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1 Abstract

Evolutionary theory has produced two conflicting paradigms for the adaptation of a
polygenic trait. While population genetics views adaptation as a sequence of selective
sweeps at single loci underlying the trait, quantitative genetics posits a collective
response, where phenotypic adaptation results from subtle allele frequency shifts at
many loci. Yet, a synthesis of these views is largely missing and the population genetic
factors that favor each scenario are not well understood. Here, we study the
architecture of adaptation of a binary polygenic trait (such as resistance) with negative
epistasis among the loci of its basis. The genetic structure of this trait allows for a full
range of potential architectures of adaptation, ranging from sweeps to small frequency
shifts. By combining computer simulations and a newly devised analytical framework
based on Yule branching processes, we gain a detailed understanding of the adaptation
dynamics for this trait. Our key analytical result is an expression for the joint distribution

of mutant alleles at the end of the adaptive phase. This distribution characterizes the
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polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation
has been accomplished. We find that a single compound parameter, the
population-scaled background mutation rate ©,,, explains the main differences among
these patterns. For a focal locus, ©,, measures the mutation rate at all redundant loci in
its genetic background that offer alternative ways for adaptation. For adaptation starting
from mutation-selection-drift balance, we observe different patterns in three parameter
regions. Adaptation proceeds by sweeps for small ©,, < 0.1, while small polygenic
allele frequency shifts require large ©,, 2 100. In the large intermediate regime, we

observe a heterogeneous pattern of partial sweeps at several interacting loci.

2 Author summary

It is still an open question how complex traits adapt to new selection pressures. While
population genetics champions the search for selective sweeps, quantitative genetics
proclaims adaptation via small concerted frequency shifts. To date the empirical
evidence of clear sweep signals is more scarce than expected, while subtle shifts
remain notoriously hard to detect. In the current study we develop a theoretical
framework to predict the expected adaptive architecture of a simple polygenic trait,
depending on parameters such as mutation rate, effective population size, size of the
trait basis, and the available genetic variability at the onset of selection. For a
population in mutation-selection-drift balance we find that adaptation proceeds via
complete or partial sweeps for a large set of parameter values. We predict adaptation
by small frequency shifts for two main cases. First, for traits with a large mutational
target size and high levels of genetic redundancy among loci, and second if the starting
frequencies of mutant alleles are more homogeneous than expected in
mutation-selection-drift equilibrium, e.g. due to population structure or balancing

selection.

3 Introduction

Rapid phenotypic adaptation of organisms to all kinds of novel environments is

ubiquitous and has been described and studied for decades [1,/2]. However, while the
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macroscopic changes of phenotypic traits are frequently evident, their genetic and
genomic underpinnings are much more difficult to resolve. Two independent research
traditions, molecular population genetics and quantitative genetics, have coined two
opposite views of the adaptive process on the molecular level: adaptation either by
selective sweeps or by subtle allele frequency shifts (sweeps or shifts from here on).

On the one hand, population genetics works bottom-up from the dynamics at single
loci, without much focus on the phenotype. The implicit assumption of the sweep
scenario is that selection on the trait results in sustained directional selection also on
the level of single underlying loci. Consequently, we can observe phenotypic adaptation
at the genotypic level, where selection drives allele frequencies at one or several loci
from low values to high values. Large allele frequency changes are the hallmark of the
sweep scenario. If these frequency changes occur in a short time interval, conspicuous
diversity patterns in linked genomic regions emerge: the footprints of hard or soft
selective sweeps [3-6].

On the other hand, quantitative genetics envisions phenotypic adaptation top-down,
from the vantage point of the trait. At the genetic level, it is perceived as a collective
phenomenon that cannot easily be broken down to the contribution of single loci.

Indeed, adaptation of a highly polygenic trait can result in a myriad of ways through

“infinitesimally” small, correlated changes at the interacting loci of its basis (e.g. [1},/7,/8])-

Conceptually, this view rests on the infinitesimal model by Fisher (1918) [9] and its
extensions (e.g. [10]). Until a decade ago, the available moderate sample sizes for
polymorphism data had strongly limited the statistical detectability of small frequency
shifts. Therefore, the detection of sweeps with clear footprints was the major objective
for many years. Since recently, however, huge sample sizes (primarily of human data)
enable powerful genome-wide association studies (GWAS) to resolve the genomic
basis of polygenic traits. Consequently, following conceptual work by Pritchard and
coworkers [7}/11], there has been a shift in focus to the detection of polygenic
adaptation from subtle genomic signals (e.g. [12+14], reviewed in [15]). Very recently,
however, some of the most prominent findings of polygenic adaptation in human height
have been challenged [16,[17]. As it turned out, the methods are highly sensitive to
confounding effects in GWAS data due to population stratification.

While discussion of the empirical evidence is ongoing, the key objective for
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theoretical population genetics is to clarify the conditions (mutation rates, selection
pressures, genetic architecture) under which each adaptive scenario, sweeps, shifts —
or any intermediate type — should be expected in the first place. Yet, the number of
models in the literature that allow for a comparison of alternative adaptive scenarios at
all is surprisingly limited (see also [18]). Indeed, quantitative genetic studies based on
the infinitesimal model or on summaries (moments, cumulants) of the breeding values
do not resolve allele frequency changes at individual loci (e.g. [19-H22])). In contrast,
sweep models with a single locus under selection in the tradition of Maynard Smith and
Haigh [3], or models based on adaptive walks or the adaptive dynamics framework
(e.g. [23-25]) only allow for adaptive substitutions or sweeps. A notable exception is the
pioneering study by Chevin and Hospital [26]. Following Lande [27], these authors
model adaptation at a single major quantitative trait locus (QTL) that interacts with an
“infinitesimal background” of minor loci, which evolves with fixed genetic variance.
Subsequent models [28,29] trace the allele frequency change at a single QTL in
models with 2-8 loci. Still, these articles do not discuss polygenic adaptation patterns.
Most recently, Jain and Stephan [30,/31] studied the adaptive process for a quantitative
trait under stabilizing selection with explicit genetic basis. Their analytical approach
allows for a detailed view of allele frequency changes at all loci without constraining the
genetic variance. However, the model is deterministic and thus ignores the effects of
genetic drift. Below, we study a polygenic trait that can adapt via sweeps or shifts under
the action of all evolutionary forces in a panmictic population (mutation, selection,
recombination and drift). Our model allows for comprehensive analytical treatment,
leading to a multi-locus, non-equilibrium extension of Wright's formula [32] for the joint
distribution of allele frequencies at the end of the adaptive phase. This way, we obtain
predictions concerning the adaptive architecture of polygenic traits and the population
genetic variables that delimit the corresponding modes of adaptation.

The article is organized as follows. The Model section motivates our modeling
decisions and describes the simulation method. We also give a brief intuitive account of
our analytical approach. In the Results part, we describe our findings for a haploid trait
with linkage equilibrium among loci. All our main conclusions in the Discussion part are
based on the results displayed here. Further model extensions and complications

(diploids, linkage, and alternative starting conditions) are relegated to appendices.
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Finally, we describe our analytical approach and derive all results in a comprehensive
Mathematical Appendix. For the ease of reading, we have tried to keep both the main

text and the Mathematical Appendix independent and largely self-contained.

4 Model

In the current study, we aim for a “minimal model” of a trait that allows us to clarify
which evolutionary forces favor sweeps over shifts and vice versa (as well as any
intermediate patterns). For shifts, alleles need to be able to hamper the rise of alleles at
other loci via negative epistasis for fitness, e.g. diminishing returns epistasis. Indeed,
otherwise one would only observe parallel sweeps. Negative fitness epistasis is
frequently found in empirical studies (e.g. [33]) and implicit to the Gaussian selection
scheme used by (e.g. [261/30,[31]). More fundamentally, diminishing returns are a
consequence of partial or complete redundancy of genetic effects across loci or gene
pathways. Adaptive phenotypes (such as pathogen resistance or a beneficial body
coloration) can often be produced in many alternative ways, such that redundancy is a
common characteristic of beneficial mutations.

As our basic model, we focus on a haploid population and study adaptation for a
polygenic, binary trait with full redundancy of effects at all loci. We assume a
non-additive genotype-phenotype map where any single mutation switches the
phenotype from its ancestral state (e.g. “non-resistant”) to the adaptive state
(“resistant”). Further mutations have no additional effect. On the population level,
adaptation can be produced by a single locus where the beneficial allele sweeps to
fixation, or by small frequency shifts of alleles at many different loci in different
individuals — or any intermediate pattern. The symmetry among loci (no build-in
advantage of any particular locus) and complete redundancy of locus effects provides
us with a trait architecture that is favorable for collective adaptation via small shifts —
and with a modeling framework that allows for analytical treatment. The same model
has been used in a preliminary simulation study [6]. In the context of parallel adaptation
in a spatially structured population, analogous model assumptions with redundant loci
have been used [34-36]. In a second step, we extend our basic model to relax the

redundancy condition, as described below.
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4.1 Basic model

Consider a panmictic population of N, haploids, with a binary trait Z (with phenotypic
states Z, “non-resistant” and Z; “resistant”, see Fig[f). The trait is governed by a
polygenic basis of L bi-allelic loci with arbitrary linkage (we treat the case of linkage
equilibrium in the main text and analyze the effects of linkage in Appendix[A.T). Only
the genotype with the ancestral alleles at all loci produces phenotype Z,, all other
genotypes produce 7, irrespective of the number of mutations they carry. Loci mutate
at rate u;, 1 < < L, per generation (population mutation rate at the ith locus:

2N.u; = ©;) from the ancestral to the derived allele. We ignore back mutation. The
mutant phenotype Z; is deleterious before time ¢ = 0, when the population experiences
a sudden change in the environment (e.g. arrival of a pathogen). Z; is beneficial for
time ¢ > 0. The Malthusian (logarithmic) fitness function of an individual with phenotype

Z reads

sqZ fort <0
W(Z) = (1)

spZ  fort > 0.
Without loss of generality, we can assume Z, = 0 and Z; = 1. We then have
W(Zy) = 0. Furthermore, W(Z;) = sq < 0, respectively W(Z;) = s, > 0, measure the
strength of directional selection on Z (e.g. cost and benefit of resistance) before and
after the environmental change. For the basic model, we assume that the population is

in mutation-selection-drift equilibrium at time ¢ = 0.

4.2 Model extensions

We extend the basic model in several directions. This includes linkage (Appendix A.1),
alternative starting conditions at time ¢ = 0 (Appendix [A.2), diploids (Appendix[A.3), and
arbitrary time-dependent selection s(¢) (Mathematical Appendix M.1). Here, we
describe how we relax the assumption of complete redundancy of all loci. Diminishing
returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics, will frequently not lead
to complete adaptation in a single step, but may require multiple steps before the trait
optimum is approached. In a model of incomplete redundancy, we thus assume that a

first beneficial mutation only leads to partial adaptation. We thus have three states of
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the trait, the ancestral state for the genotype without mutations, Z, = 0 (non-resistant),

a phenotype Z; = ¢ (partially resistant) for genotypes with a single mutation, and the

mutant state Z; = 1 (fully resistant) for all genotypes with at least two mutations, see

Fig b). For diminishing returns epistasis, we require 3 < § < 1. The fitness function is

as in Eq (). A model with asymmetries in the single-locus effects is discussed in

Appendix

(a) Complete redundancy

(b) Relaxed redundancy

t<0 t=0 t<0 t=0
P nt—0 00— » o[ o OO —
3 3 4 2 . a—
e—o——— 2o——— o ——— 20— ——
= P = EH——@ — £
£ PRIPRIPS ES Z £
0 1 2 3 #mut 0 1 2 3 #mut 0 1 2 3 #mut 0 1 2 3 #mut
Fig 1. Fitness schemes. The fitness of individuals carrying 0,1, 2,3 ... mutations

(y-axis) are given for the complete redundancy (a) and relaxed redundancy (b) model,
respectively. Grey balls show the fitness of ancestral wildtype individuals (without
mutations). Colored balls represent individuals carrying at least one mutation, for time
points ¢ < 0 before the environmental change in blue and for ¢ > 0 in red.

4.3 Simulation model

For the models described above, we use Wright-Fisher simulations for a haploid,

panmictic population of size N., assuming linkage equilibrium between all L loci in

discrete time. Selection and drift are implemented by independent weighted sampling

based on the marginal fitnesses of the ancestral and mutant alleles at each locus. Due

to linkage equilibrium, the marginal fitnesses only depend on the allele frequencies and

not genotypes. Ancestral alleles mutate with probability n; per generation at locus .

We start our simulations with a population that is monomorphic for the ancestral allele

at all loci. The population evolves for 8 N, generations under mutation and deleterious

selection to reach (approximate) mutation-selection-drift equilibrium. Following [6}/37],

we condition on adaptation from the ancestral state and discard all runs where the

deleterious mutant allele (at any locus) reaches fixation during this time. (We do not

show results for cases with very high mutation rates and weak deleterious selection

when most runs are discarded). At the time of environmental change, selection
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switches from negative to positive and simulation runs are continued until a prescribed
stopping condition is reached.

We are interested in the genetic architecture of adaptation — the joint distribution of
mutant frequencies across all loci — at the end of the rapid adaptive phase.
Following [31], we define this phase as “the time until the phenotypic mean reaches a
value close to the new optimum?”. Specifically, we stop simulations when the mean
fitness W in the population has increased up to a proportion f,, of the maximal

attainable increase from the ancestral to the derived state,

W(Z) — W
W(Zy) = W(Zo)

= fuw- (2)

For the basic model with complete redundancy, this simply corresponds to a residual
proportion f,, of individuals with ancestral phenotype in the population. Extensions of
the simulation scheme to include linkage or diploid individuals are described in
Appendices[A.T]and

Parameter choices: Unless explicitly stated otherwise, we simulate N, = 10000
individuals, with beneficial selection coefficients s, = 0.1 and 0.01, combined with
deleterious selection coefficients s; = —0.1 and s; = —0.001 for low and high levels of
SGV, respectively. (The corresponding Wrightian fitness values used as sampling
weights in discrete time are 1 + s, and 1 + s4.) We investigate L = 2 to 100 loci. We
usually (except in Appendix [A.4) assume equal mutation rates at all loci, 1, = ¢ and
define ©;, = 2N, as the locus mutation parameter. Mutation rates are chosen such
that ©,, := 2N.u(L — 1) (the background mutation rate, formally defined below in
Eq (10)) takes values from 0.01 to 100. We typically simulate 10 000 replicates per
mutation rate and stop simulations when the population has reached the new fitness
optimum up to f,, = 0.05. In the model with complete redundancy, we thus stop
simulations when the frequency of individuals with mutant phenotype Z; has increased

to 95%. Different stopping conditions are explored in Appendix|[A.7]

4.4 Analytical analysis

We partition the adaptive process into two phases (see Fig[2]for illustration). An initial

stochastic phase, governed by selection, drift, and mutation describes the origin and
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establishment of mutant alleles at all loci. We call mutants “established” if they are not
lost again due to genetic drift. The subsequent deterministic phase governs the further
evolution of established alleles until the stopping condition is reached as described
above. While mutation and drift can be ignored during the deterministic phase,
interaction effects due to epistasis and linkage become important (in our model, they
enter, in particular, through the stopping condition). We give a brief overview of our
analytical approach below. A detailed account with the derivation of all results is
provided in the Mathematical Appendix.

