

Polygenic adaptation: From sweeps to subtle frequency shifts

Ilse Höllinger^{1,2}, Pleuni S Pennings³, Joachim Hermisson^{1,2},

1 Mathematics and BioSciences Group, Faculty of Mathematics and Max F. Perutz Laboratories, University of Vienna, Vienna, Austria

2 Vienna Graduate School of Population Genetics, Vienna, Austria

3 Department of Biology, San Francisco State University, California, USA

✉ Mathematics and BioSciences Group, Faculty of Mathematics, University of Vienna, Oskar Morgenstern Platz 1, 1090 Vienna, Austria

* joachim.hermisson@univie.ac.at

* ilse.hoellinger@gmail.com

pennings@sfsu.edu

1 Abstract

Evolutionary theory has produced two conflicting paradigms for the adaptation of a polygenic trait. While population genetics views adaptation as a sequence of selective sweeps at single loci underlying the trait, quantitative genetics posits a collective response, where phenotypic adaptation results from subtle allele frequency shifts at many loci. Yet, a synthesis of these views is largely missing and the population genetic factors that favor each scenario are not well understood. Here, we study the architecture of adaptation of a binary polygenic trait (such as resistance) with negative epistasis among the loci of its basis. The genetic structure of this trait allows for a full range of potential architectures of adaptation, ranging from sweeps to small frequency shifts. By combining computer simulations and a newly devised analytical framework based on Yule branching processes, we gain a detailed understanding of the adaptation dynamics for this trait. Our key analytical result is an expression for the joint distribution of mutant alleles at the end of the adaptive phase. This distribution characterizes the

polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation has been accomplished. We find that a single compound parameter, the population-scaled background mutation rate Θ_{bg} , explains the main differences among these patterns. For a focal locus, Θ_{bg} measures the mutation rate at all redundant loci in its genetic background that offer alternative ways for adaptation. For adaptation starting from mutation-selection-drift balance, we observe different patterns in three parameter regions. Adaptation proceeds by sweeps for small $\Theta_{bg} \lesssim 0.1$, while small polygenic allele frequency shifts require large $\Theta_{bg} \gtrsim 100$. In the large intermediate regime, we observe a heterogeneous pattern of partial sweeps at several interacting loci.

2 Author summary

It is still an open question how complex traits adapt to new selection pressures. While population genetics champions the search for selective sweeps, quantitative genetics proclaims adaptation via small concerted frequency shifts. To date the empirical evidence of clear sweep signals is more scarce than expected, while subtle shifts remain notoriously hard to detect. In the current study we develop a theoretical framework to predict the expected adaptive architecture of a simple polygenic trait, depending on parameters such as mutation rate, effective population size, size of the trait basis, and the available genetic variability at the onset of selection. For a population in mutation-selection-drift balance we find that adaptation proceeds via complete or partial sweeps for a large set of parameter values. We predict adaptation by small frequency shifts for two main cases. First, for traits with a large mutational target size and high levels of genetic redundancy among loci, and second if the starting frequencies of mutant alleles are more homogeneous than expected in mutation-selection-drift equilibrium, e.g. due to population structure or balancing selection.

3 Introduction

Rapid phenotypic adaptation of organisms to all kinds of novel environments is ubiquitous and has been described and studied for decades [1, 2]. However, while the

macroscopic changes of phenotypic traits are frequently evident, their genetic and
19
genomic underpinnings are much more difficult to resolve. Two independent research
20
traditions, molecular population genetics and quantitative genetics, have coined two
21
opposite views of the adaptive process on the molecular level: adaptation either by
22
selective sweeps or by subtle allele frequency shifts (*sweeps* or *shifts* from here on).
23

On the one hand, population genetics works bottom-up from the dynamics at single
24
loci, without much focus on the phenotype. The implicit assumption of the sweep
25
scenario is that selection on the trait results in sustained directional selection also on
26
the level of single underlying loci. Consequently, we can observe phenotypic adaptation
27
at the genotypic level, where selection drives allele frequencies at one or several loci
28
from low values to high values. Large allele frequency changes are the hallmark of the
29
sweep scenario. If these frequency changes occur in a short time interval, conspicuous
30
diversity patterns in linked genomic regions emerge: the footprints of hard or soft
31
selective sweeps [3–6].
32

On the other hand, quantitative genetics envisions phenotypic adaptation top-down,
33
from the vantage point of the trait. At the genetic level, it is perceived as a collective
34
phenomenon that cannot easily be broken down to the contribution of single loci.
35
Indeed, adaptation of a highly polygenic trait can result in a myriad of ways through
36
“infinitesimally” small, correlated changes at the interacting loci of its basis (e.g. [1, 7, 8]).
37
Conceptually, this view rests on the infinitesimal model by Fisher (1918) [9] and its
38
extensions (e.g. [10]). Until a decade ago, the available moderate sample sizes for
39
polymorphism data had strongly limited the statistical detectability of small frequency
40
shifts. Therefore, the detection of sweeps with clear footprints was the major objective
41
for many years. Since recently, however, huge sample sizes (primarily of human data)
42
enable powerful genome-wide association studies (GWAS) to resolve the genomic
43
basis of polygenic traits. Consequently, following conceptual work by Pritchard and
44
coworkers [7, 11], there has been a shift in focus to the detection of polygenic
45
adaptation from subtle genomic signals (e.g. [12–14], reviewed in [15]). Very recently,
46
however, some of the most prominent findings of polygenic adaptation in human height
47
have been challenged [16, 17]. As it turned out, the methods are highly sensitive to
48
confounding effects in GWAS data due to population stratification.
49

While discussion of the empirical evidence is ongoing, the key objective for
50

theoretical population genetics is to clarify the conditions (mutation rates, selection pressures, genetic architecture) under which each adaptive scenario, sweeps, shifts – or any intermediate type – should be expected in the first place. Yet, the number of models in the literature that allow for a comparison of alternative adaptive scenarios at all is surprisingly limited (see also [18]). Indeed, quantitative genetic studies based on the infinitesimal model or on summaries (moments, cumulants) of the breeding values do not resolve allele frequency changes at individual loci (e.g. [19–22]). In contrast, sweep models with a single locus under selection in the tradition of Maynard Smith and Haigh [3], or models based on adaptive walks or the adaptive dynamics framework (e.g. [23–25]) only allow for adaptive substitutions or sweeps. A notable exception is the pioneering study by Chevin and Hospital [26]. Following Lande [27], these authors model adaptation at a single major quantitative trait locus (QTL) that interacts with an “infinitesimal background” of minor loci, which evolves with fixed genetic variance. Subsequent models [28, 29] trace the allele frequency change at a single QTL in models with 2–8 loci. Still, these articles do not discuss polygenic adaptation patterns. Most recently, Jain and Stephan [30, 31] studied the adaptive process for a quantitative trait under stabilizing selection with explicit genetic basis. Their analytical approach allows for a detailed view of allele frequency changes at all loci without constraining the genetic variance. However, the model is deterministic and thus ignores the effects of genetic drift. Below, we study a polygenic trait that can adapt via sweeps or shifts under the action of all evolutionary forces in a panmictic population (mutation, selection, recombination and drift). Our model allows for comprehensive analytical treatment, leading to a multi-locus, non-equilibrium extension of Wright’s formula [32] for the joint distribution of allele frequencies at the end of the adaptive phase. This way, we obtain predictions concerning the adaptive architecture of polygenic traits and the population genetic variables that delimit the corresponding modes of adaptation.

The article is organized as follows. The Model section motivates our modeling decisions and describes the simulation method. We also give a brief intuitive account of our analytical approach. In the Results part, we describe our findings for a haploid trait with linkage equilibrium among loci. All our main conclusions in the Discussion part are based on the results displayed here. Further model extensions and complications (diploids, linkage, and alternative starting conditions) are relegated to appendices.

Finally, we describe our analytical approach and derive all results in a comprehensive Mathematical Appendix. For the ease of reading, we have tried to keep both the main text and the Mathematical Appendix independent and largely self-contained.

4 Model

In the current study, we aim for a “minimal model” of a trait that allows us to clarify which evolutionary forces favor sweeps over shifts and vice versa (as well as any intermediate patterns). For shifts, alleles need to be able to hamper the rise of alleles at other loci via negative epistasis for fitness, e.g. diminishing returns epistasis. Indeed, otherwise one would only observe parallel sweeps. Negative fitness epistasis is frequently found in empirical studies (e.g. [33]) and implicit to the Gaussian selection scheme used by (e.g. [26, 30, 31]). More fundamentally, diminishing returns are a consequence of partial or complete redundancy of genetic effects across loci or gene pathways. Adaptive phenotypes (such as pathogen resistance or a beneficial body coloration) can often be produced in many alternative ways, such that redundancy is a common characteristic of beneficial mutations.

As our basic model, we focus on a haploid population and study adaptation for a polygenic, binary trait with full redundancy of effects at all loci. We assume a non-additive genotype-phenotype map where any single mutation switches the phenotype from its ancestral state (e.g. “non-resistant”) to the adaptive state (“resistant”). Further mutations have no additional effect. On the population level, adaptation can be produced by a single locus where the beneficial allele sweeps to fixation, or by small frequency shifts of alleles at many different loci in different individuals – or any intermediate pattern. The symmetry among loci (no build-in advantage of any particular locus) and complete redundancy of locus effects provides us with a trait architecture that is favorable for collective adaptation via small shifts – and with a modeling framework that allows for analytical treatment. The same model has been used in a preliminary simulation study [6]. In the context of parallel adaptation in a spatially structured population, analogous model assumptions with redundant loci have been used [34–36]. In a second step, we extend our basic model to relax the redundancy condition, as described below.

4.1 Basic model

Consider a panmictic population of N_e haploids, with a binary trait Z (with phenotypic states Z_0 “non-resistant” and Z_1 “resistant”, see Fig 1). The trait is governed by a polygenic basis of L bi-allelic loci with arbitrary linkage (we treat the case of linkage equilibrium in the main text and analyze the effects of linkage in Appendix A.1). Only the genotype with the ancestral alleles at all loci produces phenotype Z_0 , all other genotypes produce Z_1 , irrespective of the number of mutations they carry. Loci mutate at rate μ_i , $1 \leq i \leq L$, per generation (population mutation rate at the i th locus: $2N_e\mu_i = \Theta_i$) from the ancestral to the derived allele. We ignore back mutation. The mutant phenotype Z_1 is deleterious before time $t = 0$, when the population experiences a sudden change in the environment (e.g. arrival of a pathogen). Z_1 is beneficial for time $t > 0$. The Malthusian (logarithmic) fitness function of an individual with phenotype Z reads

$$W(Z) = \begin{cases} s_d Z & \text{for } t < 0 \\ s_b Z & \text{for } t \geq 0. \end{cases} \quad (1)$$

Without loss of generality, we can assume $Z_0 = 0$ and $Z_1 = 1$. We then have $W(Z_0) = 0$. Furthermore, $W(Z_1) = s_d < 0$, respectively $W(Z_1) = s_b > 0$, measure the strength of directional selection on Z (e.g. cost and benefit of resistance) before and after the environmental change. For the basic model, we assume that the population is in mutation-selection-drift equilibrium at time $t = 0$.

4.2 Model extensions

We extend the basic model in several directions. This includes linkage (Appendix A.1), alternative starting conditions at time $t = 0$ (Appendix A.2), diploids (Appendix A.3), and arbitrary time-dependent selection $s(t)$ (Mathematical Appendix M.1). Here, we describe how we relax the assumption of complete redundancy of all loci. Diminishing returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics, will frequently not lead to complete adaptation in a single step, but may require multiple steps before the trait optimum is approached. In a model of incomplete redundancy, we thus assume that a first beneficial mutation only leads to partial adaptation. We thus have three states of

the trait, the ancestral state for the genotype without mutations, $Z_0 = 0$ (non-resistant),
140
a phenotype $Z_\delta = \delta$ (partially resistant) for genotypes with a single mutation, and the
141
mutant state $Z_1 = 1$ (fully resistant) for all genotypes with at least two mutations, see
142
Fig 1(b). For diminishing returns epistasis, we require $\frac{1}{2} \leq \delta < 1$. The fitness function is
143
as in Eq (1). A model with asymmetries in the single-locus effects is discussed in
144
Appendix A.4.
145

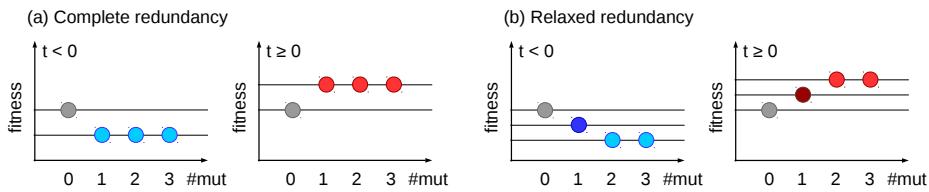


Fig 1. Fitness schemes. The fitness of individuals carrying 0, 1, 2, 3 . . . mutations (y-axis) are given for the complete redundancy (a) and relaxed redundancy (b) model, respectively. Grey balls show the fitness of ancestral wildtype individuals (without mutations). Colored balls represent individuals carrying at least one mutation, for time points $t < 0$ before the environmental change in blue and for $t \geq 0$ in red.

4.3 Simulation model

For the models described above, we use Wright-Fisher simulations for a haploid,
146
panmictic population of size N_e , assuming linkage equilibrium between all L loci in
147
discrete time. Selection and drift are implemented by independent weighted sampling
148
based on the marginal fitnesses of the ancestral and mutant alleles at each locus. Due
149
to linkage equilibrium, the marginal fitnesses only depend on the allele frequencies and
150
not genotypes. Ancestral alleles mutate with probability μ_i per generation at locus i .
151
We start our simulations with a population that is monomorphic for the ancestral allele
152
at all loci. The population evolves for $8N_e$ generations under mutation and deleterious
153
selection to reach (approximate) mutation-selection-drift equilibrium. Following [6, 37],
154
we condition on adaptation from the ancestral state and discard all runs where the
155
deleterious mutant allele (at any locus) reaches fixation during this time. (We do not
156
show results for cases with very high mutation rates and weak deleterious selection
157
when most runs are discarded). At the time of environmental change, selection
158
when most runs are discarded). At the time of environmental change, selection
159

switches from negative to positive and simulation runs are continued until a prescribed 160
stopping condition is reached. 161

We are interested in the genetic architecture of adaptation – the joint distribution of 162
mutant frequencies across all loci – at the end of the rapid adaptive phase. 163

Following [31], we define this phase as “the time until the phenotypic mean reaches a 164
value close to the new optimum”. Specifically, we stop simulations when the mean 165
fitness \bar{W} in the population has increased up to a proportion f_w of the maximal 166
attainable increase from the ancestral to the derived state, 167

$$\frac{W(Z_1) - \bar{W}}{W(Z_1) - W(Z_0)} = f_w. \quad (2)$$

For the basic model with complete redundancy, this simply corresponds to a residual 168
proportion f_w of individuals with ancestral phenotype in the population. Extensions of 169
the simulation scheme to include linkage or diploid individuals are described in 170
Appendices A.1 and A.3. 171

Parameter choices: Unless explicitly stated otherwise, we simulate $N_e = 10\,000$ 172
individuals, with beneficial selection coefficients $s_b = 0.1$ and 0.01 , combined with 173
deleterious selection coefficients $s_d = -0.1$ and $s_d = -0.001$ for low and high levels of 174
SGV, respectively. (The corresponding Wrightian fitness values used as sampling 175
weights in discrete time are $1 + s_b$ and $1 + s_d$.) We investigate $L = 2$ to 100 loci. We 176
usually (except in Appendix A.4) assume equal mutation rates at all loci, $\mu_i = \mu$ and 177
define $\Theta_l = 2N_e\mu$ as the locus mutation parameter. Mutation rates are chosen such 178
that $\Theta_{bg} := 2N_e\mu(L - 1)$ (the background mutation rate, formally defined below in 179
Eq (10)) takes values from 0.01 to 100 . We typically simulate $10\,000$ replicates per 180
mutation rate and stop simulations when the population has reached the new fitness 181
optimum up to $f_w = 0.05$. In the model with complete redundancy, we thus stop 182
simulations when the frequency of individuals with mutant phenotype Z_1 has increased 183
to 95%. Different stopping conditions are explored in Appendix A.7. 184

4.4 Analytical analysis

We partition the adaptive process into two phases (see Fig 2 for illustration). An initial 186
stochastic phase, governed by selection, drift, and mutation describes the origin and 187

establishment of mutant alleles at all loci. We call mutants "established" if they are not lost again due to genetic drift. The subsequent *deterministic phase* governs the further evolution of established alleles until the stopping condition is reached as described above. While mutation and drift can be ignored during the deterministic phase, interaction effects due to epistasis and linkage become important (in our model, they enter, in particular, through the stopping condition). We give a brief overview of our analytical approach below. A detailed account with the derivation of all results is provided in the Mathematical Appendix.

During the *stochastic phase*, we model the origin and spread of mutant copies as a so-called *Yule pure birth process* following [38] and [39]. The idea of this approach is that we only need to keep track of mutations that found "immortal lineages", i.e. derived alleles that still have surviving offspring at the time of observation (see Fig 2 for the case of $L = 2$ loci). Forward in time, new immortal lineages can be created by two types of events: new mutations at all loci start new lineages, while birth events lead to splits of existing lineages into two immortal lineages. For $t > 0$ (after the environmental change), in particular, new mutations at the i th locus arise at rate $N_e\mu_i$ per generation and are destined to become established in the population with probability $\approx 2s_b$. Similarly, birth of new immortal lineages due to split events in the Yule process occur at rate s_b (because the selection coefficient measures the excess of births over deaths in the underlying population). For the origin of new immortal lineages in the Yule process and their subsequent splitting we thus obtain the rates

$$p_{\text{mut},i} \approx N_e\mu_i \cdot 2s_b = \Theta_i s_b \quad ; \quad p_{\text{split}} \approx s_b. \quad (3)$$

Extended results including standing genetic variation and time-dependent fitness are given in the Appendix. Assume now that there are currently $\{k_1, \dots, k_L\}$, $0 \leq k_j \ll N_e$ mutant lineages at the L loci. The probability that the next event (which can be a split or a mutation) occurs at locus i is

$$\frac{k_i \cdot p_{\text{split}} + p_{\text{mut},i}}{\sum_{j=1}^L (k_j \cdot p_{\text{split}} + p_{\text{mut},j})} = \frac{k_i + \Theta_i}{\sum_{j=1}^L (k_j + \Theta_j)}. \quad (4)$$

Importantly, all these transition probabilities among states of the Yule process are

constant in time and independent of the mutant fitness s_b , which cancels in the ratio of
214 the rates. As the number of lineages at all loci increases, their joint distribution (across
215 replicate realizations of the Yule process) approaches a limit. In particular, as shown in
216 the Appendix, the joint distribution of frequency ratios $x_i := k_i/k_1$ in the limit $k_1 \rightarrow \infty$ is
217 given by an *inverted Dirichlet distribution*
218

$$P_{\text{inDir}}[\mathbf{x}|\Theta] = \frac{1}{B[\Theta]} \prod_{j=2}^L x_j^{\Theta_j-1} \left(1 + \sum_{i=2}^L x_i\right)^{-\sum_{i=1}^L \Theta_i} \quad (5)$$

where $\mathbf{x} = (x_2, \dots, x_L)$ and $\Theta = (\Theta_1, \dots, \Theta_L)$ are vectors of frequency ratios and locus
219 mutation rates, respectively, and where $B[\Theta] = \frac{\prod_{j=1}^L \Gamma(\Theta_j)}{\sum_{j=1}^L \Gamma(\Theta_j)}$ is the generalized Beta
220 function and $\Gamma(z)$ is the Gamma function. Note that Eq (5) depends only on the locus
221 mutation rates, but not on selection strength.
222

After the initial stochastic phase, the dynamics of established mutant lineages that
223 have evaded stochastic loss can be adequately described by deterministic selection
224 equations. For allele frequencies p_i at locus i , assuming linkage equilibrium, we obtain
225 (consult the Mathematical Appendix M.1, Eq (M.2a), for detailed derivations)
226

$$\dot{p}_i = p_i(W(Z_1) - \bar{W}) = s_b p_i(Z_1 - \bar{Z}), \quad (6)$$

where \bar{W} and \bar{Z} are population mean fitness and mean trait value. For the mutant
227 frequency ratios $x_i = p_i/p_1$, we obtain
228

$$\dot{x}_i = \frac{d}{dt} \left(\frac{p_i}{p_1} \right) = \frac{\dot{p}_i p_1 - p_i \dot{p}_1}{p_1^2} = 0. \quad (7)$$

We thus conclude that the frequency ratios x_i do not change during the deterministic
229 phase. In particular, this means that Eq (5) still holds at our time of observation at the
230 end of the rapid adaptive phase. This is even true with linked loci. Finally, derivation of
231 the joint distribution of mutant frequencies p_i (instead of frequency ratios x_i) at the time
232 of observation requires a transformation of the density. In general, this transformation
233 depends on the stopping condition f_w and on other factors such as linkage. Assuming
234 linkage equilibrium among all selected loci, we obtain (see the Mathematical Appendix,
235

Theorem 2, Eq (M.20))

236

$$P_{f_w}[\mathbf{p}|\Theta] = \frac{\delta_{\prod_{j=1}^L (1-p_j) - f_w}}{B[\Theta]} \prod_{j=1}^L p_j^{\Theta_j - 1} \left(\sum_{i=1}^L p_i \right)^{-\sum_{i=1}^L \Theta_i} \left(\sum_{j=1}^L \frac{f_w p_j}{1-p_j} \right) \quad (8)$$

for $\mathbf{p} = (p_1, \dots, p_L)$ in the L -dimensional hypercube of allele frequencies. The delta function δ_X restricts the distribution to the $L - 1$ dimensional manifold defined via the stopping condition $f_w = \prod_{j=1}^L (1 - p_j)$. Further expressions, also including linkage, are given in the Mathematical Appendix and in Appendix A.1. In general, the joint distribution corresponds to a family of generalized Dirichlet distributions.

237
238
239
240
241

We assess the adaptive architecture not as a function of time, but as a function of progress in phenotypic adaptation, measured by f_w , Eq (2). Hence, f_w rather than time t plays the role of a dynamical variable in the joint distribution, see Eq (8). In the special case $f_w \rightarrow 0$ (i.e. complete adaptation, enforcing fixation at at least one locus), this distribution is restricted to a boundary face of the allele frequency hypercube and Eq (8) reduces to the inverted Dirichlet distribution given above in Eq (5). In the Results section below, we assess our analytical approximations for the joint distributions of adaptive alleles, Eq (5) and Eq (8), and discuss their implications in the context of scenarios of polygenic adaptation, ranging from sweeps to small frequency shifts.

