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1 Abstract

Evolutionary theory has produced two conflicting paradigms for the adaptation of a

polygenic trait. While population genetics views adaptation as a sequence of selective

sweeps at single loci underlying the trait, quantitative genetics posits a collective

response, where phenotypic adaptation results from subtle allele frequency shifts at

many loci. Yet, a synthesis of these views is largely missing and the population genetic

factors that favor each scenario are not well understood. Here, we study the

architecture of adaptation of a binary polygenic trait (such as resistance) with negative

epistasis among the loci of its basis. The genetic structure of this trait allows for a full

range of potential architectures of adaptation, ranging from sweeps to small frequency

shifts. By combining computer simulations and a newly devised analytical framework

based on Yule branching processes, we gain a detailed understanding of the adaptation

dynamics for this trait. Our key analytical result is an expression for the joint distribution

of mutant alleles at the end of the adaptive phase. This distribution characterizes the
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polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation

has been accomplished. We find that a single compound parameter, the

population-scaled background mutation rate Θbg, explains the main differences among

these patterns. For a focal locus, Θbg measures the mutation rate at all redundant loci in

its genetic background that offer alternative ways for adaptation. For adaptation starting

from mutation-selection-drift balance, we observe different patterns in three parameter

regions. Adaptation proceeds by sweeps for small Θbg . 0.1, while small polygenic

allele frequency shifts require large Θbg & 100. In the large intermediate regime, we

observe a heterogeneous pattern of partial sweeps at several interacting loci.

2 Author summary

It is still an open question how complex traits adapt to new selection pressures. While 1

population genetics champions the search for selective sweeps, quantitative genetics 2

proclaims adaptation via small concerted frequency shifts. To date the empirical 3

evidence of clear sweep signals is more scarce than expected, while subtle shifts 4

remain notoriously hard to detect. In the current study we develop a theoretical 5

framework to predict the expected adaptive architecture of a simple polygenic trait, 6

depending on parameters such as mutation rate, effective population size, size of the 7

trait basis, and the available genetic variability at the onset of selection. For a 8

population in mutation-selection-drift balance we find that adaptation proceeds via 9

complete or partial sweeps for a large set of parameter values. We predict adaptation 10

by small frequency shifts for two main cases. First, for traits with a large mutational 11

target size and high levels of genetic redundancy among loci, and second if the starting 12

frequencies of mutant alleles are more homogeneous than expected in 13

mutation-selection-drift equilibrium, e.g. due to population structure or balancing 14

selection. 15

3 Introduction 16

Rapid phenotypic adaptation of organisms to all kinds of novel environments is 17

ubiquitous and has been described and studied for decades [1,2]. However, while the 18
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macroscopic changes of phenotypic traits are frequently evident, their genetic and 19

genomic underpinnings are much more difficult to resolve. Two independent research 20

traditions, molecular population genetics and quantitative genetics, have coined two 21

opposite views of the adaptive process on the molecular level: adaptation either by 22

selective sweeps or by subtle allele frequency shifts (sweeps or shifts from here on). 23

On the one hand, population genetics works bottom-up from the dynamics at single 24

loci, without much focus on the phenotype. The implicit assumption of the sweep 25

scenario is that selection on the trait results in sustained directional selection also on 26

the level of single underlying loci. Consequently, we can observe phenotypic adaptation 27

at the genotypic level, where selection drives allele frequencies at one or several loci 28

from low values to high values. Large allele frequency changes are the hallmark of the 29

sweep scenario. If these frequency changes occur in a short time interval, conspicuous 30

diversity patterns in linked genomic regions emerge: the footprints of hard or soft 31

selective sweeps [3–6]. 32

On the other hand, quantitative genetics envisions phenotypic adaptation top-down, 33

from the vantage point of the trait. At the genetic level, it is perceived as a collective 34

phenomenon that cannot easily be broken down to the contribution of single loci. 35

Indeed, adaptation of a highly polygenic trait can result in a myriad of ways through 36

“infinitesimally” small, correlated changes at the interacting loci of its basis (e.g. [1,7,8]). 37

Conceptually, this view rests on the infinitesimal model by Fisher (1918) [9] and its 38

extensions (e.g. [10]). Until a decade ago, the available moderate sample sizes for 39

polymorphism data had strongly limited the statistical detectability of small frequency 40

shifts. Therefore, the detection of sweeps with clear footprints was the major objective 41

for many years. Since recently, however, huge sample sizes (primarily of human data) 42

enable powerful genome-wide association studies (GWAS) to resolve the genomic 43

basis of polygenic traits. Consequently, following conceptual work by Pritchard and 44

coworkers [7,11], there has been a shift in focus to the detection of polygenic 45

adaptation from subtle genomic signals (e.g. [12–14], reviewed in [15]). Very recently, 46

however, some of the most prominent findings of polygenic adaptation in human height 47

have been challenged [16,17]. As it turned out, the methods are highly sensitive to 48

confounding effects in GWAS data due to population stratification. 49

While discussion of the empirical evidence is ongoing, the key objective for 50
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theoretical population genetics is to clarify the conditions (mutation rates, selection 51

pressures, genetic architecture) under which each adaptive scenario, sweeps, shifts – 52

or any intermediate type – should be expected in the first place. Yet, the number of 53

models in the literature that allow for a comparison of alternative adaptive scenarios at 54

all is surprisingly limited (see also [18]). Indeed, quantitative genetic studies based on 55

the infinitesimal model or on summaries (moments, cumulants) of the breeding values 56

do not resolve allele frequency changes at individual loci (e.g. [19–22]). In contrast, 57

sweep models with a single locus under selection in the tradition of Maynard Smith and 58

Haigh [3], or models based on adaptive walks or the adaptive dynamics framework 59

(e.g. [23–25]) only allow for adaptive substitutions or sweeps. A notable exception is the 60

pioneering study by Chevin and Hospital [26]. Following Lande [27], these authors 61

model adaptation at a single major quantitative trait locus (QTL) that interacts with an 62

”infinitesimal background” of minor loci, which evolves with fixed genetic variance. 63

Subsequent models [28,29] trace the allele frequency change at a single QTL in 64

models with 2-8 loci. Still, these articles do not discuss polygenic adaptation patterns. 65

Most recently, Jain and Stephan [30,31] studied the adaptive process for a quantitative 66

trait under stabilizing selection with explicit genetic basis. Their analytical approach 67

allows for a detailed view of allele frequency changes at all loci without constraining the 68

genetic variance. However, the model is deterministic and thus ignores the effects of 69

genetic drift. Below, we study a polygenic trait that can adapt via sweeps or shifts under 70

the action of all evolutionary forces in a panmictic population (mutation, selection, 71

recombination and drift). Our model allows for comprehensive analytical treatment, 72

leading to a multi-locus, non-equilibrium extension of Wright’s formula [32] for the joint 73

distribution of allele frequencies at the end of the adaptive phase. This way, we obtain 74

predictions concerning the adaptive architecture of polygenic traits and the population 75

genetic variables that delimit the corresponding modes of adaptation. 76

The article is organized as follows. The Model section motivates our modeling 77

decisions and describes the simulation method. We also give a brief intuitive account of 78

our analytical approach. In the Results part, we describe our findings for a haploid trait 79

with linkage equilibrium among loci. All our main conclusions in the Discussion part are 80

based on the results displayed here. Further model extensions and complications 81

(diploids, linkage, and alternative starting conditions) are relegated to appendices. 82
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Finally, we describe our analytical approach and derive all results in a comprehensive 83

Mathematical Appendix. For the ease of reading, we have tried to keep both the main 84

text and the Mathematical Appendix independent and largely self-contained. 85

4 Model 86

In the current study, we aim for a “minimal model” of a trait that allows us to clarify 87

which evolutionary forces favor sweeps over shifts and vice versa (as well as any 88

intermediate patterns). For shifts, alleles need to be able to hamper the rise of alleles at 89

other loci via negative epistasis for fitness, e.g. diminishing returns epistasis. Indeed, 90

otherwise one would only observe parallel sweeps. Negative fitness epistasis is 91

frequently found in empirical studies (e.g. [33]) and implicit to the Gaussian selection 92

scheme used by (e.g. [26,30,31]). More fundamentally, diminishing returns are a 93

consequence of partial or complete redundancy of genetic effects across loci or gene 94

pathways. Adaptive phenotypes (such as pathogen resistance or a beneficial body 95

coloration) can often be produced in many alternative ways, such that redundancy is a 96

common characteristic of beneficial mutations. 97

As our basic model, we focus on a haploid population and study adaptation for a 98

polygenic, binary trait with full redundancy of effects at all loci. We assume a 99

non-additive genotype-phenotype map where any single mutation switches the 100

phenotype from its ancestral state (e.g. “non-resistant”) to the adaptive state 101

(“resistant”). Further mutations have no additional effect. On the population level, 102

adaptation can be produced by a single locus where the beneficial allele sweeps to 103

fixation, or by small frequency shifts of alleles at many different loci in different 104

individuals – or any intermediate pattern. The symmetry among loci (no build-in 105

advantage of any particular locus) and complete redundancy of locus effects provides 106

us with a trait architecture that is favorable for collective adaptation via small shifts – 107

and with a modeling framework that allows for analytical treatment. The same model 108

has been used in a preliminary simulation study [6]. In the context of parallel adaptation 109

in a spatially structured population, analogous model assumptions with redundant loci 110

have been used [34–36]. In a second step, we extend our basic model to relax the 111

redundancy condition, as described below. 112
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4.1 Basic model 113

Consider a panmictic population of Ne haploids, with a binary trait Z (with phenotypic 114

states Z0 “non-resistant” and Z1 “resistant”, see Fig 1). The trait is governed by a 115

polygenic basis of L bi-allelic loci with arbitrary linkage (we treat the case of linkage 116

equilibrium in the main text and analyze the effects of linkage in Appendix A.1). Only 117

the genotype with the ancestral alleles at all loci produces phenotype Z0, all other 118

genotypes produce Z1, irrespective of the number of mutations they carry. Loci mutate 119

at rate µi, 1 ≤ i ≤ L, per generation (population mutation rate at the ith locus: 120

2Neµi = Θi) from the ancestral to the derived allele. We ignore back mutation. The 121

mutant phenotype Z1 is deleterious before time t = 0, when the population experiences 122

a sudden change in the environment (e.g. arrival of a pathogen). Z1 is beneficial for 123

time t > 0. The Malthusian (logarithmic) fitness function of an individual with phenotype 124

Z reads 125

W (Z) =


sdZ for t < 0

sbZ for t ≥ 0.

(1)

Without loss of generality, we can assume Z0 = 0 and Z1 = 1. We then have 126

W (Z0) = 0. Furthermore, W (Z1) = sd < 0, respectively W (Z1) = sb > 0, measure the 127

strength of directional selection on Z (e.g. cost and benefit of resistance) before and 128

after the environmental change. For the basic model, we assume that the population is 129

in mutation-selection-drift equilibrium at time t = 0. 130

4.2 Model extensions 131

We extend the basic model in several directions. This includes linkage (Appendix A.1), 132

alternative starting conditions at time t = 0 (Appendix A.2), diploids (Appendix A.3), and 133

arbitrary time-dependent selection s(t) (Mathematical Appendix M.1). Here, we 134

describe how we relax the assumption of complete redundancy of all loci. Diminishing 135

returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics, will frequently not lead 136

to complete adaptation in a single step, but may require multiple steps before the trait 137

optimum is approached. In a model of incomplete redundancy, we thus assume that a 138

first beneficial mutation only leads to partial adaptation. We thus have three states of 139
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the trait, the ancestral state for the genotype without mutations, Z0 = 0 (non-resistant), 140

a phenotype Zδ = δ (partially resistant) for genotypes with a single mutation, and the 141

mutant state Z1 = 1 (fully resistant) for all genotypes with at least two mutations, see 142

Fig 1(b). For diminishing returns epistasis, we require 1
2 ≤ δ < 1. The fitness function is 143

as in Eq (1). A model with asymmetries in the single-locus effects is discussed in 144

Appendix A.4. 145
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(a) Complete redundancy (b) Relaxed redundancy

0 1 2 3 #mut 0 1 2 3 #mut 0 1 2 3 #mut

Fig 1. Fitness schemes. The fitness of individuals carrying 0, 1, 2, 3 . . . mutations
(y-axis) are given for the complete redundancy (a) and relaxed redundancy (b) model,
respectively. Grey balls show the fitness of ancestral wildtype individuals (without
mutations). Colored balls represent individuals carrying at least one mutation, for time
points t < 0 before the environmental change in blue and for t ≥ 0 in red.

4.3 Simulation model 146

For the models described above, we use Wright-Fisher simulations for a haploid, 147

panmictic population of size Ne, assuming linkage equilibrium between all L loci in 148

discrete time. Selection and drift are implemented by independent weighted sampling 149

based on the marginal fitnesses of the ancestral and mutant alleles at each locus. Due 150

to linkage equilibrium, the marginal fitnesses only depend on the allele frequencies and 151

not genotypes. Ancestral alleles mutate with probability µi per generation at locus i. 152

We start our simulations with a population that is monomorphic for the ancestral allele 153

at all loci. The population evolves for 8Ne generations under mutation and deleterious 154

selection to reach (approximate) mutation-selection-drift equilibrium. Following [6,37], 155

we condition on adaptation from the ancestral state and discard all runs where the 156

deleterious mutant allele (at any locus) reaches fixation during this time. (We do not 157

show results for cases with very high mutation rates and weak deleterious selection 158

when most runs are discarded). At the time of environmental change, selection 159
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switches from negative to positive and simulation runs are continued until a prescribed 160

stopping condition is reached. 161

We are interested in the genetic architecture of adaptation – the joint distribution of 162

mutant frequencies across all loci – at the end of the rapid adaptive phase. 163

Following [31], we define this phase as “the time until the phenotypic mean reaches a 164

value close to the new optimum”. Specifically, we stop simulations when the mean 165

fitness W̄ in the population has increased up to a proportion fw of the maximal 166

attainable increase from the ancestral to the derived state, 167

W (Z1)− W̄
W (Z1)−W (Z0)

= fw . (2)

For the basic model with complete redundancy, this simply corresponds to a residual 168

proportion fw of individuals with ancestral phenotype in the population. Extensions of 169

the simulation scheme to include linkage or diploid individuals are described in 170

Appendices A.1 and A.3. 171

Parameter choices: Unless explicitly stated otherwise, we simulate Ne = 10 000 172

individuals, with beneficial selection coefficients sb = 0.1 and 0.01, combined with 173

deleterious selection coefficients sd = −0.1 and sd = −0.001 for low and high levels of 174

SGV, respectively. (The corresponding Wrightian fitness values used as sampling 175

weights in discrete time are 1 + sb and 1 + sd.) We investigate L = 2 to 100 loci. We 176

usually (except in Appendix A.4) assume equal mutation rates at all loci, µi = µ and 177

define Θl = 2Neµ as the locus mutation parameter. Mutation rates are chosen such 178

that Θbg := 2Neµ(L− 1) (the background mutation rate, formally defined below in 179

Eq (10)) takes values from 0.01 to 100. We typically simulate 10 000 replicates per 180

mutation rate and stop simulations when the population has reached the new fitness 181

optimum up to fw = 0.05. In the model with complete redundancy, we thus stop 182

simulations when the frequency of individuals with mutant phenotype Z1 has increased 183

to 95%. Different stopping conditions are explored in Appendix A.7. 184

4.4 Analytical analysis 185

We partition the adaptive process into two phases (see Fig 2 for illustration). An initial 186

stochastic phase, governed by selection, drift, and mutation describes the origin and 187
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establishment of mutant alleles at all loci. We call mutants ”established” if they are not 188

lost again due to genetic drift. The subsequent deterministic phase governs the further 189

evolution of established alleles until the stopping condition is reached as described 190

above. While mutation and drift can be ignored during the deterministic phase, 191

interaction effects due to epistasis and linkage become important (in our model, they 192

enter, in particular, through the stopping condition). We give a brief overview of our 193

analytical approach below. A detailed account with the derivation of all results is 194

provided in the Mathematical Appendix. 195

During the stochastic phase, we model the origin and spread of mutant copies as a 196

so-called Yule pure birth process following [38] and [39]. The idea of this approach is 197

that we only need to keep track of mutations that found “immortal lineages”, i.e. derived 198

alleles that still have surviving offspring at the time of observation (see Fig 2 for the 199

case of L = 2 loci). Forward in time, new immortal lineages can be created by two 200

types of events: new mutations at all loci start new lineages, while birth events lead to 201

splits of existing lineages into two immortal lineages. For t > 0 (after the environmental 202

change), in particular, new mutations at the ith locus arise at rate Neµi per generation 203

and are destined to become established in the population with probability ≈ 2sb. 204