During the stochastic phase, we model the origin and spread of mutant copies as a
so-called Yule pure birth process following [38] and [39]. The idea of this approach is
that we only need to keep track of mutations that found “immortal lineages”, i.e. derived
alleles that still have surviving offspring at the time of observation (see Fig [2|for the
case of L = 2 loci). Forward in time, new immortal lineages can be created by two
types of events: new mutations at all loci start new lineages, while birth events lead to
splits of existing lineages into two immortal lineages. For t > 0 (after the environmental
change), in particular, new mutations at the ith locus arise at rate N.u,; per generation
and are destined to become established in the population with probability ~ 2s;.
Similarly, birth of new immortal lineages due to split events in the Yule process occur at
rate s, (because the selection coefficient measures the excess of births over deaths in
the underlying population). For the origin of new immortal lineages in the Yule process

and their subsequent splitting we thus obtain the rates
Pmut,i ~ Nepti - 28y = O ; Psplit = Sp- 3)

Extended results including standing genetic variation and time-dependent fitness are
given in the Appendix. Assume now that there are currently {ki,...k.}, 0 < k; < N,
mutant lineages at the L loci. The probability that the next event (which can be a split or

a mutation) occurs at locus i is

ks - pspiit + Pmut,i B ki + 0,
L - L :
> i1 (kj - pspiit + pmutg) D252 (Kj + ©)

Importantly, all these transition probabilities among states of the Yule process are
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constant in time and independent of the mutant fitness s;, which cancels in the ratio of
the rates. As the number of lineages at all loci increases, their joint distribution (across
replicate realizations of the Yule process) approaches a limit. In particular, as shown in
the Appendix, the joint distribution of frequency ratios z; := k;/k; in the limit k; — oo is

given by an inverted Dirichlet distribution

L
- =1 67'

L L
1 .
PinDir[X|@] = w J J??J ! (1 + le) (5)
Jj=2 =2
where x = (z2,...,2) and ® = (04,...,0 ) are vectors of frequency ratios and locus
L )
mutation rates, respectively, and where B[®] = HJ'L;;EGG’_)) is the generalized Beta
j=1 J

function and I'(z) is the Gamma function. Note that Eq (5) depends only on the locus
mutation rates, but not on selection strength.

After the initial stochastic phase, the dynamics of established mutant lineages that
have evaded stochastic loss can be adequately described by deterministic selection
equations. For allele frequencies p; at locus i, assuming linkage equilibrium, we obtain

(consult the Mathematical Appendix M.1, Eq (M.2a), for detailed derivations)

pi =pi(W(Z1) = W) = sipi(21 — Z), (6)

where W and Z are population mean fitness and mean trait value. For the mutant

frequency ratios x; = p;/p1, we obtain

d(ii):w:a (7)

= —
Cdt p

We thus conclude that the frequency ratios z; do not change during the deterministic

phase. In particular, this means that Eq (5) still holds at our time of observation at the
end of the rapid adaptive phase. This is even true with linked loci. Finally, derivation of
the joint distribution of mutant frequencies p; (instead of frequency ratios z;) at the time
of observation requires a transformation of the density. In general, this transformation
depends on the stopping condition f,, and on other factors such as linkage. Assuming

linkage equilibrium among all selected loci, we obtain (see the Mathematical Appendix,
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Theorem 2, Eq (M.20))

Py.[p|®] =

forp = (p1,...

orp

L L B o,

L

prj )

M) e

j=1

,pr) in the L-dimensional hypercube of allele frequencies. The delta

function d x restricts the distribution to the L — 1 dimensional manifold defined via the

stopping condition f,, =[]

le(l — p;). Further expressions, also including linkage, are

given in the Mathematical Appendix and in Appendix[A.] In general, the joint

distribution corresponds to a family of generalized Dirichlet distributions.

We assess the adaptive architecture not as a function of time, but as a function of

progress in phenotypic adaptation, measured by f.,, Eq (2). Hence, f,, rather than time

t plays the role of a dynamical variable in the joint distribution, see Eq (8). In the special

case f,, — 0 (i.e. complete adaptation, enforcing fixation at at least one locus), this

distribution is restricted to a boundary face of the allele frequency hypercube and Eq

reduces to the inverted Dirichlet distribution given above in Eq (5). In the Results

section below, we assess our analytical approximations for the joint distributions of

adaptive alleles, Eq (5) and Eq (8), and discuss their implications in the context of

scenarios of polygenic adaptation, ranging from sweeps to small frequency shifts.

L

Sd, Sb

pi = kﬁ

fmk-p

Jw

Hi

@i = 2Neﬂz

0 = {0y, ,Or}

0,

Obo M-, T(6))
o1 T(O;

BO] = == 1@,

size of polygenic basis (no. of loci)

selection coefficient before/after the environment changes
mutant allele frequency at locus i

mutant allele frequency ratio: locus 7 / locus 1

frequency of ancestral phenotype

allelic mutation rate at locus i

haploid population mutation rate at locus i

vector of all locus population mutation rates

locus pop. mut. rate, for model with equal mutation rates
background mutation rate, Eq

Beta function, where I'(©;) is the Gamma function

Table 1. Glossary
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(a) Yule process: successful mutations and splits \J v
A, after recombination & near fixation
‘> ‘ A B
o & &|: -
o T _di e &4
mutation: © * s, split: s, ‘\7 >
0*s S ‘
recurrent mutation . - ’ ; -
v ‘, (b) Evolutionary trajectories <
SSNES
S @S S
ors s, d{ @\7 g env. change | 100%
. o3 d\f = 1% mutation
- d{ @\7 w 2" mutation —
@38 S
time v >

establishment phase | deterministic phase

\

Fig 2. Phases of polygenic adaptation. The adaptive process is partitioned into two
phases. The initial, stochastic phase describes the establishment of mutant alleles.
Ignoring epistasis during this phase, it can be described by a Yule process (panel a),
with two types of events (yellow box). Either a new mutation occurs and establishes
with rate ©; - s, or an existing mutant line splits into two daughter lines at rate s,.
Mutations and splits can occur in parallel at all loci of the polygenic basis, (here 2 loci,
shown in green and blue). Yellow and red stars at the blue locus indicate establishment
of two redundant mutations at this locus. When mutants have grown to higher
frequencies, the adaptive process enters its second, deterministic phase, where drift
can be ignored (panel b). During the deterministic phase, the trajectories of mutations
at different loci constrain each other due to epistasis. We refer to the locus ending up at
the highest frequency as the major locus (here in blue) and to all others as minor loci
(here one in green).
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5 Results

While the joint distribution of allele frequencies, Eq (8), provides comprehensive
information of the adaptive architecture, low-dimensional summary statistics of this
distribution are needed to describe and classify distinct types of polygenic adaptation.
To this end, we order loci according to their contribution to the adaptive response. In
particular, we call the locus with the highest allele frequency at the stopping condition
the major locus and all other loci minor loci. Minor loci are further ordered according to
their frequency (first minor, second minor, etc.). The marginal distributions of the major
locus or kth minor locus are 1-dimensional summaries of the joint distribution.
Importantly, these summaries are still collective because the role of any specific locus
(its order) is defined through the allele frequencies at all loci. This is different for the
marginal distribution at a fixed focal locus, which is chosen irrespective of its role in the
adaptive process, e.g. [26,28,129].

Concerning our nomenclature, note that the major and minor loci do not differ in
their effect size, as they are completely redundant. Still, the major locus is the one with
the largest contribution to the adaptive response and would yield the strongest
association in a GWAS case-control study.

In the following, we analyze adaptive trait architectures in three steps. In Section|5.1
we use the expected allele frequency ratio of minor and major loci as a one-dimensional
summary statistic. Subsequently, in Section[5.2] we analyze the marginal distributions
of major and minor loci for a trait with 2 to 100 loci. Finally, in Section [5.3|we investigate
the robustness of our results under conditions of relaxed redundancy. Further results
devoted to diploids, linkage, asymmetric loci, and alternative starting conditions are

provided in the Appendices.

5.1 Expected allele frequency ratio

For our biological question concerning the type of polygenic adaptation, the ratio of

allele frequency changes of minor over major loci is particularly useful. With “sweeps at
few loci”, we expect large differences among loci, resulting in ratios that deviate strongly
from 1. In contrast, with “subtle shifts at many loci”, multiple loci contribute similarly to

the adaptive response and ratios should range close to 1. Our theory (explained above)
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predicts that these ratios are the outcome of the stochastic phase, and their distribution
is preserved during the deterministic phase. They are thus independent of the precise
time of observation. For our results in this section, we assume that the mutation rate at
all L lociis equal, ©; = ©, forall 1 <+ < L. This corresponds to the symmetric case
that is most favorable for a “small shift” scenario. Results for asymmtric mutation rates
are reported in Appendix[A.4]

Consider first the case of L = 2 loci. There is then a single allele frequency ratio
“minor over major locus”, which we denote by x. For two loci, the joint distribution of
frequency ratios from Eq (5) reduces to a beta-prime distribution. Conditioning on the
case that the first locus is the major locus (probability 1/2 for the symmetric model), we
obtainfor0 <z <1,

2I'(20;) JRCT

Ppr[z[01] = GCHE

(1+z)7%, 9)

Fig [3] compares the expectation of this analytical prediction with simulation results
for a range of parameters for the strength of beneficial selection s, and for the level of
standing genetic variation (SGV implicitly given by the strength of deleterious selection
sq before the environmental change). There are two main observations. First, the
simulation results demonstrate the importance of the scaled mutation rate ©,, = ©, (for
two loci). Low ©,, leads to sweep-like adaptation (heterogeneous adaptation response
among loci, E[z] << 1), whereas high ©;, leads to shift-like adaptation (homogeneous
response, E[z] near 1). Second, the panels show that the selection intensity given by s,
and s, has virtually no effect. Both results are predicted by the analytical theory
(Ea (@)- In Appendix [A.1] we further show that these results hold for arbitrary degrees
of linkage (including complete linkage), see Fig

For more than two loci, L > 2, one-dimensional marginal distributions of the joint

distribution, Eq (5), generally require (L — 1)-fold integration, which can be complicated.

However, it turns out that the key phenomena to characterize the adaptive architecture
can still be captured by the 2-locus formalism, with appropriate rescaling of the
mutation rate. For the general L-locus model, we broaden our definition of the summary
statistic = above to describe the allele frequency ratio of the first minor locus and the

major locus. To relate the distribution of = in the L-locus model to the one in the 2-locus
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model, we reason as follows: For small locus mutation rates ©,, the order of the loci is
largely determined by the order at which mutations that are destined for establishment
originate at these loci. I.e., the locus where the first mutation originates ends up as the
major locus and the first minor locus is usually the second locus where a mutation
destined for establishment originates. The distribution of the allele frequency ratio « is
primarily determined by the distribution of the waiting time for this second mutation after
origin of the first mutation at the major locus. In the 2-locus model, this time will be
exponentially distributed, with parameter 1/0;. In the L-locus model, however, where
L — 1 loci with total mutation rate ©;(L — 1) compete for being the “first minor”, the
parameter for the waiting-time distribution reduces to 1/(0,(L — 1)). We thus see from

this argument that the decisive parameter is the cumulative background mutation rate

Oy = (L —1)6, (10)

at all minor loci in the background of the major locus. In Fig 3] (orange dots) we show
simulations of a L = 10 locus model with an appropriately rescaled locus mutation rate
©; — ©;/9, such that the background rate ©,, is the same as for the 2-locus model.
We see that the analytical prediction based on the 2-locus model provides a good fit for

the 10-locus model. A more detailed discussion of this type of approximation is given in

Appendix

5.2 Genomic architecture of polygenic adaptation

While the distribution of allele frequency ratios, Eqgs (5) and (9), offers a coarse (but
robust) descriptor of the adaptive scenario, the joint distribution of allele frequencies at
the end of the adaptive phase, Eq (8), allows for a more refined view. In contrast to the
distribution of ratios, the results now depend explicitly on the stopping condition (the
time of observation) and on linkage among loci. We assume linkage equilibrium in this
section and assess the mutant allele frequencies when the frequency of the remaining
wildtype individuals in the population is f,, (= 0.05 in our figures) has dropped to a fixed
value of f,, = 0.05. In Appendix[A.7] we complement these results and study the
changes in the adaptive architecture when f,, is varied.

Fig [4] displays the main result of this section. It shows the marginal distributions of
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Fig 3. Effect of selection strength and SGV on the frequency ratio E[z]. We
contrast the expected allele frequency ratios of the first minor locus (with the second
highest frequency) over the major locus (with the highest frequency) for 2 loci (blue
dots) and for 10 loci (orange dots) with analytical predictions (Appendix, Eq M.16, black
curve). E[z] is shown as a function of ©,, (= ©; for the 2-locus case). Panels
correspond to different strengths of positive selection (s;, rows) and levels of SGV (no
SGV, strongly deleterious s; = —0.1, weakly deleterious s; = —0.001, columns). We
find that neither factor alters the expected ratio. We do not obtain results for ©,, > 10
and sy = —0.001, where strong recurrent mutation overwhelmes weak selection, such
that mutant alleles fix even before the environmental change. Results for 10 000
replicates, standard errors < 0.005 (smaller than symbols).

all loci, ordered according to their allele frequency at the time of observation (major
locus, 1st, 2nd, 3rd minor locus, etc.) for traits with L = 2, 10, 50, and 100 loci. Panels in
the same row correspond to equal background mutation rates ©, = (L — 1)©;, but
note that the locus mutation rates ©; are not equal. The figure reveals a striking level of
uniformity of adaptive architectures with the same ©,, but vastly different number of
loci. For ©,, < 1 (the first three rows), the marginal distributions for loci of the same
order (same color in the Figure) across traits with different L is almost invariant. For
large ©4,, they converge for sufficiently large L (e.g. for ©,, = 10, going from L = 10 to
L =50 and to L = 100). In particular, the background mutation rate ©,, determines the

shape of the major-locus distribution (red in the Figure) for high p — 1 — f,, = 0.95 (the
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maximum possible frequency, given the stopping condition). For ©;, < 1, this
distribution is sharply peaked with a singularity at p = 1 — f,,, whereas it drops to zero
for high p if ©,4 > 1 (see also the analytical results below).