242
243
244
245
246
247
248
249
250

L	size of polygenic basis (no. of loci)
s_d, s_b	selection coefficient before/after the environment changes
$p_i := \frac{k_i}{N}$	mutant allele frequency at locus i
$x_i := \frac{k_i}{k_1} = \frac{p_i}{p_1}$	mutant allele frequency ratio: locus i / locus 1
f_w	frequency of ancestral phenotype
μ_i	allelic mutation rate at locus i
$\Theta_i = 2N_e \mu_i$	haploid population mutation rate at locus i
$\Theta = \{\Theta_1, \dots, \Theta_L\}$	vector of all locus population mutation rates
Θ_l	locus pop. mut. rate, for model with equal mutation rates
Θ_{bg}	background mutation rate, Eq (10)
$B[\Theta] = \frac{\prod_{i \geq 1} \Gamma(\Theta_i)}{\sum_{i \geq 1} \Gamma(\Theta_i)}$	Beta function, where $\Gamma(\Theta_i)$ is the Gamma function

Table 1. Glossary

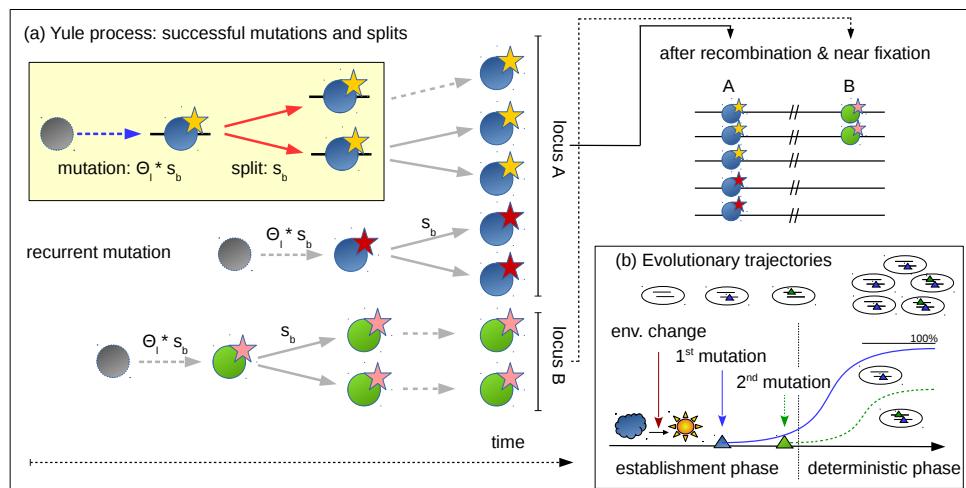


Fig 2. Phases of polygenic adaptation. The adaptive process is partitioned into two phases. The initial, stochastic phase describes the establishment of mutant alleles. Ignoring epistasis during this phase, it can be described by a *Yule* process (panel a), with two types of events (yellow box). Either a new mutation occurs and establishes with rate $\Theta_l \cdot s_b$ or an existing mutant line splits into two daughter lines at rate s_b . Mutations and splits can occur in parallel at all loci of the polygenic basis, (here 2 loci, shown in green and blue). Yellow and red stars at the blue locus indicate establishment of two redundant mutations at this locus. When mutants have grown to higher frequencies, the adaptive process enters its second, deterministic phase, where drift can be ignored (panel b). During the deterministic phase, the trajectories of mutations at different loci constrain each other due to epistasis. We refer to the locus ending up at the highest frequency as the *major* locus (here in blue) and to all others as *minor* loci (here one in green).

5 Results

While the joint distribution of allele frequencies, Eq (8), provides comprehensive information of the adaptive architecture, low-dimensional summary statistics of this distribution are needed to describe and classify distinct types of polygenic adaptation. To this end, we order loci according to their contribution to the adaptive response. In particular, we call the locus with the highest allele frequency at the stopping condition the *major locus* and all other loci *minor loci*. Minor loci are further ordered according to their frequency (first minor, second minor, etc.). The marginal distributions of the major locus or k th minor locus are 1-dimensional summaries of the joint distribution. Importantly, these summaries are still *collective* because the role of any specific locus (its order) is defined through the allele frequencies at *all* loci. This is different for the marginal distribution at a fixed focal locus, which is chosen irrespective of its role in the adaptive process, e.g. [26, 28, 29].

Concerning our nomenclature, note that the *major* and *minor* loci do not differ in their effect size, as they are completely redundant. Still, the major locus is the one with the largest contribution to the adaptive response and would yield the strongest association in a GWAS case-control study.

In the following, we analyze adaptive trait architectures in three steps. In Section 5.1 we use the expected allele frequency ratio of minor and major loci as a one-dimensional summary statistic. Subsequently, in Section 5.2, we analyze the marginal distributions of major and minor loci for a trait with 2 to 100 loci. Finally, in Section 5.3 we investigate the robustness of our results under conditions of relaxed redundancy. Further results devoted to diploids, linkage, asymmetric loci, and alternative starting conditions are provided in the Appendices.

5.1 Expected allele frequency ratio

For our biological question concerning the type of polygenic adaptation, the ratio of allele frequency changes of minor over major loci is particularly useful. With “sweeps at few loci”, we expect large differences among loci, resulting in ratios that deviate strongly from 1. In contrast, with “subtle shifts at many loci”, multiple loci contribute similarly to the adaptive response and ratios should range close to 1. Our theory (explained above)

predicts that these ratios are the outcome of the stochastic phase, and their distribution
281
is preserved during the deterministic phase. They are thus independent of the precise
282
time of observation. For our results in this section, we assume that the mutation rate at
283
all L loci is equal, $\Theta_i \equiv \Theta_l$, for all $1 \leq i \leq L$. This corresponds to the symmetric case
284
that is most favorable for a “small shift” scenario. Results for asymmetric mutation rates
285
are reported in Appendix A.4.
286

Consider first the case of $L = 2$ loci. There is then a single allele frequency ratio
287
“minor over major locus”, which we denote by x . For two loci, the joint distribution of
288
frequency ratios from Eq (5) reduces to a *beta-prime* distribution. Conditioning on the
289
case that the first locus is the major locus (probability 1/2 for the symmetric model), we
290
obtain for $0 \leq x \leq 1$,
291

$$P_{\beta'}[x|\Theta_l] = \frac{2\Gamma(2\Theta_l)}{(\Gamma(\Theta_l))^2} x^{\Theta_l-1} (1+x)^{-2\Theta_l}, \quad (9)$$

Fig 3 compares the expectation of this analytical prediction with simulation results
292
for a range of parameters for the strength of beneficial selection s_b and for the level of
293
standing genetic variation (SGV implicitly given by the strength of deleterious selection
294
 s_d before the environmental change). There are two main observations. First, the
295
simulation results demonstrate the importance of the scaled mutation rate $\Theta_{bg} \equiv \Theta_l$ (for
296
two loci). Low Θ_{bg} leads to sweep-like adaptation (heterogeneous adaptation response
297
among loci, $E[x] \ll 1$), whereas high Θ_{bg} leads to shift-like adaptation (homogeneous
298
response, $E[x]$ near 1). Second, the panels show that the selection intensity given by s_d
299
and s_b has virtually no effect. Both results are predicted by the analytical theory
300
(Eq (9)). In Appendix A.1, we further show that these results hold for arbitrary degrees
301
of linkage (including complete linkage), see Fig S.1.
302

For more than two loci, $L > 2$, one-dimensional marginal distributions of the joint
303
distribution, Eq (5), generally require $(L - 1)$ -fold integration, which can be complicated.
304
However, it turns out that the key phenomena to characterize the adaptive architecture
305
can still be captured by the 2-locus formalism, with appropriate rescaling of the
306
mutation rate. For the general L -locus model, we broaden our definition of the summary
307
statistic x above to describe the allele frequency ratio of the *first minor* locus and the
308
major locus. To relate the distribution of x in the L -locus model to the one in the 2-locus
309

model, we reason as follows: For small locus mutation rates Θ_l , the order of the loci is
310 largely determined by the order at which mutations that are destined for establishment
311 originate at these loci. *I.e.*, the locus where the first mutation originates ends up as the
312 major locus and the first minor locus is usually the second locus where a mutation
313 destined for establishment originates. The distribution of the allele frequency ratio x is
314 primarily determined by the distribution of the waiting time for this second mutation after
315 origin of the first mutation at the major locus. In the 2-locus model, this time will be
316 exponentially distributed, with parameter $1/\Theta_l$. In the L -locus model, however, where
317 $L - 1$ loci with total mutation rate $\Theta_l(L - 1)$ compete for being the “first minor”, the
318 parameter for the waiting-time distribution reduces to $1/(\Theta_l(L - 1))$. We thus see from
319 this argument that the decisive parameter is the cumulative *background mutation rate*
320

$$\Theta_{bg} = (L - 1)\Theta_l \quad (10)$$

at all minor loci in the background of the major locus. In Fig 3 (orange dots) we show
321 simulations of a $L = 10$ locus model with an appropriately rescaled locus mutation rate
322 $\Theta_l \rightarrow \Theta_l/9$, such that the background rate Θ_{bg} is the same as for the 2-locus model.
323 We see that the analytical prediction based on the 2-locus model provides a good fit for
324 the 10-locus model. A more detailed discussion of this type of approximation is given in
325 Appendix A.5. 326

5.2 Genomic architecture of polygenic adaptation

327

While the distribution of allele frequency ratios, Eqs (5) and (9), offers a coarse (but
328 robust) descriptor of the adaptive scenario, the joint distribution of allele frequencies at
329 the end of the adaptive phase, Eq (8), allows for a more refined view. In contrast to the
330 distribution of ratios, the results now depend explicitly on the stopping condition (the
331 time of observation) and on linkage among loci. We assume linkage equilibrium in this
332 section and assess the mutant allele frequencies when the frequency of the remaining
333 wildtype individuals in the population is f_w ($= 0.05$ in our figures) has dropped to a fixed
334 value of $f_w = 0.05$. In Appendix A.7, we complement these results and study the
335 changes in the adaptive architecture when f_w is varied. 336

Fig 4 displays the main result of this section. It shows the marginal distributions of
337

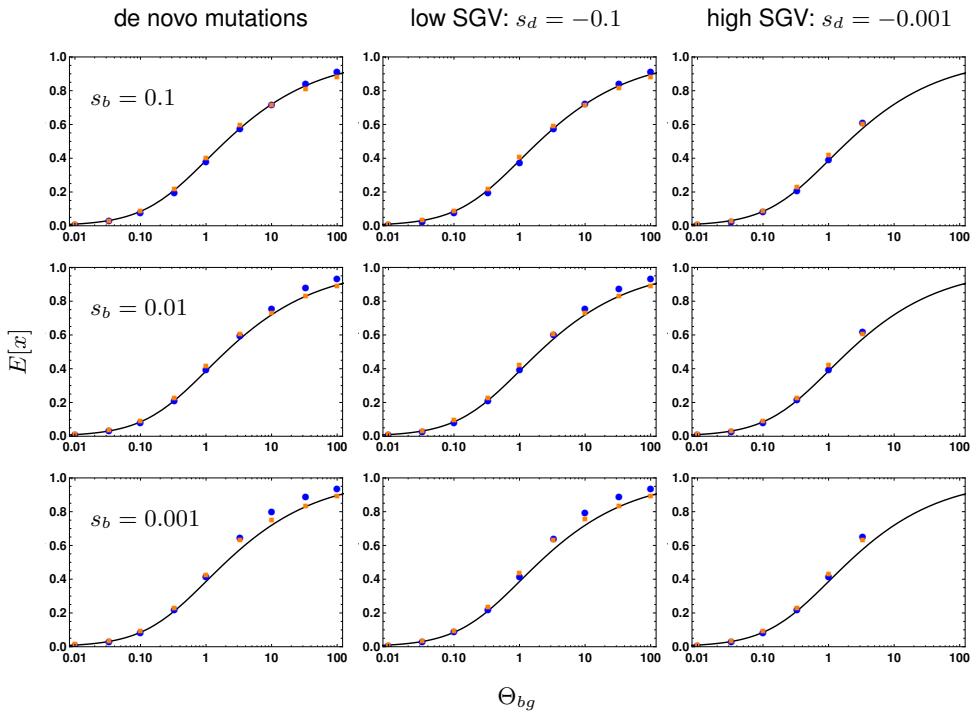


Fig 3. Effect of selection strength and SGV on the frequency ratio $E[x]$. We contrast the expected allele frequency ratios of the first minor locus (with the second highest frequency) over the major locus (with the highest frequency) for 2 loci (blue dots) and for 10 loci (orange dots) with analytical predictions (Appendix, Eq M.16, black curve). $E[x]$ is shown as a function of Θ_{bg} ($= \Theta_l$ for the 2-locus case). Panels correspond to different strengths of positive selection (s_b , rows) and levels of SGV (no SGV, strongly deleterious $s_d = -0.1$, weakly deleterious $s_d = -0.001$, columns). We find that neither factor alters the expected ratio. We do not obtain results for $\Theta_{bg} \geq 10$ and $s_d = -0.001$, where strong recurrent mutation overwhelms weak selection, such that mutant alleles fix even before the environmental change. Results for 10 000 replicates, standard errors < 0.005 (smaller than symbols).

all loci, ordered according to their allele frequency at the time of observation (major locus, 1st, 2nd, 3rd minor locus, etc.) for traits with $L = 2, 10, 50$, and 100 loci. Panels in the same row correspond to equal background mutation rates $\Theta_{bg} = (L - 1)\Theta_l$, but note that the locus mutation rates Θ_l are not equal. The figure reveals a striking level of uniformity of adaptive architectures with the same Θ_{bg} , but vastly different number of loci. For $\Theta_{bg} \leq 1$ (the first three rows), the marginal distributions for loci of the same order (same color in the Figure) across traits with different L is almost invariant. For large Θ_{bg} , they converge for sufficiently large L (e.g. for $\Theta_{bg} = 10$, going from $L = 10$ to $L = 50$ and to $L = 100$). In particular, the background mutation rate Θ_{bg} determines the shape of the major-locus distribution (red in the Figure) for high $p \rightarrow 1 - f_w = 0.95$ (the

maximum possible frequency, given the stopping condition). For $\Theta_{bg} < 1$, this 348
distribution is sharply peaked with a singularity at $p = 1 - f_w$, whereas it drops to zero 349
for high p if $\Theta_{bg} > 1$ (see also the analytical results below). 350

As predicted by the theory, Eq (8) and below, simulations confirm that the overall 351
selection strength does not affect the adaptive architecture (see supplementary 352
Fig S.11 for comparison of simulation results for $s_b = 0.1$ and $s_b = 0.01$). As discussed 353
in Appendix A.1, sufficiently tight linkage does change the shape of the distributions. 354
Importantly, however, it does not affect the role of Θ_{bg} in determining the singularity of 355
the major-locus distribution. This confirms the key role of the background mutation rate 356
as a single parameter to determine the adaptive scenario in our model. While $\Theta_{bg} = 1$ 357
separates architectures that are dominated by a single major locus ($\Theta_{bg} < 1$) from 358
collective scenarios (with $\Theta_{bg} > 1$), the classical sweep or shift scenarios are only 359
obtained if Θ_{bg} deviates strongly from 1. We therefore distinguish three adaptive 360
scenarios. 361

- $\Theta_{bg} \lesssim 0.1$, *single completed sweeps*. For $\Theta_{bg} \ll 1$ (first two rows of Fig 4), the 362
distribution of the major locus is concentrated at the maximum of its range, while 363
all other distributions are concentrated around 0. Adaptation thus occurs at a 364
single locus, via a selective sweep from low to high mutant frequency. 365
Contributions by further loci are rare. If they occur at all they are usually due to a 366
single runner-up locus (the highest minor locus). 367
- $0.1 < \Theta_{bg} < 100$, *heterogeneous partial sweeps*. With intermediate background 368
mutation rates (third and forth row of Fig 4), we still observe a strong asymmetry 369
in the frequency spectrum. Even for $\Theta_{bg} = 10$, there is a clear major locus 370
discernible, with most of its distribution for $p > 0.5$. However, there is also a 371
significant contribution of several minor loci that rise to intermediate frequencies. 372
We thus obtain a heterogeneous pattern of partial sweeps at a limited number of 373
loci. 374
- $\Theta_{bg} \gtrsim 100$, *homogeneous frequency shifts*. Only for high background mutations 375
rates $\Theta_{bg} \gg 1$ (last row of Fig 4 with $\Theta_{bg} = 100$), the heterogeneity in the locus 376
contributions to the adaptive response vanishes. There is then no dominating 377
major locus. For only 2 loci, these shifts are necessarily still quite large, but for 378

traits with a large genetic basis (large L ; the only realistic case for high values of Θ_{bg}), adaptation occurs via subtle frequency shifts at many loci. 379
380

Analytical predictions 381

To gain deeper understanding of the polygenic architecture – and for quantitative 382
predictions – we dissect our analytical result for the joint frequency spectrum in Eq (8). 383
We start with the case of $L = 2$ loci, allowing for different locus mutation rates Θ_1 and 384
 Θ_2 . The marginal distribution at the first locus reads (from Eq (8), after integration over 385
 p_2), 386

$$P_{f_w}[p_1|\Theta_1, \Theta_2] = \frac{p_1^{\Theta_1-1}(1-p_1-f_w)^{\Theta_2-1}(1-p_1)^{\Theta_1+1}}{B[\Theta_1, \Theta_2](1-p_1^2-f_w)^{\Theta_1+\Theta_2}} \left(1 - \frac{f_w(1-2p_1)}{(1-p_1)^2}\right), \quad (11)$$

for $0 \leq p_1 \leq 1 - f_w$ (see also Appendix A.6). The distribution has a singularity at $p_1 = 0$ 387
if the corresponding *locus* mutation rate is smaller than one, $\Theta_1 < 1$. It has a singularity 388
at $p_1 = 1 - f_w$ if the corresponding *background* mutation rate (which is just the mutation 389
rate at the other locus for $L = 2$) is smaller than one, $\Theta_2 < 1$. The marginal distributions 390
at the major locus, $P_{f_w}^+[p|\Theta_1, \Theta_2]$, and the minor locus, $P_{f_w}^-[p|\Theta_1, \Theta_2]$, follow from 391
Eq (11) as 392

$$P_{f_w}^{\pm}[p|\Theta_1, \Theta_2] = P_{f_w}[p|\Theta_1, \Theta_2] + P_{f_w}[p|\Theta_2, \Theta_1], \quad (12)$$

where $P_{f_w}^+[p|\Theta_1, \Theta_2]$ is defined for $1 - \sqrt{f_w} \leq p \leq 1 - f_w$ and $P_{f_w}^-[p|\Theta_1, \Theta_2]$ is defined 393
for $0 \leq p \leq 1 - \sqrt{f_w}$. The sum in Eq (12) accounts for the alternative events that either 394
the first or the second locus may end up as the major (or minor) locus. Consequently, 395
 $P_{f_w}^-[p|\Theta_1, \Theta_2]$ has a singularity at $p = 0$ if the *minimal locus mutation rate* 396
 $\Theta_l = \min[\Theta_1, \Theta_2] < 1$. Analogously, $P_{f_w}^+[p|\Theta_1, \Theta_2]$ has a singularity at $p = 1 - f_w$ if the 397
minimal background mutation rate $\Theta_{bg} = \min[\Theta_1, \Theta_2] < 1$. The left column of Fig 4 398
shows the distributions at the major and minor locus for $L = 2$ in the symmetric case 399
 $\Theta_1 = \Theta_2 = \Theta_l = \Theta_{bg}$ and $f_w = 0.05$. Simulations for a population of size $N_e = 10\,000$ 400
and analytical predictions match well. 401

How do these results generalize for $L > 2$? We again allow for unequal locus 402
mutation rates Θ_i . It is easy to see from Eq (8) that the marginal distribution at the i th 403
locus has a singularity at $p_i = 0$ for $\Theta_i < 1$. In the Mathematical Appendix M.3, we 404

further show that it has a second singularity at $p_i = 1 - f_w$ if the corresponding 405
background mutation rate $\sum_{j \neq i}^d \Theta_j$ is smaller than 1. As a first step, we split the joint 406
distribution, Eq (8), into the marginal distribution at the major locus $P_{f_w}^+[p|\Theta]$ (defined 407
for $1 - \sqrt[4]{f_w} \leq p \leq 1 - f_w$) and a cumulative distribution at all other (minor) loci, 408
 $P_{f_w}^-[p|\Theta]$ (defined for $0 \leq p \leq 1 - \sqrt{f_w}$). Since any locus can end up as the major locus 409
(with probability > 0), $P_{f_w}^+[p|\Theta]$ has a singularity at $p = 1 - f_w$ for 410

$$\Theta_{bg} := \min_{1 \leq i \leq L} \left[\sum_{j=1}^L \Theta_j - \Theta_i \right] < 1. \quad (13)$$

This equation generalizes the definition of the background mutation rate, Eq (10), to the 411
case of unequal locus mutation rates. Similarly, $P_{f_w}^-[p|\Theta]$ has a singularity at $p = 0$ if 412

$$\Theta_l := \min_{1 \leq i \leq L} [\Theta_i] < 1. \quad (14)$$

As long as $\Theta_{bg} \leq 1$, we can approximate both the major-locus distribution $P_{f_w}^+[p|\Theta]$ and 413
the cumulative minor locus distribution $P_{f_w}^-[p|\Theta]$ for arbitrary L by formulas for a 2-locus 414
model with locus mutation rates matching Θ_l and Θ_{bg} of the multi-locus model, Eq (12). 415
Similarly, we can use results from a k -locus model to match the marginal distributions of 416
the largest k loci (i.e., up to the $(k-1)$ th minor) in models with $L > k$ loci, upon 417
rescaling of the mutation rates. As explained for the ratio of the first minor and major 418
locus in the previous section, rescaling rules match the expected waiting time for a 419
mutation (destined for establishment) at the k th locus after the origin of a first mutation. 420
Details are given in the Appendix A.5. In Fig 4, we use formulas derived from a k -locus 421
model ($k \leq 4$) to approximate the $(k-1)$ st minor locus distribution of models with 422
 $L = 10; 50; 100$ loci and $\Theta_{bg} \leq 1$. These approximations work well as long as these 423
leading loci dominate the adaptive architecture of the trait, which is the case for $\Theta_{bg} \leq 1$. 424

5.3 Relaxing complete redundancy

To complete our picture of adaptive architectures, we investigate the robustness of our 426
model assumption against relaxation of redundancy. As explained above (*Model* 427
extensions and Fig 1), we implement diminishing returns epistasis, such that an 428
individual with a single mutation has fitness $\delta s_{b/d}$, while individuals carrying more than 429