Similarly, birth of new immortal lineages due to split events in the Yule process occur at 205

rate sb (because the selection coefficient measures the excess of births over deaths in 206

the underlying population). For the origin of new immortal lineages in the Yule process 207

and their subsequent splitting we thus obtain the rates 208

pmut,i ≈ Neµi · 2sb = Θisb ; psplit ≈ sb. (3)

Extended results including standing genetic variation and time-dependent fitness are 209

given in the Appendix. Assume now that there are currently {k1, . . . kL}, 0 ≤ kj � Ne 210

mutant lineages at the L loci. The probability that the next event (which can be a split or 211

a mutation) occurs at locus i is 212

ki · psplit + pmut,i∑L
j=1(kj · psplit + pmut,j)

=
ki + Θi∑L

j=1(kj + Θj)
. (4)

Importantly, all these transition probabilities among states of the Yule process are 213
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constant in time and independent of the mutant fitness sb, which cancels in the ratio of 214

the rates. As the number of lineages at all loci increases, their joint distribution (across 215

replicate realizations of the Yule process) approaches a limit. In particular, as shown in 216

the Appendix, the joint distribution of frequency ratios xi := ki/k1 in the limit k1 →∞ is 217

given by an inverted Dirichlet distribution 218

PinDir[x|Θ] =
1

B[Θ]

L∏
j=2

x
Θj−1
j

(
1 +

L∑
i=2

xi

)−∑L
i=1 Θi

(5)

where x = (x2, . . . , xL) and Θ = (Θ1, . . . ,ΘL) are vectors of frequency ratios and locus 219

mutation rates, respectively, and where B[Θ] =
∏L

j=1 Γ(Θj)∑L
j=1 Γ(Θj)

is the generalized Beta 220

function and Γ(z) is the Gamma function. Note that Eq (5) depends only on the locus 221

mutation rates, but not on selection strength. 222

After the initial stochastic phase, the dynamics of established mutant lineages that 223

have evaded stochastic loss can be adequately described by deterministic selection 224

equations. For allele frequencies pi at locus i, assuming linkage equilibrium, we obtain 225

(consult the Mathematical Appendix M.1, Eq (M.2a), for detailed derivations) 226

ṗi = pi(W (Z1)− W̄ ) = sbpi(Z1 − Z̄), (6)

where W̄ and Z̄ are population mean fitness and mean trait value. For the mutant 227

frequency ratios xi = pi/p1, we obtain 228

ẋi =
d

dt

( pi
p1

)
=
ṗip1 − piṗ1

p2
1

= 0 . (7)

We thus conclude that the frequency ratios xi do not change during the deterministic 229

phase. In particular, this means that Eq (5) still holds at our time of observation at the 230

end of the rapid adaptive phase. This is even true with linked loci. Finally, derivation of 231

the joint distribution of mutant frequencies pi (instead of frequency ratios xi) at the time 232

of observation requires a transformation of the density. In general, this transformation 233

depends on the stopping condition fw and on other factors such as linkage. Assuming 234

linkage equilibrium among all selected loci, we obtain (see the Mathematical Appendix, 235

January 31, 2019 10/51

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


Theorem 2, Eq (M.20)) 236

Pfw [p|Θ] =
δ∏L

j=1(1−pj)−fw

B[Θ]

L∏
j=1

p
Θj−1
j

( L∑
i=1

pi

)−∑L
i=1 Θi

( L∑
j=1

fwpj
1− pj

)
(8)

for p = (p1, . . . , pL) in the L-dimensional hypercube of allele frequencies. The delta 237

function δX restricts the distribution to the L− 1 dimensional manifold defined via the 238

stopping condition fw =
∏L
j=1(1− pj). Further expressions, also including linkage, are 239

given in the Mathematical Appendix and in Appendix A.1. In general, the joint 240

distribution corresponds to a family of generalized Dirichlet distributions. 241

We assess the adaptive architecture not as a function of time, but as a function of 242

progress in phenotypic adaptation, measured by fw, Eq (2). Hence, fw rather than time 243

t plays the role of a dynamical variable in the joint distribution, see Eq (8). In the special 244

case fw → 0 (i.e. complete adaptation, enforcing fixation at at least one locus), this 245

distribution is restricted to a boundary face of the allele frequency hypercube and Eq (8) 246

reduces to the inverted Dirichlet distribution given above in Eq (5). In the Results 247

section below, we assess our analytical approximations for the joint distributions of 248

adaptive alleles, Eq (5) and Eq (8), and discuss their implications in the context of 249

scenarios of polygenic adaptation, ranging from sweeps to small frequency shifts. 250

L . . . size of polygenic basis (no. of loci)
sd, sb . . . selection coefficient before/after the environment changes
pi := ki

N . . . mutant allele frequency at locus i
xi := ki

k1
= pi

p1
. . . mutant allele frequency ratio: locus i / locus 1

fw . . . frequency of ancestral phenotype
µi . . . allelic mutation rate at locus i
Θi = 2Neµi . . . haploid population mutation rate at locus i
Θ = {Θ1, . . . ,ΘL} . . . vector of all locus population mutation rates
Θl . . . locus pop. mut. rate, for model with equal mutation rates
Θbg . . . background mutation rate, Eq (10)
B[Θ] =

∏
i≥1 Γ(Θi)∑
i≥1 Γ(Θi)

. . . Beta function, where Γ(Θi) is the Gamma function

Table 1. Glossary
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Fig 2. Phases of polygenic adaptation. The adaptive process is partitioned into two
phases. The initial, stochastic phase describes the establishment of mutant alleles.
Ignoring epistasis during this phase, it can be described by a Yule process (panel a),
with two types of events (yellow box). Either a new mutation occurs and establishes
with rate Θl · sb or an existing mutant line splits into two daughter lines at rate sb.
Mutations and splits can occur in parallel at all loci of the polygenic basis, (here 2 loci,
shown in green and blue). Yellow and red stars at the blue locus indicate establishment
of two redundant mutations at this locus. When mutants have grown to higher
frequencies, the adaptive process enters its second, deterministic phase, where drift
can be ignored (panel b). During the deterministic phase, the trajectories of mutations
at different loci constrain each other due to epistasis. We refer to the locus ending up at
the highest frequency as the major locus (here in blue) and to all others as minor loci
(here one in green).
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5 Results 251

While the joint distribution of allele frequencies, Eq (8), provides comprehensive 252

information of the adaptive architecture, low-dimensional summary statistics of this 253

distribution are needed to describe and classify distinct types of polygenic adaptation. 254

To this end, we order loci according to their contribution to the adaptive response. In 255

particular, we call the locus with the highest allele frequency at the stopping condition 256

the major locus and all other loci minor loci. Minor loci are further ordered according to 257

their frequency (first minor, second minor, etc.). The marginal distributions of the major 258

locus or kth minor locus are 1-dimensional summaries of the joint distribution. 259

Importantly, these summaries are still collective because the role of any specific locus 260

(its order) is defined through the allele frequencies at all loci. This is different for the 261

marginal distribution at a fixed focal locus, which is chosen irrespective of its role in the 262

adaptive process, e.g. [26,28,29]. 263

Concerning our nomenclature, note that the major and minor loci do not differ in 264

their effect size, as they are completely redundant. Still, the major locus is the one with 265

the largest contribution to the adaptive response and would yield the strongest 266

association in a GWAS case-control study. 267

In the following, we analyze adaptive trait architectures in three steps. In Section 5.1 268

we use the expected allele frequency ratio of minor and major loci as a one-dimensional 269

summary statistic. Subsequently, in Section 5.2, we analyze the marginal distributions 270

of major and minor loci for a trait with 2 to 100 loci. Finally, in Section 5.3 we investigate 271

the robustness of our results under conditions of relaxed redundancy. Further results 272

devoted to diploids, linkage, asymmetric loci, and alternative starting conditions are 273

provided in the Appendices. 274

5.1 Expected allele frequency ratio 275

For our biological question concerning the type of polygenic adaptation, the ratio of 276

allele frequency changes of minor over major loci is particularly useful. With “sweeps at 277

few loci”, we expect large differences among loci, resulting in ratios that deviate strongly 278

from 1. In contrast, with “subtle shifts at many loci”, multiple loci contribute similarly to 279

the adaptive response and ratios should range close to 1. Our theory (explained above) 280
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predicts that these ratios are the outcome of the stochastic phase, and their distribution 281

is preserved during the deterministic phase. They are thus independent of the precise 282

time of observation. For our results in this section, we assume that the mutation rate at 283

all L loci is equal, Θi ≡ Θl, for all 1 ≤ i ≤ L. This corresponds to the symmetric case 284

that is most favorable for a “small shift” scenario. Results for asymmtric mutation rates 285

are reported in Appendix A.4. 286

Consider first the case of L = 2 loci. There is then a single allele frequency ratio 287

“minor over major locus”, which we denote by x. For two loci, the joint distribution of 288

frequency ratios from Eq (5) reduces to a beta-prime distribution. Conditioning on the 289

case that the first locus is the major locus (probability 1/2 for the symmetric model), we 290

obtain for 0 ≤ x ≤ 1, 291

Pβ′ [x|Θl] =
2Γ(2Θl)

(Γ(Θl))2
xΘl−1(1 + x)−2Θl , (9)

Fig 3 compares the expectation of this analytical prediction with simulation results 292

for a range of parameters for the strength of beneficial selection sb and for the level of 293

standing genetic variation (SGV implicitly given by the strength of deleterious selection 294

sd before the environmental change). There are two main observations. First, the 295

simulation results demonstrate the importance of the scaled mutation rate Θbg ≡ Θl (for 296

two loci). Low Θbg leads to sweep-like adaptation (heterogeneous adaptation response 297

among loci, E[x] << 1), whereas high Θbg leads to shift-like adaptation (homogeneous 298

response, E[x] near 1). Second, the panels show that the selection intensity given by sd 299

and sb has virtually no effect. Both results are predicted by the analytical theory 300

(Eq (9)). In Appendix A.1, we further show that these results hold for arbitrary degrees 301

of linkage (including complete linkage), see Fig S.1. 302

For more than two loci, L > 2, one-dimensional marginal distributions of the joint 303

distribution, Eq (5), generally require (L− 1)-fold integration, which can be complicated. 304

However, it turns out that the key phenomena to characterize the adaptive architecture 305

can still be captured by the 2-locus formalism, with appropriate rescaling of the 306

mutation rate. For the general L-locus model, we broaden our definition of the summary 307

statistic x above to describe the allele frequency ratio of the first minor locus and the 308

major locus. To relate the distribution of x in the L-locus model to the one in the 2-locus 309
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model, we reason as follows: For small locus mutation rates Θl, the order of the loci is 310

largely determined by the order at which mutations that are destined for establishment 311

originate at these loci. I.e., the locus where the first mutation originates ends up as the 312

major locus and the first minor locus is usually the second locus where a mutation 313

destined for establishment originates. The distribution of the allele frequency ratio x is 314

primarily determined by the distribution of the waiting time for this second mutation after 315

origin of the first mutation at the major locus. In the 2-locus model, this time will be 316

exponentially distributed, with parameter 1/Θl. In the L-locus model, however, where 317

L− 1 loci with total mutation rate Θl(L− 1) compete for being the “first minor”, the 318

parameter for the waiting-time distribution reduces to 1/(Θl(L− 1)). We thus see from 319

this argument that the decisive parameter is the cumulative background mutation rate 320

Θbg = (L− 1)Θl (10)

at all minor loci in the background of the major locus. In Fig 3 (orange dots) we show 321

simulations of a L = 10 locus model with an appropriately rescaled locus mutation rate 322

Θl → Θl/9, such that the background rate Θbg is the same as for the 2-locus model. 323

We see that the analytical prediction based on the 2-locus model provides a good fit for 324

the 10-locus model. A more detailed discussion of this type of approximation is given in 325

Appendix A.5. 326

5.2 Genomic architecture of polygenic adaptation 327

While the distribution of allele frequency ratios, Eqs (5) and (9), offers a coarse (but 328

robust) descriptor of the adaptive scenario, the joint distribution of allele frequencies at 329

the end of the adaptive phase, Eq (8), allows for a more refined view. In contrast to the 330

distribution of ratios, the results now depend explicitly on the stopping condition (the 331

time of observation) and on linkage among loci. We assume linkage equilibrium in this 332

section and assess the mutant allele frequencies when the frequency of the remaining 333

wildtype individuals in the population is fw (= 0.05 in our figures) has dropped to a fixed 334

value of fw = 0.05. In Appendix A.7, we complement these results and study the 335

changes in the adaptive architecture when fw is varied. 336

Fig 4 displays the main result of this section. It shows the marginal distributions of 337
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Fig 3. Effect of selection strength and SGV on the frequency ratio E[x]. We
contrast the expected allele frequency ratios of the first minor locus (with the second
highest frequency) over the major locus (with the highest frequency) for 2 loci (blue
dots) and for 10 loci (orange dots) with analytical predictions (Appendix, Eq M.16, black
curve). E[x] is shown as a function of Θbg (= Θl for the 2-locus case). Panels
correspond to different strengths of positive selection (sb, rows) and levels of SGV (no
SGV, strongly deleterious sd = −0.1, weakly deleterious sd = −0.001, columns). We
find that neither factor alters the expected ratio. We do not obtain results for Θbg ≥ 10
and sd = −0.001, where strong recurrent mutation overwhelmes weak selection, such
that mutant alleles fix even before the environmental change. Results for 10 000
replicates, standard errors < 0.005 (smaller than symbols).

all loci, ordered according to their allele frequency at the time of observation (major 338

locus, 1st, 2nd, 3rd minor locus, etc.) for traits with L = 2, 10, 50, and 100 loci. Panels in 339

the same row correspond to equal background mutation rates Θbg = (L− 1)Θl, but 340

note that the locus mutation rates Θl are not equal. The figure reveals a striking level of 341

uniformity of adaptive architectures with the same Θbg, but vastly different number of 342

loci. For Θbg ≤ 1 (the first three rows), the marginal distributions for loci of the same 343

order (same color in the Figure) across traits with different L is almost invariant. For 344

large Θbg, they converge for sufficiently large L (e.g. for Θbg = 10, going from L = 10 to 345

L = 50 and to L = 100). In particular, the background mutation rate Θbg determines the 346

shape of the major-locus distribution (red in the Figure) for high p→ 1− fw = 0.95 (the 347
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maximum possible frequency, given the stopping condition). For Θbg < 1, this 348

distribution is sharply peaked with a singularity at p = 1− fw, whereas it drops to zero 349

for high p if Θbg > 1 (see also the analytical results below). 350

As predicted by the theory, Eq (8) and below, simulations confirm that the overall 351

selection strength does not affect the adaptive architecture (see supplementary 352

Fig S.11 for comparison of simulation results for sb = 0.1 and sb = 0.01). As discussed 353

in Appendix A.1, sufficiently tight linkage does change the shape of the distributions. 354

Importantly, however, it does not affect the role of Θbg in determining the singularity of 355

the major-locus distribution. This confirms the key role of the background mutation rate 356

as a single parameter to determine the adaptive scenario in our model. While Θbg = 1 357

separates architectures that are dominated by a single major locus (Θbg < 1) from 358

collective scenarios (with Θbg > 1), the classical sweep or shift scenarios are only 359

obtained if Θbg deviates strongly from 1. We therefore distinguish three adaptive 360

scenarios. 361

• Θbg . 0.1, single completed sweeps. For Θbg � 1 (first two rows of Fig 4), the 362

distribution of the major locus is concentrated at the maximum of its range, while 363

all other distributions are concentrated around 0. Adaptation thus occurs at a 364

single locus, via a selective sweep from low to high mutant frequency. 365

Contributions by further loci are rare. If they occur at all they are usually due to a 366

single runner-up locus (the highest minor locus). 367

• 0.1 < Θbg < 100, heterogeneous partial sweeps. With intermediate background 368

mutation rates (third and forth row of Fig 4), we still observe a strong asymmetry 369

in the frequency spectrum. Even for Θbg = 10, there is a clear major locus 370

discernible, with most of its distribution for p > 0.5. However, there is also a 371

significant contribution of several minor loci that rise to intermediate frequencies. 372