As predicted by the theory, Eq (8) and below, simulations confirm that the overall
selection strength does not affect the adaptive architecture (see supplementary
Fig[S.11]for comparison of simulation results for s, = 0.1 and s, = 0.01). As discussed
in Appendix [A.1] sufficiently tight linkage does change the shape of the distributions.
Importantly, however, it does not affect the role of ©,, in determining the singularity of
the major-locus distribution. This confirms the key role of the background mutation rate
as a single parameter to determine the adaptive scenario in our model. While ©,, =1
separates architectures that are dominated by a single major locus (O, < 1) from
collective scenarios (with ©,, > 1), the classical sweep or shift scenarios are only
obtained if ©,, deviates strongly from 1. We therefore distinguish three adaptive

scenarios.

* Oy, < 0.1, single completed sweeps.  For ©,, < 1 (first two rows of Fig[4), the
distribution of the major locus is concentrated at the maximum of its range, while
all other distributions are concentrated around 0. Adaptation thus occurs at a
single locus, via a selective sweep from low to high mutant frequency.
Contributions by further loci are rare. If they occur at all they are usually due to a

single runner-up locus (the highest minor locus).

* 0.1 < Oy, < 100, heterogeneous partial sweeps.  With intermediate background
mutation rates (third and forth row of Fig[4), we still observe a strong asymmetry
in the frequency spectrum. Even for ©,, = 10, there is a clear major locus
discernible, with most of its distribution for p > 0.5. However, there is also a
significant contribution of several minor loci that rise to intermediate frequencies.
We thus obtain a heterogeneous pattern of partial sweeps at a limited number of

loci.

* Oy 2 100, homogeneous frequency shifts.  Only for high background mutations
rates O, > 1 (last row of Fig with Oy, = 100), the heterogeneity in the locus
contributions to the adaptive response vanishes. There is then no dominating

major locus. For only 2 loci, these shifts are necessarily still quite large, but for
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traits with a large genetic basis (large L; the only realistic case for high values of

O44), adaptation occurs via subtle frequency shifts at many loci.

Analytical predictions

To gain deeper understanding of the polygenic architecture — and for quantitative

predictions — we dissect our analytical result for the joint frequency spectrum in Eq (8).

We start with the case of L = 2 loci, allowing for different locus mutation rates ©; and
©2. The marginal distribution at the first locus reads (from Eq (8), after integration over

P2),

©:—1 O, — 0,

Py, [p1]61,©2] = 2 B[g;g;](‘ﬁ”ﬁg_lﬁi);ﬁéf - (1 . ?fi;f@) (1)
for 0 < p; <1- f, (see also Appendix|A.6). The distribution has a singularity at p; = 0
if the corresponding locus mutation rate is smaller than one, ©; < 1. It has a singularity
at p; = 1 — f,, if the corresponding background mutation rate (which is just the mutation
rate at the other locus for L = 2) is smaller than one, ©, < 1. The marginal distributions
at the major locus, Pf+ [p|©1, ©2], and the minor locus, P [p|©1, O], follow from

Eq (f1) as
P}E,[p|917 @2] = wa [p|617 @2] + wa[p‘('—)Qvel}v (12)

where P} [p|©1,©,] is defined for 1 — \/f,, <p < 1— f, and P} [p|©1, O,] is defined
for0 <p<1—+/f,. The sumin Eq accounts for the alternative events that either
the first or the second locus may end up as the major (or minor) locus. Consequently,
P;.[p|©1,©2] has a singularity at p = 0 if the minimal locus mutation rate
©; = min[©1, B3] < 1. Analogously, PJZZ [p|©1, ©2] has a singularity at p = 1 — f,, if the
minimal background mutation rate ©,, = min[©;, O] < 1. The left column of Fig
shows the distributions at the major and minor locus for L = 2 in the symmetric case
0, =0, = O; = B, and f,, = 0.05. Simulations for a population of size N. = 10000
and analytical predictions match well.

How do these results generalize for L > 2? We again allow for unequal locus
mutation rates ;. It is easy to see from Eq (8) that the marginal distribution at the ith

locus has a singularity at p, = 0 for ©; < 1. In the Mathematical Appendix M.3, we
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further show that it has a second singularity at p; = 1 — f,, if the corresponding
background mutation rate Z?# ©; is smaller than 1. As a first step, we split the joint
distribution, Eq (8), into the marginal distribution at the major locus Pf+ [p|®] (defined
for1 — ¥f, <p<1- f,) and a cumulative distribution at all other (minor) loci,

P;. [p|®] (defined for 0 < p < 1 —+/f,). Since any locus can end up as the major locus
(with probability > 0), Pf [p|®] has a singularity at p =1 — f,, for

L
O, := min [Z@j —@i] <1. (13)
j=1

1<i<L

This equation generalizes the definition of the background mutation rate, Eq (10, to the

case of unequal locus mutation rates. Similarly, P, [p|®] has a singularity at p = 0 if

O := 1r§nz‘i£L [@z] <1. (14)

As long as ©;, < 1, we can approximate both the major-locus distribution P}; [p|®] and

the cumulative minor locus distribution P;_ [p|®] for arbitrary L by formulas for a 2-locus

model with locus mutation rates matching ©; and ©,, of the multi-locus model, Eq (12).

Similarly, we can use results from a k-locus model to match the marginal distributions of
the largest & loci (i.e., up to the (¥ — 1)th minor) in models with L > & loci, upon
rescaling of the mutation rates. As explained for the ratio of the first minor and major

locus in the previous section, rescaling rules match the expected waiting time for a

mutation (destined for establishment) at the kth locus after the origin of a first mutation.

Details are given in the Appendix|[A.5] In Fig[4] we use formulas derived from a k-locus
model (k < 4) to approximate the (k — 1)st minor locus distribution of models with

L = 105505100 loci and ©, < 1. These approximations work well as long as these

leading loci dominate the adaptive architecture of the trait, which is the case for ©;,, < 1.

5.3 Relaxing complete redundancy

To complete our picture of adaptive architectures, we investigate the robustness of our
model assumption against relaxation of redundancy. As explained above (Model
extensions and Fig|[T), we implement diminishing returns epistasis, such that an

individual with a single mutation has fitness ¢s;,4, while individuals carrying more than
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Fig 4. Genomic architecture of polygenic adaptation. We distinguish three patterns
of architectures with increasing genomic background mutation rate ©,,: complete
sweeps, for O, < 0.1, heterogeneous partial sweeps at several loci for
100. The plots show the
marginal distributions of all loci, ordered according to their allele frequency, i.e. the
major locus in red and all following (first, second, third, etc. minors) in blue to green to

0.1 < B, < 100, and polygenic frequency shifts for ©, >

yellow. Lines in respective colors show analytical predictions, Appendix [A.5]

Simulations were stopped once the populations have adapted to 95% of the maximum
mean fitness in each of 10 000 replicates, resulting in an the upper bound for the major

locus distribution at, p; = 0.95. Simulations for s, = —s; = 0.1. Note the different

scaling of the y-axis (density, normalized to 1 per locus) for different mutation rates.

one mutation have fitness s; /4. With small deviations from complete redundancy (e.g.

§ = 0.9, stopping at 5% ancestral phenotypes, see Fig[S:10) we obtain basically no

differences in the genomic patterns of adaptation. With larger deviations (e.g. 6 = 0.5)

quantitative differences appear. However, the qualitative picture concerning the

scenario of polygenic adaptation remains the same.
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Fig[5] shows the marginal frequency distributions of major and minor loci for a trait
with relaxed redundancy with § = 0.5 that is sampled when the population has
accomplished 95% of the fitness increase on its way to the new optimum, Eq (2). Given
the fitness function, this is not possible with adaptation at only a single locus. At least

two loci are needed. The Figure compares the simulation data for the relaxed

redundancy model (colored dots) and the full redundancy model (dots in back and gray).

As in Fig 4} traits in the same row have the same background mutation rate ©,,.

However, the background rate for the model with relaxed redundancy is redefined as

O = (L —2)0y, (15)

where O, is the locus mutation rate (equal at all loci). We thus define the background

rate, more precisely, as the combined population-scaled mutation rate of all loci that are

not essential to accomplish adaptation of the phenotype and, thus, are truly redundant.

With this choice, the adaptive architecture of the relaxed redundancy model reproduces
the one of the model with full redundancy — up to a shift in the number of the loci due to
an extra locus that is needed for adaptation with relaxed redundancy. The Figure
captures this by comparing traits with relaxed redundancy with L = 3,4, 11, and 101 loci
to fully redundant traits with one fewer locus. The inset figures in the column for L = 4
loci show the same scenario, but with an averaged marginal distribution for the two

largest loci with relaxed redundancy (in green).

+ For mutation rates, 0, < 1, we still find adaptation by sweeps. Relative to the full
redundancy model, we now observe two “major” sweep loci instead of only a
single sweep. The inset (for L = 4) shows that their averaged distributions
matches the major locus distribution of the full redundancy model. The
distribution at the third largest locus (the “first minor” locus with relaxed
redundancy) resembles the corresponding distribution of the first minor locus of

the trait with full redundancy.

+ For intermediate mutation rates, 0.1 < ©;, < 100, the pattern is dominated by
partial sweeps. We clearly see the similarity in the marginal distributions of the

kth largest locus with full redundancy and the k + 1st largest locus of the relaxed
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redundancy trait. For the two major loci with relaxed redundancy, we again see
(inset) that the averaged distribution matches the major-locus distribution of the

full redundancy model.

+ Finally, for strong mutation, ©,, > 100, adaptation again occurs by small

frequency shifts at many loci.

In summary, our results show that relaxing redundancy leads to qualitatively similar
results, but with a reduced “effective” background mutation rate that only accounts for

“truly redundant” loci.
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Fig 5. Relaxed redundancy. Relaxing redundancy such that a single mutant has
fitness 1 + 0.5s,,4 and only two mutations or more confer the full fitness effect (1 + s;,4)
demonstrates the robustness of our model. As in Fig[d] allele frequency distributions of
derived alleles are displayed once the population has reached 95% of maximum
attainable mean population fitness. Genomic patterns of adaptation show similar
characteristics as with complete redundancy. Due to relaxed redundancy, an additional
"major locus” is required to reach the adaptive optimum. As explained in the main text,
the distribution of the kth largest locus with complete redundancy therefore
corresponds to the distribution of the k + 1st largest locus with relaxed redundancy.
Insets in the second column show the same data with the distributions of the two major
loci for relaxed redundancy combined (in green).
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6 Discussion

Traits with a polygenic basis can adapt in different ways. Few or many loci can
contribute to the adaptive response. The changes in the allele frequencies at these loci
can be large or small. They can be homogeneous or heterogeneous. While molecular
population genetics posits large frequency changes — selective sweeps — at few loci,
quantitative genetics views polygenic adaptation as a collective response, with small,
homogeneous allele frequency shifts at many loci. Here, we have explored the
conditions under which each adaptive scenario should be expected, analyzing a
polygenic trait with redundancy among loci that allows for a full range of adaptive

architectures: from sweeps to subtle frequency shifts.

6.1 Polygenic architectures of adaptation

For any polygenic trait, the multitude of possible adaptive architectures is fully captured
by the joint distribution of mutant alleles across the loci in its basis. Different adaptive
scenarios (such as sweeps or shifts) correspond to characteristic differences in the
shape of this distribution, at the end of the adaptive phase. For a single locus, the
stationary distribution under mutation, selection, and drift can be derived from diffusion
theory and has been known since the early days of population genetics (S. Wright
(1931), [32]). For multiple interacting loci, however, this is usually not possible. To
address this problem for our model, we dissect the adaptive process into two phases.
The early stochastic phase describes the establishment of all mutants that contribute to
the adaptive response under the influence of mutation and drift. We use that loci can be
treated as independent during this phase to derive a joint distribution for ratios of allele
frequencies at different loci, Eq (5). During the second, deterministic phase, epistasis
and linkage become noticeable, but mutation and drift can be ignored. Allele frequency
changes during this phase can be described as a density transformation of the joint
distribution. For the simple model with fully redundant loci, and assuming either LE or
complete linkage, this transformation can be worked out explicitly. Our main result

Eq (8) can be understood as a multi-locus extension of Wright’s formula. For a neutral
locus with multiple alleles, Wright's distribution is a Dirichlet distribution, which is

reproduced in our model for the case of complete linkage, see Appendix[A.1] For the
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opposite case of linkage equilibrium, we obtain a family of inverted Dirichlet

distributions, depending on the stopping condition — our time of observation.

Note that (unlike Wright’s distribution) the distribution of adaptive architectures is not

a stationary distribution, but necessarily transient. It describes the pattern of mutant

alleles at the end of the “rapid adaptive phase” [30./31], because this is the time scale

that the opposite narratives of population genetics and quantitative genetics refer to. In

particular, the quantitative genetic “small shifts” view of adaptation does not talk about a

stationary distribution: it does not imply that alleles will never fix over much longer time

scales, due to drift and weak selection. On a technical level, the transient nature of our

result means that it reflects the effects of genetic drift only during the early phase of

adaptation. These early effects are crucial because they are magnified by the action of

positive selection. In contrast, our result ignores drift after phenotypic adaptation has

been accomplished — which is also a reason why it can be derived at all.

To capture the key characteristics of the adaptive architecture, we dissect the joint

distribution in Eq (8) into marginal distributions of single loci. As explained at the start of

the results section, these loci do not refer to a fixed genome position, but are defined a

posteriori via their role in the adaptive process. For example, the major locus is defined

as the locus with the highest mutant allele frequency at the end of the adaptive phase.

(Since all loci have equal effects in our model, this is also the locus with the largest

contribution to the adaptive response, but see Appendix[A.4]) This is a different way to

summarize the joint distribution than used in some of the previous literature [26,128,29],

which rely on a gene-centered view to study the pattern at a focal locus, irrespective of

its role in trait adaptation. In contrast, we use a trait-centered view, which is better

suited to describe and distinguish adaptive scenarios. For example, “adaptation by

sweeps” refers to a scenario where sweeps happen at some loci, rather than at a

specific locus. This point is further discussed in Appendix [A.6] where we also display

marginal distributions of Eq (8) for fixed loci.