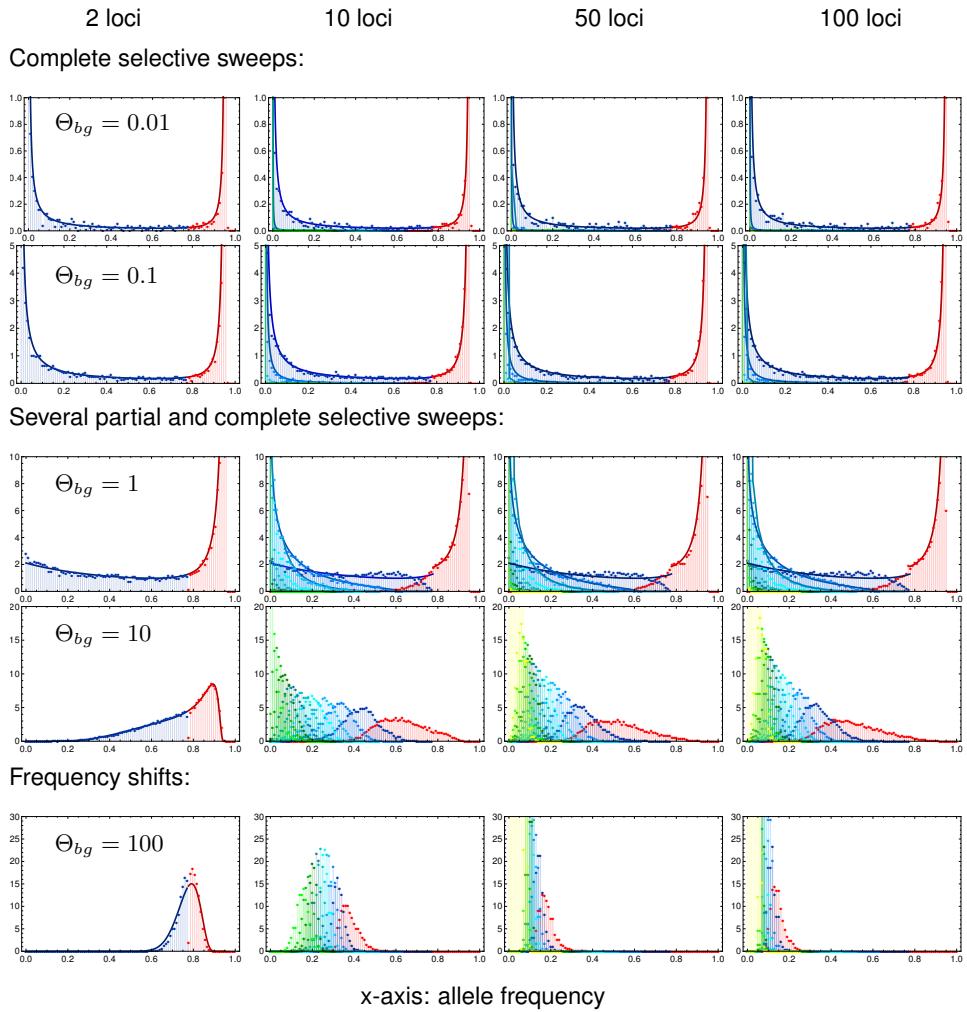


Fig 4. Genomic architecture of polygenic adaptation. We distinguish three patterns of architectures with increasing genomic background mutation rate Θ_{bg} : complete sweeps, for $\Theta_{bg} \lesssim 0.1$, heterogeneous partial sweeps at several loci for $0.1 < \Theta_{bg} < 100$, and polygenic frequency shifts for $\Theta_{bg} \gtrsim 100$. The plots show the marginal distributions of all loci, ordered according to their allele frequency, i.e. the major locus in red and all following (first, second, third, etc. minors) in blue to green to yellow. Lines in respective colors show analytical predictions, Appendix A.5. Simulations were stopped once the populations have adapted to 95% of the maximum mean fitness in each of 10 000 replicates, resulting in an upper bound for the major locus distribution at, $p_1 = 0.95$. Simulations for $s_b = -s_d = 0.1$. Note the different scaling of the y-axis (density, normalized to 1 per locus) for different mutation rates.

one mutation have fitness $s_{b/d}$. With small deviations from complete redundancy (e.g. 430
 $\delta = 0.9$, stopping at 5% ancestral phenotypes, see Fig S.10) we obtain basically no 431
differences in the genomic patterns of adaptation. With larger deviations (e.g. $\delta = 0.5$) 432
quantitative differences appear. However, the qualitative picture concerning the 433
scenario of polygenic adaptation remains the same. 434

Fig 5 shows the marginal frequency distributions of major and minor loci for a trait 435 with relaxed redundancy with $\delta = 0.5$ that is sampled when the population has 436 accomplished 95% of the fitness increase on its way to the new optimum, Eq (2). Given 437 the fitness function, this is not possible with adaptation at only a single locus. At least 438 two loci are needed. The Figure compares the simulation data for the relaxed 439 redundancy model (colored dots) and the full redundancy model (dots in back and gray). 440 As in Fig 4, traits in the same row have the same background mutation rate Θ_{bg} . 441 However, the background rate for the model with relaxed redundancy is redefined as 442

$$\Theta_{bg}^{\text{relax}} = (L - 2)\Theta_l, \quad (15)$$

where Θ_l is the locus mutation rate (equal at all loci). We thus define the background 443 rate, more precisely, as the combined population-scaled mutation rate of all loci *that are* 444 *not essential* to accomplish adaptation of the phenotype and, thus, are truly redundant. 445 With this choice, the adaptive architecture of the relaxed redundancy model reproduces 446 the one of the model with full redundancy – up to a shift in the number of the loci due to 447 an extra locus that is needed for adaptation with relaxed redundancy. The Figure 448 captures this by comparing traits with relaxed redundancy with $L = 3, 4, 11$, and 101 loci 449 to fully redundant traits with one fewer locus. The inset figures in the column for $L = 4$ 450 loci show the same scenario, but with an *averaged* marginal distribution for the two 451 largest loci with relaxed redundancy (in green). 452

- For mutation rates, $\Theta_{bg} \ll 1$, we still find adaptation by sweeps. Relative to the full 453 redundancy model, we now observe two “major” sweep loci instead of only a 454 single sweep. The inset (for $L = 4$) shows that their averaged distributions 455 matches the major locus distribution of the full redundancy model. The 456 distribution at the third largest locus (the “first minor” locus with relaxed 457 redundancy) resembles the corresponding distribution of the first minor locus of 458 the trait with full redundancy. 459
- For intermediate mutation rates, $0.1 < \Theta_{bg} < 100$, the pattern is dominated by 460 partial sweeps. We clearly see the similarity in the marginal distributions of the 461 k th largest locus with full redundancy and the $k + 1$ st largest locus of the relaxed 462

redundancy trait. For the two major loci with relaxed redundancy, we again see
463
(inset) that the averaged distribution matches the major-locus distribution of the
464
full redundancy model.
465

- Finally, for strong mutation, $\Theta_{bg} \gtrsim 100$, adaptation again occurs by small
466
frequency shifts at many loci.
467

In summary, our results show that relaxing redundancy leads to qualitatively similar
468
results, but with a reduced “effective” background mutation rate that only accounts for
469
“truly redundant” loci.
470

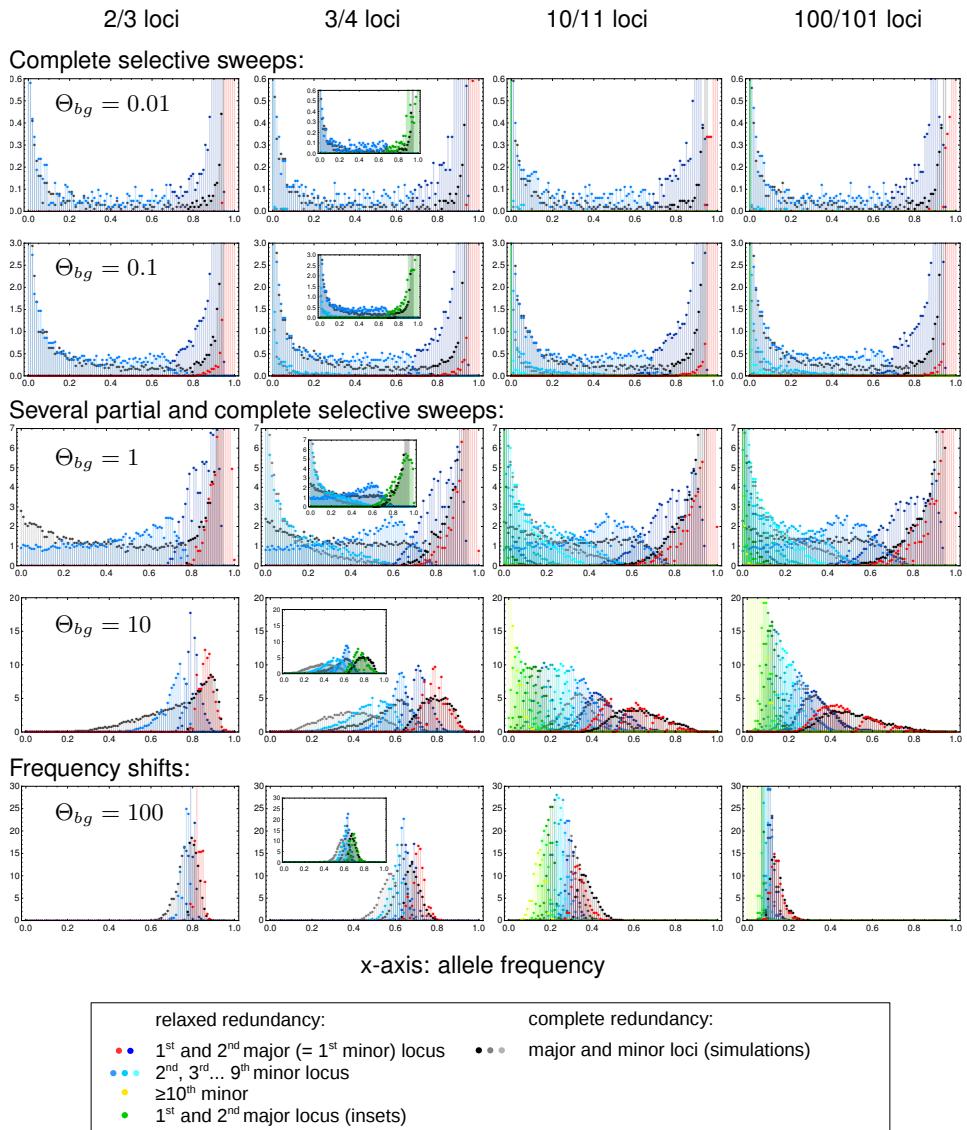


Fig 5. Relaxed redundancy. Relaxing redundancy such that a single mutant has fitness $1 + 0.5s_{b/d}$ and only two mutations or more confer the full fitness effect ($1 + s_{b/d}$) demonstrates the robustness of our model. As in Fig 4, allele frequency distributions of derived alleles are displayed once the population has reached 95% of maximum attainable mean population fitness. Genomic patterns of adaptation show similar characteristics as with complete redundancy. Due to relaxed redundancy, an additional "major locus" is required to reach the adaptive optimum. As explained in the main text, the distribution of the k th largest locus with complete redundancy therefore corresponds to the distribution of the $k + 1$ st largest locus with relaxed redundancy. Insets in the second column show the same data with the distributions of the two major loci for relaxed redundancy combined (in green).

6 Discussion

Traits with a polygenic basis can adapt in different ways. Few or many loci can contribute to the adaptive response. The changes in the allele frequencies at these loci can be large or small. They can be homogeneous or heterogeneous. While molecular population genetics posits large frequency changes – selective sweeps – at few loci, quantitative genetics views polygenic adaptation as a collective response, with small, homogeneous allele frequency shifts at many loci. Here, we have explored the conditions under which each adaptive scenario should be expected, analyzing a polygenic trait with redundancy among loci that allows for a full range of adaptive architectures: from sweeps to subtle frequency shifts.

6.1 Polygenic architectures of adaptation

For any polygenic trait, the multitude of possible adaptive architectures is fully captured by the joint distribution of mutant alleles across the loci in its basis. Different adaptive scenarios (such as sweeps or shifts) correspond to characteristic differences in the shape of this distribution, at the end of the adaptive phase. For a single locus, the stationary distribution under mutation, selection, and drift can be derived from diffusion theory and has been known since the early days of population genetics (S. Wright (1931), [32]). For multiple interacting loci, however, this is usually not possible. To address this problem for our model, we dissect the adaptive process into two phases. The early stochastic phase describes the establishment of all mutants that contribute to the adaptive response under the influence of mutation and drift. We use that loci can be treated as independent during this phase to derive a joint distribution for ratios of allele frequencies at different loci, Eq (5). During the second, deterministic phase, epistasis and linkage become noticeable, but mutation and drift can be ignored. Allele frequency changes during this phase can be described as a density transformation of the joint distribution. For the simple model with fully redundant loci, and assuming either LE or complete linkage, this transformation can be worked out explicitly. Our main result Eq (8) can be understood as a multi-locus extension of Wright's formula. For a neutral locus with multiple alleles, Wright's distribution is a Dirichlet distribution, which is reproduced in our model for the case of complete linkage, see Appendix A.1. For the

opposite case of linkage equilibrium, we obtain a family of inverted Dirichlet
501
distributions, depending on the stopping condition – our time of observation.
502

Note that (unlike Wright's distribution) the distribution of adaptive architectures is *not*
503
a stationary distribution, but necessarily transient. It describes the pattern of mutant
504
alleles at the end of the “rapid adaptive phase” [30, 31], because this is the time scale
505
that the opposite narratives of population genetics and quantitative genetics refer to. In
506
particular, the quantitative genetic “small shifts” view of adaptation does not talk about a
507
stationary distribution: it does not imply that alleles will never fix over much longer time
508
scales, due to drift and weak selection. On a technical level, the transient nature of our
509
result means that it reflects the effects of genetic drift only during the early phase of
510
adaptation. These early effects are crucial because they are magnified by the action of
511
positive selection. In contrast, our result ignores drift after phenotypic adaptation has
512
been accomplished – which is also a reason why it can be derived at all.
513

To capture the key characteristics of the adaptive architecture, we dissect the joint
514
distribution in Eq (8) into marginal distributions of single loci. As explained at the start of
515
the results section, these loci do not refer to a fixed genome position, but are defined *a*
516
posteriori via their role in the adaptive process. For example, the *major locus* is defined
517
as the locus with the highest mutant allele frequency at the end of the adaptive phase.
518
(Since all loci have equal effects in our model, this is also the locus with the largest
519
contribution to the adaptive response, but see Appendix A.4.) This is a different way to
520
summarize the joint distribution than used in some of the previous literature [26, 28, 29],
521
which rely on a gene-centered view to study the pattern at a focal locus, irrespective of
522
its role in trait adaptation. In contrast, we use a trait-centered view, which is better
523
suited to describe and distinguish adaptive scenarios. For example, “adaptation by
524
sweeps” refers to a scenario where sweeps happen at some loci, rather than at a
525
specific locus. This point is further discussed in Appendix A.6, where we also display
526
marginal distributions of Eq (8) for fixed loci.
527

The role of the background mutation rate

528

Our results show that the qualitative pattern of polygenic adaptation is predicted by a
529
single compound parameter: the background mutation rate Θ_{bg} (see
530

Eqs (10),(13),(15)), i.e., the population mutation rate for the background of a focal locus 531
within the trait basis. For a large basis, Θ_{bg} is closely related to the trait mutation rate. 532
We can understand the key role of this parameter as follows. As detailed in the 533
Section 4.4, the early stochastic phase of adaptation is governed by two processes: 534
New successful mutations (destined for establishment) enter the population at rate $\Theta_l s_b$ 535
per locus (where Θ_l is the locus mutation rate and s_b the selection coefficient), while 536
existing mutants spread with an exponential rate s_b . Consider the locus that carries the 537
first successful mutant. For $\Theta_{bg} < 1$, the expected spread from this first mutant exceeds 538
the creation of new mutant lineages at all other loci. Therefore, the locus will likely 539
maintain its lead, with an exponentially growing gap to the second largest locus. Vice 540
versa, for $\Theta_{bg} > 1$, most likely one of the competing loci will catch up. We can thus think 541
of Θ_{bg} as a measure of competition experienced by the major locus due to adaptation at 542
redundant loci in its genetic background. The argument does not depend on the 543
strength of selection, which affects both rates in the same way. The same can be 544
shown for adaptation from standing genetic variation at mutation-selection-drift balance, 545
see Mathematical Appendix (M.1). As a consequence of low mutant frequencies during 546
the stochastic phase, the result is also independent of interaction effects due to 547
epistasis or linkage. 548

Since the order of loci is not affected by the deterministic phase of the adaptive 549
process, Θ_{bg} maintains its key role for the adaptive architecture. In the joint frequency 550
distribution, Eq (5) and Eq (8), it governs the singular behavior of the marginal 551
distribution at the major locus. For $\Theta_{bg} < 1$, this distribution has a singularity at the 552
maximum of its range. Adaptation is therefore dominated by the major locus, leading to 553
heterogeneous architectures. For $\Theta_{bg} \lesssim 0.1$, adaptation occurs almost always due to a 554
completed sweep at this locus. For $\Theta_{bg} > 1$, in contrast, no single dominating locus 555
exists: adaptation is collective and supported by multiple loci. For a polygenic trait with 556
 $\Theta_{bg} \gtrsim 100$, we obtain homogeneous small shifts at many loci, as predicted by 557
quantitative genetics. 558

The result also shows that the adaptive scenario does not depend directly on the 559
number of loci in the genetic basis of the trait, but rather on their combined mutation 560
rate (the mutational target size, *sensu* [11]). For redundant loci and fixed Θ_{bg} , the 561
predicted architecture at the loci with the largest contribution to the adaptive response 562

is almost independent of the number of loci, see Fig 4. Qualitatively, the same still holds 563
true when the assumption of complete redundancy is dropped (Fig 5). In this case, only 564
loci in the genetic background that are not required to reach the new trait optimum, but 565
offer redundant routes for adaptation, are included in Θ_{bg} . Note that the same 566
reasoning holds for a quantitative trait that is composed of several modules of mutually 567
redundant genes, but where interactions among genes in different modules only affect 568
a focal module as a unit. I.e., due to changes in the genetic background, all loci in this 569
module experience a uniform change in the selection coefficient $s_b = s_b(t) > 0$. In this 570
case, assuming LE, our model still applies (cf. the Mathematical Appendix). The 571
adaptive architecture for each module depends only on the module-specific Θ_{bg} , but not 572
on the mutation rates at genes in the basis of the trait outside of the module. 573

Polygenic adaptation and soft sweeps 574

In our analysis of polygenic adaptation, we have not studied the probability that 575
adaptation at single loci could involve more than a single mutational origin and thus 576
produces a so-called *soft selective sweep from recurrent mutation*. As explained 577
in [6, 40], however, the answer is simple and only depends on the locus mutation rate – 578
independently of adaptation at other loci. Soft sweeps become relevant for $\Theta_l \gtrsim 0.1$. 579
For much larger values $\Theta_l \gg 1$, they become “super-soft” in the sense that single 580
sweep haplotypes do not reach high frequencies because there are so many 581
independent origins of the mutant allele. The role of Θ_{bg} for polygenic adaptation is 582
essentially parallel to the one of Θ_l for soft sweeps. In both cases, the population 583
mutation rate is the only relevant parameter, with a lower threshold of $\Theta \sim 0.1$ for a 584
signal involving multiple alleles and much higher values for a “super-soft” scenario with 585
only subtle frequency shifts. Nevertheless, the mathematical methods to analyze both 586
cases are different, essentially because the polygenic scenario does not lend itself to a 587
coalescent approach. 588

6.2 Alternative approaches to polygenic adaptation 589

The theme of “competition of a single locus with its background” relates to previous 590
findings by Chevin and Hospital (2008) [26] in one of the first studies to address 591

polygenic footprints. These authors rely on a deterministic model of an additive quantitative trait to describe the adaptive trajectory at a single target QTL in the presence of background variation. The background is modeled as a normal distribution with a mean that can respond to selection, but with constant variance. Obviously, a drift-related parameter, such as Θ_{bg} , has no place in such a framework. Still, there are several correspondences to our result on a qualitative level. Specifically, a sweep at the focal locus is prohibited under two conditions. First, the background variation (generated by recurrent mutation in our model, constant in [26]) must be large. Second, the fitness function must exhibit strong negative epistasis that allows for alternative ways to reach the trait optimum – and thus produces redundancy (due to Gaussian stabilizing selection in [26]). Finally, while the adaptive trajectory depends on the *shape* of the fitness function, Chevin and Hospital note that it does not depend on the *strength* of selection on the trait, as also found for our model.

A major difference of the approach used in [26] is the gene-centered view that is applied there. Consider a scenario where the genetic background “wins” against the focal QTL and precludes it from sweeping. For a generic polygenic trait (and for our model) this still leaves the possibility of a sweep at one of the background loci. However, this is not possible in [26], where all background loci are summarized as a sea of small-effect loci with constant genetic variance.

This constraint is avoided in the approach by deVladar and Barton [41] and Jain and Stephan [31], who study an additive quantitative trait under stabilizing selection with binary loci (see also [42] for an extension to adaptation to a moving optimum). These models allow for different locus effects, but ignore genetic drift. Before the environmental change, all allele frequencies are assumed to be in mutation-selection balance, with equilibrium values derived in [41]. At the environmental change, the trait optimum jumps to a new value and alleles at all loci respond by large or small changes in the allele frequencies. Overall, [41] and [31] predict adaptation by small frequency shifts in larger parts of the biological parameter space relative to our model. In particular, sweeps are prevented in [31] if most loci have a small effect and are therefore under weak selection prior to the environmental change. This contrasts to our model, where the predicted architecture of adaptation is independent of the selection strength. Thus, in our model, weak selection does not imply *shifts*. This difference can

at least partially be explained by the neglect of drift effects on the starting allele 624
frequencies in the deterministic models. In the absence of drift, loci under weak 625
selection start out from frequency $x_0 = 0.5$ [41]. In finite populations, however, almost 626
all of these alleles start from very low (or very high) frequencies – unless the population 627
mutation parameter is large (many alleles at intermediate frequencies at competing 628
background loci are expected only if $\Theta_{bg} \gg 1$, in accordance with our criterion for 629
shifts). To test this further, we have analyzed our model for the case of starting allele 630
frequencies set to the deterministic values of mutation-selection balance, μ/s_d . Indeed, 631
we observe adaptation due to small frequency shifts in a much larger parameter range 632
(Appendix A.2). 633

Generally, adaptation by sweeps in a polygenic model requires a mechanism to 634
create heterogeneity among loci. This mechanism is entirely different in both modeling 635
frameworks. While heterogeneity is (only) produced by unequal locus effects for the 636
deterministic quantitative trait, it is (solely) due to genetic drift for the redundant trait 637
model. Since both approaches ignore one of these factors, both results should rather 638
underestimate the prevalence of sweeps. Indeed, heterogeneity increases for our 639
model with unequal locus effects (see Appendix A.4). 640

Both drift and unequal locus effects are included in the simulation studies by Pavlidis 641
et al (2012) [28] and Wollstein and Stephan (2014) [29]. These authors assess patterns 642
of adaptation for a quantitative trait under stabilizing selection with up to eight diploid 643
loci. However, due to differences in concepts and definitions there are few comparable 644
results. In contrast to [31] and to our approach, they study long-term adaptation (they 645
simulate N_e generations). In [28, 29], *sweeps* are defined as fixation of the mutant allele 646
at a focal locus, whereas *frequency shifts* correspond to long-term stable polymorphic 647
equilibria [29]. With this definition, a *shift* scenario is no longer a transient pattern, but 648
depends entirely on the existence (and range of attraction) of polymorphic equilibria. A 649
polymorphic outcome is likely for a two-locus model with full symmetry, where the 650
double heterozygote has the highest fitness. For more than two loci, the probability of 651
shifts *decreases* (because polymorphic equilibria become less likely, see [43]). 652
However, also the probability of a sweep decreases. This is largely due to the 653
gene-centered view in [28], where potential sweeps at background loci are not recorded 654
(see also Appendix A.6). 655

6.3 Scope of the model and the analytical approach

We have described scenarios of adaptation for a simple model of a polygenic trait. This model allows for an arbitrary number of loci with variable mutation rates, haploids and diploids, linkage, time-dependent selection, new mutations and standing genetic variation, and alternative starting conditions for the mutant alleles. Its genetic architecture, however, is strongly restricted by our assumption of (full or relaxed) redundancy among loci. In the haploid, fully redundant version, the phenotype is binary and only allows for two states, *ancestral wildtype* and *mutant*. Biologically, this may be thought of as a simple model for traits like pathogen or antibiotic resistance, body color, or the ability to use a certain substrate [44, 45].

