoted to
describe quantitatively and experimentally the connection
between  mechanical  properties of the  tumor
microenvironment and the selective pressures that emerge
from them®®,
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