We thus obtain a heterogeneous pattern of partial sweeps at a limited number of 373

loci. 374

• Θbg & 100, homogeneous frequency shifts. Only for high background mutations 375

rates Θbg � 1 (last row of Fig 4 with Θbg = 100), the heterogeneity in the locus 376

contributions to the adaptive response vanishes. There is then no dominating 377

major locus. For only 2 loci, these shifts are necessarily still quite large, but for 378
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traits with a large genetic basis (large L; the only realistic case for high values of 379

Θbg), adaptation occurs via subtle frequency shifts at many loci. 380

Analytical predictions 381

To gain deeper understanding of the polygenic architecture – and for quantitative 382

predictions – we dissect our analytical result for the joint frequency spectrum in Eq (8). 383

We start with the case of L = 2 loci, allowing for different locus mutation rates Θ1 and 384

Θ2. The marginal distribution at the first locus reads (from Eq (8), after integration over 385

p2), 386

Pfw [p1|Θ1,Θ2] =
pΘ1−1

1 (1− p1 − fw)Θ2−1(1− p1)Θ1+1

B[Θ1,Θ2] (1− p2
1 − fw)Θ1+Θ2

(
1− fw(1− 2p1)

(1− p1)2

)
, (11)

for 0 ≤ p1 ≤ 1− fw (see also Appendix A.6). The distribution has a singularity at p1 = 0 387

if the corresponding locus mutation rate is smaller than one, Θ1 < 1. It has a singularity 388

at p1 = 1− fw if the corresponding background mutation rate (which is just the mutation 389

rate at the other locus for L = 2) is smaller than one, Θ2 < 1. The marginal distributions 390

at the major locus, P+
fw

[p|Θ1,Θ2], and the minor locus, P−fw [p|Θ1,Θ2], follow from 391

Eq (11) as 392

P±fw [p|Θ1,Θ2] = Pfw [p|Θ1,Θ2] + Pfw [p|Θ2,Θ1], (12)

where P+
fw

[p|Θ1,Θ2] is defined for 1−
√
fw ≤ p ≤ 1− fw and P−fw [p|Θ1,Θ2] is defined 393

for 0 ≤ p ≤ 1−
√
fw. The sum in Eq (12) accounts for the alternative events that either 394

the first or the second locus may end up as the major (or minor) locus. Consequently, 395

P−fw [p|Θ1,Θ2] has a singularity at p = 0 if the minimal locus mutation rate 396

Θl = min[Θ1,Θ2] < 1. Analogously, P+
fw

[p|Θ1,Θ2] has a singularity at p = 1− fw if the 397

minimal background mutation rate Θbg = min[Θ1,Θ2] < 1. The left column of Fig 4 398

shows the distributions at the major and minor locus for L = 2 in the symmetric case 399

Θ1 = Θ2 = Θl = Θbg and fw = 0.05. Simulations for a population of size Ne = 10 000 400

and analytical predictions match well. 401

How do these results generalize for L > 2? We again allow for unequal locus 402

mutation rates Θi. It is easy to see from Eq (8) that the marginal distribution at the ith 403

locus has a singularity at pi = 0 for Θi < 1. In the Mathematical Appendix M.3, we 404
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further show that it has a second singularity at pi = 1− fw if the corresponding 405

background mutation rate
∑d
j 6=i Θj is smaller than 1. As a first step, we split the joint 406

distribution, Eq (8), into the marginal distribution at the major locus P+
fw

[p|Θ] (defined 407

for 1− L
√
fw ≤ p ≤ 1− fw) and a cumulative distribution at all other (minor) loci, 408

P−fw [p|Θ] (defined for 0 ≤ p ≤ 1−
√
fw). Since any locus can end up as the major locus 409

(with probability > 0), P+
fw

[p|Θ] has a singularity at p = 1− fw for 410

Θbg := min
1≤i≤L

[ L∑
j=1

Θj −Θi

]
< 1 . (13)

This equation generalizes the definition of the background mutation rate, Eq (10), to the 411

case of unequal locus mutation rates. Similarly, P−fw [p|Θ] has a singularity at p = 0 if 412

Θl := min
1≤i≤L

[
Θi

]
< 1 . (14)

As long as Θbg ≤ 1, we can approximate both the major-locus distribution P+
fw

[p|Θ] and 413

the cumulative minor locus distribution P−fw [p|Θ] for arbitrary L by formulas for a 2-locus 414

model with locus mutation rates matching Θl and Θbg of the multi-locus model, Eq (12). 415

Similarly, we can use results from a k-locus model to match the marginal distributions of 416

the largest k loci (i.e., up to the (k − 1)th minor) in models with L > k loci, upon 417

rescaling of the mutation rates. As explained for the ratio of the first minor and major 418

locus in the previous section, rescaling rules match the expected waiting time for a 419

mutation (destined for establishment) at the kth locus after the origin of a first mutation. 420

Details are given in the Appendix A.5. In Fig 4, we use formulas derived from a k-locus 421

model (k ≤ 4) to approximate the (k − 1)st minor locus distribution of models with 422

L = 10; 50; 100 loci and Θbg ≤ 1. These approximations work well as long as these 423

leading loci dominate the adaptive architecture of the trait, which is the case for Θbg ≤ 1. 424

5.3 Relaxing complete redundancy 425

To complete our picture of adaptive architectures, we investigate the robustness of our 426

model assumption against relaxation of redundancy. As explained above (Model 427

extensions and Fig 1), we implement diminishing returns epistasis, such that an 428

individual with a single mutation has fitness δsb/d, while individuals carrying more than 429
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Fig 4. Genomic architecture of polygenic adaptation. We distinguish three patterns
of architectures with increasing genomic background mutation rate Θbg: complete
sweeps, for Θbg . 0.1, heterogeneous partial sweeps at several loci for
0.1 < Θbg < 100, and polygenic frequency shifts for Θbg & 100. The plots show the
marginal distributions of all loci, ordered according to their allele frequency, i.e. the
major locus in red and all following (first, second, third, etc. minors) in blue to green to
yellow. Lines in respective colors show analytical predictions, Appendix A.5.
Simulations were stopped once the populations have adapted to 95% of the maximum
mean fitness in each of 10 000 replicates, resulting in an the upper bound for the major
locus distribution at, p1 = 0.95. Simulations for sb = −sd = 0.1. Note the different
scaling of the y-axis (density, normalized to 1 per locus) for different mutation rates.

one mutation have fitness sb/d. With small deviations from complete redundancy (e.g. 430

δ = 0.9, stopping at 5% ancestral phenotypes, see Fig S.10) we obtain basically no 431

differences in the genomic patterns of adaptation. With larger deviations (e.g. δ = 0.5) 432

quantitative differences appear. However, the qualitative picture concerning the 433

scenario of polygenic adaptation remains the same. 434
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Fig 5 shows the marginal frequency distributions of major and minor loci for a trait 435

with relaxed redundancy with δ = 0.5 that is sampled when the population has 436

accomplished 95% of the fitness increase on its way to the new optimum, Eq (2). Given 437

the fitness function, this is not possible with adaptation at only a single locus. At least 438

two loci are needed. The Figure compares the simulation data for the relaxed 439

redundancy model (colored dots) and the full redundancy model (dots in back and gray). 440

As in Fig 4, traits in the same row have the same background mutation rate Θbg. 441

However, the background rate for the model with relaxed redundancy is redefined as 442

Θrelax
bg = (L− 2)Θl, (15)

where Θl is the locus mutation rate (equal at all loci). We thus define the background 443

rate, more precisely, as the combined population-scaled mutation rate of all loci that are 444

not essential to accomplish adaptation of the phenotype and, thus, are truly redundant. 445

With this choice, the adaptive architecture of the relaxed redundancy model reproduces 446

the one of the model with full redundancy – up to a shift in the number of the loci due to 447

an extra locus that is needed for adaptation with relaxed redundancy. The Figure 448

captures this by comparing traits with relaxed redundancy with L = 3, 4, 11, and 101 loci 449

to fully redundant traits with one fewer locus. The inset figures in the column for L = 4 450

loci show the same scenario, but with an averaged marginal distribution for the two 451

largest loci with relaxed redundancy (in green). 452

• For mutation rates, Θbg � 1, we still find adaptation by sweeps. Relative to the full 453

redundancy model, we now observe two “major” sweep loci instead of only a 454

single sweep. The inset (for L = 4) shows that their averaged distributions 455

matches the major locus distribution of the full redundancy model. The 456

distribution at the third largest locus (the “first minor” locus with relaxed 457

redundancy) resembles the corresponding distribution of the first minor locus of 458

the trait with full redundancy. 459

• For intermediate mutation rates, 0.1 < Θbg < 100, the pattern is dominated by 460

partial sweeps. We clearly see the similarity in the marginal distributions of the 461

kth largest locus with full redundancy and the k + 1st largest locus of the relaxed 462
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redundancy trait. For the two major loci with relaxed redundancy, we again see 463

(inset) that the averaged distribution matches the major-locus distribution of the 464

full redundancy model. 465

• Finally, for strong mutation, Θbg & 100, adaptation again occurs by small 466

frequency shifts at many loci. 467

In summary, our results show that relaxing redundancy leads to qualitatively similar 468

results, but with a reduced “effective” background mutation rate that only accounts for 469

”truly redundant” loci. 470
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Fig 5. Relaxed redundancy. Relaxing redundancy such that a single mutant has
fitness 1 + 0.5sb/d and only two mutations or more confer the full fitness effect (1 + sb/d)
demonstrates the robustness of our model. As in Fig 4, allele frequency distributions of
derived alleles are displayed once the population has reached 95% of maximum
attainable mean population fitness. Genomic patterns of adaptation show similar
characteristics as with complete redundancy. Due to relaxed redundancy, an additional
”major locus” is required to reach the adaptive optimum. As explained in the main text,
the distribution of the kth largest locus with complete redundancy therefore
corresponds to the distribution of the k + 1st largest locus with relaxed redundancy.
Insets in the second column show the same data with the distributions of the two major
loci for relaxed redundancy combined (in green).
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6 Discussion 471

Traits with a polygenic basis can adapt in different ways. Few or many loci can 472

contribute to the adaptive response. The changes in the allele frequencies at these loci 473

can be large or small. They can be homogeneous or heterogeneous. While molecular 474

population genetics posits large frequency changes – selective sweeps – at few loci, 475

quantitative genetics views polygenic adaptation as a collective response, with small, 476

homogeneous allele frequency shifts at many loci. Here, we have explored the 477

conditions under which each adaptive scenario should be expected, analyzing a 478

polygenic trait with redundancy among loci that allows for a full range of adaptive 479

architectures: from sweeps to subtle frequency shifts. 480

6.1 Polygenic architectures of adaptation 481

For any polygenic trait, the multitude of possible adaptive architectures is fully captured 482

by the joint distribution of mutant alleles across the loci in its basis. Different adaptive 483

scenarios (such as sweeps or shifts) correspond to characteristic differences in the 484

shape of this distribution, at the end of the adaptive phase. For a single locus, the 485

stationary distribution under mutation, selection, and drift can be derived from diffusion 486

theory and has been known since the early days of population genetics (S. Wright 487

(1931), [32]). For multiple interacting loci, however, this is usually not possible. To 488

address this problem for our model, we dissect the adaptive process into two phases. 489

The early stochastic phase describes the establishment of all mutants that contribute to 490

the adaptive response under the influence of mutation and drift. We use that loci can be 491

treated as independent during this phase to derive a joint distribution for ratios of allele 492

frequencies at different loci, Eq (5). During the second, deterministic phase, epistasis 493

and linkage become noticeable, but mutation and drift can be ignored. Allele frequency 494

changes during this phase can be described as a density transformation of the joint 495

distribution. For the simple model with fully redundant loci, and assuming either LE or 496

complete linkage, this transformation can be worked out explicitly. Our main result 497

Eq (8) can be understood as a multi-locus extension of Wright’s formula. For a neutral 498

locus with multiple alleles, Wright’s distribution is a Dirichlet distribution, which is 499

reproduced in our model for the case of complete linkage, see Appendix A.1. For the 500
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opposite case of linkage equilibrium, we obtain a family of inverted Dirichlet 501

distributions, depending on the stopping condition – our time of observation. 502

Note that (unlike Wright’s distribution) the distribution of adaptive architectures is not 503

a stationary distribution, but necessarily transient. It describes the pattern of mutant 504

alleles at the end of the “rapid adaptive phase” [30,31], because this is the time scale 505

that the opposite narratives of population genetics and quantitative genetics refer to. In 506

particular, the quantitative genetic “small shifts” view of adaptation does not talk about a 507

stationary distribution: it does not imply that alleles will never fix over much longer time 508

scales, due to drift and weak selection. On a technical level, the transient nature of our 509

result means that it reflects the effects of genetic drift only during the early phase of 510

adaptation. These early effects are crucial because they are magnified by the action of 511

positive selection. In contrast, our result ignores drift after phenotypic adaptation has 512

been accomplished – which is also a reason why it can be derived at all. 513

To capture the key characteristics of the adaptive architecture, we dissect the joint 514

distribution in Eq (8) into marginal distributions of single loci. As explained at the start of 515

the results section, these loci do not refer to a fixed genome position, but are defined a 516

posteriori via their role in the adaptive process. For example, the major locus is defined 517

as the locus with the highest mutant allele frequency at the end of the adaptive phase. 518

(Since all loci have equal effects in our model, this is also the locus with the largest 519

contribution to the adaptive response, but see Appendix A.4.) This is a different way to 520

summarize the joint distribution than used in some of the previous literature [26,28,29], 521

which rely on a gene-centered view to study the pattern at a focal locus, irrespective of 522

its role in trait adaptation. In contrast, we use a trait-centered view, which is better 523

suited to describe and distinguish adaptive scenarios. For example, “adaptation by 524

sweeps” refers to a scenario where sweeps happen at some loci, rather than at a 525

specific locus. This point is further discussed in Appendix A.6, where we also display 526

marginal distributions of Eq (8) for fixed loci. 527

The role of the background mutation rate 528

Our results show that the qualitative pattern of polygenic adaptation is predicted by a 529

single compound parameter: the background mutation rate Θbg (see 530

January 31, 2019 25/51

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


Eqs (10),(13),(15)), i.e., the population mutation rate for the background of a focal locus 531

within the trait basis. For a large basis, Θbg is closely related to the trait mutation rate. 532

We can understand the key role of this parameter as follows. As detailed in the 533

Section 4.4, the early stochastic phase of adaptation is governed by two processes: 534

New successful mutations (destined for establishment) enter the population at rate Θlsb 535

per locus (where Θl is the locus mutation rate and sb the selection coefficient), while 536

existing mutants spread with an exponential rate sb. Consider the locus that carries the 537

first successful mutant. For Θbg < 1, the expected spread from this first mutant exceeds 538

the creation of new mutant lineages at all other loci. Therefore, the locus will likely 539

maintain its lead, with an exponentially growing gap to the second largest locus. Vice 540

versa, for Θbg > 1, most likely one of the competing loci will catch up. We can thus think 541

of Θbg as a measure of competition experienced by the major locus due to adaptation at 542

redundant loci in its genetic background. The argument does not depend on the 543

strength of selection, which affects both rates in the same way. The same can be 544

shown for adaptation from standing genetic variation at mutation-selection-drift balance, 545

see Mathematical Appendix (M.1). As a consequence of low mutant frequencies during 546

the stochastic phase, the result is also independent of interaction effects due to 547

epistasis or linkage. 548

Since the order of loci is not affected by the deterministic phase of the adaptive 549

process, Θbg maintains its key role for the adaptive architecture. In the joint frequency 550

distribution, Eq (5) and Eq (8), it governs the singular behavior of the marginal 551

distribution at the major locus. For Θbg < 1, this distribution has a singularity at the 552

maximum of its range. Adaptation is therefore dominated by the major locus, leading to 553

heterogeneous architectures. For Θbg . 0.1, adaptation occurs almost always due to a 554

completed sweep at this locus. For Θbg > 1, in contrast, no single dominating locus 555

exists: adaptation is collective and supported by multiple loci. For a polygenic trait with 556