The role of the background mutation rate

Our results show that the qualitative pattern of polygenic adaptation is predicted by a

single compound parameter: the background mutation rate ©;, (see
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Eqgs (10),(13),(5)), i.e., the population mutation rate for the background of a focal locus
within the trait basis. For a large basis, O, is closely related to the trait mutation rate.
We can understand the key role of this parameter as follows. As detailed in the
Section the early stochastic phase of adaptation is governed by two processes:
New successful mutations (destined for establishment) enter the population at rate ©;s;
per locus (where ©, is the locus mutation rate and s, the selection coefficient), while
existing mutants spread with an exponential rate s,. Consider the locus that carries the
first successful mutant. For ©, < 1, the expected spread from this first mutant exceeds
the creation of new mutant lineages at all other loci. Therefore, the locus will likely
maintain its lead, with an exponentially growing gap to the second largest locus. Vice
versa, for ©,, > 1, most likely one of the competing loci will catch up. We can thus think
of ©,, as a measure of competition experienced by the major locus due to adaptation at
redundant loci in its genetic background. The argument does not depend on the
strength of selection, which affects both rates in the same way. The same can be
shown for adaptation from standing genetic variation at mutation-selection-drift balance,
see Mathematical Appendix (M.1). As a consequence of low mutant frequencies during
the stochastic phase, the result is also independent of interaction effects due to
epistasis or linkage.

Since the order of loci is not affected by the deterministic phase of the adaptive
process, 0, maintains its key role for the adaptive architecture. In the joint frequency
distribution, Eq (5) and Eq (8), it governs the singular behavior of the marginal
distribution at the major locus. For 6,4 < 1, this distribution has a singularity at the
maximum of its range. Adaptation is therefore dominated by the major locus, leading to
heterogeneous architectures. For ©,, < 0.1, adaptation occurs almost always due to a
completed sweep at this locus. For ©,, > 1, in contrast, no single dominating locus
exists: adaptation is collective and supported by multiple loci. For a polygenic trait with
Oy 2 100, we obtain homogeneous small shifts at many loci, as predicted by
quantitative genetics.

The result also shows that the adaptive scenario does not depend directly on the
number of loci in the genetic basis of the trait, but rather on their combined mutation
rate (the mutational target size, sensu [11]). For redundant loci and fixed ©,,, the

predicted architecture at the loci with the largest contribution to the adaptive response
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is almost independent of the number of loci, see Fig {4 Qualitatively, the same still holds
true when the assumption of complete redundancy is dropped (Fig[5). In this case, only
loci in the genetic background that are not required to reach the new trait optimum, but
offer redundant routes for adaptation, are included in ©,,. Note that the same
reasoning holds for a quantitative trait that is composed of several modules of mutually
redundant genes, but where interactions among genes in different modules only affect
a focal module as a unit. l.e., due to changes in the genetic background, all loci in this
module experience a uniform change in the selection coefficient s, = s,(t) > 0. In this
case, assuming LE, our model still applies (cf. the Mathematical Appendix). The
adaptive architecture for each module depends only on the module-specific ©,, but not

on the mutation rates at genes in the basis of the trait outside of the module.

Polygenic adaptation and soft sweeps

In our analysis of polygenic adaptation, we have not studied the probability that
adaptation at single loci could involve more than a single mutational origin and thus
produces a so-called soft selective sweep from recurrent mutation. As explained

in [6,40], however, the answer is simple and only depends on the locus mutation rate —
independently of adaptation at other loci. Soft sweeps become relevant for ©; > 0.1.
For much larger values ©; > 1, they become “super-soft” in the sense that single
sweep haplotypes do not reach high frequencies because there are so many
independent origins of the mutant allele. The role of ©,, for polygenic adaptation is
essentially parallel to the one of 9, for soft sweeps. In both cases, the population
mutation rate is the only relevant parameter, with a lower threshold of © ~ 0.1 for a
signal involving multiple alleles and much higher values for a “super-soft” scenario with
only subtle frequency shifts. Nevertheless, the mathematical methods to analyze both
cases are different, essentially because the polygenic scenario does not lend itself to a

coalescent approach.

6.2 Alternative approaches to polygenic adaptation

The theme of “competition of a single locus with its background” relates to previous

findings by Chevin and Hospital (2008) [26] in one of the first studies to address
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polygenic footprints. These authors rely on a deterministic model of an additive
quantitative trait to describe the adaptive trajectory at a single target QTL in the
presence of background variation. The background is modeled as a normal distribution
with a mean that can respond to selection, but with constant variance. Obviously, a
drift-related parameter, such as 0,4, has no place in such a framework. Still, there are
several correspondences to our result on a qualitative level. Specifically, a sweep at the
focal locus is prohibited under two conditions. First, the background variation
(generated by recurrent mutation in our model, constant in [26]) must be large. Second,
the fitness function must exhibit strong negative epistasis that allows for alternative
ways to reach the trait optimum — and thus produces redundancy (due to Gaussian
stabilizing selection in [26]). Finally, while the adaptive trajectory depends on the shape
of the fitness function, Chevin and Hospital note that it does not depend on the strength
of selection on the trait, as also found for our model.

A major difference of the approach used in [26] is the gene-centered view that is
applied there. Consider a scenario where the genetic background “wins” against the
focal QTL and precludes it from sweeping. For a generic polygenic trait (and for our
model) this still leaves the possibility of a sweep at one of the background loci. However,
this is not possible in [26], where all background loci are summarized as a sea of
small-effect loci with constant genetic variance.

This constraint is avoided in the approach by deVladar and Barton [41] and Jain and
Stephan [|31], who study an additive quantitative trait under stabilizing selection with
binary loci (see also [42] for an extension to adaptation to a moving optimum). These
models allow for different locus effects, but ignore genetic drift. Before the
environmental change, all allele frequencies are assumed to be in mutation-selection
balance, with equilibrium values derived in [41]. At the environmental change, the trait
optimum jumps to a new value and alleles at all loci respond by large or small changes
in the allele frequencies. Overall, [41] and [31] predict adaptation by small frequency
shifts in larger parts of the biological parameter space relative to our model. In
particular, sweeps are prevented in [31] if most loci have a small effect and are
therefore under weak selection prior to the environmental change. This contrasts to our
model, where the predicted architecture of adaptation is independent of the selection

strength. Thus, in our model, weak selection does not imply shifts. This difference can
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at least partially be explained by the neglect of drift effects on the starting allele
frequencies in the deterministic models. In the absence of drift, loci under weak
selection start out from frequency =, = 0.5 [41]. In finite populations, however, almost
all of these alleles start from very low (or very high) frequencies — unless the population
mutation parameter is large (many alleles at intermediate frequencies at competing
background loci are expected only if ©,, > 1, in accordance with our criterion for
shifts). To test this further, we have analyzed our model for the case of starting allele
frequencies set to the deterministic values of mutation-selection balance, 1/sq. Indeed,
we observe adaptation due to small frequency shifts in a much larger parameter range
(Appendix [A.2).

Generally, adaptation by sweeps in a polygenic model requires a mechanism to
create heterogeneity among loci. This mechanism is entirely different in both modeling
frameworks. While heterogeneity is (only) produced by unequal locus effects for the
deterministic quantitative trait, it is (solely) due to genetic drift for the redundant trait
model. Since both approaches ignore one of these factors, both results should rather
underestimate the prevalence of sweeps. Indeed, heterogeneity increases for our
model with unequal locus effects (see Appendix|A.4).

Both drift and unequal locus effects are included in the simulation studies by Pavlidis
et al (2012) [28] and Wollstein and Stephan (2014) [29]. These authors assess patterns
of adaptation for a quantitative trait under stabilizing selection with up to eight diploid
loci. However, due to differences in concepts and definitions there are few comparable
results. In contrast to [31] and to our approach, they study long-term adaptation (they
simulate N, generations). In [28,,29], sweeps are defined as fixation of the mutant allele
at a focal locus, whereas frequency shifts correspond to long-term stable polymorphic
equilibria [29]. With this definition, a shift scenario is no longer a transient pattern, but
depends entirely on the existence (and range of attraction) of polymorphic equilibria. A
polymorphic outcome is likely for a two-locus model with full symmetry, where the
double heterozygote has the highest fitness. For more than two loci, the probability of
shifts decreases (because polymorphic equilibria become less likely, see [43]).
However, also the probability of a sweep decreases. This is largely due to the

gene-centered view in [28], where potential sweeps at background loci are not recorded

(see also Appendix [A.6).
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6.3 Scope of the model and the analytical approach

We have described scenarios of adaptation for a simple model of a polygenic trait. This
model allows for an arbitrary number of loci with variable mutation rates, haploids and
diploids, linkage, time-dependent selection, new mutations and standing genetic
variation, and alternative starting conditions for the mutant alleles. lts genetic
architecture, however, is strongly restricted by our assumption of (full or relaxed)
redundancy among loci. In the haploid, fully redundant version, the phenotype is binary
and only allows for two states, ancestral wildtype and mutant. Biologically, this may be
thought of as a simple model for traits like pathogen or antibiotic resistance, body color,
or the ability to use a certain substrate [44./45].

Our main motivation, however, has been to construct a minimal model with a
polygenic architecture that allows for both sweep and shifts scenarios — and for
comprehensive analytical treatment. One may wonder how our methods and results
generalize if we move beyond our model assumptions.

Key to our analytical method is the dissection of the adaptive process into a
stochastic phase that explains the origin and establishment of beneficial variants and a
deterministic phase that describes the allele frequency changes of the established
mutant copies. This framework can be applied to a much broader class of models.
Indeed, in many cases, the fate of beneficial alleles, establishment or loss, is decided
while these alleles are rare. Excluding complex scenarios such as passage through a
fitness valley, the initial stochastic phase is relatively insensitive to interactions via
epistasis or linkage. We can therefore describe the dynamics of traits with a different
architecture (e.g. an additive quantitative trait with equal-effect loci under stabilizing
selection) within the same framework by coupling the same stochastic dynamics to a
different set of differential equations describing the dynamics during the deterministic
phase.

This is important because, as described above, the key qualitative results to
distinguish broad categories of adaptive scenarios are due to the initial stochastic
phase. This holds true, in particular, for the role of the background mutation rate ©y,.
We therefore expect that these results generalize beyond our basic model. Indeed, we

have already seen this for our model extensions to include diploids, linkage, and
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relaxed redundancy. Vice-versa, we have seen that other factors, such as alternative
starting conditions for the mutant alleles, directly affect the early stochastic phase and
lead to larger changes in the results. As shown in Appendix [A.2] however, they can be
captured by an appropriate extension of the stochastic Yule process framework.
Several factors of biological importance are not covered by our current approach.
Most importantly, this includes loci with different effect sizes and spatial population
structure. Both require a further extension of our framework for the early stochastic
phase of adaptation. Unequal locus effects (both directly on the trait or on fitness due to
pleiotropy) are expected to enhance the heterogeneity in the adaptive response among
loci, as confirmed by simulations of a 2-locus model in Appendix[A.4] The opposite is

true for spatial structure, as further discussed below.

6.4 When to expect sweeps or shifts

Although our assumptions on the genetic architecture of the trait (complete redundancy
and equal loci) are favorable for a collective, shift-type adaptation scenario, we observe
large changes in mutant allele frequencies (completed or partial sweeps) for major
parts of the parameter range. A homogeneous pattern of subtle frequency shifts at
many loci is only observed for high mutation rates. This contrasts with experience
gained from breeding and modern findings from genome-wide association studies,
which are strongly suggestive of an important role for small shifts with contributions
from very many loci (reviewed in [1,|15/46H48], see [12,49,50] for recent empirical
examples). For traits such as human height, there has even been a case made for
omnigenic adaptation [8], setting up a “mechanistic narrative” for Fisher’'s (conceptual)
infinitesimal model. Clearly, body height may be an extreme case and the adaptive
scenario will strongly depend on the type of trait under consideration. Still, the question
arises whether and how wide-spread shift-type adaptation can be reconciled with our
predictions. We will first discuss this question within the scope of our model and then

turn to factors beyond our model assumptions.
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The size of the background mutation rate

The decisive parameter to predict the adaptive scenario in our model, the background
mutation rate, is not easily amenable to measurement. ©,4 = (L — 1)©; compounds
two factors, the locus mutation parameter ©; and the number of loci L, which are both
complex themselves and require interpretation. To assess the plausibility of values of
the order of ©,,4 2 100, required for homogeneous polygenic shifts in our model, we
consider both factors separately.

Large locus mutation rates ©; = 4N_u (for diploids, 2N, i for haploids) are possible
if either the allelic mutation rate i or the effective population size N. is large. Both
cases are discussed in detail (for the case of soft sweeps) in [6]. Basically, x can be
large if the mutational target at the locus is large. Examples are loss-of-function
mutations or cis-regulatory mutations. N. is the short-term effective population
size [401,511/52] during the stochastic phase of adaptation. This short-term size is
unaffected by demographic events, such as bottlenecks, prior to adaptation. It is
therefore often larger than the long-term effective size that is estimated from nucleotide
diversity. (Strong changes in population size during the adaptive period can have more
subtle effects [53].) For recent adaptations due to gain-of-function mutations, plausible
values are ©; < 0.1 for Drosophila and ©; < 0.01 for humans [6].

If 10000 loci or more contribute to the basis of a polygenic trait [8], large values of
O, could, in principle, easily be obtained. However, the parameter L in our model
counts only loci that actually can respond to the selection pressure: mutant alleles must
change the trait in the right direction and should not be constrained by pleiotropic
effects. Omnigenic genetics, in particular, also implies ubiquitous pleiotropy and so the
size of the basis that is potentially available for adaptation is probably strongly
restricted. For a given trait, the number of available loci L may well differ, depending on
the selection pressure and pleiotropic constraints. Furthermore, our results for the
model with relaxed redundancy show that ©,, only accounts for loci that are truly
redundant and offer alternative routes to the optimal phenotype. With this in mind,
values of L in the hundreds or thousands (required for ©,, > 100) seem to be quite
large. While some highly polygenic traits such as body size could still fulfill this

condition, this appears questionable for the generic case.
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Balancing selection and spatial structure

In our model, characteristic patterns in the adaptive architecture result from
heterogeneities among loci that are created by mutation and drift during the initial
stochastic phase of adaptation. As initial condition, we have mostly assumed that
mutant alleles segregate in the population in the balance of mutation, purifying selection
and genetic drift. Since this typically results in a broad allele frequency distribution
(unless mutation is very strong), it favors heterogeneity among loci and thus adaptation
by (partial) sweeps. However, even after decades of research, the mechanisms to
maintain genetic variation in natural populations remain elusive [1]. As discussed in
Appendix [A.2] more homogeneous starting conditions for the mutant alleles can be
strongly favorable of a shift scenario. Such conditions can be created either by
balancing selection or by spatial population structure.