Our main motivation, however, has been to construct a minimal model with a polygenic architecture that allows for both sweep and shifts scenarios – and for comprehensive analytical treatment. One may wonder how our methods and results generalize if we move beyond our model assumptions.

Key to our analytical method is the dissection of the adaptive process into a stochastic phase that explains the origin and establishment of beneficial variants and a deterministic phase that describes the allele frequency changes of the established mutant copies. This framework can be applied to a much broader class of models. Indeed, in many cases, the fate of beneficial alleles, establishment or loss, is decided while these alleles are rare. Excluding complex scenarios such as passage through a fitness valley, the initial stochastic phase is relatively insensitive to interactions via epistasis or linkage. We can therefore describe the dynamics of traits with a different architecture (e.g. an additive quantitative trait with equal-effect loci under stabilizing selection) within the same framework by coupling the same stochastic dynamics to a different set of differential equations describing the dynamics during the deterministic phase.

This is important because, as described above, the key *qualitative* results to distinguish broad categories of adaptive scenarios are due to the initial stochastic phase. This holds true, in particular, for the role of the background mutation rate Θ_{bg} . We therefore expect that these results generalize beyond our basic model. Indeed, we have already seen this for our model extensions to include diploids, linkage, and

relaxed redundancy. Vice-versa, we have seen that other factors, such as alternative starting conditions for the mutant alleles, directly affect the early stochastic phase and lead to larger changes in the results. As shown in Appendix A.2, however, they can be captured by an appropriate extension of the stochastic Yule process framework.

Several factors of biological importance are not covered by our current approach. Most importantly, this includes loci with different effect sizes and spatial population structure. Both require a further extension of our framework for the early stochastic phase of adaptation. Unequal locus effects (both directly on the trait or on fitness due to pleiotropy) are expected to enhance the heterogeneity in the adaptive response among loci, as confirmed by simulations of a 2-locus model in Appendix A.4. The opposite is true for spatial structure, as further discussed below.

6.4 When to expect sweeps or shifts

Although our assumptions on the genetic architecture of the trait (complete redundancy and equal loci) are favorable for a collective, shift-type adaptation scenario, we observe large changes in mutant allele frequencies (completed or partial sweeps) for major parts of the parameter range. A homogeneous pattern of *subtle frequency shifts* at many loci is only observed for high mutation rates. This contrasts with experience gained from breeding and modern findings from genome-wide association studies, which are strongly suggestive of an important role for small shifts with contributions from very many loci (reviewed in [1, 15, 46–48], see [12, 49, 50] for recent empirical examples). For traits such as human height, there has even been a case made for *omnigenic* adaptation [8], setting up a “mechanistic narrative” for Fisher’s (conceptual) infinitesimal model. Clearly, body height may be an extreme case and the adaptive scenario will strongly depend on the type of trait under consideration. Still, the question arises whether and how wide-spread shift-type adaptation can be reconciled with our predictions. We will first discuss this question within the scope of our model and then turn to factors beyond our model assumptions.

The size of the background mutation rate

714

The decisive parameter to predict the adaptive scenario in our model, the background mutation rate, is not easily amenable to measurement. $\Theta_{bg} = (L - 1)\Theta_l$ compounds two factors, the locus mutation parameter Θ_l and the number of loci L , which are both complex themselves and require interpretation. To assess the plausibility of values of the order of $\Theta_{bg} \gtrsim 100$, required for homogeneous polygenic shifts in our model, we consider both factors separately.

715

716

717

718

719

720

Large locus mutation rates $\Theta_l = 4N_e\mu$ (for diploids, $2N_e\mu$ for haploids) are possible if either the allelic mutation rate μ or the effective population size N_e is large. Both cases are discussed in detail (for the case of soft sweeps) in [6]. Basically, μ can be large if the mutational target *at the locus* is large. Examples are loss-of-function

721

722

723

724

725

726

727

728

729

730

731

mutations or cis-regulatory mutations. N_e is the *short-term effective population size* [40, 51, 52] during the stochastic phase of adaptation. This *short-term* size is unaffected by demographic events, such as bottlenecks, prior to adaptation. It is therefore often larger than the *long-term* effective size that is estimated from nucleotide diversity. (Strong changes in population size *during* the adaptive period can have more subtle effects [53].) For recent adaptations due to gain-of-function mutations, plausible values are $\Theta_l \lesssim 0.1$ for *Drosophila* and $\Theta_l \lesssim 0.01$ for humans [6].

732

733

734

735

736

737

738

739

740

741

742

743

744

If 10 000 loci or more contribute to the basis of a polygenic trait [8], large values of Θ_{bg} could, in principle, easily be obtained. However, the parameter L in our model counts only loci that actually can respond to the selection pressure: mutant alleles must change the trait in the right direction and should not be constrained by pleiotropic effects. Omnipotent genetics, in particular, also implies ubiquitous pleiotropy and so the size of the basis *that is potentially available for adaptation* is probably strongly restricted. For a given trait, the number of available loci L may well differ, depending on the selection pressure and pleiotropic constraints. Furthermore, our results for the model with relaxed redundancy show that Θ_{bg} only accounts for loci that are truly redundant and offer alternative routes to the optimal phenotype. With this in mind, values of L in the hundreds or thousands (required for $\Theta_{bg} \geq 100$) seem to be quite large. While some highly polygenic traits such as body size could still fulfill this condition, this appears questionable for the generic case.

Balancing selection and spatial structure

745

In our model, characteristic patterns in the adaptive architecture result from 746
heterogeneities among loci that are created by mutation and drift during the initial 747
stochastic phase of adaptation. As initial condition, we have mostly assumed that 748
mutant alleles segregate in the population in the balance of mutation, purifying selection 749
and genetic drift. Since this typically results in a broad allele frequency distribution 750
(unless mutation is very strong), it favors heterogeneity among loci and thus adaptation 751
by (partial) sweeps. However, even after decades of research, the mechanisms to 752
maintain genetic variation in natural populations remain elusive [1]. As discussed in 753
Appendix A.2, more homogeneous starting conditions for the mutant alleles can be 754
strongly favorable of a shift scenario. Such conditions can be created either by 755
balancing selection or by spatial population structure. 756

Balancing selection (due to overdominance or negative frequency dependence) 757
typically maintains genetic variation at intermediate frequencies. If a major part of the 758
genetic variance for the trait is due to balancing selection, adaptation could naturally 759
occur by small shifts. However, the flexibility of alleles at single loci, and thus the 760
potential for smaller or larger shifts, will depend on the strength of the fitness trade-off 761
(e.g. due to pleiotropy) at each locus. If these trade-offs are heterogeneous, the 762
adaptive architecture will reflect this. Also, adaptation against a trade-off necessarily 763
involves a fitness cost. Therefore, if the trait can also adapt at loci that are free of a 764
trade-off, these will be preferred, possibly leading to sweeps. 765

As discussed in a series of papers by Ralph and Coop [34, 35], spatial population 766
structure is a potent force to increase the number of alternative alleles that contribute to 767
the adaptive response. If adaptation proceeds independently, but in parallel, in spatially 768
separated subpopulations, different alleles may be picked up in different regions. 769
Depending on details of the migration pattern [36], we then expect architectures that are 770
globally polygenic with small shifts, but locally still show sweeps or dominating variants. 771

Furthermore, population structure and gene flow *before* the start of the selective 772
phase can have a strong effect on the starting frequencies. In particular, if the base 773
population is admixed, mutant alleles could often start from intermediate frequencies 774
and naturally produce small shifts. This applies, in particular, to adaptation in modern 775

human populations, which have experienced major admixture events in their
776
history [54, 55] and only show few clear signals of selective sweeps [11].
777

Finally, gene flow and drift will continue to change the architecture of adaptation
778
after the rapid adaptive phase that has been our focus here. This can work in both
779
directions. On the one hand, subsequent gene flow can erase any *local* sweep signals
780
by mixing variants that have been picked up in different regions [34, 35]. On the other
781
hand, local adaptation, in particular, may favor adaptation by large-effect alleles at few
782
loci, favoring sweeps over longer time-scales. Indeed, as argued by Yeaman [56], initial
783
rapid adaptation due to small shifts at many alleles of mostly small effect may be
784
followed by a phase of allelic turnover, during which alleles with small effect are
785
swamped and few large-effect alleles eventually take over. This type of allele sorting
786
over longer time-scales is also observed in simulations studies for a quantitative trait
787
under stabilizing selection that adapts to a new optimum after an environmental
788
change [31, 57].
789

Between sweeps and shifts: adaptation by partial sweeps 790

Previous research has almost entirely focused on either of the two extreme scenarios
791
for adaptation: sweeps in a single-locus setting or (infinitesimal) shifts in the tradition of
792
Fisher's infinitesimal model. This leaves considerable room for intermediate patterns.
793
Our results for the redundant trait model show that such transitional patterns should be
794
expected in a large and biologically relevant parameter range (values of Θ_{bg} between
795
0.1 and 100). Patterns between sweeps and shifts are *polygenic* in the sense that they
796
result from the *concerted* change in the allele frequency at multiple loci. They can only
797
be understood in the context of interactions among these loci. However, they usually do
798
not show subtle shifts, but much larger changes (partial sweeps) at several loci. If
799
adaptation occurs from mutation-selection-drift balance, the polygenic patterns are
800
typically strongly heterogeneous, even across loci with identical effects on the trait.
801
Such patterns may be difficult to detect with classical sweep scans, in particular if
802
partial sweeps are "soft" because they originate from standing genetic variation or
803
involve multiple mutational origins. However, they should be visible in time-series data
804
and may also leave detectable signals in local haplotype blocks.
805

Indeed there is empirical evidence for partial sweeps from time series data in 806
experimental *evolve and resequence* experiments on recombining species such as fruit 807
flies. For example, Burke *et al.* [58] observe predominantly partial sweeps (from SGV) 808
in their long-term selection experiments with *Drosophila melanogaster* for accelerated 809
development – a rather unspecific trait with a presumably large genomic basis. A 810
similar pattern of “plateauing”, where allele frequencies at several loci increase quickly 811
over several generations, but then stop at intermediate levels, was recently observed by 812
Barghi and collaborators [59] for adaptation of 10 *Drosophila simulans* replicates to a 813
hot temperature environment. Complementing the genotypic time-series data with 814
measurements of several phenotypes, these authors found convergent evolution for 815
several high-level traits (such as fecundity and metabolic rate), indicating that rapid 816
phenotypic adaptation had reached a new optimum. This high-level convergence 817
contrasts a strong heterogeneity in the adaptation response among loci and also 818
between replicates [59]. Based on their data, the authors reject both a selective sweep 819
model and adaptation by subtle shifts. Instead, the observed patterns are most 820
consistent with the intermediate adaptive scenario in our framework, featuring 821
heterogeneous partial sweeps at interacting loci with a high level of genetic redundancy. 822

References

1. Barton NH, Keightley PD. Multifactorial genetics: understanding quantitative 824
genetic variation. *Nature Reviews Genetics*. 2002;3(1):11–21. 825
2. Messer PW, Ellner SP, Hairston Jr NG. Can population genetics adapt to rapid 826
evolution? *Trends in Genetics*. 2016;32(7):408–418. 827
3. Maynard-Smith J, Haigh J. The hitch-hiking effect of a favourable gene. *Genetics* 828
Research. 1974;23(1):23–35. 829
4. Kaplan NL, Hudson R, Langley C. The "hitchhiking effect" revisited. *Genetics*. 830
1989;123(4):887–899. 831
5. Barton NH. The effect of hitch-hiking on neutral genealogies. *Genetics* 832
Research. 1998;72(2):123–133. 833

6. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. *Methods in Ecology and Evolution*. 2017;8(6):700–716. 834
7. Pritchard JK, Di Rienzo A. Adaptation—not by sweeps alone. *Nature Reviews Genetics*. 2010;11(10):665–667. 835
8. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. *Cell*. 2017;169(7):1177–1186. 836
9. Fisher R. The correlation between relatives on the supposition of Mendelian Inheritance. *Trans Roy Soc Edinburgh*. 1918;52:339–433. 841
10. Barton NH, Etheridge A, Véber A. The infinitesimal model: Definition, derivation, and implications. *Theoretical Population Biology*. 2017;118:50–73. 843
11. Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. *Current Biology*. 2010;20(4):208–215. 845
12. Hancock AM, Alkorta-Aranburu G, Witonsky DB, Di Rienzo A. Adaptations to new environments in humans: the role of subtle allele frequency shifts. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*. 2010;365(1552):2459–2468. 849
13. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. *PLoS Genetics*. 2014;10(8):e1004412. 852
14. Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, et al. Detection of human adaptation during the past 2000 years. *Science*. 2016;354(6313):760–764. 854
15. Csilléry K, Rodríguez-Verdugo A, Rellstab C, Guillaume F. Detecting the genomic signal of polygenic adaptation and the role of epistasis in evolution. *Molecular Ecology*. 2018;27(3):606–612. 856
16. Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H, Field Y, et al. Reduced signal for polygenic adaptation of height in UK Biobank. *bioRxiv*. 2018;doi:10.1101/354951. 859

17. Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR, Turchin MC, et al. Signals of polygenic adaptation on height have been overestimated due to uncorrected population structure in genome-wide association studies. *bioRxiv*. 2018;doi:10.1101/355057. 862
863
864
865
18. Stephan W. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. *Molecular Ecology*. 2016;25(1):79–88. 866
867
868
19. Turelli M, Barton NH. Dynamics of polygenic characters under selection. *Theoretical Population Biology*. 1990;38(1):1–57. 869
870
20. Turelli M, Barton NH. Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? *Genetics*. 1994;138(3):913–941. 871
872
21. Bürger R, Lynch M. Evolution and extinction in a changing environment: a quantitative-genetic analysis. *Evolution*. 1995;49(1):151–163. 873
874
22. Bürger R. The mathematical theory of selection, recombination, and mutation. Wiley, Chichester, UK; 2000. 875
876
23. Geritz SA, Mesze G, Metz JA, et al. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. *Evolutionary Ecology*. 1998;12(1):35–57. 877
878
879
24. Orr HA. The genetic theory of adaptation: a brief history. *Nature Reviews Genetics*. 2005;6(2):119–127. 880
881
25. Matuszewski S, Hermisson J, Kopp M. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. *Genetics*. 2015;200(4):1255–1274. 882
883
884
26. Chevin LM, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. *Genetics*. 2008;180:1645–1660. 885
886
27. Lande R. The response to selection on major and minor mutations affecting a metrical trait. *Heredity*. 1983;50(1):47–65. 887
888

28. Pavlidis P, Metzler D, Stephan W. Selective sweeps in multilocus models of quantitative traits. *Genetics*. 2012;192(1):225–239. 889
29. Wollstein A, Stephan W. Adaptive fixation in two-locus models of stabilizing selection and genetic drift. *Genetics*. 2014;198(2):685–697. 891
892
30. Jain K, Stephan W. Response of polygenic traits under stabilizing selection and mutation when loci have unequal effects. *G3: Genes, Genomes, Genetics*. 2015;5(6):1065–1074. 893
894
895
31. Jain K, Stephan W. Rapid adaptation of a polygenic trait after a sudden environmental shift. *Genetics*. 2017;206(1):389–406. 896
897
32. Wright S. Evolution in Mendelian populations. *Genetics*. 1931;16(2):97–159. 898
33. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. Global epistasis makes adaptation predictable despite sequence-level stochasticity. *Science*. 2014;344(6191):1519–1522. 899
900
901
34. Ralph PL, Coop G. Parallel adaptation: one or many waves of advance of an advantageous allele? *Genetics*. 2010;186:647–668. 902
903
35. Ralph PL, Coop G. The role of standing variation in geographic convergent adaptation. *The American Naturalist*. 2015;186(S1):S5–S23. 904
905
36. Paulose J, Hermisson J, Hallatschek O. Spatial soft sweeps: patterns of adaptation in populations with long-range dispersal. (In Press) *PLoS Genetics*. 2019; 906
907
908
37. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. *Genetics*. 2005;169(4):2335–2352. 909
910
38. Etheridge A, Pfaffelhuber P, Wakolbinger A, et al. An approximate sampling formula under genetic hitchhiking. *The Annals of Applied Probability*. 2006;16(2):685–729. 911
912
913
39. Hermisson J, Pfaffelhuber P. The pattern of genetic hitchhiking under recurrent mutation. *Electronic Journal of Probability*. 2008;13:2069–2106. 914
915

40. Pennings PS, Hermisson J. Soft sweeps II–molecular population genetics of 916
adaptation from recurrent mutation or migration. *Molecular Biology and Evolution*. 917
2006;23(5):1076–1084. 918
41. de Vladar HP, Barton NH. Stability and response of polygenic traits to stabilizing 919
selection and mutation. *Genetics*. 2014;197(2):749–767. 920
42. Jain K, Devi A. Polygenic adaptation in changing environments. *EPL* 921
(*Europhysics Letters*). 2018;123(4):48002. 922
43. Bürger R, Gimelfarb A. Genetic variation maintained in multilocus models of 923
additive quantitative traits under stabilizing selection. *Genetics*. 924
1999;152(2):807–820. 925
44. Coffman CJ, Doerge RW, Simonsen KL, Nichols KM, Duarte C, Wolfinger RD, 926
et al. Model selection in binary trait locus mapping. *Genetics*. 927
2005;170:1281–1297. 928
45. Novembre J, Han E. Human population structure and the adaptive response to 929
pathogen-induced selection pressures. *Phil Trans R Soc B*. 930
2012;367(1590):878–886. 931
46. Falconer D, Mackay T. *Introduction to Quantitative Genetics*. 4th ed. Longmans 932
Green, Harlwo, Essex, UK; 1996. 933
47. Hill WG. Applications of population genetics to animal breeding, from Wright, 934
Fisher and Lush to genomic prediction. *Genetics*. 2014;196(1):1–16. 935
48. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 936
years of GWAS discovery: biology, function, and translation. *The American* 937
Journal of Human Genetics. 2017;101(1):5–22. 938
49. Laporte M, Pavey SA, Rougeux C, Pierron F, Lauzent M, Budzinski H, et al. RAD 939
sequencing reveals within-generation polygenic selection in response to 940
anthropogenic organic and metal contamination in North Atlantic Eels. *Molecular* 941
Ecology. 2016;25(1):219–237. 942

50. Zan Y, Carlberg Ö. A multilocus association analysis method integrating 943
phenotype and expression data reveals multiple novel associations to flowering 944
time variation in wild-collected *Arabidopsis thaliana*. *Molecular Ecology* 945
Resources. 2018; p. 798–808. 946
51. Karasov T, Messer PW, Petrov DA. Evidence that adaptation in *Drosophila* is not 947
limited by mutation at single sites. *PLoS Genetics*. 2010;6(6):e1000924. 948
52. Barton NH. Understanding adaptation in large populations. *PLoS Genetics*. 949
2010;6(6):e1000987. 950
53. Wilson BA, Petrov DA, Messer PW. Soft selective sweeps in complex 951
demographic scenarios. *Genetics*. 2014; p. 669–684. 952
54. Lazaridis I, Nadel D, Rollefson G, Merrett DC, Rohland N, Mallick S, et al. 953
Genomic insights into the origin of farming in the ancient Near East. *Nature*. 954
2016;536(7617):419–424. 955
55. Pickrell JK, Reich D. Toward a new history and geography of human genes 956
informed by ancient DNA. *Trends in Genetics*. 2014;30(9):377–389. 957
56. Yeaman S. Local adaptation by alleles of small effect. *The American Naturalist*. 958
2015;186(S1):S74–S89. 959
57. Franssen SU, Kofler R, Schlötterer C. Uncovering the genetic signature of 960
quantitative trait evolution with replicated time series data. *Heredity*. 961
2017;118(1):42–51. 962
58. Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. 963
Genome-wide analysis of a long-term evolution experiment with *Drosophila*. 964
Nature. 2010;467(7315):587–590. 965
59. Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte K, et al. Genetic 966
redundancy fuels polygenic adaptation in *Drosophila*. (In Press) *PLoS Biology*. 967
2019;. 968
60. Griffiths R, Tavaré S. The age of a mutation in a general coalescent tree. 969
Stochastic Models. 1998;14(1-2):273–295. 970

61. Hoppe FM. Pólya-like urns and the Ewens' sampling formula. *Journal of Mathematical Biology*. 1984;20(1):91–94. 971
62. Orr HA, Betancourt AJ. Haldane's sieve and adaptation from the standing genetic variation. *Genetics*. 2001;157(2):875–884. 972
63. Wolfram Research I. *Mathematica*, Version 11.3.; 973
- 974
- 975

A Supporting information

976

A.1 Linked loci

977

Negative epistasis for fitness causes negative linkage disequilibrium (LD) among the
978 selected loci. While LD can typically be ignored as long as loci are only loosely linked,
979 this changes once recombination rates drop below a threshold (e.g. [22], p. 277). For
980 tight linkage $r \rightarrow 0$, in particular, individuals carrying multiple mutations can no longer
981 be formed by recombination, but require multiple mutational hits on the same haplotype.
982 This is unlikely while mutant allele frequencies are low, which is when the relevant
983 mutations of the adaptive process arise. By the end of the adaptive phase, the excess
984 of single-mutant haplotypes produces strong negative LD. Nevertheless, our theory
985 predicts that the distribution of allele frequency ratios that emerges from the early
986 stochastic phase of the adaptive process is unaffected Eq.(9). This prediction is
987 confirmed by simulations, see Fig S.1.
988

989

Fig S.2 shows the joint distribution of the major and the minor locus of a trait with
989 $L = 2$ loci for different degrees of linkage. In all cases, the process is stopped when the
990 proportion of remaining non-mutant individuals drops below $f_w = 0.05$. The results
991 show that the linkage equilibrium assumption (red and blue lines) provides a good
992 approximation as long as $r \geq s_b$. For $r < s_b$, the distributions are shifted to lower values
993 and clear deviations become visible. The constraint on the allele frequencies at the
994 stopping condition changes from $(1 - p_1)(1 - p_2) = f_w$ for linkage equilibrium to
995 $p_1 + p_2 = 1 - f_w$ for complete linkage. As a consequence, the boundary between the
996 major and minor locus distributions (red and blue) drops from $1 - \sqrt{f_w}$ to $(1 - f_w)/2$. As
997 shown in the Mathematical Appendix, Eq (M.29), we can derive an analytical
998 approximation for the distributions for complete linkage $r = 0$. For $L = 2$, we obtain a
999 modified Beta-distribution (black lines in the Figure)
1000

$$P_{f_w, tl}^{\pm}[p | \Theta] = \frac{2(1 - f_w)^{-1}}{B[\Theta]} \left(\frac{p}{1 - f_w} \right)^{\Theta-1} \left(1 - \frac{p}{1 - f_w} \right)^{\Theta-1} \quad (\text{S.1})$$

with $p \geq (1 - f_w)/2$ (resp. $p \leq (1 - f_w)/2$) for the major (minor) locus. The simulation
1001 results show that this prediction is accurate for $r \ll s_b$ (deviations for $\Theta_{bg} = 100$ are due
1002 to overshooting of the stopping condition in the last generation of our Wright-Fisher
1003

simulations).