Θbg & 100, we obtain homogeneous small shifts at many loci, as predicted by 557

quantitative genetics. 558

The result also shows that the adaptive scenario does not depend directly on the 559

number of loci in the genetic basis of the trait, but rather on their combined mutation 560

rate (the mutational target size, sensu [11]). For redundant loci and fixed Θbg, the 561

predicted architecture at the loci with the largest contribution to the adaptive response 562
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is almost independent of the number of loci, see Fig 4. Qualitatively, the same still holds 563

true when the assumption of complete redundancy is dropped (Fig 5). In this case, only 564

loci in the genetic background that are not required to reach the new trait optimum, but 565

offer redundant routes for adaptation, are included in Θbg. Note that the same 566

reasoning holds for a quantitative trait that is composed of several modules of mutually 567

redundant genes, but where interactions among genes in different modules only affect 568

a focal module as a unit. I.e., due to changes in the genetic background, all loci in this 569

module experience a uniform change in the selection coefficient sb = sb(t) > 0. In this 570

case, assuming LE, our model still applies (cf. the Mathematical Appendix). The 571

adaptive architecture for each module depends only on the module-specific Θbg, but not 572

on the mutation rates at genes in the basis of the trait outside of the module. 573

Polygenic adaptation and soft sweeps 574

In our analysis of polygenic adaptation, we have not studied the probability that 575

adaptation at single loci could involve more than a single mutational origin and thus 576

produces a so-called soft selective sweep from recurrent mutation. As explained 577

in [6,40], however, the answer is simple and only depends on the locus mutation rate – 578

independently of adaptation at other loci. Soft sweeps become relevant for Θl & 0.1. 579

For much larger values Θl � 1, they become “super-soft” in the sense that single 580

sweep haplotypes do not reach high frequencies because there are so many 581

independent origins of the mutant allele. The role of Θbg for polygenic adaptation is 582

essentially parallel to the one of Θl for soft sweeps. In both cases, the population 583

mutation rate is the only relevant parameter, with a lower threshold of Θ ∼ 0.1 for a 584

signal involving multiple alleles and much higher values for a “super-soft” scenario with 585

only subtle frequency shifts. Nevertheless, the mathematical methods to analyze both 586

cases are different, essentially because the polygenic scenario does not lend itself to a 587

coalescent approach. 588

6.2 Alternative approaches to polygenic adaptation 589

The theme of “competition of a single locus with its background” relates to previous 590

findings by Chevin and Hospital (2008) [26] in one of the first studies to address 591
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polygenic footprints. These authors rely on a deterministic model of an additive 592

quantitative trait to describe the adaptive trajectory at a single target QTL in the 593

presence of background variation. The background is modeled as a normal distribution 594

with a mean that can respond to selection, but with constant variance. Obviously, a 595

drift-related parameter, such as Θbg, has no place in such a framework. Still, there are 596

several correspondences to our result on a qualitative level. Specifically, a sweep at the 597

focal locus is prohibited under two conditions. First, the background variation 598

(generated by recurrent mutation in our model, constant in [26]) must be large. Second, 599

the fitness function must exhibit strong negative epistasis that allows for alternative 600

ways to reach the trait optimum – and thus produces redundancy (due to Gaussian 601

stabilizing selection in [26]). Finally, while the adaptive trajectory depends on the shape 602

of the fitness function, Chevin and Hospital note that it does not depend on the strength 603

of selection on the trait, as also found for our model. 604

A major difference of the approach used in [26] is the gene-centered view that is 605

applied there. Consider a scenario where the genetic background “wins” against the 606

focal QTL and precludes it from sweeping. For a generic polygenic trait (and for our 607

model) this still leaves the possibility of a sweep at one of the background loci. However, 608

this is not possible in [26], where all background loci are summarized as a sea of 609

small-effect loci with constant genetic variance. 610

This constraint is avoided in the approach by deVladar and Barton [41] and Jain and 611

Stephan [31], who study an additive quantitative trait under stabilizing selection with 612

binary loci (see also [42] for an extension to adaptation to a moving optimum). These 613

models allow for different locus effects, but ignore genetic drift. Before the 614

environmental change, all allele frequencies are assumed to be in mutation-selection 615

balance, with equilibrium values derived in [41]. At the environmental change, the trait 616

optimum jumps to a new value and alleles at all loci respond by large or small changes 617

in the allele frequencies. Overall, [41] and [31] predict adaptation by small frequency 618

shifts in larger parts of the biological parameter space relative to our model. In 619

particular, sweeps are prevented in [31] if most loci have a small effect and are 620

therefore under weak selection prior to the environmental change. This contrasts to our 621

model, where the predicted architecture of adaptation is independent of the selection 622

strength. Thus, in our model, weak selection does not imply shifts. This difference can 623
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at least partially be explained by the neglect of drift effects on the starting allele 624

frequencies in the deterministic models. In the absence of drift, loci under weak 625

selection start out from frequency x0 = 0.5 [41]. In finite populations, however, almost 626

all of these alleles start from very low (or very high) frequencies – unless the population 627

mutation parameter is large (many alleles at intermediate frequencies at competing 628

background loci are expected only if Θbg � 1, in accordance with our criterion for 629

shifts). To test this further, we have analyzed our model for the case of starting allele 630

frequencies set to the deterministic values of mutation-selection balance, µ/sd. Indeed, 631

we observe adaptation due to small frequency shifts in a much larger parameter range 632

(Appendix A.2). 633

Generally, adaptation by sweeps in a polygenic model requires a mechanism to 634

create heterogeneity among loci. This mechanism is entirely different in both modeling 635

frameworks. While heterogeneity is (only) produced by unequal locus effects for the 636

deterministic quantitative trait, it is (solely) due to genetic drift for the redundant trait 637

model. Since both approaches ignore one of these factors, both results should rather 638

underestimate the prevalence of sweeps. Indeed, heterogeneity increases for our 639

model with unequal locus effects (see Appendix A.4). 640

Both drift and unequal locus effects are included in the simulation studies by Pavlidis 641

et al (2012) [28] and Wollstein and Stephan (2014) [29]. These authors assess patterns 642

of adaptation for a quantitative trait under stabilizing selection with up to eight diploid 643

loci. However, due to differences in concepts and definitions there are few comparable 644

results. In contrast to [31] and to our approach, they study long-term adaptation (they 645

simulate Ne generations). In [28,29], sweeps are defined as fixation of the mutant allele 646

at a focal locus, whereas frequency shifts correspond to long-term stable polymorphic 647

equilibria [29]. With this definition, a shift scenario is no longer a transient pattern, but 648

depends entirely on the existence (and range of attraction) of polymorphic equilibria. A 649

polymorphic outcome is likely for a two-locus model with full symmetry, where the 650

double heterozygote has the highest fitness. For more than two loci, the probability of 651

shifts decreases (because polymorphic equilibria become less likely, see [43]). 652

However, also the probability of a sweep decreases. This is largely due to the 653

gene-centered view in [28], where potential sweeps at background loci are not recorded 654

(see also Appendix A.6). 655
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6.3 Scope of the model and the analytical approach 656

We have described scenarios of adaptation for a simple model of a polygenic trait. This 657

model allows for an arbitrary number of loci with variable mutation rates, haploids and 658

diploids, linkage, time-dependent selection, new mutations and standing genetic 659

variation, and alternative starting conditions for the mutant alleles. Its genetic 660

architecture, however, is strongly restricted by our assumption of (full or relaxed) 661

redundancy among loci. In the haploid, fully redundant version, the phenotype is binary 662

and only allows for two states, ancestral wildtype and mutant. Biologically, this may be 663

thought of as a simple model for traits like pathogen or antibiotic resistance, body color, 664

or the ability to use a certain substrate [44,45]. 665

Our main motivation, however, has been to construct a minimal model with a 666

polygenic architecture that allows for both sweep and shifts scenarios – and for 667

comprehensive analytical treatment. One may wonder how our methods and results 668

generalize if we move beyond our model assumptions. 669

Key to our analytical method is the dissection of the adaptive process into a 670

stochastic phase that explains the origin and establishment of beneficial variants and a 671

deterministic phase that describes the allele frequency changes of the established 672

mutant copies. This framework can be applied to a much broader class of models. 673

Indeed, in many cases, the fate of beneficial alleles, establishment or loss, is decided 674

while these alleles are rare. Excluding complex scenarios such as passage through a 675

fitness valley, the initial stochastic phase is relatively insensitive to interactions via 676

epistasis or linkage. We can therefore describe the dynamics of traits with a different 677

architecture (e.g. an additive quantitative trait with equal-effect loci under stabilizing 678

selection) within the same framework by coupling the same stochastic dynamics to a 679

different set of differential equations describing the dynamics during the deterministic 680

phase. 681

This is important because, as described above, the key qualitative results to 682

distinguish broad categories of adaptive scenarios are due to the initial stochastic 683

phase. This holds true, in particular, for the role of the background mutation rate Θbg. 684

We therefore expect that these results generalize beyond our basic model. Indeed, we 685

have already seen this for our model extensions to include diploids, linkage, and 686
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relaxed redundancy. Vice-versa, we have seen that other factors, such as alternative 687

starting conditions for the mutant alleles, directly affect the early stochastic phase and 688

lead to larger changes in the results. As shown in Appendix A.2, however, they can be 689

captured by an appropriate extension of the stochastic Yule process framework. 690

Several factors of biological importance are not covered by our current approach. 691

Most importantly, this includes loci with different effect sizes and spatial population 692

structure. Both require a further extension of our framework for the early stochastic 693

phase of adaptation. Unequal locus effects (both directly on the trait or on fitness due to 694

pleiotropy) are expected to enhance the heterogeneity in the adaptive response among 695

loci, as confirmed by simulations of a 2-locus model in Appendix A.4. The opposite is 696

true for spatial structure, as further discussed below. 697

6.4 When to expect sweeps or shifts 698

Although our assumptions on the genetic architecture of the trait (complete redundancy 699

and equal loci) are favorable for a collective, shift-type adaptation scenario, we observe 700

large changes in mutant allele frequencies (completed or partial sweeps) for major 701

parts of the parameter range. A homogeneous pattern of subtle frequency shifts at 702

many loci is only observed for high mutation rates. This contrasts with experience 703

gained from breeding and modern findings from genome-wide association studies, 704

which are strongly suggestive of an important role for small shifts with contributions 705

from very many loci (reviewed in [1,15,46–48], see [12,49,50] for recent empirical 706

examples). For traits such as human height, there has even been a case made for 707

omnigenic adaptation [8], setting up a “mechanistic narrative” for Fisher’s (conceptual) 708

infinitesimal model. Clearly, body height may be an extreme case and the adaptive 709

scenario will strongly depend on the type of trait under consideration. Still, the question 710

arises whether and how wide-spread shift-type adaptation can be reconciled with our 711

predictions. We will first discuss this question within the scope of our model and then 712

turn to factors beyond our model assumptions. 713
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The size of the background mutation rate 714

The decisive parameter to predict the adaptive scenario in our model, the background 715

mutation rate, is not easily amenable to measurement. Θbg = (L− 1)Θl compounds 716

two factors, the locus mutation parameter Θl and the number of loci L, which are both 717

complex themselves and require interpretation. To assess the plausibility of values of 718

the order of Θbg & 100, required for homogeneous polygenic shifts in our model, we 719

consider both factors separately. 720

Large locus mutation rates Θl = 4Neµ (for diploids, 2Neµ for haploids) are possible 721

if either the allelic mutation rate µ or the effective population size Ne is large. Both 722

cases are discussed in detail (for the case of soft sweeps) in [6]. Basically, µ can be 723

large if the mutational target at the locus is large. Examples are loss-of-function 724

mutations or cis-regulatory mutations. Ne is the short-term effective population 725

size [40,51,52] during the stochastic phase of adaptation. This short-term size is 726

unaffected by demographic events, such as bottlenecks, prior to adaptation. It is 727

therefore often larger than the long-term effective size that is estimated from nucleotide 728

diversity. (Strong changes in population size during the adaptive period can have more 729

subtle effects [53].) For recent adaptations due to gain-of-function mutations, plausible 730

values are Θl . 0.1 for Drosophila and Θl . 0.01 for humans [6]. 731

If 10 000 loci or more contribute to the basis of a polygenic trait [8], large values of 732

Θbg could, in principle, easily be obtained. However, the parameter L in our model 733

counts only loci that actually can respond to the selection pressure: mutant alleles must 734

change the trait in the right direction and should not be constrained by pleiotropic 735

effects. Omnigenic genetics, in particular, also implies ubiquitous pleiotropy and so the 736

size of the basis that is potentially available for adaptation is probably strongly 737

restricted. For a given trait, the number of available loci L may well differ, depending on 738

the selection pressure and pleiotropic constraints. Furthermore, our results for the 739

model with relaxed redundancy show that Θbg only accounts for loci that are truly 740

redundant and offer alternative routes to the optimal phenotype. With this in mind, 741

values of L in the hundreds or thousands (required for Θbg ≥ 100) seem to be quite 742

large. While some highly polygenic traits such as body size could still fulfill this 743

condition, this appears questionable for the generic case. 744
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Balancing selection and spatial structure 745

In our model, characteristic patterns in the adaptive architecture result from 746

heterogeneities among loci that are created by mutation and drift during the initial 747

stochastic phase of adaptation. As initial condition, we have mostly assumed that 748

mutant alleles segregate in the population in the balance of mutation, purifying selection 749

and genetic drift. Since this typically results in a broad allele frequency distribution 750

(unless mutation is very strong), it favors heterogeneity among loci and thus adaptation 751

by (partial) sweeps. However, even after decades of research, the mechanisms to 752

maintain genetic variation in natural populations remain elusive [1]. As discussed in 753

Appendix A.2, more homogeneous starting conditions for the mutant alleles can be 754

strongly favorable of a shift scenario. Such conditions can be created either by 755

balancing selection or by spatial population structure. 756

Balancing selection (due to overdominance or negative frequency dependence) 757

typically maintains genetic variation at intermediate frequencies. If a major part of the 758

genetic variance for the trait is due to balancing selection, adaptation could naturally 759

occur by small shifts. However, the flexibility of alleles at single loci, and thus the 760

potential for smaller or larger shifts, will depend on the strength of the fitness trade-off 761

(e.g. due to pleiotropy) at each locus. If these trade-offs are heterogeneous, the 762

adaptive architecture will reflect this. Also, adaptation against a trade-off necessarily 763

involves a fitness cost. Therefore, if the trait can also adapt at loci that are free of a 764

trade-off, these will be preferred, possibly leading to sweeps. 765

As discussed in a series of papers by Ralph and Coop [34,35], spatial population 766

structure is a potent force to increase the number of alternative alleles that contribute to 767

the adaptive response. If adaptation proceeds independently, but in parallel, in spatially 768

separated subpopulations, different alleles may be picked up in different regions. 769

Depending on details of the migration pattern [36], we then expect architectures that are 770

globally polygenic with small shifts, but locally still show sweeps or dominating variants. 771