Balancing selection (due to overdominance or negative frequency dependence)
typically maintains genetic variation at intermediate frequencies. If a major part of the
genetic variance for the trait is due to balancing selection, adaptation could naturally
occur by small shifts. However, the flexibility of alleles at single loci, and thus the
potential for smaller or larger shifts, will depend on the strength of the fitness trade-off
(e.g. due to pleiotropy) at each locus. If these trade-offs are heterogeneous, the
adaptive architecture will reflect this. Also, adaptation against a trade-off necessarily
involves a fitness cost. Therefore, if the trait can also adapt at loci that are free of a
trade-off, these will be preferred, possibly leading to sweeps.

As discussed in a series of papers by Ralph and Coop [34}/35], spatial population
structure is a potent force to increase the number of alternative alleles that contribute to
the adaptive response. If adaptation proceeds independently, but in parallel, in spatially
separated subpopulations, different alleles may be picked up in different regions.
Depending on details of the migration pattern [36], we then expect architectures that are
globally polygenic with small shifts, but locally still show sweeps or dominating variants.

Furthermore, population structure and gene flow before the start of the selective
phase can have a strong effect on the starting frequencies. In particular, if the base
population is admixed, mutant alleles could often start from intermediate frequencies

and naturally produce small shifts. This applies, in particular, to adaptation in modern
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human populations, which have experienced major admixture events in their
history [54,55] and only show few clear signals of selective sweeps [11].

Finally, gene flow and drift will continue to change the architecture of adaptation
after the rapid adaptive phase that has been our focus here. This can work in both
directions. On the one hand, subsequent gene flow can erase any local sweep signals
by mixing variants that have been picked up in different regions [341/35]. On the other
hand, local adaptation, in particular, may favor adaptation by large-effect alleles at few
loci, favoring sweeps over longer time-scales. Indeed, as argued by Yeaman [56], initial
rapid adaptation due to small shifts at many alleles of mostly small effect may be
followed by a phase of allelic turnover, during which alleles with small effect are
swamped and few large-effect alleles eventually take over. This type of allele sorting
over longer time-scales is also observed in simulations studies for a quantitative trait
under stabilizing selection that adapts to a new optimum after an environmental

change [31,/57].

Between sweeps and shifts: adaptation by partial sweeps

Previous research has almost entirely focused on either of the two extreme scenarios
for adaptation: sweeps in a single-locus setting or (infinitesimal) shifts in the tradition of
Fisher’s infinitesimal model. This leaves considerable room for intermediate patterns.
Our results for the redundant trait model show that such transitional patterns should be
expected in a large and biologically relevant parameter range (values of ©;, between
0.1 and 100). Patterns between sweeps and shifts are polygenic in the sense that they
result from the concerted change in the allele frequency at multiple loci. They can only
be understood in the context of interactions among these loci. However, they usually do
not show subtle shifts, but much larger changes (partial sweeps) at several loci. If
adaptation occurs from mutation-selection-drift balance, the polygenic patterns are
typically strongly heterogeneous, even across loci with identical effects on the trait.
Such patterns may be difficult to detect with classical sweep scans, in particular if
partial sweeps are "soft” because they originate from standing genetic variation or
involve multiple mutational origins. However, they should be visible in time-series data

and may also leave detectable signals in local haplotype blocks.
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Indeed there is empirical evidence for partial sweeps from time series data in
experimental evolve and resequence experiments on recombining species such as fruit
flies. For example, Burke et al. [58] observe predominantly partial sweeps (from SGV)
in their long-term selection experiments with Drosophila melanogaster for accelerated
development — a rather unspecific trait with a presumably large genomic basis. A
similar pattern of “plateauing”, where allele frequencies at several loci increase quickly
over several generations, but then stop at intermediate levels, was recently observed by
Barghi and collaborators [59] for adaptation of 10 Drosophila simulans replicates to a
hot temperature environment. Complementing the genotypic time-series data with
measurements of several phenotypes, these authors found convergent evolution for
several high-level traits (such as fecundity and metabolic rate), indicating that rapid
phenotypic adaptation had reached a new optimum. This high-level convergence
contrasts a strong heterogeneity in the adaptation response among loci and also
between replicates [59]. Based on their data, the authors reject both a selective sweep
model and adaptation by subtle shifts. Instead, the observed patterns are most
consistent with the intermediate adaptive scenario in our framework, featuring

heterogeneous partial sweeps at interacting loci with a high level of genetic redundancy.
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A Supporting information

A.1 Linked loci

Negative epistasis for fitness causes negative linkage disequilibrium (LD) among the
selected loci. While LD can typically be ignored as long as loci are only loosely linked,
this changes once recombination rates drop below a threshold (e.g. [22], p. 277). For
tight linkage r — 0, in particular, individuals carrying multiple mutations can no longer
be formed by recombination, but require multiple mutational hits on the same haplotype.
This is unlikely while mutant allele frequencies are low, which is when the relevant
mutations of the adaptive process arise. By the end of the adaptive phase, the excess
of single-mutant haplotypes produces strong negative LD. Nevertheless, our theory
predicts that the distribution of allele frequency ratios that emerges from the early
stochastic phase of the adaptive process is unaffected Eq.(9). This prediction is
confirmed by simulations, see Fig

Fig [S.2 shows the joint distribution of the major and the minor locus of a trait with
L = 2 loci for different degrees of linkage. In all cases, the process is stopped when the
proportion of remaining non-mutant individuals drops below f,, = 0.05. The results
show that the linkage equilibrium assumption (red and blue lines) provides a good
approximation as long as r > s;. For r < sy, the distributions are shifted to lower values
and clear deviations become visible. The constraint on the allele frequencies at the
stopping condition changes from (1 — p;)(1 — p2) = f., for linkage equilibrium to
p1 + p2 =1 — f,, for complete linkage. As a consequence, the boundary between the
major and minor locus distributions (red and blue) drops from 1 — /f,, to (1 — f.,)/2. As
shown in the Mathematical Appendix, Eq (M.29), we can derive an analytical
approximation for the distributions for complete linkage » = 0. For L = 2, we obtain a

modified Beta-distribution (black lines in the Figure)

P: lplO] = 2(1;&)1 (1_pfw>@1 <1 1_pfw>®1 (S.1)

with p > (1 — f,,)/2 (resp. p < (1 — f)/2) for the major (minor) locus. The simulation

results show that this prediction is accurate for r < s;, (deviations for ©,, = 100 are due

to overshooting of the stopping condition in the last generation of our Wright-Fisher
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simulations).

While linkage affects the shape of the joint distribution, it does not alter its key

qualitative characteristics that distinguish adaptive scenarios. In particular, the same

conditions on ©,, and ©; apply for singularities at the boundaries of the marginal

distributions. We still observe sweep-like adaptation for ©,, <« 1, adaptation by small

shifts for ©,, > 1, and a heterogeneous pattern of partial sweeps in a transition range

of ©,4 around 1.

[ J
o LE )
0.8 r=0.5
e r=0.1
)
r=0.01
0.6 oel=0
0.4
0.2
D_o-wd L L L L
0.01 0.10 1 10 100

(o))

Fig S.1. E[z] for redundant fitness effects with two linked loci. Simulation results
(colored dots) for the mean allele frequency ratio are plotted in dependence of the locus
population mutation rate ©; and compared with the analytical prediction (black line).
Simulations are stopped when fitness has reached 95% of its maximum. Linkage does
not change the results for the ratio of allele frequencies, despite significant buildup of
linkage disequilibrium with low recombination rates. Results for 10000 replicates,

standard errors < 0.005 (smaller than symbols).

A.2 Alternative starting allele frequencies

So far, we have assumed that adaptation starts from mutation-selection-drift balance.

This includes variable amounts of standing genetic variation (weak or strong s;) and

even cases where this balance is not represented by a stable equilibrium distribution
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x-axis: allele frequency

Fig S.2. Genetic architecture of adaptation with linkage. Marginal distributions for
the major locus (red) and the minor locus (blue) of a model with L = 2 loci depending
on O, (rows) and linkage among the loci (columns). Black lines show the analytical
approximations for LE (dashed) and complete linkage (solid). For strong recombination
r > s, = 0.1, the deviations from the LE approximation are small. For r <« s, = 0.1, the
approximation for complete linkage works well. Further parameters: —s; = s, = 0.1,
N, = 10000, 10000 replicates.

(time-dependent selection, see the Mathematical Appendix). There are, however, other
scenarios of biological relevance. Given the right (possibly complex) selection scheme,
balancing selection can maintain mutant alleles, prior to the environmental change, at
arbitrary frequencies. The same holds true if the base population is admixed, either due
to natural processes or due to human activity (e.g. breeding from hybrids). For these

scenarios, our theoretical formalism to describe the establishment of mutants during the

stochastic phase (Fig[2) does not apply. In this section, we describe how the formalism
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can be extended to cover arbitrary starting frequencies of mutants at the onset of

positive selection at time ¢ = 0.

Extended Yule framework

The Yule process that describes the stochastic phase of the adaptive process accounts
for the mutant copies at all loci that are destined for establishment. In our framework so
far (see the Mathematical Appendix M.2), we have started this process with zero copies.
SGV due to mutation-selection-drift balance can still be produced by such a process if it
is started at some time in the past (¢ < 0). For general starting frequencies, we can
alternatively start this process at time ¢ = 0, but with mutant copies (immortal lineages)
already present. Suppose that the mutant frequency at locus ¢ at time ¢t = 0 is p;,
corresponding to N.p; mutant copies. Of these, only the n; < N.p; “immortal” mutants
(destined for establishment) are included in the Yule process. Assuming an
independent establishment probability pest per copy, n; is binomially distributed with
parameters N.p; and pegt. For the limit distribution of a multi-type Yule process that is
started with a non-zero number of lines, consider that each of these initial lines can be
understood as an extra source of new immortal lines (due to birth) that is entirely
equivalent to the generation of new lineages by mutation. It is therefore appropriate to

include these lines as extra locus mutation rate

0, =0;+n; =2Ncp; +n; . (S.2)

In the absence of recurrent mutation, ©; = 0, this procedure reproduces the well-known
Polya urn scheme (e.g. [60,61]). Replacing ©; by ©; within our original Yule process
formalism, and averaging over the binomial distribution, leads to the desired extension

to arbitrary starting frequencies.

Application

Theory papers (e.g. [30,/31,41,/62]) often use a deterministic framework to describe the
frequency of alleles that segregate in a population in mutation-selection balance. To
simplify the analysis, they do not model SGV as a distribution (due to mutation,

selection, and drift), but replace this distribution by its expected value (ignoring drift).
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We can apply our scheme with fixed starting frequencies to this case and thus assess

the effect of genetic drift in the starting allele frequency distribution. We assume equal

loci and a starting frequency |u;/sq| for an (initially deleterious) mutant allele with

selection coefficient s, in mutation-selection balance. Fig[S.3|shows the simulated

marginal distributions of the loci with the largest contribution to the adaptive response

(compare Fig[4). We see that the type of the adaptive architecture is again constant

across rows with equal background mutation rate. However, due to the more

homogeneous starting conditions, adaptation involves more loci and is much more

shift-like. Analytical predictions following the above scheme are shown for L = 2 loci.

With establishment probability pest = 253, the counts n; and ny of “immortal” mutants at

both loci are independent random draws from a Binomial distribution with parameters

Nelp/sal = |©1/2sq] and 2s;,. For ©,, > 0.1, we find (heuristically) that the marginal

distribution for alleles starting from mutation-selection balance closely matches the one

of the fully stochastic model with effective @eg = Opg(1 + |sp/254]) = 5104, for the

parameters in the figure (lines added in green). (Note that, from the average number of

established lines, one would assume @gg = Opg(1 + |sp/54]) = 1010,,. However, this

does not account for the variance in the number of immortal lines among the two loci.)

A.3 Diploids

To extend our model to diploids, we assume that a single locus that is homozygous for

the mutant allele is sufficient to produce the fully functional mutant phenotype, while a

heterozygous locus produces a mutant that is functional with probability 1 — h. We

assume that mutants contribute independently. Thus, if k£ heterozygous loci exist, but no

homozygous mutant locus, the resulting mutant phenotype will be functional with

probability 1 — (1 — (1 — h))*¥ = 1 — h*. For L = 2 loci, in particular, the (logarithmic)

fitness of genotype G becomes

0
(1—"h)s
(1 —h?)s

S

no mutations: G = (aabb)
1 heterozygous locus: G = (Aabb, aa Bb)
2 heterozygous loci: G = (AaBb)

> 1 homozygous mutation: G = (AA..,..BB)
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Fig S.3. Polygenic adaptation from alternative allele starting frequencies. The
panels show the adaptive architecture when mutant alleles start from their expected
value in mutation-selection balance, without drift. We distribute L - |©;/2s,| mutant
copies as evenly as possible across all loci. We set —s; = s5,/100 = 0.001. Black lines
for L = 2 loci show analytical predictions described in the main text (only
computationally possible for ©,, < 1), green lines for ©, > 1 show the heuristic
prediction for @gg = 510,,. Finally, gray lines show the marginal distributions when
adaptation occurs from mutation-selection-drift balance, compare Fig

where s = s, > 0fort > 0and s = s4 < 0 for ¢t < 0. Note that 4 € [0, 1] measures the
dominance of the ancestral allele. We assume Hardy-Weinberg-linkage-equilibrium

(HWLE). In this case, the marginal fitnesses of the mutant alleles are (for 2 loci),

wh =s—(1—pa)(l —pp)[1 —pp(l —2h)]hs, (S.4a)

wp =s—(1—pa)(1—ps)[1 —pa(l—2h)]hs. (S.4b)

In contrast to the haploid case, the marginal fitnesses are in general not equal. There
are, however, two important special cases, where our fitness scheme (with redundancy
on the level of loci) implies equal marginal fitnesses (and thus redundancy on the level

of alleles): either if the ancestral allele is fully recessive (h = 0) or if the alleles are
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co-dominant (h = 0.5). As shown in the Mathematical Appendix, this holds true more

generally for an arbitrary number of loci.

Simulation results

We simulated a diploid model with two loci in HWLE according to the above scheme
with three different levels of dominance of the ancestral allele, h = 0.1;0.5; and 0.9. The
diploid, effective population size is N., corresponding to 2N, chromosomes. The
mutation rate is p at both loci and we define the population-scaled mutation rate for
diploids as ©f = ©f, = 4N . Simulations are stopped when the percentage of
remaining ancestral haplotypes drops below f,, = 0.05. (This condition directly
corresponds to the stopping condition for haploids. Alternative stopping conditions,
such as 95% increase in mean diploid fitness are also covered by our theoretical
framework, but require a different transformation.)