While linkage affects the shape of the joint distribution, it does not alter its key qualitative characteristics that distinguish adaptive scenarios. In particular, the same conditions on Θ_{bg} and Θ_l apply for singularities at the boundaries of the marginal distributions. We still observe sweep-like adaptation for $\Theta_{bg} \ll 1$, adaptation by small shifts for $\Theta_{bg} \gg 1$, and a heterogeneous pattern of partial sweeps in a transition range of Θ_{bg} around 1.

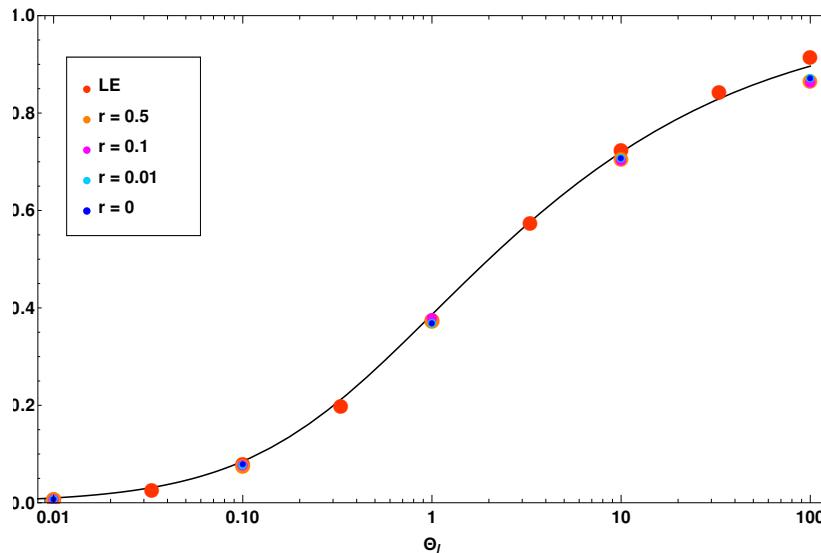


Fig S.1. $E[x]$ for redundant fitness effects with two linked loci. Simulation results (colored dots) for the mean allele frequency ratio are plotted in dependence of the locus population mutation rate Θ_l and compared with the analytical prediction (black line). Simulations are stopped when fitness has reached 95% of its maximum. Linkage does not change the results for the ratio of allele frequencies, despite significant buildup of linkage disequilibrium with low recombination rates. Results for 10 000 replicates, standard errors < 0.005 (smaller than symbols).

A.2 Alternative starting allele frequencies

So far, we have assumed that adaptation starts from mutation-selection-drift balance. This includes variable amounts of standing genetic variation (weak or strong s_d) and even cases where this balance is not represented by a stable equilibrium distribution

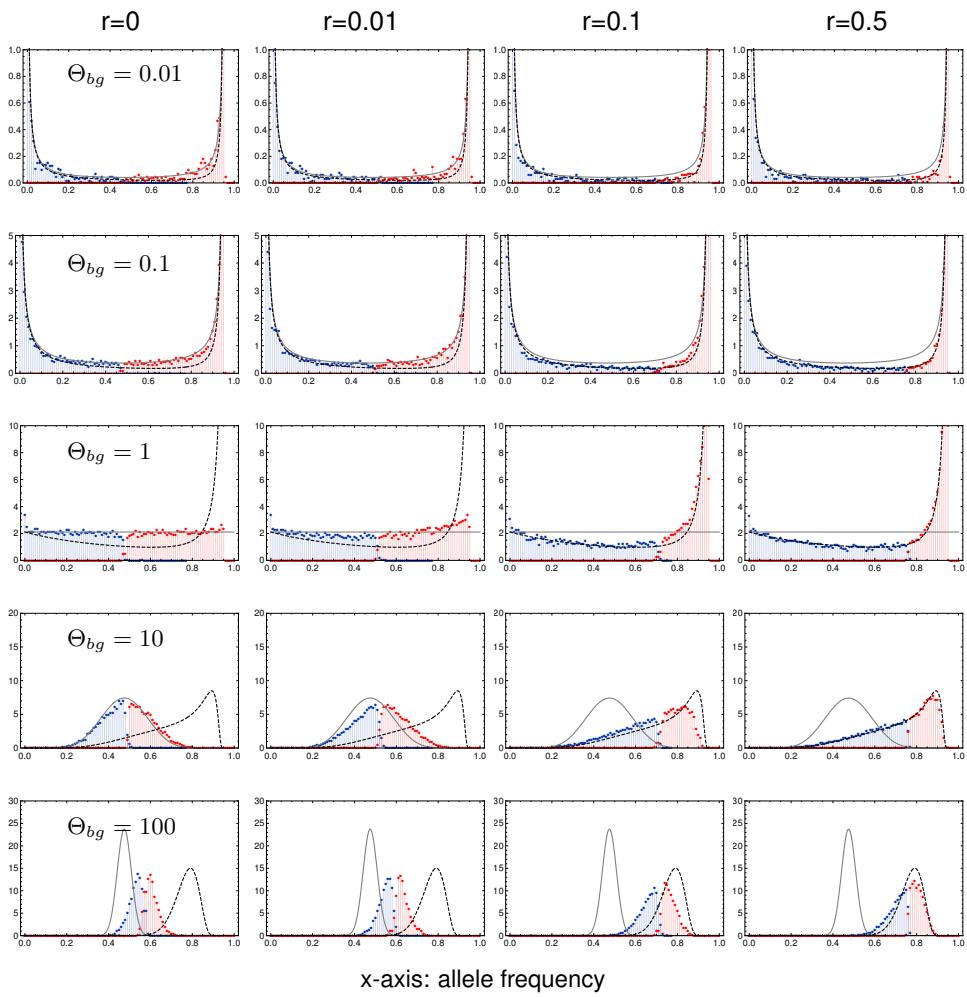


Fig S.2. Genetic architecture of adaptation with linkage. Marginal distributions for the major locus (red) and the minor locus (blue) of a model with $L = 2$ loci depending on Θ_{bg} (rows) and linkage among the loci (columns). Black lines show the analytical approximations for LE (dashed) and complete linkage (solid). For strong recombination $r \geq s_b = 0.1$, the deviations from the LE approximation are small. For $r \ll s_b = 0.1$, the approximation for complete linkage works well. Further parameters: $-s_d = s_b = 0.1$, $N_e = 10\,000$, 10 000 replicates.

(time-dependent selection, see the Mathematical Appendix). There are, however, other scenarios of biological relevance. Given the right (possibly complex) selection scheme, balancing selection can maintain mutant alleles, prior to the environmental change, at arbitrary frequencies. The same holds true if the base population is admixed, either due to natural processes or due to human activity (e.g. breeding from hybrids). For these scenarios, our theoretical formalism to describe the establishment of mutants during the stochastic phase (Fig 2) does not apply. In this section, we describe how the formalism

can be extended to cover arbitrary starting frequencies of mutants at the onset of
1022
positive selection at time $t = 0$.
1023

Extended Yule framework

The Yule process that describes the stochastic phase of the adaptive process accounts
1025 for the mutant copies at all loci that are destined for establishment. In our framework so
1026 far (see the Mathematical Appendix M.2), we have started this process with zero copies.
1027 SGV due to mutation-selection-drift balance can still be produced by such a process if it
1028 is started at some time in the past ($t < 0$). For general starting frequencies, we can
1029 alternatively start this process at time $t = 0$, but with mutant copies (immortal lineages)
1030 already present. Suppose that the mutant frequency at locus i at time $t = 0$ is p_i ,
1031 corresponding to $N_e p_i$ mutant copies. Of these, only the $n_i < N_e p_i$ "immortal" mutants
1032 (destined for establishment) are included in the Yule process. Assuming an
1033 independent establishment probability p_{est} per copy, n_i is binomially distributed with
1034 parameters $N_e p_i$ and p_{est} . For the limit distribution of a multi-type Yule process that is
1035 started with a non-zero number of lines, consider that each of these initial lines can be
1036 understood as an extra source of new immortal lines (due to birth) that is entirely
1037 equivalent to the generation of new lineages by mutation. It is therefore appropriate to
1038 include these lines as *extra locus mutation rate*
1039

$$\tilde{\Theta}_i = \Theta_i + n_i = 2N_e \mu_i + n_i. \quad (\text{S.2})$$

In the absence of recurrent mutation, $\Theta_i = 0$, this procedure reproduces the well-known
1040 Polya urn scheme (e.g. [60, 61]). Replacing Θ_i by $\tilde{\Theta}_i$ within our original Yule process
1041 formalism, and averaging over the binomial distribution, leads to the desired extension
1042 to arbitrary starting frequencies.
1043

Application

Theory papers (e.g. [30, 31, 41, 62]) often use a deterministic framework to describe the
1045 frequency of alleles that segregate in a population in mutation-selection balance. To
1046 simplify the analysis, they do not model SGV as a distribution (due to mutation,
1047 selection, and drift), but replace this distribution by its expected value (ignoring drift).
1048

We can apply our scheme with fixed starting frequencies to this case and thus assess 1049
 the effect of genetic drift in the starting allele frequency distribution. We assume equal 1050
 loci and a starting frequency $|\mu_l/s_d|$ for an (initially deleterious) mutant allele with 1051
 selection coefficient s_d in mutation-selection balance. Fig S.3 shows the simulated 1052
 marginal distributions of the loci with the largest contribution to the adaptive response 1053
 (compare Fig 4). We see that the type of the adaptive architecture is again constant 1054
 across rows with equal background mutation rate. However, due to the more 1055
 homogeneous starting conditions, adaptation involves more loci and is much more 1056
 shift-like. Analytical predictions following the above scheme are shown for $L = 2$ loci. 1057
 With establishment probability $p_{\text{est}} = 2s_b$, the counts n_1 and n_2 of "immortal" mutants at 1058
 both loci are independent random draws from a Binomial distribution with parameters 1059
 $N_e|\mu_l/s_d| = |\Theta_l/2s_d|$ and $2s_b$. For $\Theta_{bg} \geq 0.1$, we find (heuristically) that the marginal 1060
 distribution for alleles starting from mutation-selection balance closely matches the one 1061
 of the fully stochastic model with effective $\Theta_{bg}^{\text{eff}} = \Theta_{bg}(1 + |s_b/2s_d|) = 51\Theta_{bg}$ for the 1062
 parameters in the figure (lines added in green). (Note that, from the average number of 1063
 established lines, one would assume $\Theta_{bg}^{\text{eff}} = \Theta_{bg}(1 + |s_b/s_d|) = 101\Theta_{bg}$. However, this 1064
 does not account for the variance in the number of immortal lines among the two loci.) 1065

A.3 Diploids

To extend our model to diploids, we assume that a single locus that is *homozygous* for 1066
 the mutant allele is sufficient to produce the fully functional mutant phenotype, while a 1067
heterozygous locus produces a mutant that is functional with probability $1 - h$. We 1068
 assume that mutants contribute independently. Thus, if k heterozygous loci exist, but no 1069
 homozygous mutant locus, the resulting mutant phenotype will be functional with 1070
 probability $1 - (1 - (1 - h))^k = 1 - h^k$. For $L = 2$ loci, in particular, the (logarithmic) 1071
 fitness of genotype G becomes 1072
 1073

$$w(G) = \begin{cases} 0 & \text{no mutations: } G = (aab) \\ (1 - h)s & 1 \text{ heterozygous locus: } G = (Aabb, aaBb) \\ (1 - h^2)s & 2 \text{ heterozygous loci: } G = (AaBb) \\ s & \geq 1 \text{ homozygous mutation: } G = (AA\ldots, BB) \end{cases}, \quad (\text{S.3})$$

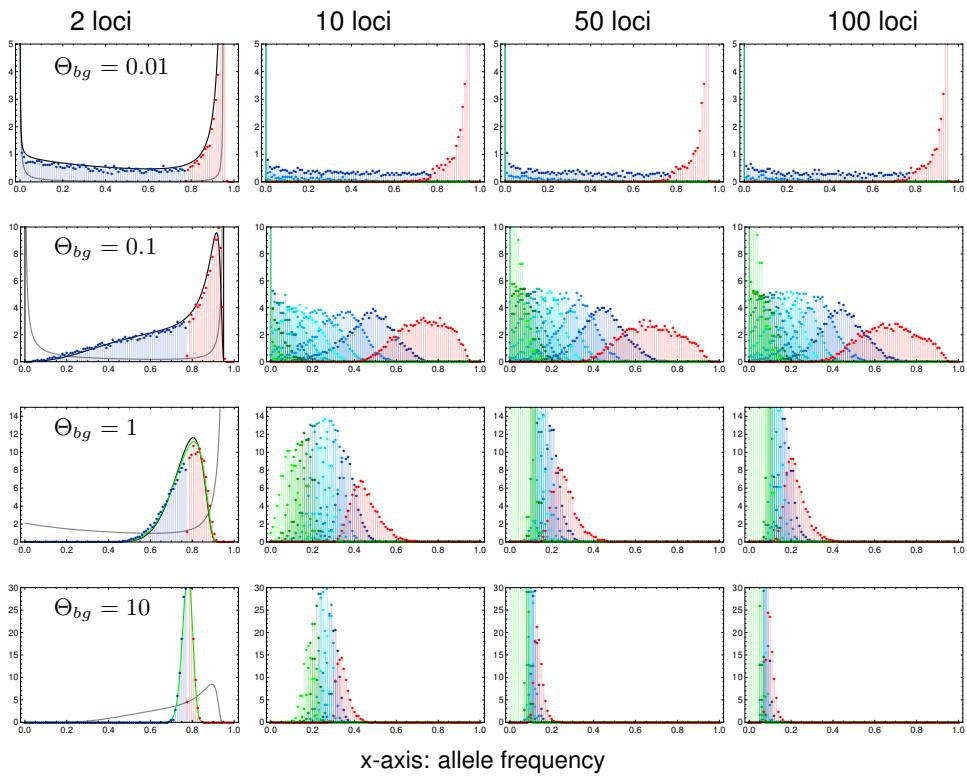


Fig S.3. Polygenic adaptation from alternative allele starting frequencies. The panels show the adaptive architecture when mutant alleles start from their expected value in mutation-selection balance, without drift. We distribute $L \cdot |\Theta_l/2s_d|$ mutant copies as evenly as possible across all loci. We set $-s_d = s_b/100 = 0.001$. Black lines for $L = 2$ loci show analytical predictions described in the main text (only computationally possible for $\Theta_{bg} \leq 1$), green lines for $\Theta_{bg} \geq 1$ show the heuristic prediction for $\Theta_{bg}^{\text{eff}} = 51\Theta_{bg}$. Finally, gray lines show the marginal distributions when adaptation occurs from mutation-selection-drift balance, compare Fig 4.

where $s = s_b > 0$ for $t \geq 0$ and $s = s_d < 0$ for $t < 0$. Note that $h \in [0, 1]$ measures the dominance of the *ancestral* allele. We assume Hardy-Weinberg-linkage-equilibrium (HWLE). In this case, the marginal fitnesses of the mutant alleles are (for 2 loci),

$$w_A^* = s - (1 - p_A)(1 - p_B)[1 - p_B(1 - 2h)]hs, \quad (\text{S.4a})$$

$$w_B^* = s - (1 - p_A)(1 - p_B)[1 - p_A(1 - 2h)]hs. \quad (\text{S.4b})$$

In contrast to the haploid case, the marginal fitnesses are in general *not* equal. There are, however, two important special cases, where our fitness scheme (with redundancy on the level of loci) implies equal marginal fitnesses (and thus redundancy on the level of alleles): either if the ancestral allele is fully recessive ($h = 0$) or if the alleles are

co-dominant ($h = 0.5$). As shown in the Mathematical Appendix, this holds true more 1078
generally for an arbitrary number of loci. 1079

1080 Simulation results

We simulated a diploid model with two loci in HWLE according to the above scheme 1081
with three different levels of dominance of the ancestral allele, $h = 0.1; 0.5$; and 0.9 . The 1082
diploid, effective population size is N_e , corresponding to $2N_e$ chromosomes. The 1083
mutation rate is μ at both loci and we define the population-scaled mutation rate for 1084
diploids as $\Theta_l^d = \Theta_{bg}^d = 4N_e\mu$. Simulations are stopped when the percentage of 1085
remaining ancestral *haplotypes* drops below $f_w = 0.05$. (This condition directly 1086
corresponds to the stopping condition for haploids. Alternative stopping conditions, 1087
such as 95% increase in mean diploid fitness are also covered by our theoretical 1088
framework, but require a different transformation.) 1089

The results are shown in Fig S.4. We see that the haploid results fully carry over to 1090
diploids for co-dominance ($h = 0.5$, middle column), where the diploid fitness scheme 1091
implies redundancy on the level of alleles. As explained above, the same holds true if 1092
the ancestral allele is fully recessive. Our simulations show that the haploid result is still 1093
a good approximation for $h = 0.1$ (left column). In contrast, much larger deviations are 1094
obtained for recessive mutants (dominant ancestral allele, $h = 0.9$, right column). In this 1095
case, the locus with the higher mutant frequency experiences stronger selection. For 1096
 $\Theta_l \geq 0.1$, when polymorphism at both loci is likely, this favors the major locus relative to 1097
the minor locus, increasing the heterogeneity in the adaptive architecture. 1098

1099 A.4 Asymmetric loci

For the Figures in the main text, we have assumed that all loci in the genetic basis of 1100
the trait are equivalent: they have equal mutation rates and effect sizes. This symmetric 1101
choice favors a collective *shift* scenario because no locus has a build-in advantage. In 1102
this Appendix, we study the consequences of asymmetries among loci. 1103

Mutation rate asymmetry Our analytical formalism allows for arbitrary asymmetries 1104
in the locus mutation rates. The prediction for the expected ratio of minor/major locus 1105

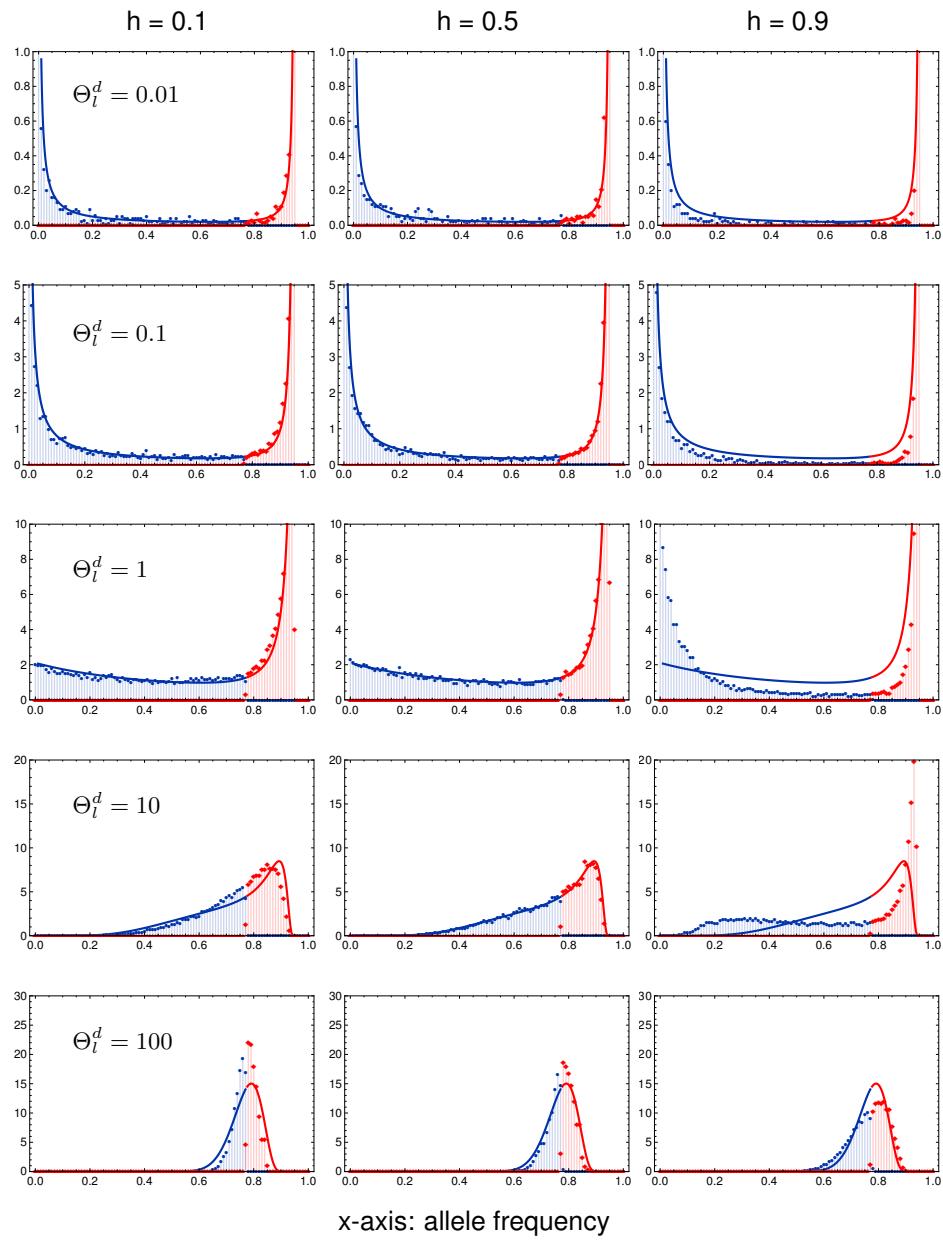


Fig S.4. Adaptive architecture for diploids in linkage equilibrium. Adaptation in a 2-locus model according to scheme (S.3), with recessive ($h = 0.1$), codomiant ($h = 0.5$) or dominant ($h = 0.9$) ancestral alleles. We assume Hardy-Weinberg and linkage equilibrium. Simulations are stopped when frequency of wildtype haplotypes drops below 5%. Standing genetic variation builds up for $16N_e$ generations before the change in the environment. Selection coefficients are set to $s_b = -s_d = 0.1$. Solid lines show analytical predictions using the framework developed for haploids.