Furthermore, population structure and gene flow before the start of the selective 772

phase can have a strong effect on the starting frequencies. In particular, if the base 773

population is admixed, mutant alleles could often start from intermediate frequencies 774

and naturally produce small shifts. This applies, in particular, to adaptation in modern 775
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human populations, which have experienced major admixture events in their 776

history [54,55] and only show few clear signals of selective sweeps [11]. 777

Finally, gene flow and drift will continue to change the architecture of adaptation 778

after the rapid adaptive phase that has been our focus here. This can work in both 779

directions. On the one hand, subsequent gene flow can erase any local sweep signals 780

by mixing variants that have been picked up in different regions [34,35]. On the other 781

hand, local adaptation, in particular, may favor adaptation by large-effect alleles at few 782

loci, favoring sweeps over longer time-scales. Indeed, as argued by Yeaman [56], initial 783

rapid adaptation due to small shifts at many alleles of mostly small effect may be 784

followed by a phase of allelic turnover, during which alleles with small effect are 785

swamped and few large-effect alleles eventually take over. This type of allele sorting 786

over longer time-scales is also observed in simulations studies for a quantitative trait 787

under stabilizing selection that adapts to a new optimum after an environmental 788

change [31,57]. 789

Between sweeps and shifts: adaptation by partial sweeps 790

Previous research has almost entirely focused on either of the two extreme scenarios 791

for adaptation: sweeps in a single-locus setting or (infinitesimal) shifts in the tradition of 792

Fisher’s infinitesimal model. This leaves considerable room for intermediate patterns. 793

Our results for the redundant trait model show that such transitional patterns should be 794

expected in a large and biologically relevant parameter range (values of Θbg between 795

0.1 and 100). Patterns between sweeps and shifts are polygenic in the sense that they 796

result from the concerted change in the allele frequency at multiple loci. They can only 797

be understood in the context of interactions among these loci. However, they usually do 798

not show subtle shifts, but much larger changes (partial sweeps) at several loci. If 799

adaptation occurs from mutation-selection-drift balance, the polygenic patterns are 800

typically strongly heterogeneous, even across loci with identical effects on the trait. 801

Such patterns may be difficult to detect with classical sweep scans, in particular if 802

partial sweeps are ”soft” because they originate from standing genetic variation or 803

involve multiple mutational origins. However, they should be visible in time-series data 804

and may also leave detectable signals in local haplotype blocks. 805
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Indeed there is empirical evidence for partial sweeps from time series data in 806

experimental evolve and resequence experiments on recombining species such as fruit 807

flies. For example, Burke et al. [58] observe predominantly partial sweeps (from SGV) 808

in their long-term selection experiments with Drosophila melanogaster for accelerated 809

development – a rather unspecific trait with a presumably large genomic basis. A 810

similar pattern of “plateauing”, where allele frequencies at several loci increase quickly 811

over several generations, but then stop at intermediate levels, was recently observed by 812

Barghi and collaborators [59] for adaptation of 10 Drosophila simulans replicates to a 813

hot temperature environment. Complementing the genotypic time-series data with 814

measurements of several phenotypes, these authors found convergent evolution for 815

several high-level traits (such as fecundity and metabolic rate), indicating that rapid 816

phenotypic adaptation had reached a new optimum. This high-level convergence 817

contrasts a strong heterogeneity in the adaptation response among loci and also 818

between replicates [59]. Based on their data, the authors reject both a selective sweep 819

model and adaptation by subtle shifts. Instead, the observed patterns are most 820

consistent with the intermediate adaptive scenario in our framework, featuring 821

heterogeneous partial sweeps at interacting loci with a high level of genetic redundancy. 822
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A Supporting information 976

A.1 Linked loci 977

Negative epistasis for fitness causes negative linkage disequilibrium (LD) among the 978

selected loci. While LD can typically be ignored as long as loci are only loosely linked, 979

this changes once recombination rates drop below a threshold (e.g. [22], p. 277). For 980

tight linkage r → 0, in particular, individuals carrying multiple mutations can no longer 981

be formed by recombination, but require multiple mutational hits on the same haplotype. 982

This is unlikely while mutant allele frequencies are low, which is when the relevant 983

mutations of the adaptive process arise. By the end of the adaptive phase, the excess 984

of single-mutant haplotypes produces strong negative LD. Nevertheless, our theory 985

predicts that the distribution of allele frequency ratios that emerges from the early 986

stochastic phase of the adaptive process is unaffected Eq.(9). This prediction is 987

confirmed by simulations, see Fig S.1. 988

Fig S.2 shows the joint distribution of the major and the minor locus of a trait with 989

L = 2 loci for different degrees of linkage. In all cases, the process is stopped when the 990

proportion of remaining non-mutant individuals drops below fw = 0.05. The results 991

show that the linkage equilibrium assumption (red and blue lines) provides a good 992

approximation as long as r ≥ sb. For r < sb, the distributions are shifted to lower values 993

and clear deviations become visible. The constraint on the allele frequencies at the 994

stopping condition changes from (1− p1)(1− p2) = fw for linkage equilibrium to 995

p1 + p2 = 1− fw for complete linkage. As a consequence, the boundary between the 996

major and minor locus distributions (red and blue) drops from 1−
√
fw to (1− fw)/2. As 997

shown in the Mathematical Appendix, Eq (M.29), we can derive an analytical 998

approximation for the distributions for complete linkage r = 0. For L = 2, we obtain a 999

modified Beta-distribution (black lines in the Figure) 1000

P±fw,tl[p|Θ] =
2(1− fw)−1

B[Θ]

(
p

1− fw

)Θ−1(
1− p

1− fw

)Θ−1

(S.1)

with p ≥ (1− fw)/2 (resp. p ≤ (1− fw)/2) for the major (minor) locus. The simulation 1001

results show that this prediction is accurate for r � sb (deviations for Θbg = 100 are due 1002

to overshooting of the stopping condition in the last generation of our Wright-Fisher 1003
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simulations). 1004

While linkage affects the shape of the joint distribution, it does not alter its key 1005

qualitative characteristics that distinguish adaptive scenarios. In particular, the same 1006

conditions on Θbg and Θl apply for singularities at the boundaries of the marginal 1007

distributions. We still observe sweep-like adaptation for Θbg � 1, adaptation by small 1008

shifts for Θbg � 1, and a heterogeneous pattern of partial sweeps in a transition range 1009

of Θbg around 1. 1010
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Fig S.1. E[x] for redundant fitness effects with two linked loci. Simulation results
(colored dots) for the mean allele frequency ratio are plotted in dependence of the locus
population mutation rate Θl and compared with the analytical prediction (black line).
Simulations are stopped when fitness has reached 95% of its maximum. Linkage does
not change the results for the ratio of allele frequencies, despite significant buildup of
linkage disequilibrium with low recombination rates. Results for 10 000 replicates,
standard errors < 0.005 (smaller than symbols).

A.2 Alternative starting allele frequencies 1011

So far, we have assumed that adaptation starts from mutation-selection-drift balance. 1012

This includes variable amounts of standing genetic variation (weak or strong sd) and 1013

even cases where this balance is not represented by a stable equilibrium distribution 1014
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Fig S.2. Genetic architecture of adaptation with linkage. Marginal distributions for
the major locus (red) and the minor locus (blue) of a model with L = 2 loci depending
on Θbg (rows) and linkage among the loci (columns). Black lines show the analytical
approximations for LE (dashed) and complete linkage (solid). For strong recombination
r ≥ sb = 0.1, the deviations from the LE approximation are small. For r � sb = 0.1, the
approximation for complete linkage works well. Further parameters: −sd = sb = 0.1,
Ne = 10 000, 10 000 replicates.

(time-dependent selection, see the Mathematical Appendix). There are, however, other 1015

scenarios of biological relevance. Given the right (possibly complex) selection scheme, 1016

balancing selection can maintain mutant alleles, prior to the environmental change, at 1017

arbitrary frequencies. The same holds true if the base population is admixed, either due 1018

to natural processes or due to human activity (e.g. breeding from hybrids). For these 1019

scenarios, our theoretical formalism to describe the establishment of mutants during the 1020

stochastic phase (Fig 2) does not apply. In this section, we describe how the formalism 1021
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can be extended to cover arbitrary starting frequencies of mutants at the onset of 1022

positive selection at time t = 0. 1023

Extended Yule framework 1024

The Yule process that describes the stochastic phase of the adaptive process accounts 1025

for the mutant copies at all loci that are destined for establishment. In our framework so 1026

far (see the Mathematical Appendix M.2), we have started this process with zero copies. 1027

SGV due to mutation-selection-drift balance can still be produced by such a process if it 1028

is started at some time in the past (t < 0). For general starting frequencies, we can 1029

alternatively start this process at time t = 0, but with mutant copies (immortal lineages) 1030

already present. Suppose that the mutant frequency at locus i at time t = 0 is pi, 1031

corresponding to Nepi mutant copies. Of these, only the ni < Nepi ”immortal” mutants 1032

(destined for establishment) are included in the Yule process. Assuming an 1033

independent establishment probability pest per copy, ni is binomially distributed with 1034

parameters Nepi and pest. For the limit distribution of a multi-type Yule process that is 1035

started with a non-zero number of lines, consider that each of these initial lines can be 1036

understood as an extra source of new immortal lines (due to birth) that is entirely 1037

equivalent to the generation of new lineages by mutation. It is therefore appropriate to 1038

include these lines as extra locus mutation rate 1039

Θ̃i = Θi + ni = 2Neµi + ni . (S.2)

In the absence of recurrent mutation, Θi = 0, this procedure reproduces the well-known 1040

Polya urn scheme (e.g. [60,61]). Replacing Θi by Θ̃i within our original Yule process 1041

formalism, and averaging over the binomial distribution, leads to the desired extension 1042

to arbitrary starting frequencies. 1043

Application 1044

Theory papers (e.g. [30,31,41,62]) often use a deterministic framework to describe the 1045

frequency of alleles that segregate in a population in mutation-selection balance. To 1046

simplify the analysis, they do not model SGV as a distribution (due to mutation, 1047

selection, and drift), but replace this distribution by its expected value (ignoring drift). 1048
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We can apply our scheme with fixed starting frequencies to this case and thus assess 1049

the effect of genetic drift in the starting allele frequency distribution. We assume equal 1050

loci and a starting frequency |µl/sd| for an (initially deleterious) mutant allele with 1051

selection coefficient sd in mutation-selection balance. Fig S.3 shows the simulated 1052

marginal distributions of the loci with the largest contribution to the adaptive response 1053

(compare Fig 4). We see that the type of the adaptive architecture is again constant 1054

across rows with equal background mutation rate. However, due to the more 1055

homogeneous starting conditions, adaptation involves more loci and is much more 1056

shift-like. Analytical predictions following the above scheme are shown for L = 2 loci. 1057

With establishment probability pest = 2sb, the counts n1 and n2 of ”immortal” mutants at 1058

both loci are independent random draws from a Binomial distribution with parameters 1059

Ne|µl/sd| = |Θl/2sd| and 2sb. For Θbg ≥ 0.1, we find (heuristically) that the marginal 1060

distribution for alleles starting from mutation-selection balance closely matches the one 1061

of the fully stochastic model with effective Θeff
bg = Θbg(1 + |sb/2sd|) = 51Θbg for the 1062

parameters in the figure (lines added in green). (Note that, from the average number of 1063

established lines, one would assume Θeff
bg = Θbg(1 + |sb/sd|) = 101Θbg. However, this 1064

does not account for the variance in the number of immortal lines among the two loci.) 1065

A.3 Diploids 1066

To extend our model to diploids, we assume that a single locus that is homozygous for 1067

the mutant allele is sufficient to produce the fully functional mutant phenotype, while a 1068

heterozygous locus produces a mutant that is functional with probability 1− h. We 1069

assume that mutants contribute independently. Thus, if k heterozygous loci exist, but no 1070

homozygous mutant locus, the resulting mutant phenotype will be functional with 1071

probability 1− (1− (1− h))k = 1− hk. For L = 2 loci, in particular, the (logarithmic) 1072

fitness of genotype G becomes 1073

w(G) =



0 no mutations: G = (aabb)

(1− h)s 1 heterozygous locus: G = (Aabb, aaBb)

(1− h2)s 2 heterozygous loci: G = (AaBb)

s ≥ 1 homozygous mutation: G = (AA.., ..BB)

, (S.3)
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p< and p>

ΘB=0,1; weak start frq:2; strong start frq:1
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p< and p>

ΘB=0,1; weak start frq:1; strong start frq:1
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p< and p>

ΘB=1; weak start frq:500; strong start frq:5

Θbg = 1
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p< and p>

ΘB=1; weak start frq:56; strong start frq:1
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p< and p>

ΘB=1; weak start frq:11; strong start frq:1
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ΘB=1; weak start frq:6; strong start frq:1
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ΘB=10; weak start frq:5000; strong start frq:50

Θbg = 10
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Fig S.3. Polygenic adaptation from alternative allele starting frequencies. The
panels show the adaptive architecture when mutant alleles start from their expected
value in mutation-selection balance, without drift. We distribute L · |Θl/2sd| mutant
copies as evenly as possible across all loci. We set −sd = sb/100 = 0.001. Black lines
for L = 2 loci show analytical predictions described in the main text (only
computationally possible for Θbg ≤ 1), green lines for Θbg ≥ 1 show the heuristic
prediction for Θeff

bg = 51Θbg. Finally, gray lines show the marginal distributions when
adaptation occurs from mutation-selection-drift balance, compare Fig 4.

where s = sb > 0 for t ≥ 0 and s = sd < 0 for t < 0. Note that h ∈ [0, 1] measures the

dominance of the ancestral allele. We assume Hardy-Weinberg-linkage-equilibrium

(HWLE). In this case, the marginal fitnesses of the mutant alleles are (for 2 loci),

w∗A = s− (1− pA)(1− pB)
[
1− pB(1− 2h)

]
hs, (S.4a)

w∗B = s− (1− pA)(1− pB)
[
1− pA(1− 2h)

]
hs. (S.4b)

In contrast to the haploid case, the marginal fitnesses are in general not equal. There 1074

are, however, two important special cases, where our fitness scheme (with redundancy 1075

on the level of loci) implies equal marginal fitnesses (and thus redundancy on the level 1076

of alleles): either if the ancestral allele is fully recessive (h = 0) or if the alleles are 1077
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co-dominant (h = 0.5). As shown in the Mathematical Appendix, this holds true more 1078

generally for an arbitrary number of loci. 1079

Simulation results 1080

We simulated a diploid model with two loci in HWLE according to the above scheme 1081

with three different levels of dominance of the ancestral allele, h = 0.1; 0.5; and 0.9. The 1082

diploid, effective population size is Ne, corresponding to 2Ne chromosomes. The 1083

mutation rate is µ at both loci and we define the population-scaled mutation rate for 1084

diploids as Θd
l = Θd

bg = 4Neµ. Simulations are stopped when the percentage of 1085

remaining ancestral haplotypes drops below fw = 0.05. (This condition directly 1086

corresponds to the stopping condition for haploids. Alternative stopping conditions, 1087

such as 95% increase in mean diploid fitness are also covered by our theoretical 1088

framework, but require a different transformation.) 1089

The results are shown in Fig S.4. We see that the haploid results fully carry over to 1090

diploids for co-dominance (h = 0.5, middle column), where the diploid fitness scheme 1091

implies redundancy on the level of alleles. As explained above, the same holds true if 1092

the ancestral allele is fully recessive. Our simulations show that the haploid result is still 1093

a good approximation for h = 0.1 (left column). In contrast, much larger deviations are 1094

obtained for recessive mutants (dominant ancestral allele, h = 0.9, right column). In this 1095

case, the locus with the higher mutant frequency experiences stronger selection. For 1096

Θl ≥ 0.1, when polymorphism at both loci is likely, this favors the major locus relative to 1097

the minor locus, increasing the heterogeneity in the adaptive architecture. 1098

A.4 Asymmetric loci 1099

For the Figures in the main text, we have assumed that all loci in the genetic basis of 1100

the trait are equivalent: they have equal mutation rates and effect sizes. This symmetric 1101

choice favors a collective shift scenario because no locus has a build-in advantage. In 1102

this Appendix, we study the consequences of asymmetries among loci. 1103

Mutation rate asymmetry Our analytical formalism allows for arbitrary asymmetries 1104

in the locus mutation rates. The prediction for the expected ratio of minor/major locus 1105
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Fig S.4. Adaptive architecture for diploids in linkage equilibrium. Adaptation in a
2-locus model according to scheme (S.3), with recessive (h = 0.1), codomiant (h = 0.5)
or dominant (h = 0.9) ancestral alleles. We assume Hardy-Weinberg and linkage
equilibrium. Simulations are stopped when frequency of wildtype haplotypes drops
below 5%. Standing genetic variation builds up for 16Ne generations before the change
in the environment. Selection coefficients are set to sb = −sd = 0.1. Solid lines show
analytical predictions using the framework developed for haploids.

frequencies of a 2-locus model with unequal mutation rates Θ1 and Θ2 reads 1106

E[x] =
Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)

∫ 1

0

(
xΘ1−1 + xΘ2−1

)
(1 + x)−Θ1−Θ2dx (S.5)
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where the sum in the integral accounts for the possibility that either locus may end up 1107

as the “major locus” at the time of observation (compare Eq. M.27). Fig S.5 shows the 1108

prediction as a function of Θ1 and Θ2 = dΘ1 together with simulation results (analogous 1109

to Fig 3 in the main text). As expected, differences in the locus mutation rates lead to 1110

more heterogeneous ”sweep-like” architectures with lower minor/major locus ratio. The 1111

Figure also confirms the independence of levels of standing genetic variation and the 1112

good overall fit of the analytical approximation. 1113

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ● ●

●

●

● ● ● ●

● ● ●
●

●
● ● ● ●

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Θl

pmin

pmaj

sb=0.1sd=0.1 LE, EnvChange_0

(a) sb = 0.1, de novo

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ● ●
●

●

● ● ●
●

● ● ●
●

●
● ● ● ●

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Θl

pmin

pmaj

sb=0.1sd=0.1 LE, EnvChange_80000

(b) sb = 0.1, ↓SGV: sd = 0.1

● ●

●

●

●

●

● ●
●

●

●

●

● ● ●
●

●

●

● ● ●
●

●
●

0.01 0.10 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

Θl

pmin

pmaj

sb=0.1sd=0.001 LE, EnvChange_80000

(c) sb = 0.1, ↑SGV: sd = 0.001
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Fig S.5. Different mutation rates. For L = 2 we plot E[x] without and with previous
buildup of weak and strong SGV for different mutation rates at the two loci, such that
Θ2 = d ·Θ1, for d = 1, 0.5, 0.2, 0.1. Our analytical predictions for different mutation rates,
Eq (S.5), yield an excellent fit. Simulations are obtained from 10 000 replicates per data
point, assuming linkage equilibrium.