The results are shown in Fig We see that the haploid results fully carry over to
diploids for co-dominance (h = 0.5, middle column), where the diploid fitness scheme
implies redundancy on the level of alleles. As explained above, the same holds true if
the ancestral allele is fully recessive. Our simulations show that the haploid result is still
a good approximation for h = 0.1 (left column). In contrast, much larger deviations are
obtained for recessive mutants (dominant ancestral allele, h = 0.9, right column). In this
case, the locus with the higher mutant frequency experiences stronger selection. For
©; > 0.1, when polymorphism at both loci is likely, this favors the major locus relative to

the minor locus, increasing the heterogeneity in the adaptive architecture.

A.4 Asymmetric loci

For the Figures in the main text, we have assumed that all loci in the genetic basis of
the trait are equivalent: they have equal mutation rates and effect sizes. This symmetric
choice favors a collective shift scenario because no locus has a build-in advantage. In

this Appendix, we study the consequences of asymmetries among loci.

Mutation rate asymmetry Our analytical formalism allows for arbitrary asymmetries

in the locus mutation rates. The prediction for the expected ratio of minor/major locus
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Fig S.4. Adaptive architecture for diploids in linkage equilibrium. Adaptation in a
2-locus model according to scheme (S.3), with recessive (h = 0.1), codomiant (h = 0.5)
or dominant (h = 0.9) ancestral alleles. We assume Hardy-Weinberg and linkage
equilibrium. Simulations are stopped when frequency of wildtype haplotypes drops
below 5%. Standing genetic variation builds up for 16 N, generations before the change
in the environment. Selection coefficients are set to s, = —s4 = 0.1. Solid lines show
analytical predictions using the framework developed for haploids.

frequencies of a 2-locus model with unequal mutation rates ©, and ©, reads

E[z] =

 T(01+6y)
['(©1)'(02)

1
/ (xel_l + x92_1> (1+ x)_gl_ezdx
0

(S.5)
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where the sum in the integral accounts for the possibility that either locus may end up

as the “major locus” at the time of observation (compare Eq. M.27). Fig[S.5|shows the

prediction as a function of ©; and 6, = d©; together with simulation results (analogous

to Fig[3|in the main text). As expected, differences in the locus mutation rates lead to

more heterogeneous "sweep-like” architectures with lower minor/major locus ratio. The

Figure also confirms the independence of levels of standing genetic variation and the

good overall fit of the analytical approximation.

1.0 1. 1.0

08 08 08

0.6 o 06 . 0.6

0. 0.
0.01 0.10 1 10 100 0.01 0.10 1 10 100 0.01 0.10 1 10 100
] o, o

(a) sp = 0.1, de novo (b) sp =0.1,SGV: s4 = 0.1 (c) sp = 0.1, 1SGV: s4 = 0.001

62=O1 ° 92=0.591 ° 92=0.291 ° eg=0.1 91

Fig S.5. Different mutation rates. For L = 2 we plot E[z] without and with previous
buildup of weak and strong SGV for different mutation rates at the two loci, such that
O, =d- 04, ford =1,0.5,0.2,0.1. Our analytical predictions for different mutation rates,
Eq (S.5), yield an excellent fit. Simulations are obtained from 10000 replicates per data

point, assuming linkage equilibrium.

Locus effect asmmetry Our analytical results are based on the assumption of

strong redundancy between loci. In the main text, we have already discussed how

these results extend for a scenario of relaxed redundancy, where two mutational steps

are needed to reach the trait optimum. Similarly, intermediate phenotypes are also

included in the diploid version of our model. However, both model extensions do not

break the symmetry assumption concerning the effects of single-locus substitutions.

Differences in the single-locus effects interfere with the assumptions of our

Yule-process framework for the early adaptive phase. In contrast to unequal mutation

rates, they cannot easily be included. Although polygenic models with equal locus

effects have a long history in the biological literature, at least slight deviations from this

assumption are unavoidable in nature. Indeed, deviations already arise due to

non-neutral “hitchhiker” mutations on the selected haplotypes. With exponential growth
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during the selected phase, even small perturbations could, in principle, lead to

significant changes in the resulting adaptive architecture. To test this, we use a haploid

2-locus model with (Malthusian) fitness 0 for the ancestral genotype ab and fitness

sp/q 2 0 for the single mutant Ab and the double mutant AB. The other single mutant,

aB is setto esy /4. Figshows simulation results for the expected minor/major

frequency ratio for cases where aB is less beneficial (¢ = 100/101,10/11,2/3) as well

as for cases where a B is optimal (e = 101/100,11/10, 3/2). Note that the latter case

corresponds to “sign epistasis” for the A mutant. Simulations are stopped when the

frequency of ancestral haplotypes, ab, drops below 5%.

As expected, the results show that unequal locus effects (like unequal mutation

rates) lead to more heterogeneous adaptive architectures. However, as long as

differences in the locus effects are moderate (below ~ 10%) the prediction from the fully

redundant model still provides a good approximation. In contrast, differnces of 50% in

the single-locus effects lead to sizable deviations. This relative robustness is

reminiscent of the case of soft selective sweeps, where differences of < 20% in the

fitness of independent mutant copies only lead to small deviations from the predictions

for the frequencies of sweep haplotypes (see Fig. 4 and S1 in [40]). Deviations from the

fully redundant prediction are larger for the sign-epistasis case, where the a B mutant

has the highest fithess. This is expected — indeed, the single mutant should eventually

displace all other genotypes at later observation times. Fig also shows that

deviations are partially compensated if adaptation occurs from standing genetic

variation, in particular if levels of standing variation are high (panel c). This reflects our

model assumption that the locus under stronger beneficial selection is also under

stronger deleterious selection prior to the environmental shift.
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Fig S.6. Different locus effects. For L = 2 we plot E[z] for without and with previous
build-up of weak and strong SGV for various genotypic fitnesses of the aB-genotype
esy/q- Fitness of the Ab and AB genotype is always set to s;,,4. Simulations are
obtained from 10 000 replicates per mutation rate with recombination rate » = 0.5.

A.5 Approximations for multi-locus architectures 1150

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet 1151
distribution, Mathematical Appendix Eq (M.29), lower dimensional marginal distributions 115
for single loci or groups of loci can easily be derived. For linkage equilibrium, 1153
Mathematical Appendix Eq (M.20), however, the required integrals can only be solved 115
numerically. For L loci, an (L — 2)-dim integral needs to be evaluated, which becomes 1155
computationally unfeasible (with programs packages like Mathematica) for L > 5. In 1156
many cases, we can nevertheless derive approximations. To do so, we make use of a 1157
key property of the adaptive architecture, seen in our results: The (joint) architecture of s
adaptation at loci with the largest contribution to the adaptive response is primarily a 1159
function of combined mutation rates at competing loci, such as the background 1160
mutation rate ©,,. Given these values, it is largely independent of the number of loci in 16
the genetic basis of the trait itself. We can therefore describe the adaptive architecture 112
of a polygenic trait with L loci by a model with k& < L loci given that the total adaptive 113
response is well captured by the contribution of the top & loci. It turns out that this is 1164
typically the case for ©,, < 1, when the contributions from different loci are very 1165
heterogeneous. In the following, we describe this procedure for an L-locus model with 1166

equal mutationrates ©;, = 0;,1 <i < L. 1167

January 31, 2019 52


https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/450759; this version posted February 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

Approximations using the 2-locus model

Several key properties of the L-locus architecture can already be described within the

2-locus framework. This includes the marginal distributions at the major locus and at

the first minor locus. To this end, we set the mutation rate at the minor locus of the

2-locus model to the background mutation rate of the L-locus model. As described in

the main text, this choice matches the time lag between the first origin of a mutation

destined for establishment at a locus (usually the major locus) and at a second locus

(usually the first minor locus). It also guarantees that the approximation captures the

correct asymptotic shape of the major-locus distribution at p = 1 — f,,, and of the

first-minor-locus distribution at p = 0. The choice of the mutation rate at the major locus

itself is less important. For the approximation of the major-locus distribution, we find

that setting it to the locus-mutation rate yields the best fit. We thus use a 2-locus model

with unequal mutation rates, P}j [p11©1, Oy, Eq (M.28a), in Fig For the marginal

distribution at the first minor locus, the approximation with equal mutation rates,

P}j [P1]©sg, Ong), EQ (M.28b), works slightly better. Finally, we can also approximate the

distribution at an average minor locus (rather than the first minor locus) by

P} <[p1]©1, Opg).

Approximations using models with i > 2 loci

The approximation of higher-order minor loci requires models with a sufficiently large

genetic basis that such a locus exists at all. l.e., a k-locus model can approximate

marginal distributions up to the (k¥ — 1)st minor locus. Assume that we want to

approximate the marginal distribution of the jth minor locus of an L-locus model using a

k-locus model, j < k < L. As for the case k = 2 discussed above, the approximation

requires that the expected lag time between the origin of a successful mutation at a first

locus and the origin of a mutation at a jth locus be matched. For the L-locus model,

this waiting time is

1 <~ 1
@;L—i'

For a k-locus model with equal mutation rate G)l(k) at all loci, we thus obtain the
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Fig S.7. Approximating higher dimensional adaptive architectures. We
approximate a 10 locus model (©,, = 1) with the theoretical predictions based on the
four-locus model for the major locus and the first, second, and third minor locus.
Compare Fig |4, where we use approximations based on models with the minimal
number of loci needed.

matching rule

@l(k) =0, ’{=1 k—i
i=1 T3

for the approximation of the jth minor locus. For j = 1, this reproduces the matching
rule for the background mutation rate ©;,. In general, the value for @l(’“) depends on j,
but converges once L, k > j. Approximations by models with unequal locus mutation
rates are also possible, but usually do not lead to a relevant improvement. In Fig[d} we
use formulas from 3- and 4-locus models to approximate the marginal distributions of

the 2nd and 3rd minor locus, respectively. In general, the approximations for all loci can

be improved by using approximation models with more loci than required, i.e. k£ > j + 1.

In Fig we show this for approximations of the major locus and the first three minor

loci, all derived from a 4-locus model.

A.6 Marginal distribution of a single locus

Figure [S.8|shows the marginal distribution at a single focal locus for a trait with L = 2

to L = 100 loci in its basis. Since all loci are equal, the probability that the focal locus
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ends up as the major locus is 1/L. The red dots in the figure indicate the part of

the

marginal distribution that corresponds to this case. With an increasing number of

redundant loci, the probability for each single locus to play a major role in the adaptive

process decreases. The marginal distribution of a fixed locus therefore changes

strongly with an increasing number of loci L. For large L, in particular, it does not

represents the key components of the adaptive architecture on the level of the trait any

more. This is in contrast to Fig |4, where marginal distributions of the loci with the

largest contributions to the adaptive response are shown. For 2 loci, Fig[S.8|also shows

the analytical approximation for the marginal distribution, Eq (11). As long as the

adaptive architecture is dominated by only a few loci, the same 2-locus result can be

used as an approximation for the marginal distribution in models with more than
loci. This is shown in the figure for ©,, < 1. The figure also shows that the

approximation fails for ©,, > 10 when adaptation is truly collective.

two
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Fig S.8. Marginal distribution at a single focal locus. Simulation results for the

marginal distribution at a single locus at the end of the adaptive phase are shown in
blue. Red dots show the contribution of the major locus to this distribution (all cases,
where the focal locus ends up as the major locus). Dashed lines show the analytical
prediction based on the 2-locus model, Eq (T1). Parameters and further details as in

Fig [
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A.7 Dynamics of adaptation

In contrast to previous work on the topic (e.g. [30,[31]), our approach does not discuss
adaptive architecture as a function of the time that has elapsed since the environmental
change. Instead, we assess adaptation at the genotypic level as a function of the
progress that has been made towards adaptation of the trait. In our main result on the
joint distribution of mutant allele frequencies (Eq (8), this progress is measured by the
stopping condition f,,, which directly relates to the distance of the trait mean to the new
optimum (see Eq (2); for the basic model of a fully redundant trait, f,, is the frequency
of remaining ancestral phenotypes in the population). This shift from a time-slice view
to a trait-centered view can lead to larger qualitative differences in particular if the
mutation rate is low (©; <« 1/L). In this case, a distribution of genetic architectures at a
fixed time ¢ > 0 will incorporate opposite cases where adaptation of the trait has either
already been completed or not even started because the population still waits for a
successful mutant. Biologically, a trait-centered view seems to be closer to the idea of
an “architecture of phenotypic adaptation”. Mathematically, the changed perspective
enables the derivation of analytical results. By comparing architectures for variable
degrees of phenotypic adaptation, we still obtain a view of the adaptation dynamics,
with f,, as dynamical variable instead of time ¢. This is shown in Fig[S.9] For ©,, < 1,
we see how the dominant contribution of a single “major locus” to the adaptive

response emerges early on and then accentuates during the adaptive phase.
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Fig S.9. Dynamics of the adaptive process. Allele frequency distributions at four

stages over the course of adaptation. Approximations correspond to the Fig[S.7]each
rescaled to the changed stopping condition f,,; = 0.75;0.5;0.25; 0.05. Simulations for
10000 replicates per mutation rate with s, = —s4 = 0.1.
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Fig S.10. Weakly relaxed redundancy. Weakly relaxing redundancy such that a
single mutant has fitness 1 + 0.9s;,4 and only two mutations or more confer the full
fitness effect (1 + s;,4) demonstrates the robustness of our model. As in Fig allele
frequency distributions of derived alleles are displayed once the frequency of the
wildtype individuals in the population has decreased to f.,, = 5%, which corresponds to
an increase of 95% in mean fitness for complete redundancy. Genomic patterns of
adaptation show very similar characteristics as with complete redundancy. Simulation
data for relaxed redundancy (colored dots) are almost identical to results for complete
redundancy (gray dots).
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Fig S.11. Genetic architecture with weak selection. Frequency distributions of
major and minor loci are shown upon an increase of 95% in mean fitness for complete
redundancy for s, = 0.1 (colored dots, data as in Fig[4) and weaker selection s, = 0.01
(colored asterisks). Deleterious selection before the environmental change is set to

sq = —sp. As we condition on adaptation from the ancestral state, we do not obtain
enough valid runs for s = —0.01 and ©,, = 100.
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Mathematical Appendix

This Appendix describes the details of the mathematical model and methods used to
derive the analytical results of the article. Section M.1 gives an outline of the model;
section M.2 introduces the branching process method used for the early stochastic
phase of polygenic adaptation; section M.3 describes the derivation of the joint

frequency distribution at the end of the deterministic phase.