frequencies of a 2-locus model with unequal mutation rates Θ_1 and Θ_2 reads

$$\mathbb{E}[x] = \frac{\Gamma(\Theta_1 + \Theta_2)}{\Gamma(\Theta_1)\Gamma(\Theta_2)} \int_0^1 (x^{\Theta_1-1} + x^{\Theta_2-1})(1+x)^{-\Theta_1-\Theta_2} dx \quad (\text{S.5})$$

where the sum in the integral accounts for the possibility that either locus may end up 1107
as the “major locus” at the time of observation (compare Eq. M.27). Fig S.5 shows the 1108
prediction as a function of Θ_1 and $\Theta_2 = d\Theta_1$ together with simulation results (analogous 1109
to Fig 3 in the main text). As expected, differences in the locus mutation rates lead to 1110
more heterogeneous “sweep-like” architectures with lower minor/major locus ratio. The 1111
Figure also confirms the independence of levels of standing genetic variation and the 1112
good overall fit of the analytical approximation. 1113

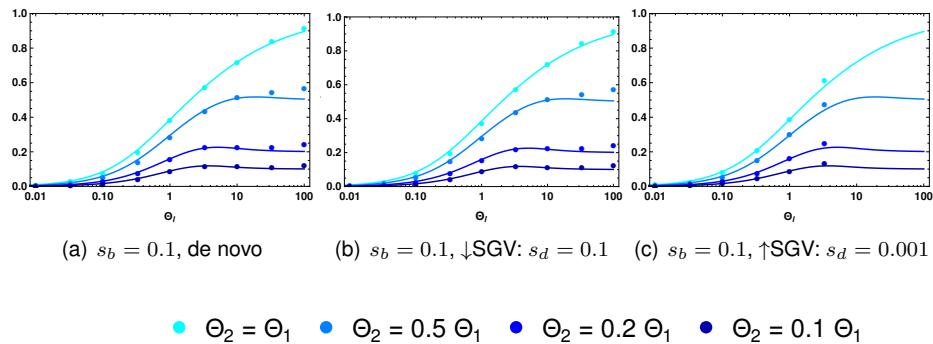


Fig S.5. Different mutation rates. For $L = 2$ we plot $E[x]$ without and with previous 1114
buildup of weak and strong SGV for different mutation rates at the two loci, such that 1115
 $\Theta_2 = d \cdot \Theta_1$, for $d = 1, 0.5, 0.2, 0.1$. Our analytical predictions for different mutation rates, 1116
Eq (S.5), yield an excellent fit. Simulations are obtained from 10 000 replicates per data 1117
point, assuming linkage equilibrium. 1118

Locus effect asymmetry Our analytical results are based on the assumption of 1119
strong redundancy between loci. In the main text, we have already discussed how 1120
these results extend for a scenario of relaxed redundancy, where two mutational steps 1121
are needed to reach the trait optimum. Similarly, intermediate phenotypes are also 1122
included in the diploid version of our model. However, both model extensions do not 1123
break the symmetry assumption concerning the effects of single-locus substitutions. 1124
Differences in the single-locus effects interfere with the assumptions of our 1125
Yule-process framework for the early adaptive phase. In contrast to unequal mutation 1126
rates, they cannot easily be included. Although polygenic models with equal locus 1127
effects have a long history in the biological literature, at least slight deviations from this 1128
assumption are unavoidable in nature. Indeed, deviations already arise due to 1129
non-neutral “hitchhiker” mutations on the selected haplotypes. With exponential growth 1130

1126 during the selected phase, even small perturbations could, in principle, lead to
1127 significant changes in the resulting adaptive architecture. To test this, we use a haploid
1128 2-locus model with (Malthusian) fitness 0 for the ancestral genotype ab and fitness
1129 $s_{b/d} \geq 0$ for the single mutant Ab and the double mutant AB . The other single mutant,
1130 aB is set to $\epsilon s_{b/d}$. Fig S.6 shows simulation results for the expected minor/major
1131 frequency ratio for cases where aB is less beneficial ($\epsilon = 100/101, 10/11, 2/3$) as well
1132 as for cases where aB is optimal ($\epsilon = 101/100, 11/10, 3/2$). Note that the latter case
1133 corresponds to “sign epistasis” for the A mutant. Simulations are stopped when the
1134 frequency of ancestral haplotypes, ab , drops below 5%.
1135

As expected, the results show that unequal locus effects (like unequal mutation
1136 rates) lead to more heterogeneous adaptive architectures. However, as long as
1137 differences in the locus effects are moderate (below $\sim 10\%$) the prediction from the fully
1138 redundant model still provides a good approximation. In contrast, differences of 50% in
1139 the single-locus effects lead to sizable deviations. This relative robustness is
1140 reminiscent of the case of *soft selective sweeps*, where differences of $\lesssim 20\%$ in the
1141 fitness of independent mutant copies only lead to small deviations from the predictions
1142 for the frequencies of sweep haplotypes (see Fig. 4 and S1 in [40]). Deviations from the
1143 fully redundant prediction are larger for the sign-epistasis case, where the aB mutant
1144 has the highest fitness. This is expected – indeed, the single mutant should eventually
1145 displace all other genotypes at later observation times. Fig S.6 also shows that
1146 deviations are partially compensated if adaptation occurs from standing genetic
1147 variation, in particular if levels of standing variation are high (panel c). This reflects our
1148 model assumption that the locus under stronger beneficial selection is also under
1149 stronger deleterious selection prior to the environmental shift.
1150

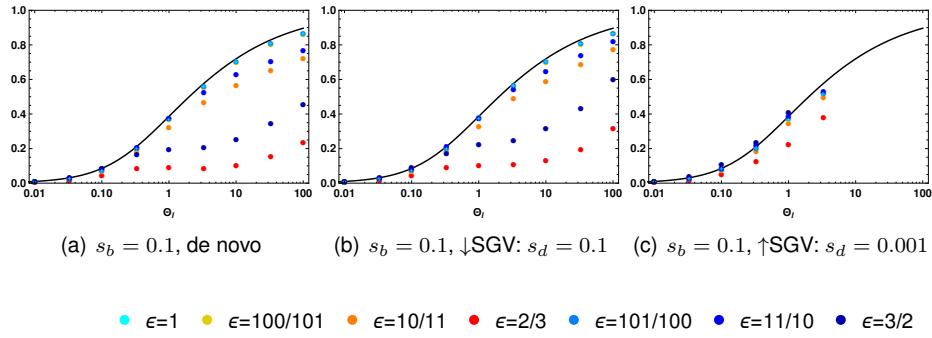


Fig S.6. Different locus effects. For $L = 2$ we plot $E[x]$ for without and with previous build-up of weak and strong SGV for various genotypic fitnesses of the aB-genotype $\epsilon s_{b/d}$. Fitness of the Ab and AB genotype is always set to $s_{b/d}$. Simulations are obtained from 10 000 replicates per mutation rate with recombination rate $r = 0.5$.

A.5 Approximations for multi-locus architectures

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet distribution, Mathematical Appendix Eq (M.29), lower dimensional marginal distributions for single loci or groups of loci can easily be derived. For linkage equilibrium, Mathematical Appendix Eq (M.20), however, the required integrals can only be solved numerically. For L loci, an $(L - 2)$ -dim integral needs to be evaluated, which becomes computationally unfeasible (with programs packages like *Mathematica*) for $L > 5$. In many cases, we can nevertheless derive approximations. To do so, we make use of a key property of the adaptive architecture, seen in our results: The (joint) architecture of adaptation at loci with the largest contribution to the adaptive response is primarily a function of combined mutation rates at competing loci, such as the background mutation rate Θ_{bg} . Given these values, it is largely independent of the number of loci in the genetic basis of the trait itself. We can therefore describe the adaptive architecture of a polygenic trait with L loci by a model with $k < L$ loci given that the total adaptive response is well captured by the contribution of the top k loci. It turns out that this is typically the case for $\Theta_{bg} \leq 1$, when the contributions from different loci are very heterogeneous. In the following, we describe this procedure for an L -locus model with equal mutation rates $\Theta_i = \Theta_l$, $1 \leq i \leq L$.

Approximations using the 2-locus model

1168

Several key properties of the L -locus architecture can already be described within the 1169
2-locus framework. This includes the marginal distributions at the major locus and at 1170
the first minor locus. To this end, we set the mutation rate at the minor locus of the 1171
2-locus model to the background mutation rate of the L -locus model. As described in 1172
the main text, this choice matches the time lag between the first origin of a mutation 1173
destined for establishment at a locus (usually the major locus) and at a second locus 1174
(usually the first minor locus). It also guarantees that the approximation captures the 1175
correct asymptotic shape of the major-locus distribution at $p = 1 - f_w$, and of the 1176
first-minor-locus distribution at $p = 0$. The choice of the mutation rate at the major locus 1177
itself is less important. For the approximation of the major-locus distribution, we find 1178
that setting it to the locus-mutation rate yields the best fit. We thus use a 2-locus model 1179
with unequal mutation rates, $P_{f_w}^{1>}[p_1 | \Theta_l, \Theta_{bg}]$, Eq (M.28a), in Fig 4. For the marginal 1180
distribution at the first minor locus, the approximation with equal mutation rates, 1181
 $P_{f_w}^{1<}[p_1 | \Theta_{bg}, \Theta_{bg}]$, Eq (M.28b), works slightly better. Finally, we can also approximate the 1182
distribution at an *average* minor locus (rather than the first minor locus) by 1183
 $P_{f_w}^{1<}[p_1 | \Theta_l, \Theta_{bg}]$. 1184

Approximations using models with $k \geq 2$ loci

1185

The approximation of higher-order minor loci requires models with a sufficiently large 1186
genetic basis that such a locus exists at all. I.e., a k -locus model can approximate 1187
marginal distributions up to the $(k - 1)$ st minor locus. Assume that we want to 1188
approximate the marginal distribution of the j th minor locus of an L -locus model using a 1189
 k -locus model, $j < k < L$. As for the case $k = 2$ discussed above, the approximation 1190
requires that the expected lag time between the origin of a successful mutation at a first 1191
locus and the origin of a mutation at a j th locus be matched. For the L -locus model, 1192
this waiting time is 1193

$$\frac{1}{\Theta_l} \sum_{i=1}^j \frac{1}{L-i}.$$

For a k -locus model with equal mutation rate $\Theta_l^{(k)}$ at all loci, we thus obtain the 1194

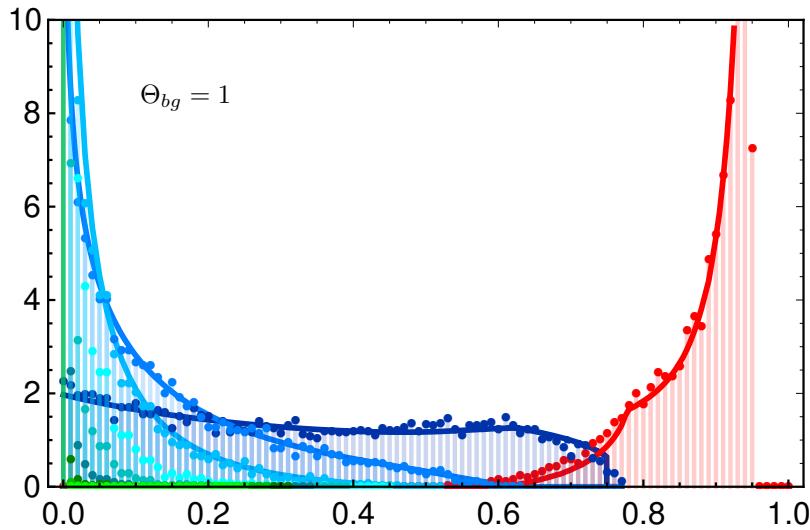


Fig S.7. Approximating higher dimensional adaptive architectures. We approximate a 10 locus model ($\Theta_{bg} = 1$) with the theoretical predictions based on the four-locus model for the major locus and the first, second, and third minor locus. Compare Fig 4, where we use approximations based on models with the minimal number of loci needed.

matching rule

1195

$$\Theta_l^{(k)} = \Theta_l \frac{\sum_{i=1}^j \frac{1}{k-i}}{\sum_{i=1}^j \frac{1}{L-i}}$$

for the approximation of the j th minor locus. For $j = 1$, this reproduces the matching rule for the background mutation rate Θ_{bg} . In general, the value for $\Theta_l^{(k)}$ depends on j , but converges once $L, k \gg j$. Approximations by models with unequal locus mutation rates are also possible, but usually do not lead to a relevant improvement. In Fig 4, we use formulas from 3- and 4-locus models to approximate the marginal distributions of the 2nd and 3rd minor locus, respectively. In general, the approximations for all loci can be improved by using approximation models with more loci than required, i.e. $k > j + 1$. In Fig S.7, we show this for approximations of the major locus and the first three minor loci, all derived from a 4-locus model.

1196

1197

1198

1199

1200

1201

1202

1203

1204

A.6 Marginal distribution of a single locus

1205

Figure S.8 shows the marginal distribution at a single focal locus for a trait with $L = 2$ to $L = 100$ loci in its basis. Since all loci are equal, the probability that the focal locus

1206

1207

ends up as the major locus is $1/L$. The red dots in the figure indicate the part of the 1208
marginal distribution that corresponds to this case. With an increasing number of 1209
redundant loci, the probability for each single locus to play a major role in the adaptive 1210
process decreases. The marginal distribution of a fixed locus therefore changes 1211
strongly with an increasing number of loci L . For large L , in particular, it does not 1212
represents the key components of the adaptive architecture on the level of the trait any 1213
more. This is in contrast to Fig 4, where marginal distributions of the loci with the 1214
largest contributions to the adaptive response are shown. For 2 loci, Fig S.8 also shows 1215
the analytical approximation for the marginal distribution, Eq (11). As long as the 1216
adaptive architecture is dominated by only a few loci, the same 2-locus result can be 1217
used as an approximation for the marginal distribution in models with more than two 1218
loci. This is shown in the figure for $\Theta_{bg} \leq 1$. The figure also shows that the 1219
approximation fails for $\Theta_{bg} \geq 10$ when adaptation is truly collective. 1220

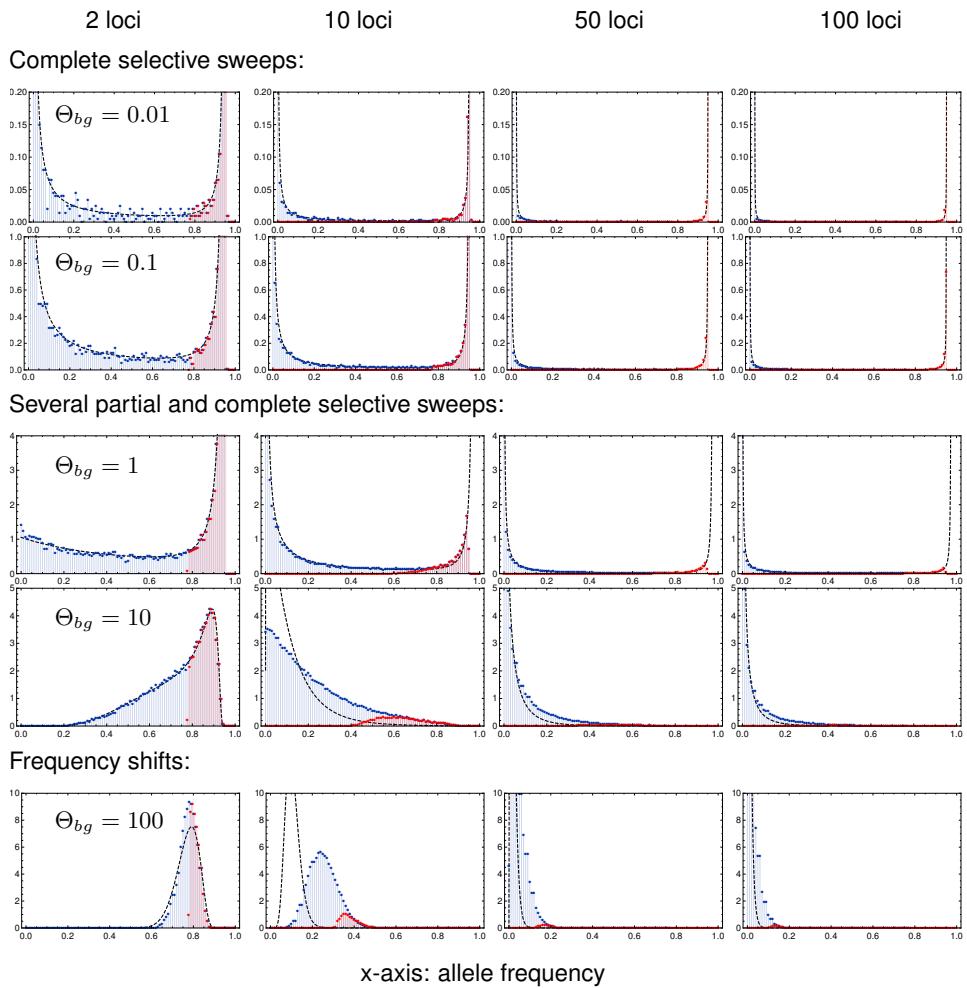


Fig S.8. Marginal distribution at a single focal locus. Simulation results for the marginal distribution at a single locus at the end of the adaptive phase are shown in blue. Red dots show the contribution of the major locus to this distribution (all cases, where the focal locus ends up as the major locus). Dashed lines show the analytical prediction based on the 2-locus model, Eq (11). Parameters and further details as in Fig 4.

A.7 Dynamics of adaptation

1221

In contrast to previous work on the topic (e.g. [30, 31]), our approach does not discuss adaptive architecture as a function of the time that has elapsed since the environmental change. Instead, we assess adaptation at the genotypic level as a function of the progress that has been made towards adaptation of the trait. In our main result on the joint distribution of mutant allele frequencies (Eq (8), this progress is measured by the stopping condition f_w , which directly relates to the distance of the trait mean to the new optimum (see Eq (2); for the basic model of a fully redundant trait, f_w is the frequency of remaining ancestral phenotypes in the population). This shift from a time-slice view to a trait-centered view can lead to larger qualitative differences in particular if the mutation rate is low ($\Theta_l \ll 1/L$). In this case, a distribution of genetic architectures at a fixed time $t > 0$ will incorporate opposite cases where adaptation of the trait has either already been completed or not even started because the population still waits for a successful mutant. Biologically, a trait-centered view seems to be closer to the idea of an “architecture of phenotypic adaptation”. Mathematically, the changed perspective enables the derivation of analytical results. By comparing architectures for variable degrees of phenotypic adaptation, we still obtain a view of the adaptation dynamics, with f_w as dynamical variable instead of time t . This is shown in Fig S.9. For $\Theta_{bg} \leq 1$, we see how the dominant contribution of a single “major locus” to the adaptive response emerges early on and then accentuates during the adaptive phase.

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

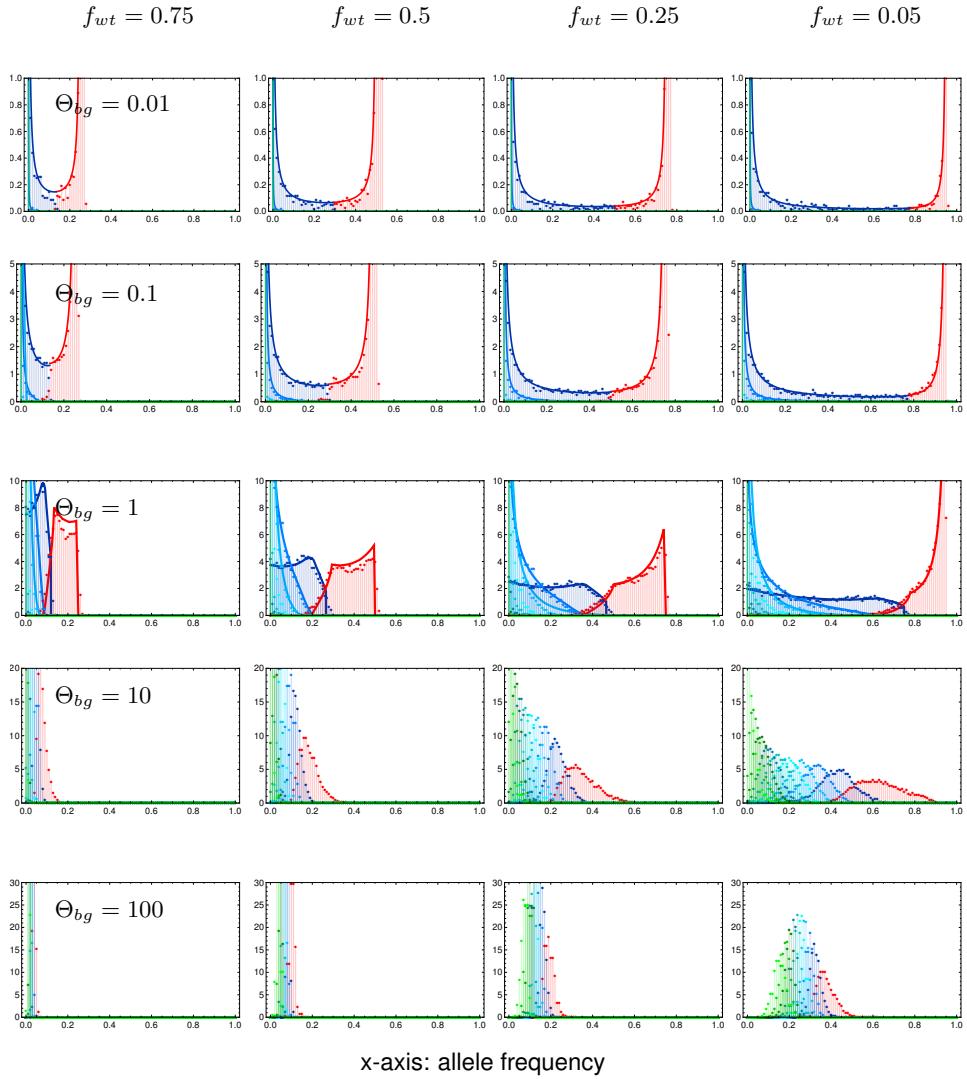


Fig S.9. Dynamics of the adaptive process. Allele frequency distributions at four stages over the course of adaptation. Approximations correspond to the Fig S.7 each rescaled to the changed stopping condition $f_{wt} = 0.75; 0.5; 0.25; 0.05$. Simulations for 10 000 replicates per mutation rate with $s_b = -s_d = 0.1$.