Locus effect asmmetry Our analytical results are based on the assumption of 1114

strong redundancy between loci. In the main text, we have already discussed how 1115

these results extend for a scenario of relaxed redundancy, where two mutational steps 1116

are needed to reach the trait optimum. Similarly, intermediate phenotypes are also 1117

included in the diploid version of our model. However, both model extensions do not 1118

break the symmetry assumption concerning the effects of single-locus substitutions. 1119

Differences in the single-locus effects interfere with the assumptions of our 1120

Yule-process framework for the early adaptive phase. In contrast to unequal mutation 1121

rates, they cannot easily be included. Although polygenic models with equal locus 1122

effects have a long history in the biological literature, at least slight deviations from this 1123

assumption are unavoidable in nature. Indeed, deviations already arise due to 1124

non-neutral “hitchhiker” mutations on the selected haplotypes. With exponential growth 1125
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during the selected phase, even small perturbations could, in principle, lead to 1126

significant changes in the resulting adaptive architecture. To test this, we use a haploid 1127

2-locus model with (Malthusian) fitness 0 for the ancestral genotype ab and fitness 1128

sb/d ≷ 0 for the single mutant Ab and the double mutant AB. The other single mutant, 1129

aB is set to εsb/d. Fig S.6 shows simulation results for the expected minor/major 1130

frequency ratio for cases where aB is less beneficial (ε = 100/101, 10/11, 2/3) as well 1131

as for cases where aB is optimal (ε = 101/100, 11/10, 3/2). Note that the latter case 1132

corresponds to “sign epistasis” for the A mutant. Simulations are stopped when the 1133

frequency of ancestral haplotypes, ab, drops below 5%. 1134

As expected, the results show that unequal locus effects (like unequal mutation 1135

rates) lead to more heterogeneous adaptive architectures. However, as long as 1136

differences in the locus effects are moderate (below ∼ 10%) the prediction from the fully 1137

redundant model still provides a good approximation. In contrast, differnces of 50% in 1138

the single-locus effects lead to sizable deviations. This relative robustness is 1139

reminiscent of the case of soft selective sweeps, where differences of . 20% in the 1140

fitness of independent mutant copies only lead to small deviations from the predictions 1141

for the frequencies of sweep haplotypes (see Fig. 4 and S1 in [40]). Deviations from the 1142

fully redundant prediction are larger for the sign-epistasis case, where the aB mutant 1143

has the highest fitness. This is expected – indeed, the single mutant should eventually 1144

displace all other genotypes at later observation times. Fig S.6 also shows that 1145

deviations are partially compensated if adaptation occurs from standing genetic 1146

variation, in particular if levels of standing variation are high (panel c). This reflects our 1147

model assumption that the locus under stronger beneficial selection is also under 1148

stronger deleterious selection prior to the environmental shift. 1149
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Fig S.6. Different locus effects. For L = 2 we plot E[x] for without and with previous
build-up of weak and strong SGV for various genotypic fitnesses of the aB-genotype
εsb/d. Fitness of the Ab and AB genotype is always set to sb/d. Simulations are
obtained from 10 000 replicates per mutation rate with recombination rate r = 0.5.

A.5 Approximations for multi-locus architectures 1150

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet 1151

distribution, Mathematical Appendix Eq (M.29), lower dimensional marginal distributions 1152

for single loci or groups of loci can easily be derived. For linkage equilibrium, 1153

Mathematical Appendix Eq (M.20), however, the required integrals can only be solved 1154

numerically. For L loci, an (L− 2)-dim integral needs to be evaluated, which becomes 1155

computationally unfeasible (with programs packages like Mathematica) for L > 5. In 1156

many cases, we can nevertheless derive approximations. To do so, we make use of a 1157

key property of the adaptive architecture, seen in our results: The (joint) architecture of 1158

adaptation at loci with the largest contribution to the adaptive response is primarily a 1159

function of combined mutation rates at competing loci, such as the background 1160

mutation rate Θbg. Given these values, it is largely independent of the number of loci in 1161

the genetic basis of the trait itself. We can therefore describe the adaptive architecture 1162

of a polygenic trait with L loci by a model with k < L loci given that the total adaptive 1163

response is well captured by the contribution of the top k loci. It turns out that this is 1164

typically the case for Θbg ≤ 1, when the contributions from different loci are very 1165

heterogeneous. In the following, we describe this procedure for an L-locus model with 1166

equal mutation rates Θi = Θl, 1 ≤ i ≤ L. 1167
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Approximations using the 2-locus model 1168

Several key properties of the L-locus architecture can already be described within the 1169

2-locus framework. This includes the marginal distributions at the major locus and at 1170

the first minor locus. To this end, we set the mutation rate at the minor locus of the 1171

2-locus model to the background mutation rate of the L-locus model. As described in 1172

the main text, this choice matches the time lag between the first origin of a mutation 1173

destined for establishment at a locus (usually the major locus) and at a second locus 1174

(usually the first minor locus). It also guarantees that the approximation captures the 1175

correct asymptotic shape of the major-locus distribution at p = 1− fw, and of the 1176

first-minor-locus distribution at p = 0. The choice of the mutation rate at the major locus 1177

itself is less important. For the approximation of the major-locus distribution, we find 1178

that setting it to the locus-mutation rate yields the best fit. We thus use a 2-locus model 1179

with unequal mutation rates, P1>
fw [p1|Θl,Θbg], Eq (M.28a), in Fig 4. For the marginal 1180

distribution at the first minor locus, the approximation with equal mutation rates, 1181

P1<
fw [p1|Θbg,Θbg], Eq (M.28b), works slightly better. Finally, we can also approximate the 1182

distribution at an average minor locus (rather than the first minor locus) by 1183

P1<
fw [p1|Θl,Θbg]. 1184

Approximations using models with k ≥ 2 loci 1185

The approximation of higher-order minor loci requires models with a sufficiently large 1186

genetic basis that such a locus exists at all. I.e., a k-locus model can approximate 1187

marginal distributions up to the (k − 1)st minor locus. Assume that we want to 1188

approximate the marginal distribution of the jth minor locus of an L-locus model using a 1189

k-locus model, j < k < L. As for the case k = 2 discussed above, the approximation 1190

requires that the expected lag time between the origin of a successful mutation at a first 1191

locus and the origin of a mutation at a jth locus be matched. For the L-locus model, 1192

this waiting time is 1193

1

Θl

j∑
i=1

1

L− i
.

For a k-locus model with equal mutation rate Θ
(k)
l at all loci, we thus obtain the 1194
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Fig S.7. Approximating higher dimensional adaptive architectures. We
approximate a 10 locus model (Θbg = 1) with the theoretical predictions based on the
four-locus model for the major locus and the first, second, and third minor locus.
Compare Fig 4, where we use approximations based on models with the minimal
number of loci needed.

matching rule 1195

Θ
(k)
l = Θl

∑j
i=1

1
k−i∑j

i=1
1
L−i

for the approximation of the jth minor locus. For j = 1, this reproduces the matching 1196

rule for the background mutation rate Θbg. In general, the value for Θ
(k)
l depends on j, 1197

but converges once L, k � j. Approximations by models with unequal locus mutation 1198

rates are also possible, but usually do not lead to a relevant improvement. In Fig 4, we 1199

use formulas from 3- and 4-locus models to approximate the marginal distributions of 1200

the 2nd and 3rd minor locus, respectively. In general, the approximations for all loci can 1201

be improved by using approximation models with more loci than required, i.e. k > j + 1. 1202

In Fig S.7, we show this for approximations of the major locus and the first three minor 1203

loci, all derived from a 4-locus model. 1204

A.6 Marginal distribution of a single locus 1205

Figure S.8 shows the marginal distribution at a single focal locus for a trait with L = 2 1206

to L = 100 loci in its basis. Since all loci are equal, the probability that the focal locus 1207
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ends up as the major locus is 1/L. The red dots in the figure indicate the part of the 1208

marginal distribution that corresponds to this case. With an increasing number of 1209

redundant loci, the probability for each single locus to play a major role in the adaptive 1210

process decreases. The marginal distribution of a fixed locus therefore changes 1211

strongly with an increasing number of loci L. For large L, in particular, it does not 1212

represents the key components of the adaptive architecture on the level of the trait any 1213

more. This is in contrast to Fig 4, where marginal distributions of the loci with the 1214

largest contributions to the adaptive response are shown. For 2 loci, Fig S.8 also shows 1215

the analytical approximation for the marginal distribution, Eq (11). As long as the 1216

adaptive architecture is dominated by only a few loci, the same 2-locus result can be 1217

used as an approximation for the marginal distribution in models with more than two 1218

loci. This is shown in the figure for Θbg ≤ 1. The figure also shows that the 1219

approximation fails for Θbg ≥ 10 when adaptation is truly collective. 1220
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2 loci 10 loci 50 loci 100 loci

Complete selective sweeps:
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Fig S.8. Marginal distribution at a single focal locus. Simulation results for the
marginal distribution at a single locus at the end of the adaptive phase are shown in
blue. Red dots show the contribution of the major locus to this distribution (all cases,
where the focal locus ends up as the major locus). Dashed lines show the analytical
prediction based on the 2-locus model, Eq (11). Parameters and further details as in
Fig 4.
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A.7 Dynamics of adaptation 1221

In contrast to previous work on the topic (e.g. [30,31]), our approach does not discuss 1222

adaptive architecture as a function of the time that has elapsed since the environmental 1223

change. Instead, we assess adaptation at the genotypic level as a function of the 1224

progress that has been made towards adaptation of the trait. In our main result on the 1225

joint distribution of mutant allele frequencies (Eq (8), this progress is measured by the 1226

stopping condition fw, which directly relates to the distance of the trait mean to the new 1227

optimum (see Eq (2); for the basic model of a fully redundant trait, fw is the frequency 1228

of remaining ancestral phenotypes in the population). This shift from a time-slice view 1229

to a trait-centered view can lead to larger qualitative differences in particular if the 1230

mutation rate is low (Θl � 1/L). In this case, a distribution of genetic architectures at a 1231

fixed time t > 0 will incorporate opposite cases where adaptation of the trait has either 1232

already been completed or not even started because the population still waits for a 1233

successful mutant. Biologically, a trait-centered view seems to be closer to the idea of 1234

an “architecture of phenotypic adaptation”. Mathematically, the changed perspective 1235

enables the derivation of analytical results. By comparing architectures for variable 1236

degrees of phenotypic adaptation, we still obtain a view of the adaptation dynamics, 1237

with fw as dynamical variable instead of time t. This is shown in Fig S.9. For Θbg ≤ 1, 1238

we see how the dominant contribution of a single “major locus” to the adaptive 1239

response emerges early on and then accentuates during the adaptive phase. 1240
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fwt = 0.75 fwt = 0.5 fwt = 0.25 fwt = 0.05
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Fig S.9. Dynamics of the adaptive process. Allele frequency distributions at four
stages over the course of adaptation. Approximations correspond to the Fig S.7 each
rescaled to the changed stopping condition fwt = 0.75; 0.5; 0.25; 0.05. Simulations for
10 000 replicates per mutation rate with sb = −sd = 0.1.
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Fig S.10. Weakly relaxed redundancy. Weakly relaxing redundancy such that a
single mutant has fitness 1 + 0.9sb/d and only two mutations or more confer the full
fitness effect (1 + sb/d) demonstrates the robustness of our model. As in Fig 4, allele
frequency distributions of derived alleles are displayed once the frequency of the
wildtype individuals in the population has decreased to fw = 5%, which corresponds to
an increase of 95% in mean fitness for complete redundancy. Genomic patterns of
adaptation show very similar characteristics as with complete redundancy. Simulation
data for relaxed redundancy (colored dots) are almost identical to results for complete
redundancy (gray dots).
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Fig S.11. Genetic architecture with weak selection. Frequency distributions of
major and minor loci are shown upon an increase of 95% in mean fitness for complete
redundancy for sb = 0.1 (colored dots, data as in Fig 4) and weaker selection sb = 0.01
(colored asterisks). Deleterious selection before the environmental change is set to
sd = −sb. As we condition on adaptation from the ancestral state, we do not obtain
enough valid runs for sd = −0.01 and Θbg = 100.
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Polygenic adaptation: From sweeps to subtle

frequency shifts

January 30, 2019

Mathematical Appendix 1

This Appendix describes the details of the mathematical model and methods used to 2

derive the analytical results of the article. Section M.1 gives an outline of the model; 3

section M.2 introduces the branching process method used for the early stochastic 4

phase of polygenic adaptation; section M.3 describes the derivation of the joint 5

frequency distribution at the end of the deterministic phase. 6

M.1 Redundant trait model 7

Consider a panmictic population of Ne haploids. Selection acts on a binary trait Z (e.g. 8

resistance) with just two states, a wildtype state Z0 (not resistant) and a mutant state Z1 9

(resistant). Without restriction, we can choose Z0 = 0 and Z1 = 1. Malthusian 10

(logarithmic) fitness is defined by the function 11

W (Z, t) = s(t)Z (M.1)

where the time dependent coefficient s(t) defines the strength of directional selection. 12

We assume that s(t) < 0 for t < 0, but s(t) > 0 for t > 0, such that the optimal trait 13

value shifts from the wildtype state Z = 0 to the mutant state Z = 1 due to some 14

change in the environment at time t = 0. We also assume that selection is stronger 15

than drift, |Ns(t)| � 1 for almost all t, but is arbitrary otherwise. 16

1
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We assume that Z is polygenic, with L biallelic loci (wildtype ai and mutant allele Ai, 17

i = 1, . . . , L) constituting its genetic basis. While genotype a = (a1, a2, . . . , aL) 18

produces the ancestral wildtype Z0, all mutant genotypes are fully redundant and 19

produce the mutant phenotype Z1, independently of the number of mutations. New 20

mutations from ai to Ai occur at a rate µi per generation, with µi � |s(t)| for almost all 21

t. For the purpose of our model, back mutation from Ai to ai can be ignored. The 22

linkage map among loci is arbitrary – unless explicitly specified otherwise. Let pi be the 23

frequency of allele Ai, and let fa be the frequency of the wildtype genotype a. Then the 24

mean fitness in the population is 25

W̄ (t) = s(t)Z̄(t) = s(t) (faZ0 + (1− fa)Z1) (M.2a)

where Z̄ is the trait mean. Since W (Z1, t) = s(t)Z1 is the marginal fitness of any mutant 26

allele, the selection dynamics at the ith locus can be expressed as 27

ṗi = pi
(
W (Z1, t)− W̄ (t)