M.1 Redundant trait model

Consider a panmictic population of N, haploids. Selection acts on a binary trait Z (e.g.

resistance) with just two states, a wildtype state Z, (not resistant) and a mutant state 7,
(resistant). Without restriction, we can choose Z, = 0 and Z; = 1. Malthusian

(logarithmic) fitness is defined by the function

W(Z,t) = s(t)Z (M.1)

where the time dependent coefficient s(t) defines the strength of directional selection.
We assume that s(¢) < 0 for ¢ < 0, but s(t) > 0 for ¢t > 0, such that the optimal trait
value shifts from the wildtype state Z = 0 to the mutant state Z = 1 due to some
change in the environment at time ¢ = 0. We also assume that selection is stronger

than drift, |Vs(¢)| > 1 for almost all ¢, but is arbitrary otherwise.
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We assume that Z is polygenic, with L biallelic loci (wildtype a; and mutant allele A;,
i1 =1,..., L) constituting its genetic basis. While genotype a = (a1, as,...,ar)
produces the ancestral wildtype Z,, all mutant genotypes are fully redundant and
produce the mutant phenotype 73, independently of the number of mutations. New
mutations from a; to A; occur at a rate i, per generation, with p; < |s(t)| for almost all
t. For the purpose of our model, back mutation from A; to a; can be ignored. The
linkage map among loci is arbitrary — unless explicitly specified otherwise. Let p; be the
frequency of allele A;, and let f, be the frequency of the wildtype genotype a. Then the

mean fitness in the population is

W(t) = s(t)Z(t) = s(t) (faZo + (1 = fa) Z1) (M.2a)

where Z is the trait mean. Since W (Z,,t) = s(t)Z, is the marginal fitness of any mutant

allele, the selection dynamics at the ith locus can be expressed as
pi = pi(W(Z1,t) = W(t)) = s(t)pi(Z1 — Z(1)) - (M.2b)

Our redundancy assumption implies strong diminishing returns epistasis on the level of
fitness: the fitness of genotypes with multiple mutations is the same as the one of single
mutants. Eq shows that the epistatic effect of the genetic background on the
dynamics at a particular locus is mediated by the trait mean Z(t) as single compound
parameter. Allele frequencies at all loci change with the same (time and
frequency-dependent) rate. We readily establish that
% (ﬁ;) _ pipjp_?pjpi _o. (M.3)

Thus, the ratio of allele frequencies among loci does not change under selection. Note
that this holds for an arbitrary linkage map. We can conclude that any differences in
(relative) allele frequencies are due to mutation and drift.

We are interested in the pattern of allele frequency changes across loci during the
phase of rapid phenotypic adaptation. This phase starts with the onset of positive
selection on derived alleles at time ¢ = 0. It ends when mean fitness W (¢) approaches

its maximum s(¢)Z; and further selective change in the allele frequencies is strongly
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decelerated. Since (W (Z1,t) — W(t))/s(t) = (Z1 — Zo) f., We can parametrize this end
point by a condition f,(t) = f., on the frequency of the wildtype Z, in the population. In
our figures, we usually use f,, = 0.05. As initial state at time ¢ = 0, we assume that the
population adapts from a balance of mutation, selection, and drift. We thus allow for
standing genetic variation (SGV) at all loci. If selection prior to ¢ = 0 is constant (which
is what we generally assume in our computer simulations, see main text), SGV is given
by the standard equilibrium distribution under mutation, selection, and drift, where we
require that a, is the ancestral state at each locus. l.e., each allele frequency trajectory
p;(t), back in time, originates from the boundary p; = 0 rather than p; = 1 (see also [1]
for this concept). However, our analytical results do not require a static equilibrium and,
for a general s(t) < 0 for t < 0, the SGV reflects this non-equilibrium dynamics.

As described in the main text, we dissect the adaptive process into two phases.
During an initial stochastic phase mutation, selection, and drift lead to the build-up of
genetic variation, either from SGV or due to new mutation after time ¢t = 0, as long as
allele frequencies p; at all loci are still low. We will describe our approach to this phase
in detail in the section on Yule processes below. Once allele frequencies are sufficiently
large, genetic drift and recurrent new mutation play only a minor role relative to
selection until we reach the end of the rapid adaptive phase. We thus enter a

deterministic phase where the dynamics is then well approximated by Eq (M.2Db).

Relaxed redundancy

To relax the stringent redundancy condition of our model, it is natural to assume that a
single mutation is not sufficient to produce the full mutant phenotype Z; = 1, but only a
partial phenotype Z, = g with 0 < ¢ < 1. This makes the marginal fitness of mutant
alleles dependent on the genetic background. If genotypes with two or more mutations
produce Z;, we have

bi = (Wi(t) B W(t))pl _ s(t)pi <Z1 — Z(t) - (Z1 - Zq)f) (M.4)

i

where f; is the frequency of the haplotype with a single mutation at locus 4. Since f;/p;
depends on i (even in linkage equilibrium), the ratio of allele frequencies at different loci

is no longer invariant and the key symmetry assumption of the fully redundant
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model is violated. Note that redundancy is recovered for very low mutant frequencies,
such that double mutants are rare (f; ~ p;) and also late in the adaptation process,

when most haplotypes carry at least one mutation and f; — 0.

Diploids

We can generalize the redundant trait model to diploids as follows. For a general model,

the dynamical equations in continuous time read

pi = (Wi(t) = W(t))pi (M.5)

where W;(t) is the marginal fitness of allele A; and W (¢) the mean fitness. All fitnesses
may depend on the allele frequencies and on time. Using (M.3), we see that all mutant
alleles A; are redundant in the sense that they all feel the same selection pressure if
and only if their marginal fitnesses are equal at all times, W;(t) = W;(t), V ¢, 4. (The
same condition can also be derived from a discrete time dynamics.) For haploids, equal
marginal fitnesses, independently of the genetic composition of the population,
enforces the fully redundant trait model described above. For diploids with dominance,
the marginal fitness also depends on the allele frequency at the focal locus itself. An
obvious solution to the condition of equal marginal fitnesses across loci is the case of
complete dominance of the mutant allele. We can gain some more flexibility for the
fitness scheme, if we assume that genotype frequencies are at Hardy-Weinberg
equilibrium at all times. We can then distinguish three genotype classes: the wildtype
without any mutations (normalized fitness 0), mutant individuals with one or more
mutations on only a single haplotype (fitness s (¢)) and individuals with mutations on

both haplotypes (fithness s2(t)). The marginal fithess of any mutant allele then is

VV?(t) = Sl(t)fu + 52(t)(1 - fa) ) (MG)

where f, is the frequency of the ancestral haplotype without mutations. We thus require
redundancy of mutations (only) within haplotypes. Note, however, that this fithess
scheme implies a position effect, i.e., the fithess of the genotype does not only depend

on the number of mutations at each locus, but also on the association of mutations to
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one or the other haplotype. If we assume linkage equilibrium in addition to o

Hardy-Weinberg proportions, a position effect can be avoided if we use the following o

fitness scheme %
1. The ancestral genotype without any mutants has normalized fithess W (¢) = 0, o7
2. any genotype with at least one homozygous mutant has fitness W (t) = s5(t), %

3. a genotype without a locus that is homozygous for the mutant, but with k loci that

are heterozygous has fitness
W(t) = so(t) + 2% (sl(t) - sz(t)> .

Since 2' 7% is the probability for any focal mutant allele to be on the same 9

haplotype with all £ — 1 other mutant alleles, assuming linkage equilibrium, this 100

fitness scheme leads to the same marginal fitness as Eq above. 101
M.2 Yule approximation 102
We describe the dynamics of mutant types at the different loci during the stochastic 103

phase by a multi-type Yule pure birth process with immigration. Our framework builds 104

on established mathematical theory [2,[3] and a previous approach to describe the 105
genealogy of a beneficial allele during a selective sweep in terms of a Yule 106
process [4,5]. Here, we extend this approach to the polygenic scenario. 107

Consider a mutation A; that appears at some locus either prior to the environmental 1
change (standing genetic variation) or after the change. This mutation is relevant for the 1
joint distribution of mutant allele frequencies at the time of observation after the rapid 110
adaptive phase if and only if descendants of this mutation still segregate in the I
population at this time. The idea of the Yule approach is to construct the genealogies of 12
these mutant descendants at all loci forward in time. We start the process at some time 13
to < 0 in the past before the first mutation with surviving descendants has originated. 114
We assume that the frequency p; of mutant alleles is low during the entire stochastic 115
phase. Then, new mutations at locus i appear at rate ~ Nu; =: ©;/2 per generation, 116
but only a fraction of those will survive deleterious selection prior to ¢ = 0 and genetic 17

drift to establish in the population and to contribute to the adaptation of the trait. We 118
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denote this establishment probability as pest(t). If selection is constant and positive (as
assumed in the main text), s(t) = s, > 0, we can approximate pest =~ 2s,. For general
time-dependent selection, pest(t) will depend on s(#) with £ > ¢ [6], and also on the
mutations that were previously established at the same or at other loci. Crucially,
however, since the marginal fitness of mutant copies at all loci is the same at any given
time, pest(t) does not depend on the locus. We only include mutants into our Yule
process that successfully establish in the population, which are represented as
“immortal lineages” in the Yule tree. We follow these lineages in continuous time. There

are then two types of events:

1. First, new mutation creates new immortal lineages at rate

pmai(t) = S pesi(9) M.7)

independently at each locus. This event is called “immigration” in the
mathematical literature [2], but it corresponds to mutation in our model. (In a
model with gene flow, where adaptation in a local deme occurs from immigration,

new lines would be truly immigrants, see also [7] for this analogy).

. Second, existing immortal mutant alleles A; can give birth to further immortal

mutant copies, corresponding to a split of the immortal line in the Yule process. To
derive the split rate pspit, imagine that we implement the evolutionary dynamics as
a continuous-time Moran model, where individuals give birth (due to a binary split)
at constant rate one per generation. In the corresponding Yule process, we only
include this birth event if it leads to two immortal lineages. Obviously, the
probability to “be immortal” for a newborn individual is the same as for a new
mutation and given by pegt(t). Conditioning on the fact that we only consider splits
of immortal lineages and thus at least one of the offspring lineages must be

immortal, we arrive at a split rate per immortal lineage of

Pasi(t) C pest®)  pest(®)
P2a(®) + 2pesi () (1 — pest(t)) 2 —pest(t) 2 (M.8)

psplit(t) =

where the approximation in the last term assumes that pest(¢) < 1, which is

usually the case unless selection is very strong.
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The Yule process defines a continuous-time Markov process of a random variable
k = (k1,...,kr), where k; € Ny is the number of immortal mutant lineages at the ith
locus. We are interested in the relative proportions in the number of lineages &; across
loci after a sufficiently long time — assuming that the distribution of these proportions
reaches a limit by the end of the stochastic phase. We can generate this distribution
from the transition probabilities among Yule states (the embedded jump-chain of the
continuous-time process). If there are currently (k1,. .., k.) lineages at the L loci, the
probability that the next event is either a birth event (split) or a new mutation

(immigration) at locus i is

Pr[(kl,...,kL) — (kl,...,ki—f— 1,...,/6[,)}
k'ipsplit + Pmut,s k; + ©; (M.9)

Zf:l(kjpsplit + Pmut,j) ; Zle(kj +0,) '

Crucially, these transition probabilities are constant in time and independent of the
establishment probability pesi(¢). As a consequence, they are also independent of the
mutant fitness, which only affects the speed of the Yule process (via pest), but not its
sequence of events.

We start the process with no mutants and stop it whenever the number of mutants at
one of the loci (e.g. locus 1) reaches some number k; = n. We are interested in the
distribution of the number of mutants k; at the other loci at this time, respectively their
ratios k; /n (remember that we already know that these ratios stay invariant during the

deterministic phase of the adaptation process). We can prove the following

Theorem 1 In the limit of n — oo, the joint distribution of ratios x; = k;/n of immortal

mutant lineages across loci converges to the inverted Dirichlet distribution,

L L L
1 ;-1 —25=195
Pinpir[{7: }i>2|©] = Be] H ; (1 + Zx]) (M.10)
j=2 j=2
where the vector ® = (04, ...,0) summarizes the mutation rates and B[®] is the

multivariate Beta function, which can be expressed in terms of Gamma functions as

B[@] _ HiLzl F(@i) (|\/|.11)

D(3i, )
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Proof We proceed in three steps.

Step 1 Assume that we stop the process when the first locus reaches n > 0
lineages. We derive the probability that the process at this time is in state (n, ko, ..., k1)
as follows. We need n + k3 + - - - + k1, events (new mutations or splits) to generate all
mutant individuals. The last event must occur at the first locus. All other events can

occur in arbitrary order at the L loci. The probability of each realization (each order of

events at the loci) is given by the corresponding product of transition probabilities (M.9).

The key insight is that all realizations have the same probability. Indeed, the
denominator of does not depend on the locus where the next event occurs.
Different realizations then only correspond to permutations in the factors k; + ©; in the
numerator of the product of transition probabilities. We can directly write down the
probability for the state as

Pri{ki}i>2ln, ©] = . (M.12)

(“ N R kL) (O1)m [1=5(05) k)
(

n—1ky, ... kg O1+ 4+ OL) (nthotothr)

where

@(k) =0(0+1)...(0+k—-1)

is the Pochhammer function. The leading multinomial coefficient counts the number of
all permutations and the ratio of Pochhammer functions is the probability of each

realization.

Step 2 We can rewrite (M.12) as a Dirichlet-negative-multinomial compound

distribution, defined as

! Uin— 1tk 44k Loo\n
// ( —1k2; A L)Hyf"(l—Zyi) f{yi}i>21®)dys ... dyr,
0 0 n sy 2y e ey ML i—2 i—2
(M.13)

where

f{yi}i>2|©) = ﬁ Hylei,l(l 3 Zyi)@rl
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is the (L — 1)-dimensional Dirichlet distribution for a L-dimensional probability vector
(y1,...,yr) with constraint y; = 1 — Zizz y;. This is best shown in the reverse direction,

i.e., by deriving (M.12) from (M.13). To see this, note that

r L 1O 4k
dyQ ‘e dyL = (61 + n) HZZLQ ((—)’L + kl)
L(O©1+n+Y,,(0;+k))

O14+n—1

! - O;+k;—1
/ / Hyiri- i— (1,
0 0 =2 i

L
1=2
because the integrand in this expression is just a Dirichlet density with shifted values of
0; — ©; + k; and the right hand side is the corresponding normalization factor. Then

using

T(CL,0) TO +m)[[-,TO +k) () (),

[1L,0O)T(01 +n+ 1,0 +k))  (O1++OL)(nthytothr)

reduces to (M.12).

The compound distribution Eq can be interpreted as follows: If a random
experiment can have a finite number of outcomes (here: mutant lineages at one of L
loci), the negative multinomial distribution describes the probability to observe each of
these events k; times if we repeat the experiment until a focal event (here: new mutant
lineage at the first locus) has occurred n times. While the negative multinomial
distribution assumes that all outcomes occur with a fixed probability y;, this probability
is itself drawn from a Dirichlet distribution in the Dirichlet-negative-multinomial
compound distribution. In the present context, the main advantage of over

is that we can easily perform the limit n — oo in this form.