Acknowledgments

We thank Claus Vogl for his insightful comments and several fruitful discussions. We
also thank Matthias Maschek for his help concerning programming and simulation setup.
Finally, a special thank you goes to Montgomery Slatkin for his hospitality in welcoming
JH and IH to his lab at UC Berkeley, where this project was started. We also thank
Justin C. Fay and three anonymous referees for helpful comments and suggestions.

Author Contributions

Authors: Ilse Höllinger (IH), Pleuni S Pennings (PSP), Joachim Herisson (JH)

- JH, PSP and IH designed the study concept.
- IH wrote the first version of the manuscript.
- IH prepared the figures.
- JH revised the manuscript with comments by PSP and IH.
- JH derived the analytical results with input from PSP and IH.
- IH wrote the simulations code with input from JH and PSP.
- IH prepared the numerical results.

Data Archiving

We provide a comprehensive *Mathematica* [63] notebook, showing visualizations of the
analytical predictions. The simulation code and data, and summary statistics underlying
all figures are available via Dryad.

Höllinger I, Pennings PS, Herisson J. Data from: Polygenic adaptation: From sweeps
to subtle frequency shifts. Dryad Digital Repository.

DOI: <https://doi.org/10.5061/dryad.7n6vg10>

Funding

1263

IH was funded by the Austrian Science Fund (FWF): DK W-1225-B20, Vienna Graduate School of Population Genetics.

1264

1265

B Supplement

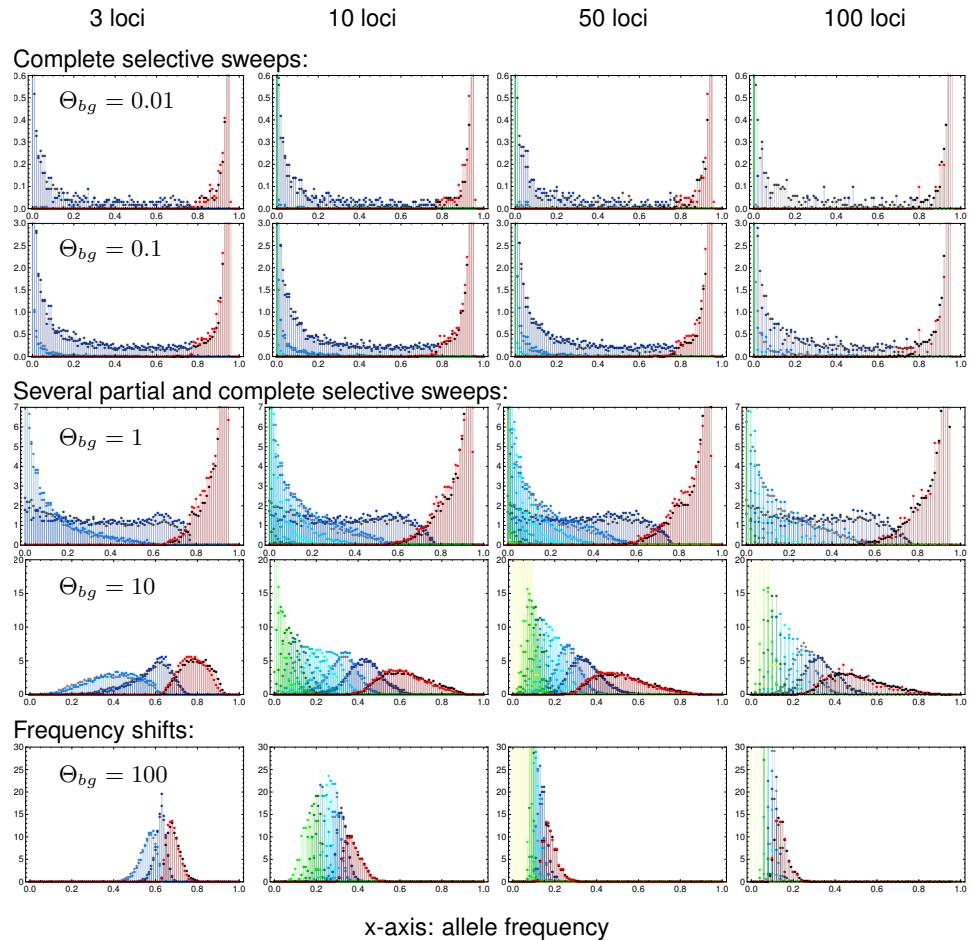


Fig S.10. Weakly relaxed redundancy. Weakly relaxing redundancy such that a single mutant has fitness $1 + 0.9s_{b/d}$ and only two mutations or more confer the full fitness effect ($1 + s_{b/d}$) demonstrates the robustness of our model. As in Fig 4, allele frequency distributions of derived alleles are displayed once the frequency of the wildtype individuals in the population has decreased to $f_w = 5\%$, which corresponds to an increase of 95% in mean fitness for complete redundancy. Genomic patterns of adaptation show very similar characteristics as with complete redundancy. Simulation data for relaxed redundancy (colored dots) are almost identical to results for complete redundancy (gray dots).

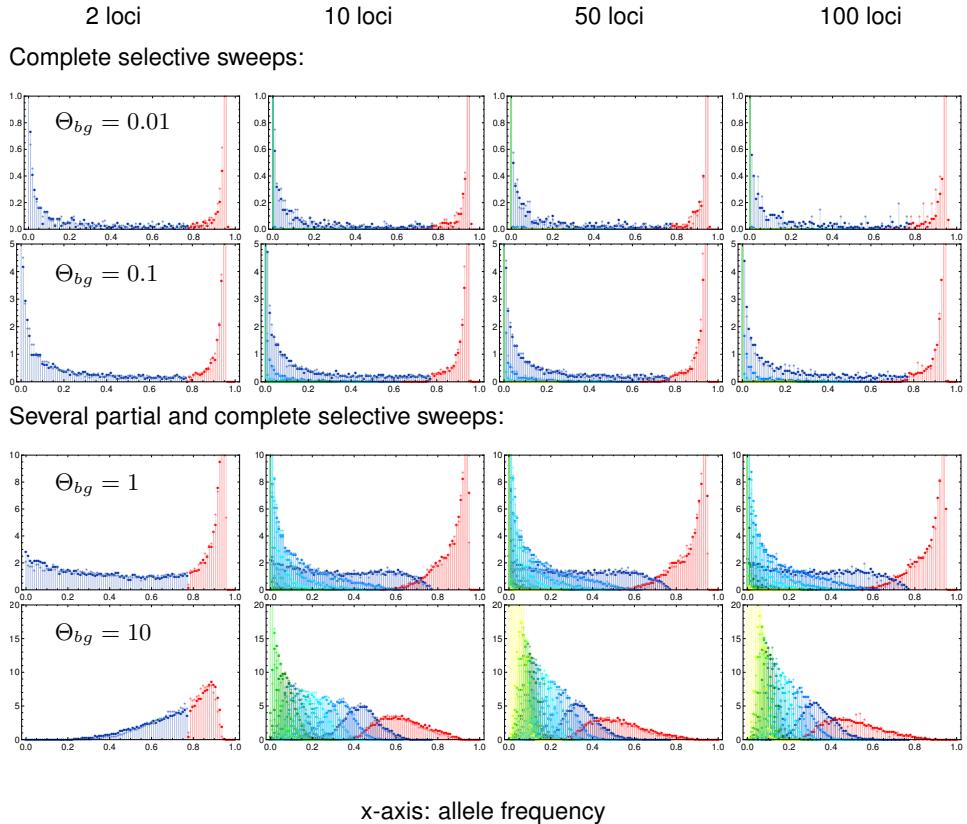


Fig S.11. Genetic architecture with weak selection. Frequency distributions of major and minor loci are shown upon an increase of 95% in mean fitness for complete redundancy for $s_b = 0.1$ (colored dots, data as in Fig 4) and weaker selection $s_b = 0.01$ (colored asterisks). Deleterious selection before the environmental change is set to $s_d = -s_b$. As we condition on adaptation from the ancestral state, we do not obtain enough valid runs for $s_d = -0.01$ and $\Theta_{bg} = 100$.

Polygenic adaptation: From sweeps to subtle frequency shifts

January 30, 2019

Mathematical Appendix

This Appendix describes the details of the mathematical model and methods used to derive the analytical results of the article. Section M.1 gives an outline of the model; section M.2 introduces the branching process method used for the early stochastic phase of polygenic adaptation; section M.3 describes the derivation of the joint frequency distribution at the end of the deterministic phase.

M.1 Redundant trait model

Consider a panmictic population of N_e haploids. Selection acts on a binary trait Z (e.g. resistance) with just two states, a wildtype state Z_0 (not resistant) and a mutant state Z_1 (resistant). Without restriction, we can choose $Z_0 = 0$ and $Z_1 = 1$. Malthusian (logarithmic) fitness is defined by the function

$$W(Z, t) = s(t)Z \quad (\text{M.1})$$

where the time dependent coefficient $s(t)$ defines the strength of directional selection. We assume that $s(t) < 0$ for $t < 0$, but $s(t) > 0$ for $t > 0$, such that the optimal trait value shifts from the wildtype state $Z = 0$ to the mutant state $Z = 1$ due to some change in the environment at time $t = 0$. We also assume that selection is stronger than drift, $|Ns(t)| \gg 1$ for almost all t , but is arbitrary otherwise.

We assume that Z is polygenic, with L biallelic loci (wildtype a_i and mutant allele A_i , $i = 1, \dots, L$) constituting its genetic basis. While genotype $\mathbf{a} = (a_1, a_2, \dots, a_L)$ produces the ancestral wildtype Z_0 , all mutant genotypes are fully redundant and produce the mutant phenotype Z_1 , independently of the number of mutations. New mutations from a_i to A_i occur at a rate μ_i per generation, with $\mu_i \ll |s(t)|$ for almost all t . For the purpose of our model, back mutation from A_i to a_i can be ignored. The linkage map among loci is arbitrary – unless explicitly specified otherwise. Let p_i be the frequency of allele A_i , and let f_a be the frequency of the wildtype genotype \mathbf{a} . Then the mean fitness in the population is

$$\bar{W}(t) = s(t)\bar{Z}(t) = s(t)(f_a Z_0 + (1 - f_a)Z_1) \quad (\text{M.2a})$$

where \bar{Z} is the trait mean. Since $W(Z_1, t) = s(t)Z_1$ is the marginal fitness of any mutant allele, the selection dynamics at the i th locus can be expressed as

$$\dot{p}_i = p_i(W(Z_1, t) - \bar{W}(t)) = s(t)p_i(Z_1 - \bar{Z}(t)). \quad (\text{M.2b})$$

Our redundancy assumption implies strong diminishing returns epistasis on the level of fitness: the fitness of genotypes with multiple mutations is the same as the one of single mutants. Eq (M.2b) shows that the epistatic effect of the genetic background on the dynamics at a particular locus is mediated by the trait mean $\bar{Z}(t)$ as single compound parameter. Allele frequencies at all loci change with the same (time and frequency-dependent) rate. We readily establish that

$$\frac{d}{dt} \left(\frac{p_i}{p_j} \right) = \frac{\dot{p}_i p_j - \dot{p}_j p_i}{p_j^2} = 0. \quad (\text{M.3})$$

Thus, the ratio of allele frequencies among loci does not change under selection. Note that this holds for an arbitrary linkage map. We can conclude that any differences in (relative) allele frequencies are due to mutation and drift.

We are interested in the pattern of allele frequency changes across loci during the phase of rapid phenotypic adaptation. This phase starts with the onset of positive selection on derived alleles at time $t = 0$. It ends when mean fitness $\bar{W}(t)$ approaches its maximum $s(t)Z_1$ and further selective change in the allele frequencies is strongly

decelerated. Since $(W(Z_1, t) - \bar{W}(t))/s(t) = (Z_1 - Z_0)f_a$, we can parametrize this end point by a condition $f_a(t) = f_w$ on the frequency of the wildtype Z_0 in the population. In our figures, we usually use $f_w = 0.05$. As initial state at time $t = 0$, we assume that the population adapts from a balance of mutation, selection, and drift. We thus allow for standing genetic variation (SGV) at all loci. If selection prior to $t = 0$ is constant (which is what we generally assume in our computer simulations, see main text), SGV is given by the standard equilibrium distribution under mutation, selection, and drift, where we require that a_i is the ancestral state at each locus. I.e., each allele frequency trajectory $p_i(t)$, back in time, originates from the boundary $p_i = 0$ rather than $p_i = 1$ (see also [1] for this concept). However, our analytical results do not require a static equilibrium and, for a general $s(t) < 0$ for $t < 0$, the SGV reflects this non-equilibrium dynamics.

As described in the main text, we dissect the adaptive process into two phases. During an initial *stochastic phase* mutation, selection, and drift lead to the build-up of genetic variation, either from SGV or due to new mutation after time $t = 0$, as long as allele frequencies p_i at all loci are still low. We will describe our approach to this phase in detail in the section on Yule processes below. Once allele frequencies are sufficiently large, genetic drift and recurrent new mutation play only a minor role relative to selection until we reach the end of the rapid adaptive phase. We thus enter a *deterministic phase* where the dynamics is then well approximated by Eq (M.2b).

Relaxed redundancy

To relax the stringent redundancy condition of our model, it is natural to assume that a single mutation is not sufficient to produce the full mutant phenotype $Z_1 = 1$, but only a partial phenotype $Z_q = q$ with $0 < q < 1$. This makes the marginal fitness of mutant alleles dependent on the genetic background. If genotypes with two or more mutations produce Z_1 , we have

$$\dot{p}_i = (W_i(t) - \bar{W}(t))p_i = s(t)p_i \left(Z_1 - \bar{Z}(t) - (Z_1 - Z_q) \frac{f_i}{p_i} \right) \quad (\text{M.4})$$

where f_i is the frequency of the haplotype with a single mutation at locus i . Since f_i/p_i depends on i (even in linkage equilibrium), the ratio of allele frequencies at different loci is no longer invariant and the key symmetry assumption (M.3) of the fully redundant

model is violated. Note that redundancy is recovered for very low mutant frequencies,
such that double mutants are rare ($f_i \approx p_i$) and also late in the adaptation process,
when most haplotypes carry at least one mutation and $f_i \rightarrow 0$.
69
70
71

Diploids

72

We can generalize the redundant trait model to diploids as follows. For a general model,
the dynamical equations in continuous time read
73
74

$$\dot{p}_i = (W_i(t) - \bar{W}(t))p_i \quad (\text{M.5})$$

where $W_i(t)$ is the marginal fitness of allele A_i and $\bar{W}(t)$ the mean fitness. All fitnesses
may depend on the allele frequencies and on time. Using (M.3), we see that all mutant
alleles A_i are redundant in the sense that they all feel the same selection pressure if
and only if their marginal fitnesses are equal at all times, $W_i(t) = W_j(t), \forall i, j$. (The
same condition can also be derived from a discrete time dynamics.) For haploids, equal
marginal fitnesses, independently of the genetic composition of the population,
enforces the fully redundant trait model described above. For diploids with dominance,
the marginal fitness also depends on the allele frequency at the focal locus itself. An
obvious solution to the condition of equal marginal fitnesses across loci is the case of
complete dominance of the mutant allele. We can gain some more flexibility for the
fitness scheme, if we assume that genotype frequencies are at Hardy-Weinberg
equilibrium at all times. We can then distinguish three genotype classes: the wildtype
without any mutations (normalized fitness 0), mutant individuals with one or more
mutations on only a single haplotype (fitness $s_1(t)$) and individuals with mutations on
both haplotypes (fitness $s_2(t)$). The marginal fitness of any mutant allele then is
80
81
82
83
84
85
86
87
88
89
90
91
92
93

$$W_i(t) = s_1(t)f_a + s_2(t)(1 - f_a), \quad (\text{M.6})$$

where f_a is the frequency of the ancestral haplotype without mutations. We thus require
redundancy of mutations (only) within haplotypes. Note, however, that this fitness
scheme implies a position effect, i.e., the fitness of the genotype does not only depend
on the number of mutations at each locus, but also on the association of mutations to
90
91
92
93

one or the other haplotype. If we assume linkage equilibrium in addition to
94
Hardy-Weinberg proportions, a position effect can be avoided if we use the following
95
fitness scheme
96

1. The ancestral genotype without any mutants has normalized fitness $W(t) = 0$,
97
2. any genotype with at least one homozygous mutant has fitness $W(t) = s_2(t)$,
98
3. a genotype without a locus that is homozygous for the mutant, but with k loci that
99
are heterozygous has fitness
100

$$W(t) = s_2(t) + 2^{1-k} (s_1(t) - s_2(t)).$$

Since 2^{1-k} is the probability for any focal mutant allele to be on the same
99
haplotype with all $k - 1$ other mutant alleles, assuming linkage equilibrium, this
100
fitness scheme leads to the same marginal fitness as Eq (M.6) above.
101

M.2 Yule approximation

We describe the dynamics of mutant types at the different loci during the stochastic
102
phase by a *multi-type Yule pure birth process with immigration*. Our framework builds
103
on established mathematical theory [2, 3] and a previous approach to describe the
104
genealogy of a beneficial allele during a selective sweep in terms of a Yule
105
process [4, 5]. Here, we extend this approach to the polygenic scenario.
106

Consider a mutation A_i that appears at some locus either prior to the environmental
107
change (standing genetic variation) or after the change. This mutation is relevant for the
108
joint distribution of mutant allele frequencies at the time of observation after the rapid
109
adaptive phase if and only if descendants of this mutation still segregate in the
110
population at this time. The idea of the Yule approach is to construct the genealogies of
111
these mutant descendants at all loci forward in time. We start the process at some time
112
 $t_0 \ll 0$ in the past before the first mutation with surviving descendants has originated.
113
We assume that the frequency p_i of mutant alleles is low during the entire stochastic
114
phase. Then, new mutations at locus i appear at rate $\approx N\mu_i =: \Theta_i/2$ per generation,
115
but only a fraction of those will survive deleterious selection prior to $t = 0$ and genetic
116
drift to establish in the population and to contribute to the adaptation of the trait. We
117
118

denote this establishment probability as $p_{\text{est}}(t)$. If selection is constant and positive (as
assumed in the main text), $s(t) = s_b > 0$, we can approximate $p_{\text{est}} \approx 2s_b$. For general
time-dependent selection, $p_{\text{est}}(t)$ will depend on $s(\tilde{t})$ with $\tilde{t} \geq t$ [6], and also on the
mutations that were previously established at the same or at other loci. Crucially,
however, since the marginal fitness of mutant copies at all loci is the same at any given
time, $p_{\text{est}}(t)$ does not depend on the locus. We only include mutants into our Yule
process that successfully establish in the population, which are represented as
“immortal lineages” in the Yule tree. We follow these lineages in continuous time. There
are then two types of events:

1. First, new mutation creates new immortal lineages at rate

$$p_{\text{mut},i}(t) = \frac{\Theta_i}{2} p_{\text{est}}(t) \quad (\text{M.7})$$

independently at each locus. This event is called “immigration” in the
mathematical literature [2], but it corresponds to mutation in our model. (In a
model with gene flow, where adaptation in a local deme occurs from immigration,
new lines would be truly immigrants, see also [7] for this analogy).

2. Second, existing immortal mutant alleles A_i can give birth to further immortal
mutant copies, corresponding to a split of the immortal line in the Yule process. To
derive the split rate p_{split} , imagine that we implement the evolutionary dynamics as
a continuous-time Moran model, where individuals give birth (due to a binary split)
at constant rate one per generation. In the corresponding Yule process, we only
include this birth event if it leads to two immortal lineages. Obviously, the
probability to “be immortal” for a newborn individual is the same as for a new
mutation and given by $p_{\text{est}}(t)$. Conditioning on the fact that we only consider splits
of immortal lineages and thus at least one of the offspring lineages must be
immortal, we arrive at a split rate per immortal lineage of

$$p_{\text{split}}(t) = \frac{p_{\text{est}}^2(t)}{p_{\text{est}}^2(t) + 2p_{\text{est}}(t)(1 - p_{\text{est}}(t))} = \frac{p_{\text{est}}(t)}{2 - p_{\text{est}}(t)} \approx \frac{p_{\text{est}}(t)}{2}, \quad (\text{M.8})$$

where the approximation in the last term assumes that $p_{\text{est}}(t) \ll 1$, which is
usually the case unless selection is very strong.

The Yule process defines a continuous-time Markov process of a random variable $\mathbf{k} = (k_1, \dots, k_L)$, where $k_i \in \mathbb{N}_0$ is the number of immortal mutant lineages at the i th locus. We are interested in the relative proportions in the number of lineages k_i across loci after a sufficiently long time – assuming that the distribution of these proportions reaches a limit by the end of the stochastic phase. We can generate this distribution from the transition probabilities among Yule states (the embedded jump-chain of the continuous-time process). If there are currently (k_1, \dots, k_L) lineages at the L loci, the probability that the next event is either a birth event (split) or a new mutation (immigration) at locus i is

$$\begin{aligned} \Pr[(k_1, \dots, k_L) \rightarrow (k_1, \dots, k_i + 1, \dots, k_L)] \\ = \frac{k_i p_{\text{split}} + p_{\text{mut},i}}{\sum_{j=1}^L (k_j p_{\text{split}} + p_{\text{mut},j})} = \frac{k_i + \Theta_i}{\sum_{j=1}^L (k_j + \Theta_j)}. \end{aligned} \quad (\text{M.9})$$

Crucially, these transition probabilities are constant in time and independent of the establishment probability $p_{\text{est}}(t)$. As a consequence, they are also independent of the mutant fitness, which only affects the speed of the Yule process (via p_{est}), but not its sequence of events.