)
= s(t)pi

(
Z1 − Z̄(t)

)
. (M.2b)

Our redundancy assumption implies strong diminishing returns epistasis on the level of 28

fitness: the fitness of genotypes with multiple mutations is the same as the one of single 29

mutants. Eq (M.2b) shows that the epistatic effect of the genetic background on the 30

dynamics at a particular locus is mediated by the trait mean Z̄(t) as single compound 31

parameter. Allele frequencies at all loci change with the same (time and 32

frequency-dependent) rate. We readily establish that 33

d

dt

(
pi
pj

)
=
ṗipj − ṗjpi

p2
j

= 0 . (M.3)

Thus, the ratio of allele frequencies among loci does not change under selection. Note 34

that this holds for an arbitrary linkage map. We can conclude that any differences in 35

(relative) allele frequencies are due to mutation and drift. 36

We are interested in the pattern of allele frequency changes across loci during the 37

phase of rapid phenotypic adaptation. This phase starts with the onset of positive 38

selection on derived alleles at time t = 0. It ends when mean fitness W̄ (t) approaches 39

its maximum s(t)Z1 and further selective change in the allele frequencies is strongly 40
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decelerated. Since (W (Z1, t)− W̄ (t))/s(t) = (Z1 − Z0)fa, we can parametrize this end 41

point by a condition fa(t) = fw on the frequency of the wildtype Z0 in the population. In 42

our figures, we usually use fw = 0.05. As initial state at time t = 0, we assume that the 43

population adapts from a balance of mutation, selection, and drift. We thus allow for 44

standing genetic variation (SGV) at all loci. If selection prior to t = 0 is constant (which 45

is what we generally assume in our computer simulations, see main text), SGV is given 46

by the standard equilibrium distribution under mutation, selection, and drift, where we 47

require that ai is the ancestral state at each locus. I.e., each allele frequency trajectory 48

pi(t), back in time, originates from the boundary pi = 0 rather than pi = 1 (see also [1] 49

for this concept). However, our analytical results do not require a static equilibrium and, 50

for a general s(t) < 0 for t < 0, the SGV reflects this non-equilibrium dynamics. 51

As described in the main text, we dissect the adaptive process into two phases. 52

During an initial stochastic phase mutation, selection, and drift lead to the build-up of 53

genetic variation, either from SGV or due to new mutation after time t = 0, as long as 54

allele frequencies pi at all loci are still low. We will describe our approach to this phase 55

in detail in the section on Yule processes below. Once allele frequencies are sufficiently 56

large, genetic drift and recurrent new mutation play only a minor role relative to 57

selection until we reach the end of the rapid adaptive phase. We thus enter a 58

deterministic phase where the dynamics is then well approximated by Eq (M.2b). 59

Relaxed redundancy 60

To relax the stringent redundancy condition of our model, it is natural to assume that a 61

single mutation is not sufficient to produce the full mutant phenotype Z1 = 1, but only a 62

partial phenotype Zq = q with 0 < q < 1. This makes the marginal fitness of mutant 63

alleles dependent on the genetic background. If genotypes with two or more mutations 64

produce Z1, we have 65

ṗi =
(
Wi(t)− W̄ (t)

)
pi = s(t)pi

(
Z1 − Z̄(t)− (Z1 − Zq)

fi
pi

)
(M.4)

where fi is the frequency of the haplotype with a single mutation at locus i. Since fi/pi 66

depends on i (even in linkage equilibrium), the ratio of allele frequencies at different loci 67

is no longer invariant and the key symmetry assumption (M.3) of the fully redundant 68
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model is violated. Note that redundancy is recovered for very low mutant frequencies, 69

such that double mutants are rare (fi ≈ pi) and also late in the adaptation process, 70

when most haplotypes carry at least one mutation and fi → 0. 71

Diploids 72

We can generalize the redundant trait model to diploids as follows. For a general model, 73

the dynamical equations in continuous time read 74

ṗi =
(
Wi(t)− W̄ (t)

)
pi (M.5)

where Wi(t) is the marginal fitness of allele Ai and W̄ (t) the mean fitness. All fitnesses 75

may depend on the allele frequencies and on time. Using (M.3), we see that all mutant 76

alleles Ai are redundant in the sense that they all feel the same selection pressure if 77

and only if their marginal fitnesses are equal at all times, Wi(t) = Wj(t), ∀ i, j. (The 78

same condition can also be derived from a discrete time dynamics.) For haploids, equal 79

marginal fitnesses, independently of the genetic composition of the population, 80

enforces the fully redundant trait model described above. For diploids with dominance, 81

the marginal fitness also depends on the allele frequency at the focal locus itself. An 82

obvious solution to the condition of equal marginal fitnesses across loci is the case of 83

complete dominance of the mutant allele. We can gain some more flexibility for the 84

fitness scheme, if we assume that genotype frequencies are at Hardy-Weinberg 85

equilibrium at all times. We can then distinguish three genotype classes: the wildtype 86

without any mutations (normalized fitness 0), mutant individuals with one or more 87

mutations on only a single haplotype (fitness s1(t)) and individuals with mutations on 88

both haplotypes (fitness s2(t)). The marginal fitness of any mutant allele then is 89

Wi(t) = s1(t)fa + s2(t)(1− fa) , (M.6)

where fa is the frequency of the ancestral haplotype without mutations. We thus require 90

redundancy of mutations (only) within haplotypes. Note, however, that this fitness 91

scheme implies a position effect, i.e., the fitness of the genotype does not only depend 92

on the number of mutations at each locus, but also on the association of mutations to 93
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one or the other haplotype. If we assume linkage equilibrium in addition to 94

Hardy-Weinberg proportions, a position effect can be avoided if we use the following 95

fitness scheme 96

1. The ancestral genotype without any mutants has normalized fitness W (t) = 0, 97

2. any genotype with at least one homozygous mutant has fitness W (t) = s2(t), 98

3. a genotype without a locus that is homozygous for the mutant, but with k loci that

are heterozygous has fitness

W (t) = s2(t) + 21−k
(
s1(t)− s2(t)

)
.

Since 21−k is the probability for any focal mutant allele to be on the same 99

haplotype with all k − 1 other mutant alleles, assuming linkage equilibrium, this 100

fitness scheme leads to the same marginal fitness as Eq (M.6) above. 101

M.2 Yule approximation 102

We describe the dynamics of mutant types at the different loci during the stochastic 103

phase by a multi-type Yule pure birth process with immigration. Our framework builds 104

on established mathematical theory [2,3] and a previous approach to describe the 105

genealogy of a beneficial allele during a selective sweep in terms of a Yule 106

process [4,5]. Here, we extend this approach to the polygenic scenario. 107

Consider a mutation Ai that appears at some locus either prior to the environmental 108

change (standing genetic variation) or after the change. This mutation is relevant for the 109

joint distribution of mutant allele frequencies at the time of observation after the rapid 110

adaptive phase if and only if descendants of this mutation still segregate in the 111

population at this time. The idea of the Yule approach is to construct the genealogies of 112

these mutant descendants at all loci forward in time. We start the process at some time 113

t0 � 0 in the past before the first mutation with surviving descendants has originated. 114

We assume that the frequency pi of mutant alleles is low during the entire stochastic 115

phase. Then, new mutations at locus i appear at rate ≈ Nµi =: Θi/2 per generation, 116

but only a fraction of those will survive deleterious selection prior to t = 0 and genetic 117

drift to establish in the population and to contribute to the adaptation of the trait. We 118
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denote this establishment probability as pest(t). If selection is constant and positive (as 119

assumed in the main text), s(t) = sb > 0, we can approximate pest ≈ 2sb. For general 120

time-dependent selection, pest(t) will depend on s(t̃) with t̃ ≥ t [6], and also on the 121

mutations that were previously established at the same or at other loci. Crucially, 122

however, since the marginal fitness of mutant copies at all loci is the same at any given 123

time, pest(t) does not depend on the locus. We only include mutants into our Yule 124

process that successfully establish in the population, which are represented as 125

“immortal lineages” in the Yule tree. We follow these lineages in continuous time. There 126

are then two types of events: 127

1. First, new mutation creates new immortal lineages at rate 128

pmut,i(t) =
Θi

2
pest(t) (M.7)

independently at each locus. This event is called “immigration” in the 129

mathematical literature [2], but it corresponds to mutation in our model. (In a 130

model with gene flow, where adaptation in a local deme occurs from immigration, 131

new lines would be truly immigrants, see also [7] for this analogy). 132

2. Second, existing immortal mutant alleles Ai can give birth to further immortal 133

mutant copies, corresponding to a split of the immortal line in the Yule process. To 134

derive the split rate psplit, imagine that we implement the evolutionary dynamics as 135

a continuous-time Moran model, where individuals give birth (due to a binary split) 136

at constant rate one per generation. In the corresponding Yule process, we only 137

include this birth event if it leads to two immortal lineages. Obviously, the 138

probability to “be immortal” for a newborn individual is the same as for a new 139

mutation and given by pest(t). Conditioning on the fact that we only consider splits 140

of immortal lineages and thus at least one of the offspring lineages must be 141

immortal, we arrive at a split rate per immortal lineage of 142

psplit(t) =
p2

est(t)

p2
est(t) + 2pest(t)(1− pest(t))

=
pest(t)

2− pest(t)
≈ pest(t)

2
, (M.8)

where the approximation in the last term assumes that pest(t)� 1, which is 143

usually the case unless selection is very strong. 144
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The Yule process defines a continuous-time Markov process of a random variable 145

k = (k1, . . . , kL), where ki ∈ N0 is the number of immortal mutant lineages at the ith 146

locus. We are interested in the relative proportions in the number of lineages ki across 147

loci after a sufficiently long time – assuming that the distribution of these proportions 148

reaches a limit by the end of the stochastic phase. We can generate this distribution 149

from the transition probabilities among Yule states (the embedded jump-chain of the 150

continuous-time process). If there are currently (k1, . . . , kL) lineages at the L loci, the 151

probability that the next event is either a birth event (split) or a new mutation 152

(immigration) at locus i is 153

Pr[(k1, . . . , kL)→ (k1, . . . , ki + 1, . . . , kL)]

=
kipsplit + pmut,i∑L

j=1(kjpsplit + pmut,j)
=

ki + Θi∑L
j=1(kj + Θj)

.
(M.9)

Crucially, these transition probabilities are constant in time and independent of the 154

establishment probability pest(t). As a consequence, they are also independent of the 155

mutant fitness, which only affects the speed of the Yule process (via pest), but not its 156

sequence of events. 157

We start the process with no mutants and stop it whenever the number of mutants at 158

one of the loci (e.g. locus 1) reaches some number k1 = n. We are interested in the 159

distribution of the number of mutants ki at the other loci at this time, respectively their 160

ratios ki/n (remember that we already know that these ratios stay invariant during the 161

deterministic phase of the adaptation process). We can prove the following 162

Theorem 1 In the limit of n→∞, the joint distribution of ratios xi = ki/n of immortal 163

mutant lineages across loci converges to the inverted Dirichlet distribution, 164

PinDir[{xi}i≥2|Θ] =
1

B[Θ]

L∏
j=2

x
Θj−1
j

(
1 +

L∑
j=2

xj

)−∑L
j=1 Θj

(M.10)

where the vector Θ = (Θ1, . . . ,ΘL) summarizes the mutation rates and B[Θ] is the 165

multivariate Beta function, which can be expressed in terms of Gamma functions as 166

B[Θ] =

∏L
i=1 Γ(Θi)

Γ(
∑L
i=1 Θi)

. (M.11)
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Proof We proceed in three steps. 167

Step 1 Assume that we stop the process when the first locus reaches n > 0 168

lineages. We derive the probability that the process at this time is in state (n, k2, . . . , kL) 169

as follows. We need n+ k2 + · · ·+ kL events (new mutations or splits) to generate all 170

mutant individuals. The last event must occur at the first locus. All other events can 171

occur in arbitrary order at the L loci. The probability of each realization (each order of 172

events at the loci) is given by the corresponding product of transition probabilities (M.9). 173

The key insight is that all realizations have the same probability. Indeed, the 174

denominator of (M.9) does not depend on the locus where the next event occurs. 175

Different realizations then only correspond to permutations in the factors ki + Θi in the 176

numerator of the product of transition probabilities. We can directly write down the 177

probability for the state as 178

Pr[{ki}i≥2|n,Θ] =

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

)
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)
, (M.12)

where

Θ(k) := Θ(Θ + 1) . . . (Θ + k − 1)

is the Pochhammer function. The leading multinomial coefficient counts the number of 179

all permutations and the ratio of Pochhammer functions is the probability of each 180

realization. 181

Step 2 We can rewrite (M.12) as a Dirichlet-negative-multinomial compound 182

distribution, defined as 183

∫ 1

0

. . .

∫ 1

0

(
n− 1 + k2 + · · ·+ kL
n− 1, k2, . . . , kL

) L∏
i=2

ykii

(
1−

L∑
i=2

yi

)n
f({yi}i≥2|Θ) dy2 . . . dyL ,

(M.13)

where 184

f({yi}i≥2|Θ) =
1

B[Θ]

L∏
i=2

yΘi−1
i

(
1−

L∑
i=2

yi

)Θ1−1
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is the (L− 1)-dimensional Dirichlet distribution for a L-dimensional probability vector 185

(y1, . . . , yL) with constraint y1 = 1−
∑
i≥2 yi. This is best shown in the reverse direction, 186

i.e., by deriving (M.12) from (M.13). To see this, note that 187

∫ 1

0

. . .

∫ 1

0

L∏
i=2

yΘi+ki−1
i

(
1−

L∑
i=2

yi

)Θ1+n−1

dy2 . . . dyL =
Γ(Θ1 + n)

∏L
i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

)
because the integrand in this expression is just a Dirichlet density with shifted values of

Θi → Θi + ki and the right hand side is the corresponding normalization factor. Then

using

Γ(
∑L
i=1 Θi)∏L

i=1 Γ(Θi)

Γ(Θ1 + n)
∏L
i=2 Γ(Θi + ki)

Γ
(
Θ1 + n+

∑L
i=2(Θi + ki)

) =
(Θ1)(n)

∏L
j=2(Θj)(kj)

(Θ1 + · · ·+ ΘL)(n+k2+···+kL)

reduces (M.13) to (M.12). 188

The compound distribution Eq (M.13) can be interpreted as follows: If a random 189

experiment can have a finite number of outcomes (here: mutant lineages at one of L 190

loci), the negative multinomial distribution describes the probability to observe each of 191

these events ki times if we repeat the experiment until a focal event (here: new mutant 192

lineage at the first locus) has occurred n times. While the negative multinomial 193

distribution assumes that all outcomes occur with a fixed probability yi, this probability 194

is itself drawn from a Dirichlet distribution in the Dirichlet-negative-multinomial 195

compound distribution. In the present context, the main advantage of (M.13) over 196

(M.12) is that we can easily perform the limit n→∞ in this form. 197

Step 3 For large n→∞, the values of ki/n, i ≥ 2, of the negative multinomial 198

distribution can be replaced by their expectations, 199

xi := E
[
ki
n

]
=

yi

1−
∑L
j=2 yj

⇔ yi =
xi

1 +
∑L
j=2 xj

.

We can then transform the density (M.10) from variables yi to the xi (representing 200

the relative mutant frequencies). The entries of the Jacobian matrix (for 2 ≤ i, j ≤ L) 201

are 202
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Jij =
∂yi
∂xj

=
δi,j(1 +

∑L
k=2 xk)− xi

(1 +
∑L
k=2 xk)2

.