Step 3 For large n — oo, the values of k;/n, i > 2, of the negative multinomial

distribution can be replaced by their expectations,

B 1 R T
n 1 *Zj:g Yj 1+Zj=2 Ty

We can then transform the density from variables y; to the z; (representing
the relative mutant frequencies). The entries of the Jacobian matrix (for 2 <i,j < L)

are

January 30, 2019

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202


https://doi.org/10.1101/450759
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/450759; this version posted February 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC 4.0 International license.

3. — Ay i (1 + S an) —
ij = = .

Oz (1+ X py o)

Since this is the sum of an identity matrix (times a factor) and a matrix with identical

columns we can easily derive the eigenvalues and thus the determinant,

1
1+ S fpzn)E

Applying this transformation to (M.13), we obtain (M.10).

Det[J] =

Remarks

1. For two loci, the Dirichlet-negative-multinomial distribution (M.13) reduces to a

Beta-negative-binomial distribution

1
+k-1 r'e.+6oe _ _
Panslkin] = / (" )yk<1—y>n DO+ 92) oriy ot ay
0

k INGCIDIN(EDY

and the inverted Dirichlet distribution simplifies to a so-called 3-prime

distribution,
F(@l + 92) x@271

j-er-e:
I'(01)l(62) '

P[g/(l’) = (1 +x

(M.14)

If we measure the ratio = always relative to the locus with the higher frequency,

we obtain a conditioned distribution that is truncated at = = 1. For equal locus

mutation rates ©; = ©, = O, in particular,

9T (20),)

P [x|©)] = W

x@’*l(l + x)*z@’.

with expectation

20;) 2 F1[20;,1 + 0,24 ©;, —1]
(1+60)(I'(6r))? 7

E[x] :/0 xPg[x|©)]dx = 20(

where > F7 is the hypergeometric function.

2. The process described here is a variant of the Polya urn and Hoppe urn

(M.15)

(M.16)

processes that are well-known in the mathematical literature and have been used

to describe coalescent processes forward in time [2,(3].
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3. Our result (M.10) can also be seen as multi-locus version of Wright's formula for

the stationary distribution of the Wright-Fisher diffusion [8]. For L neutral alleles at
a singe locus, and if the mutation rates ©; depend only on the target allele
(house-of-cards condition), this is a Dirichlet distribution. Here, we see that an
analogous result holds for a distribution of equivalent (mutually redundant) alleles
across L loci. Although alleles at different loci cannot mutate into each other and
are never identical by descent, it turns out that the genealogy in both models can
be described by a Yule process with immigration. In contrast to the single-locus
case, we obtain an inverted Dirichlet distribution for multiple loci. This difference
results from a different stopping condition for the Yule process. For a single locus,
the population size sets an upper bound for the total number of copies across all
alleles. If we stop the process for a given total number ny; of lines, we obtain the
classical Dirichlet distribution in the limit ni; — oo. In contrast, the population size
defines a bound for mutants of a only single type in the multi-locus case, which is
reflected by our choice of the stopping condition. This choice is appropriate

unless all loci are tightly linked, as we will see below.

. In our model, we did not distinguish different mutational origins of mutant alleles

at the same locus. It is, in principle, possible to do so. For any single locus, the
process conditioned on reaching some number of mutants k; at this locus i is
entirely independent of the process at the other loci. The joint distribution of
different mutational origins at this locus is therefore given by the Ewens sampling

formula, as described in the theory of soft selective sweeps ( [7},9]).

M.3 Allele frequency distributions

Eq predicts the distribution of allele frequency ratios z; at the end of the
stochastic phase of the adaptive process. Typically, the Yule process will approach
convergence for n 2 100. In a large population, this still corresponds to a small allele
frequency. However, since the allele frequency ratios remain constant also during the
deterministic phase, we can use the Yule process result to derive the distribution of
mutant allele frequencies also at a later stage, when (partial or complete) phenotypic

adaptation has been achieved. As above, we characterize the time of observation via
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the frequency of the ancestral phenotypes f,, that is still found in the population. We

treat the case of full adaptation, f,, = 0, before we turn to the case of a general f,,.

Complete phenotypic adaptation, f, =0

If selection is very strong, complete fixation of the mutant phenotype may be rapidly
achieved. For any non-zero level of recombination among loci, f,, = 0 requires, in our
model, that there is (at least) a single locus where the mutant allele has reached
fixation. In the following, we will call the locus with the largest mutant frequency the
major locus and all other loci minor loci. We are interested in the joint distribution of
allele frequencies when the major locus has reached fixation. From (M.10), we can

derive the probability that the first locus ends up being the major locus as

1 1
ng) = / .. / PinDir[{xi}i22|®] dafg . d]}L . (M1 7)
0 0

Since allele frequencies p; equal allele frequency ratios x; relative to the major locus in
this case, the joint distribution at all minor loci, {p;}:>2, 0 < p; < 1, conditioned on
fixation of the mutant allele at the first locus, follows as Pinpir[{p; }i>2|®]/P1>[®]. The
joint allele frequency distribution for all loci at f,, = 0 results as product of a Dirac point
measure at the major locus and truncated inverted Dirichlet densities at the minor loci.

Summing over all possible loci as major locus we obtain

[Ie 1+ m) ]Llej), (M.18)

ik i#k

Pol{pi}i>11©] = Z <(SB§}E(:33

k=1

where the Dirac § constrains the distribution to the boundary faces p, = 1 of the
L-dimensional hypercube [0, 1]* of allele frequencies.
Note that this formula is independent of linkage patterns as long as loci can

recombine at all and are not completely linked (see below for this case).

Incomplete phenotypic adaptation, f,, > 0, linkage equilibrium

While the distribution of allele frequency ratios xz;, Eq (M.10), holds for any time of
observation during the adaptive process (once the Yule process has reached

convergence), the corresponding distribution for the absolute allele frequencies
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p; holds only for complete phenotypic adaptation, f,, = 0. To derive this distribution for

arbitrary f,, > 0, we need to translate the stopping condition for the ancestral

phenotype to a condition on the p,. For f,, = 0, this just leads to the condition p;, = 1 for

the major locus, constraining the distribution to the boundary faces of the allele

frequency hypercube. Importantly, this constraint is independent of linkage. For f,, > 0,

in contrast, any constraint on the distribution of the p; due to the stopping condition will

necessarily also depend on the linkage disequilibria. For further analytical progress we

now assume that recombination is sufficiently strong that linkage disequilibria can be

ignored. We then obtain

L
H(l _pj) = fw

(M.19)

and the joint allele frequency distribution is given by the following Theorem, which is our

main analytical result.

Theorem 2 If the adaptive process is stopped at a frequency f,, of the ancestral

phenotype in the population, and assuming linkage equilibrium among loci, the joint

distribution of mutant frequencies on the L-dimensional hypercube is

oL L L -k e,
Hj:1(1fpj)*fw Q,— J
Pr,[{pi}i>11©] = WHP? 1(ij> (
i=1 j=1

L

>

j=1

prj
1,pj

) . (M.20)

where the §-function restricts the support of Py, [{p; }:>1|©] to the (L — 1)-dimensional

submanifold [T7_; (1 — p;) = fu-

Proof We can rewrite (M.19) as condition on the frequency p; at the first locus,

fuw

=1 =
szz(l - ;)

(M.21)

to obtain the transformation from frequency ratios x; to absolute allele frequencies p;,

12> 2,

L
g Pi_ pi [1;25(1 = p))

Pt T, =p) = fu

The corresponding Jacobian matrix reads (2 < i,j < L)

(M.22)
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5 omi  p; Fu Ty (1 = p1) ey T (1 —px)
i = — ,J ’
i 1=pi (i@ =) — fu)? " Tlha(l = k) = fun
_bi L-m + 5i’j

L—p; p? P
Thus
~ 1-— 1
J=-—"Pq+ -1,
P1 1
where I is the identity matrix and Q, ; = p;/(1 — p;). Since Q has the eigenvalue 291

>_;pj/(1—p;)anda (L — 2)-fold eigenvalue 0, we obtain the spectrum of Jandthus 2

the determinant 203

L
Det[J] = p}—L< m>. (M.23)
i=1 f)

From (M.10), we then obtain the joint distribution of locus frequencies p,, ..., p., at the

stopping condition (M.27) as
Det[J] <Pi)6i1< a Pj)zfl@j
fu[{Piti>2|©] B@] g s ;pl
L —k L
1 @._1( ) ! 19 < pj 1_171 )
— O; . M.24

where the dependence on f,, is implicit in p; = p1(fw), as given in (M.21). The joint 2

distribution over all L loci follows as 205

Pr, [{Pi}iz1|®©] = 6, 141,/ 11%,(1-p;) Pro[{Pi}i>2[©]. (M.25)

Note that we do not assume that the first locus is the major locus in (M.25). Finally,

the symmetrical form results from the relation

Og
Suimyy = — e ) =
g(z)—c |g/(x)‘$c‘ ) g(x) c

for the Dirac é-function. 296
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Remarks 207

1. To obtain marginal distributions for single loci we generally need to perform a 208
(L — 2)-dimensional integral (after resolving the ¢-function). Details for specific 299
cases used in the main part of the article are provided in the Mathematica 300
notebook. For two loci, simple explicit formulas for marginal distributions can be o

derived. E.g., the marginal distribution at the first locus reads a0

L—p1— fu)? 7 (1 —p)™ (1 =2
Py [p1]01,0,] = P 1= Ju) 27 (1 —p1) (1_f< p1>>

B[©1,0] (1 —P% — fu)®1 102 (1—-p1)?
(M.26)
for 0 < p; < fi,. The distribution has singularities at p; = 0 for ©; < 1 and at 303
p1 =1 — f, for ©5 < 1. The distributions P;; [p|©1, ©2] at the major locus and 304

P;. [p|©1, ©2] at the minor locus (which can either be locus 1 or locus 2) follow as s

Pfiw [p|©1, 03] = (Py, [p|O1, O2] + Py, [p|O2, ©1]) Hy 1y (M.27)
where H(x) is the Heaviside function with H, = 1 for x > 0 and H, = 0 else. 306

Finally, the conditioned distributions P}f [p1]©1, ©2] at the first locus if this locus is a7

the major/minor locus are 308

Pt [p11©1, ©2]
P}j[p1|@1,@2] = Wle,prm, (M.283)
1>

P, [P1©1, ©2]

1<
wa [p1]©1,0:] = _ P(@l.@2) —(p1—=14+VFw) ?
1>

(M.28D)
where P{21°°?)_ defined in Eq (M.17), evaluates to a Hypergeometric function for s
general ©; # O, but reduces to 1/2 for ©; = O-. 310

2. The marginal distribution for p, has a singularity at p, = 0for ©, < 1and a
singularity at p, = 1 — f,, for Zf# ©; < 1. To see this, consider the marginal
distribution of py,, which is obtained from Eq. after integartion over
p1,-..,pr—1. Dropping non-singular terms (such as the sums in Eq[M.24), and
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defini
ining 5

Hj:k+l(]- = pj) = fu
T (1 —py)

qr =

the singlular part can be written as

1 1 1 L
0,—
wa [pL|®] ~ / / .. / 6p17q1 le 1dp1 . dpL,1
o Jo 0 by
qL-1 fqL-2 @ oo L o 1
:/ / / qt Hpi' dps...dpr-1,
0 0 0 e

after performing the p, integral. The upper integral limits ¢ account for the

constraint ¢; > 0. Substituting

- D2 -
Do 1= - = dps = q2dp2
2

and using that ¢; = ¢2(1 — p2)/(1 — pg2) We obtain

e “ 621 024021 ! 0,-1
Pf,w[pL|®]N/ / / 0y g2 ps2 T [ [ oY dpadps - dpr—a
0 o Jo =3

qr-1 q3 0,4+6,—1 1 1 7132 0;—-1 on_1 L o 1
= q ! 2= / <~) ﬁ 2= dﬁQ yon i dpg...dpL_l.
/0 /0 2 o \1—D2q ? H !

=3

Since the p, integral is bounded by 1/0, from below and by 1/6, 4+ 1/0; from
above for all 0 < ¢, < 1, it does not contribute to a singularity in Py, [pr.|®]. For

the singular part, we thus have

e ® 61+0,-1 = 0,-1
wa[pL|®]~/ / s 1402 sz‘ Tidps...dpp_1.
0 0 i=3

Iterating the substitution procedure for variables p; to pr_1, we arrive at

EL—I@ 1 1 f PI Zf;11 ©;—-1
o i—1 o, — Jw — o, —
P, [prl®] ~ g7 7 T = (1—pr> Pt

demonstrating the singular behavior for p;, — 0 and for p;, — 1 — f,,. Since the

labeling of loci is arbitrary, the assertion follows for all loci.
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Incomplete phenotypic adaptation, f,, > 0, tight linkage

Even if all loci are completely linked, the joint distribution of allele frequency ratios is still
given by (M.10). However, the transformation to absolute allele frequencies at the
stopping condition f,, # 0 depends on linkage. Because all mutant alleles are rare
during the stochastic phase, we can ignore haplotypes with more than a single mutant
during this time. Since we ignore new mutations during the deterministic phase, mutant
alleles stay in maximal linkage disequilibrium in the absence of recombination. We thus

have

L
Di Di
ij =1l—fu = z= = k
j=1 N
with corresponding Jacobian

i i + 044 1—fu
O _ pitdigp1 Det[J]:iLf.

J.: =
Y Ip; n 1

Using this transformation on (M.10), the joint distribution of mutant frequencies reads

Ot m-tsu 17 P \7
g — =1 PiT T w ! . M.2
Pt 1[{pi}i>1|©] B[O](1 — fu, )L 1 P (1 _ fw> (M.29)
Evidently, this is just the Dirichlet distribution on the cube [0,1 — f,,]£. This is expected
since the problem reduces to a single-locus, L-alleles problem for tight linkage. The
marginal distributions can be derived for an arbitrary number of loci and are given by

transformed S-distributions,

_ -1 Or—1 (Z}i k@j)—l
Py, alpile] = B[fg]) (1f’kfw> (1 1fkfw) ’ ., (M.30)

with singularities at the boundaries p, = 0for ©; < 1and atp, =1 — f, for
Z#k 0; < 1 as in the linkage equilibrium case. For two tightly linked loci, the major
locus must have frequency p > (1 — f.,)/2. The distribution at the major/minor locus

therefore reads
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P/ ulpl©1,02] = (P, [p|©1,02] + Py, 4[plO2,01]) He(p(1-1.2) (M.31)

and conditioned distributions follow as in (M.28).
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