Since this is the sum of an identity matrix (times a factor) and a matrix with identical 203

columns we can easily derive the eigenvalues and thus the determinant, 204

Det[J] =
1

(1 +
∑d
k=2 xk)L

.

Applying this transformation to (M.13), we obtain (M.10). 205

Remarks 206

1. For two loci, the Dirichlet-negative-multinomial distribution (M.13) reduces to a

Beta-negative-binomial distribution

PβNB [k|n] =

∫ 1

0

(
n+ k − 1

k

)
yk(1− y)n

Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
yΘ2−1(1− y)Θ1−1 dy

and the inverted Dirichlet distribution (M.10) simplifies to a so-called β-prime 207

distribution, 208

Pβ′(x) =
Γ(Θ1 + Θ2)

Γ(Θ1)Γ(Θ2)
xΘ2−1

(
1 + x

)−Θ1−Θ2
. (M.14)

If we measure the ratio x always relative to the locus with the higher frequency, 209

we obtain a conditioned distribution that is truncated at x = 1. For equal locus 210

mutation rates Θ1 = Θ2 = Θl, in particular, 211

Pβ′ [x|Θl] =
2Γ(2Θl)

(Γ(Θl))2
xΘl−1(1 + x)−2Θl . (M.15)

with expectation 212

E[x] =

∫ 1

0

xPβ′ [x|Θl]dx =
2Γ(2Θl) 2F1[2Θl, 1 + Θl, 2 + Θl,−1]

(1 + Θl)(Γ(Θl))2
, (M.16)

where 2F1 is the hypergeometric function. 213

2. The process described here is a variant of the Polya urn and Hoppe urn 214

processes that are well-known in the mathematical literature and have been used 215

to describe coalescent processes forward in time [2,3]. 216
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3. Our result (M.10) can also be seen as multi-locus version of Wright’s formula for 217

the stationary distribution of the Wright-Fisher diffusion [8]. For L neutral alleles at 218

a singe locus, and if the mutation rates Θi depend only on the target allele 219

(house-of-cards condition), this is a Dirichlet distribution. Here, we see that an 220

analogous result holds for a distribution of equivalent (mutually redundant) alleles 221

across L loci. Although alleles at different loci cannot mutate into each other and 222

are never identical by descent, it turns out that the genealogy in both models can 223

be described by a Yule process with immigration. In contrast to the single-locus 224

case, we obtain an inverted Dirichlet distribution for multiple loci. This difference 225

results from a different stopping condition for the Yule process. For a single locus, 226

the population size sets an upper bound for the total number of copies across all 227

alleles. If we stop the process for a given total number ntot of lines, we obtain the 228

classical Dirichlet distribution in the limit ntot →∞. In contrast, the population size 229

defines a bound for mutants of a only single type in the multi-locus case, which is 230

reflected by our choice of the stopping condition. This choice is appropriate 231

unless all loci are tightly linked, as we will see below. 232

4. In our model, we did not distinguish different mutational origins of mutant alleles 233

at the same locus. It is, in principle, possible to do so. For any single locus, the 234

process conditioned on reaching some number of mutants ki at this locus i is 235

entirely independent of the process at the other loci. The joint distribution of 236

different mutational origins at this locus is therefore given by the Ewens sampling 237

formula, as described in the theory of soft selective sweeps ( [7,9]). 238

M.3 Allele frequency distributions 239

Eq (M.10) predicts the distribution of allele frequency ratios xi at the end of the 240

stochastic phase of the adaptive process. Typically, the Yule process will approach 241

convergence for n & 100. In a large population, this still corresponds to a small allele 242

frequency. However, since the allele frequency ratios remain constant also during the 243

deterministic phase, we can use the Yule process result to derive the distribution of 244

mutant allele frequencies also at a later stage, when (partial or complete) phenotypic 245

adaptation has been achieved. As above, we characterize the time of observation via 246

January 30, 2019 11/18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/450759doi: bioRxiv preprint 

https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/


the frequency of the ancestral phenotypes fw that is still found in the population. We 247

treat the case of full adaptation, fw = 0, before we turn to the case of a general fw. 248

Complete phenotypic adaptation, fw = 0 249

If selection is very strong, complete fixation of the mutant phenotype may be rapidly 250

achieved. For any non-zero level of recombination among loci, fw = 0 requires, in our 251

model, that there is (at least) a single locus where the mutant allele has reached 252

fixation. In the following, we will call the locus with the largest mutant frequency the 253

major locus and all other loci minor loci. We are interested in the joint distribution of 254

allele frequencies when the major locus has reached fixation. From (M.10), we can 255

derive the probability that the first locus ends up being the major locus as 256

P(Θ)
1> =

∫ 1

0

. . .

∫ 1

0

PinDir[{xi}i≥2|Θ] dx2 . . . dxL . (M.17)

Since allele frequencies pi equal allele frequency ratios xi relative to the major locus in 257

this case, the joint distribution at all minor loci, {pi}i≥2, 0 ≤ pi ≤ 1, conditioned on 258

fixation of the mutant allele at the first locus, follows as PinDir[{pi}i≥2|Θ]/P1>[Θ]. The 259

joint allele frequency distribution for all loci at fw = 0 results as product of a Dirac point 260

measure at the major locus and truncated inverted Dirichlet densities at the minor loci. 261

Summing over all possible loci as major locus we obtain 262

P0[{pi}i≥1|Θ] =

L∑
k=1

(
δpk−1

B[Θ]

∏
j 6=k

p
Θj−1
j

(
1 +

∑
j 6=k

pj

)−∑L
j=1 Θj

)
, (M.18)

where the Dirac δ constrains the distribution to the boundary faces pk = 1 of the 263

L-dimensional hypercube [0, 1]L of allele frequencies. 264

Note that this formula is independent of linkage patterns as long as loci can 265

recombine at all and are not completely linked (see below for this case). 266

Incomplete phenotypic adaptation, fw > 0, linkage equilibrium 267

While the distribution of allele frequency ratios xi, Eq (M.10), holds for any time of 268

observation during the adaptive process (once the Yule process has reached 269

convergence), the corresponding distribution (M.18) for the absolute allele frequencies 270
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pi holds only for complete phenotypic adaptation, fw = 0. To derive this distribution for 271

arbitrary fw ≥ 0, we need to translate the stopping condition for the ancestral 272

phenotype to a condition on the pi. For fw = 0, this just leads to the condition pk = 1 for 273

the major locus, constraining the distribution (M.18) to the boundary faces of the allele 274

frequency hypercube. Importantly, this constraint is independent of linkage. For fw > 0, 275

in contrast, any constraint on the distribution of the pi due to the stopping condition will 276

necessarily also depend on the linkage disequilibria. For further analytical progress we 277

now assume that recombination is sufficiently strong that linkage disequilibria can be 278

ignored. We then obtain 279

L∏
j=1

(1− pj) = fw (M.19)

and the joint allele frequency distribution is given by the following Theorem, which is our 280

main analytical result. 281

Theorem 2 If the adaptive process is stopped at a frequency fw of the ancestral 282

phenotype in the population, and assuming linkage equilibrium among loci, the joint 283

distribution of mutant frequencies on the L-dimensional hypercube is 284

Pfw [{pi}i≥1|Θ] =
δ∏L

j=1(1−pj)−fw

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

fw pj
1− pj

)
, (M.20)

where the δ-function restricts the support of Pfw [{pi}i≥1|Θ] to the (L− 1)-dimensional 285

submanifold
∏L
j=1(1− pj) = fw. 286

Proof We can rewrite (M.19) as condition on the frequency p1 at the first locus, 287

p1 = 1− fw∏L
j=2(1− pj)

(M.21)

to obtain the transformation from frequency ratios xi to absolute allele frequencies pi, 288

i ≥ 2, 289

xi =
pi
p1

=
pi
∏L
j=2(1− pj)∏L

j=2(1− pj)− fw
. (M.22)

The corresponding Jacobian matrix reads (2 ≤ i, j ≤ L) 290
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J̃ij =
∂xi
∂pj

=
pi

1− pj
fw
∏L
k=2(1− pk)

(
∏L
k=2(1− pk)− fw)2

+ δi,j

∏L
k=2(1− pk)∏L

k=2(1− pk)− fw
.

=
pi

1− pj
1− p1

p2
1

+
δi,j
p1

.

Thus

J̃ =
1− p1

p2
1

Q +
1

p1
I ,

where I is the identity matrix and Qi,j = pi/(1− pj). Since Q has the eigenvalue 291∑
j pj/(1− pj) and a (L− 2)-fold eigenvalue 0, we obtain the spectrum of J̃ and thus 292

the determinant 293

Det[J̃] = p1−L
1

( L∑
j=1

pj(1− p1)

(1− pj)p1

)
. (M.23)

From (M.10), we then obtain the joint distribution of locus frequencies p2, . . . , pL at the

stopping condition (M.21) as

Pfw [{pi}i≥2|Θ] =
Det[J̃]

B[Θ]

L∏
i=2

(
pi
p1

)Θi−1(
1 +

L∑
j=2

pj
p1

)−∑L
j=1 Θj

=
1

B[Θ]

L∏
i=1

pΘi−1
i

( L∑
j=1

pj

)−∑L
j=1 Θj

( L∑
j=1

pj(1− p1)

1− pj

)
(M.24)

where the dependence on fw is implicit in p1 = p1(fw), as given in (M.21). The joint 294

distribution over all L loci follows as 295

Pfw [{pi}i≥1|Θ] = δp1−1+fw/
∏L

j=2(1−pj) Pfw [{pi}i≥2|Θ] . (M.25)

Note that we do not assume that the first locus is the major locus in (M.25). Finally,

the symmetrical form (M.20) results from the relation

δg(x)−c =
δx−xc

|g′(x)|xc |
; g(xc) = c

for the Dirac δ-function. 296
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Remarks 297

1. To obtain marginal distributions for single loci we generally need to perform a 298

(L− 2)-dimensional integral (after resolving the δ-function). Details for specific 299

cases used in the main part of the article are provided in the Mathematica 300

notebook. For two loci, simple explicit formulas for marginal distributions can be 301

derived. E.g., the marginal distribution at the first locus reads 302

Pfw [p1|Θ1,Θ2] =
pΘ1−1

1 (1− p1 − fw)Θ2−1(1− p1)Θ1+1

B[Θ1,Θ2] (1− p2
1 − fw)Θ1+Θ2

(
1− fw(1− 2p1)

(1− p1)2

)
(M.26)

for 0 ≤ p1 ≤ fw. The distribution has singularities at p1 = 0 for Θ1 < 1 and at 303

p1 = 1− fw for Θ2 < 1. The distributions P+
fw

[p|Θ1,Θ2] at the major locus and 304

P−fw [p|Θ1,Θ2] at the minor locus (which can either be locus 1 or locus 2) follow as 305

P±fw [p|Θ1,Θ2] =
(
Pfw [p|Θ1,Θ2] + Pfw [p|Θ2,Θ1]

)
H±(p−1+

√
fw) (M.27)

where H(x) is the Heaviside function with Hx = 1 for x ≥ 0 and Hx = 0 else. 306

Finally, the conditioned distributions P1≷
fw

[p1|Θ1,Θ2] at the first locus if this locus is 307

the major/minor locus are 308

P1>
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

P(Θ1,Θ2)
1>

Hp1−1+
√
fw
, (M.28a)

P1<
fw [p1|Θ1,Θ2] =

Pfw [p1|Θ1,Θ2]

1− P(Θ1.Θ2)
1>

H−(p1−1+
√
fw) , (M.28b)

where P(Θ1,Θ2)
1> , defined in Eq (M.17), evaluates to a Hypergeometric function for 309

general Θ1 6= Θ2, but reduces to 1/2 for Θ1 = Θ2. 310

2. The marginal distribution for pk has a singularity at pk = 0 for Θk < 1 and a

singularity at pk = 1− fw for
∑L
j 6=k Θj < 1. To see this, consider the marginal

distribution of pL, which is obtained from Eq. (M.25) after integartion over

p1, . . . , pL−1. Dropping non-singular terms (such as the sums in Eq M.24), and
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defining

qk =

∏L
j=k+1(1− pj)− fw∏L

j=k+1(1− pj)

the singlular part can be written as

Pfw [pL|Θ] ∼
∫ 1

0

∫ 1

0

. . .

∫ 1

0

δp1−q1

L∏
i=1

pΘi−1
i dp1 . . . dpL−1

=

∫ qL−1

0

∫ qL−2

0

. . .

∫ q2

0

qΘ1−1
1

L∏
i=2

pΘi−1
i dp2 . . . dpL−1 ,

after performing the p1 integral. The upper integral limits qk account for the

constraint q1 > 0. Substituting

p̃2 :=
p2

q2
⇒ dp2 = q2 dp̃2

and using that q1 = q2(1− p̃2)/(1− p̃q2) we obtain

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

∫ 1

0

qΘ1−1
1 qΘ2

2 p̃Θ2−1
2

L∏
i=3

pΘi−1
i dp̃2dp3 . . . dpL−1

=

∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

∫ 1

0

(
1− p̃2

1− p̃2q2

)Θ1−1

p̃Θ2−1
2 dp̃2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Since the p̃2 integral is bounded by 1/Θ2 from below and by 1/Θ2 + 1/Θ1 from 311

above for all 0 ≤ q2 ≤ 1, it does not contribute to a singularity in Pfw [pL|Θ]. For 312

the singular part, we thus have 313

Pfw [pL|Θ] ∼
∫ qL−1

0

. . .

∫ q3

0

qΘ1+Θ2−1
2

L∏
i=3

pΘi−1
i dp3 . . . dpL−1.

Iterating the substitution procedure for variables p3 to pL−1, we arrive at 314

Pfw [pL|Θ] ∼ q
∑L−1

j=1 Θj−1

L−1 pΘL−1
L =

(
1− fw − pL

1− pL

)∑L−1
j=1 Θj−1

pΘL−1
L ,

demonstrating the singular behavior for pL → 0 and for pL → 1− fw. Since the 315

labeling of loci is arbitrary, the assertion follows for all loci. 316
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Incomplete phenotypic adaptation, fw > 0, tight linkage 317

Even if all loci are completely linked, the joint distribution of allele frequency ratios is still 318

given by (M.10). However, the transformation to absolute allele frequencies at the 319

stopping condition fw 6= 0 depends on linkage. Because all mutant alleles are rare 320

during the stochastic phase, we can ignore haplotypes with more than a single mutant 321

during this time. Since we ignore new mutations during the deterministic phase, mutant 322

alleles stay in maximal linkage disequilibrium in the absence of recombination. We thus 323

have 324

L∑
j=1

pj = 1− fw ⇒ xi =
pi
p1

=
pi

1− fw −
∑L
j=2 pj

with corresponding Jacobian

Jij =
∂xi
∂pj

=
pi + δi,j p1

p2
1

; Det[J] =
1− fw
pL1

.

Using this transformation on (M.10), the joint distribution of mutant frequencies reads

Pfw,tl[{pi}i≥1|Θ] =
δ∑L

i=1 pi−1+fw

B[Θ](1− fw)L−1

L∏
i=1

(
pi

1− fw

)Θi−1

. (M.29)

Evidently, this is just the Dirichlet distribution on the cube [0, 1− fw]L. This is expected 325

since the problem reduces to a single-locus, L-alleles problem for tight linkage. The 326

marginal distributions can be derived for an arbitrary number of loci and are given by 327

transformed β-distributions, 328

Pfw,tl[pk|Θ] =
(1− fw)−1

B[Θ]

(
pk

1− fw

)Θk−1(
1− pk

1− fw

)(∑d
j 6=k Θj

)
−1

, (M.30)

with singularities at the boundaries pk = 0 for Θk < 1 and at pk = 1− fw for 329∑
j 6=k Θj < 1 as in the linkage equilibrium case. For two tightly linked loci, the major 330

locus must have frequency p > (1− fw)/2. The distribution at the major/minor locus 331

therefore reads 332
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P±fw,tl[p|Θ1,Θ2] =
(
Pfw,tl[p|Θ1,Θ2] + Pfw,tl[p|Θ2,Θ1]

)
H±(p−(1−fw)/2) (M.31)

and conditioned distributions follow as in (M.28). 333
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