We start the process with no mutants and stop it whenever the number of mutants at one of the loci (e.g. locus 1) reaches some number $k_1 = n$. We are interested in the distribution of the number of mutants k_i at the other loci at this time, respectively their ratios k_i/n (remember that we already know that these ratios stay invariant during the deterministic phase of the adaptation process). We can prove the following

Theorem 1 In the limit of $n \rightarrow \infty$, the joint distribution of ratios $x_i = k_i/n$ of immortal mutant lineages across loci converges to the *inverted Dirichlet distribution*,

$$P_{\text{inDir}}[\{x_i\}_{i \geq 2} | \Theta] = \frac{1}{B[\Theta]} \prod_{j=2}^L x_j^{\Theta_j - 1} \left(1 + \sum_{j=2}^L x_j\right)^{-\sum_{j=1}^L \Theta_j} \quad (\text{M.10})$$

where the vector $\Theta = (\Theta_1, \dots, \Theta_L)$ summarizes the mutation rates and $B[\Theta]$ is the multivariate Beta function, which can be expressed in terms of Gamma functions as

$$B[\Theta] = \frac{\prod_{i=1}^L \Gamma(\Theta_i)}{\Gamma(\sum_{i=1}^L \Theta_i)}. \quad (\text{M.11})$$

Proof We proceed in three steps.

167

Step 1 Assume that we stop the process when the first locus reaches $n > 0$ 168 lineages. We derive the probability that the process at this time is in state (n, k_2, \dots, k_L) 169 as follows. We need $n + k_2 + \dots + k_L$ events (new mutations or splits) to generate all 170 mutant individuals. The last event must occur at the first locus. All other events can 171 occur in arbitrary order at the L loci. The probability of each realization (each order of 172 events at the loci) is given by the corresponding product of transition probabilities (M.9). 173 The key insight is that all realizations have the same probability. Indeed, the 174 denominator of (M.9) does not depend on the locus where the next event occurs. 175 Different realizations then only correspond to permutations in the factors $k_i + \Theta_i$ in the 176 numerator of the product of transition probabilities. We can directly write down the 177 probability for the state as 178

$$\Pr[\{k_i\}_{i \geq 2} | n, \Theta] = \binom{n-1+k_2+\dots+k_L}{n-1, k_2, \dots, k_L} \frac{(\Theta_1)_{(n)} \prod_{j=2}^L (\Theta_j)_{(k_j)}}{(\Theta_1 + \dots + \Theta_L)_{(n+k_2+\dots+k_L)}}, \quad (\text{M.12})$$

where

$$\Theta_{(k)} := \Theta(\Theta + 1) \dots (\Theta + k - 1)$$

is the Pochhammer function. The leading multinomial coefficient counts the number of 179 all permutations and the ratio of Pochhammer functions is the probability of each 180 realization. 181

Step 2 We can rewrite (M.12) as a *Dirichlet-negative-multinomial* compound 182 distribution, defined as 183

$$\int_0^1 \dots \int_0^1 \binom{n-1+k_2+\dots+k_L}{n-1, k_2, \dots, k_L} \prod_{i=2}^L y_i^{k_i} \left(1 - \sum_{i=2}^L y_i\right)^n f(\{y_i\}_{i \geq 2} | \Theta) dy_2 \dots dy_L, \quad (\text{M.13})$$

where

$$f(\{y_i\}_{i \geq 2} | \Theta) = \frac{1}{B[\Theta]} \prod_{i=2}^L y_i^{\Theta_i-1} \left(1 - \sum_{i=2}^L y_i\right)^{\Theta_1-1}$$

is the $(L - 1)$ -dimensional Dirichlet distribution for a L -dimensional probability vector
 (y_1, \dots, y_L) with constraint $y_1 = 1 - \sum_{i \geq 2} y_i$. This is best shown in the reverse direction,
i.e., by deriving (M.12) from (M.13). To see this, note that

$$\int_0^1 \dots \int_0^1 \prod_{i=2}^L y_i^{\Theta_i+k_i-1} \left(1 - \sum_{i=2}^L y_i\right)^{\Theta_1+n-1} dy_2 \dots dy_L = \frac{\Gamma(\Theta_1+n) \prod_{i=2}^L \Gamma(\Theta_i+k_i)}{\Gamma(\Theta_1+n + \sum_{i=2}^L (\Theta_i+k_i))}$$

because the integrand in this expression is just a Dirichlet density with shifted values of $\Theta_i \rightarrow \Theta_i + k_i$ and the right hand side is the corresponding normalization factor. Then using

$$\frac{\Gamma(\sum_{i=1}^L \Theta_i)}{\prod_{i=1}^L \Gamma(\Theta_i)} \frac{\Gamma(\Theta_1+n) \prod_{i=2}^L \Gamma(\Theta_i+k_i)}{\Gamma(\Theta_1+n + \sum_{i=2}^L (\Theta_i+k_i))} = \frac{(\Theta_1)_{(n)} \prod_{j=2}^L (\Theta_j)_{(k_j)}}{(\Theta_1 + \dots + \Theta_L)_{(n+k_2+\dots+k_L)}}$$

reduces (M.13) to (M.12). 188

The compound distribution Eq (M.13) can be interpreted as follows: If a random experiment can have a finite number of outcomes (here: mutant lineages at one of L loci), the negative multinomial distribution describes the probability to observe each of these events k_i times if we repeat the experiment until a focal event (here: new mutant lineage at the first locus) has occurred n times. While the negative multinomial distribution assumes that all outcomes occur with a fixed probability y_i , this probability is itself drawn from a Dirichlet distribution in the Dirichlet-negative-multinomial compound distribution. In the present context, the main advantage of (M.13) over (M.12) is that we can easily perform the limit $n \rightarrow \infty$ in this form. 197

Step 3 For large $n \rightarrow \infty$, the values of k_i/n , $i \geq 2$, of the negative multinomial distribution can be replaced by their expectations, 198

$$x_i := \mathbf{E}\left[\frac{k_i}{n}\right] = \frac{y_i}{1 - \sum_{j=2}^L y_j} \Leftrightarrow y_i = \frac{x_i}{1 + \sum_{j=2}^L x_j}.$$

We can then transform the density (M.10) from variables y_i to the x_i (representing the relative mutant frequencies). The entries of the Jacobian matrix (for $2 \leq i, j \leq L$) are 200

$$\mathbf{J}_{ij} = \frac{\partial y_i}{\partial x_j} = \frac{\delta_{i,j}(1 + \sum_{k=2}^L x_k) - x_i}{(1 + \sum_{k=2}^L x_k)^2}.$$

Since this is the sum of an identity matrix (times a factor) and a matrix with identical columns we can easily derive the eigenvalues and thus the determinant,

$$\text{Det}[\mathbf{J}] = \frac{1}{(1 + \sum_{k=2}^d x_k)^L}.$$

Applying this transformation to (M.13), we obtain (M.10).

Remarks

1. For two loci, the Dirichlet-negative-multinomial distribution (M.13) reduces to a *Beta-negative-binomial* distribution

$$P_{\beta NB}[k|n] = \int_0^1 \binom{n+k-1}{k} y^k (1-y)^n \frac{\Gamma(\Theta_1 + \Theta_2)}{\Gamma(\Theta_1)\Gamma(\Theta_2)} y^{\Theta_2-1} (1-y)^{\Theta_1-1} dy$$

and the inverted Dirichlet distribution (M.10) simplifies to a so-called *β -prime* distribution,

$$P_{\beta'}(x) = \frac{\Gamma(\Theta_1 + \Theta_2)}{\Gamma(\Theta_1)\Gamma(\Theta_2)} x^{\Theta_2-1} (1+x)^{-\Theta_1-\Theta_2}. \quad (\text{M.14})$$

If we measure the ratio x always relative to the locus with the higher frequency, we obtain a conditioned distribution that is truncated at $x = 1$. For equal locus mutation rates $\Theta_1 = \Theta_2 = \Theta_l$, in particular,

$$P_{\beta'}[x|\Theta_l] = \frac{2\Gamma(2\Theta_l)}{(\Gamma(\Theta_l))^2} x^{\Theta_l-1} (1+x)^{-2\Theta_l}. \quad (\text{M.15})$$

with expectation

$$E[x] = \int_0^1 x P_{\beta'}[x|\Theta_l] dx = \frac{2\Gamma(2\Theta_l) {}_2F_1[2\Theta_l, 1 + \Theta_l, 2 + \Theta_l, -1]}{(1 + \Theta_l)(\Gamma(\Theta_l))^2}, \quad (\text{M.16})$$

where ${}_2F_1$ is the hypergeometric function.

2. The process described here is a variant of the *Polya urn* and *Hoppe urn* processes that are well-known in the mathematical literature and have been used to describe coalescent processes forward in time [2, 3].

3. Our result (M.10) can also be seen as multi-locus version of Wright's formula for
217
the stationary distribution of the Wright-Fisher diffusion [8]. For L neutral alleles at
218
a single locus, and if the mutation rates Θ_i depend only on the target allele
219
(house-of-cards condition), this is a Dirichlet distribution. Here, we see that an
220
analogous result holds for a distribution of equivalent (mutually redundant) alleles
221
across L loci. Although alleles at different loci cannot mutate into each other and
222
are never identical by descent, it turns out that the genealogy in both models can
223
be described by a Yule process with immigration. In contrast to the single-locus
224
case, we obtain an *inverted* Dirichlet distribution for multiple loci. This difference
225
results from a different stopping condition for the Yule process. For a single locus,
226
the population size sets an upper bound for the total number of copies across all
227
alleles. If we stop the process for a given total number n_{tot} of lines, we obtain the
228
classical Dirichlet distribution in the limit $n_{\text{tot}} \rightarrow \infty$. In contrast, the population size
229
defines a bound for mutants of a only single type in the multi-locus case, which is
230
reflected by our choice of the stopping condition. This choice is appropriate
231
unless all loci are tightly linked, as we will see below.
232
4. In our model, we did not distinguish different mutational origins of mutant alleles
233
at the same locus. It is, in principle, possible to do so. For any single locus, the
234
process *conditioned on* reaching some number of mutants k_i at this locus i is
235
entirely independent of the process at the other loci. The joint distribution of
236
different mutational origins at this locus is therefore given by the Ewens sampling
237
formula, as described in the theory of soft selective sweeps ([7, 9]).
238

M.3 Allele frequency distributions

Eq (M.10) predicts the distribution of allele frequency ratios x_i at the end of the
240
stochastic phase of the adaptive process. Typically, the Yule process will approach
241
convergence for $n \gtrsim 100$. In a large population, this still corresponds to a small allele
242
frequency. However, since the allele frequency ratios remain constant also during the
243
deterministic phase, we can use the Yule process result to derive the distribution of
244
mutant allele frequencies also at a later stage, when (partial or complete) phenotypic
245
adaptation has been achieved. As above, we characterize the time of observation via
246

the frequency of the ancestral phenotypes f_w that is still found in the population. We
247
treat the case of full adaptation, $f_w = 0$, before we turn to the case of a general f_w .
248

Complete phenotypic adaptation, $f_w = 0$ 249

If selection is very strong, complete fixation of the mutant phenotype may be rapidly
250
achieved. For any non-zero level of recombination among loci, $f_w = 0$ requires, in our
251
model, that there is (at least) a single locus where the mutant allele has reached
252
fixation. In the following, we will call the locus with the largest mutant frequency the
253
major locus and all other loci *minor loci*. We are interested in the joint distribution of
254
allele frequencies when the major locus has reached fixation. From (M.10), we can
255
derive the probability that the first locus ends up being the major locus as
256

$$P_{1>}^{(\Theta)} = \int_0^1 \dots \int_0^1 P_{\text{inDir}}[\{x_i\}_{i \geq 2} | \Theta] dx_2 \dots dx_L. \quad (\text{M.17})$$

Since allele frequencies p_i equal allele frequency ratios x_i relative to the major locus in
257
this case, the joint distribution at all minor loci, $\{p_i\}_{i \geq 2}$, $0 \leq p_i \leq 1$, conditioned on
258
fixation of the mutant allele at the first locus, follows as $P_{\text{inDir}}[\{p_i\}_{i \geq 2} | \Theta] / P_{1>}^{(\Theta)}$. The
259
joint allele frequency distribution for all loci at $f_w = 0$ results as product of a Dirac point
260
measure at the major locus and truncated inverted Dirichlet densities at the minor loci.
261
Summing over all possible loci as major locus we obtain
262

$$P_0[\{p_i\}_{i \geq 1} | \Theta] = \sum_{k=1}^L \left(\frac{\delta_{p_k=1}}{B[\Theta]} \prod_{j \neq k} p_j^{\Theta_j-1} \left(1 + \sum_{j \neq k} p_j\right)^{-\sum_{j=1}^L \Theta_j} \right), \quad (\text{M.18})$$

where the Dirac δ constrains the distribution to the boundary faces $p_k = 1$ of the
263
 L -dimensional hypercube $[0, 1]^L$ of allele frequencies.
264

Note that this formula is independent of linkage patterns as long as loci can
265
recombine at all and are not completely linked (see below for this case).
266

Incomplete phenotypic adaptation, $f_w > 0$, linkage equilibrium 267

While the distribution of allele frequency *ratios* x_i , Eq (M.10), holds for any time of
268
observation during the adaptive process (once the Yule process has reached
269
convergence), the corresponding distribution (M.18) for the *absolute* allele frequencies
270

p_i holds only for complete phenotypic adaptation, $f_w = 0$. To derive this distribution for arbitrary $f_w \geq 0$, we need to translate the stopping condition for the ancestral phenotype to a condition on the p_i . For $f_w = 0$, this just leads to the condition $p_k = 1$ for the major locus, constraining the distribution (M.18) to the boundary faces of the allele frequency hypercube. Importantly, this constraint is independent of linkage. For $f_w > 0$, in contrast, any constraint on the distribution of the p_i due to the stopping condition will necessarily also depend on the linkage disequilibria. For further analytical progress we now assume that recombination is sufficiently strong that linkage disequilibria can be ignored. We then obtain

$$\prod_{j=1}^L (1 - p_j) = f_w \quad (\text{M.19})$$

and the joint allele frequency distribution is given by the following Theorem, which is our main analytical result.

Theorem 2 If the adaptive process is stopped at a frequency f_w of the ancestral phenotype in the population, and assuming linkage equilibrium among loci, the joint distribution of mutant frequencies on the L -dimensional hypercube is

$$P_{f_w}[\{p_i\}_{i \geq 1} | \Theta] = \frac{\delta_{\prod_{j=1}^L (1 - p_j) - f_w}}{B[\Theta]} \prod_{i=1}^L p_i^{\Theta_i - 1} \left(\sum_{j=1}^L p_j \right)^{-\sum_{j=1}^L \Theta_j} \left(\sum_{j=1}^L \frac{f_w p_j}{1 - p_j} \right), \quad (\text{M.20})$$

where the δ -function restricts the support of $P_{f_w}[\{p_i\}_{i \geq 1} | \Theta]$ to the $(L - 1)$ -dimensional submanifold $\prod_{j=1}^L (1 - p_j) = f_w$.

Proof We can rewrite (M.19) as condition on the frequency p_1 at the first locus,

$$p_1 = 1 - \frac{f_w}{\prod_{j=2}^L (1 - p_j)} \quad (\text{M.21})$$

to obtain the transformation from frequency ratios x_i to absolute allele frequencies p_i ,

$i \geq 2$,

$$x_i = \frac{p_i}{p_1} = \frac{p_i \prod_{j=2}^L (1 - p_j)}{\prod_{j=2}^L (1 - p_j) - f_w}. \quad (\text{M.22})$$

The corresponding Jacobian matrix reads ($2 \leq i, j \leq L$)

$$\begin{aligned}\tilde{\mathbf{J}}_{ij} &= \frac{\partial x_i}{\partial p_j} = \frac{p_i}{1-p_j} \frac{f_w \prod_{k=2}^L (1-p_k)}{(\prod_{k=2}^L (1-p_k) - f_w)^2} + \delta_{i,j} \frac{\prod_{k=2}^L (1-p_k)}{\prod_{k=2}^L (1-p_k) - f_w} \\ &= \frac{p_i}{1-p_j} \frac{1-p_1}{p_1^2} + \frac{\delta_{i,j}}{p_1}.\end{aligned}$$

Thus

$$\tilde{\mathbf{J}} = \frac{1-p_1}{p_1^2} \mathbf{Q} + \frac{1}{p_1} \mathbf{I},$$

where \mathbf{I} is the identity matrix and $\mathbf{Q}_{i,j} = p_i/(1-p_j)$. Since \mathbf{Q} has the eigenvalue 291
 $\sum_j p_j/(1-p_j)$ and a $(L-2)$ -fold eigenvalue 0, we obtain the spectrum of $\tilde{\mathbf{J}}$ and thus 292
the determinant 293

$$\text{Det}[\tilde{\mathbf{J}}] = p_1^{1-L} \left(\sum_{j=1}^L \frac{p_j(1-p_1)}{(1-p_j)p_1} \right). \quad (\text{M.23})$$

From (M.10), we then obtain the joint distribution of locus frequencies p_2, \dots, p_L at the stopping condition (M.21) as 294

$$\begin{aligned}\mathsf{P}_{f_w}[\{p_i\}_{i \geq 2} | \Theta] &= \frac{\text{Det}[\tilde{\mathbf{J}}]}{B[\Theta]} \prod_{i=2}^L \left(\frac{p_i}{p_1} \right)^{\Theta_i-1} \left(1 + \sum_{j=2}^L \frac{p_j}{p_1} \right)^{-\sum_{j=1}^L \Theta_j} \\ &= \frac{1}{B[\Theta]} \prod_{i=1}^L p_i^{\Theta_i-1} \left(\sum_{j=1}^L p_j \right)^{-\sum_{j=1}^L \Theta_j} \left(\sum_{j=1}^L \frac{p_j(1-p_1)}{1-p_j} \right) \quad (\text{M.24})\end{aligned}$$

where the dependence on f_w is implicit in $p_1 = p_1(f_w)$, as given in (M.21). The joint distribution over all L loci follows as 295

$$\mathsf{P}_{f_w}[\{p_i\}_{i \geq 1} | \Theta] = \delta_{p_1-1+f_w / \prod_{j=2}^L (1-p_j)} \mathsf{P}_{f_w}[\{p_i\}_{i \geq 2} | \Theta]. \quad (\text{M.25})$$

Note that we do not assume that the first locus is the major locus in (M.25). Finally, the symmetrical form (M.20) results from the relation

$$\delta_{g(x)-c} = \frac{\delta_{x-x_c}}{|g'(x)|_{x_c}|} \quad ; \quad g(x_c) = c$$

for the Dirac δ -function. 296

Remarks

1. To obtain marginal distributions for single loci we generally need to perform a $(L - 2)$ -dimensional integral (after resolving the δ -function). Details for specific cases used in the main part of the article are provided in the Mathematica notebook. For two loci, simple explicit formulas for marginal distributions can be derived. E.g., the marginal distribution at the first locus reads

$$P_{f_w}[p_1|\Theta_1, \Theta_2] = \frac{p_1^{\Theta_1-1}(1-p_1-f_w)^{\Theta_2-1}(1-p_1)^{\Theta_1+1}}{B[\Theta_1, \Theta_2](1-p_1^2-f_w)^{\Theta_1+\Theta_2}} \left(1 - \frac{f_w(1-2p_1)}{(1-p_1)^2}\right) \quad (\text{M.26})$$

for $0 \leq p_1 \leq f_w$. The distribution has singularities at $p_1 = 0$ for $\Theta_1 < 1$ and at $p_1 = 1 - f_w$ for $\Theta_2 < 1$. The distributions $P_{f_w}^+[p|\Theta_1, \Theta_2]$ at the major locus and $P_{f_w}^-[p|\Theta_1, \Theta_2]$ at the minor locus (which can either be locus 1 or locus 2) follow as

$$P_{f_w}^{\pm}[p|\Theta_1, \Theta_2] = (P_{f_w}[p|\Theta_1, \Theta_2] + P_{f_w}[p|\Theta_2, \Theta_1]) H_{\pm(p-1+\sqrt{f_w})} \quad (\text{M.27})$$

where $H(x)$ is the Heaviside function with $H_x = 1$ for $x \geq 0$ and $H_x = 0$ else. Finally, the *conditioned* distributions $P_{f_w}^{1 \geqslant}[p_1|\Theta_1, \Theta_2]$ at the first locus if this locus is the major/minor locus are

$$P_{f_w}^{1>}[p_1|\Theta_1, \Theta_2] = \frac{P_{f_w}[p_1|\Theta_1, \Theta_2]}{P_{1>}^{(\Theta_1, \Theta_2)}} H_{p_1-1+\sqrt{f_w}}, \quad (\text{M.28a})$$

$$P_{f_w}^{1<}[p_1|\Theta_1, \Theta_2] = \frac{P_{f_w}[p_1|\Theta_1, \Theta_2]}{1 - P_{1>}^{(\Theta_1, \Theta_2)}} H_{-(p_1-1+\sqrt{f_w})}, \quad (\text{M.28b})$$

where $P_{1>}^{(\Theta_1, \Theta_2)}$, defined in Eq (M.17), evaluates to a Hypergeometric function for general $\Theta_1 \neq \Theta_2$, but reduces to $1/2$ for $\Theta_1 = \Theta_2$.

2. The marginal distribution for p_k has a singularity at $p_k = 0$ for $\Theta_k < 1$ and a singularity at $p_k = 1 - f_w$ for $\sum_{j \neq k}^L \Theta_j < 1$. To see this, consider the marginal distribution of p_L , which is obtained from Eq. (M.25) after integartion over p_1, \dots, p_{L-1} . Dropping non-singular terms (such as the sums in Eq M.24), and

defining

$$q_k = \frac{\prod_{j=k+1}^L (1 - p_j) - f_w}{\prod_{j=k+1}^L (1 - p_j)}$$

the singular part can be written as

$$\begin{aligned} \mathsf{P}_{f_w}[p_L | \Theta] &\sim \int_0^1 \int_0^1 \cdots \int_0^1 \delta_{p_1 - q_1} \prod_{i=1}^L p_i^{\Theta_i - 1} dp_1 \cdots dp_{L-1} \\ &= \int_0^{q_{L-1}} \int_0^{q_{L-2}} \cdots \int_0^{q_2} q_1^{\Theta_1 - 1} \prod_{i=2}^L p_i^{\Theta_i - 1} dp_2 \cdots dp_{L-1}, \end{aligned}$$

after performing the p_1 integral. The upper integral limits q_k account for the constraint $q_1 > 0$. Substituting

$$\tilde{p}_2 := \frac{p_2}{q_2} \quad \Rightarrow \quad dp_2 = q_2 d\tilde{p}_2$$

and using that $q_1 = q_2(1 - \tilde{p}_2)/(1 - \tilde{p}_2 q_2)$ we obtain

$$\begin{aligned} \mathsf{P}_{f_w}[p_L | \Theta] &\sim \int_0^{q_{L-1}} \cdots \int_0^{q_3} \int_0^1 q_1^{\Theta_1 - 1} q_2^{\Theta_2} \tilde{p}_2^{\Theta_2 - 1} \prod_{i=3}^L p_i^{\Theta_i - 1} d\tilde{p}_2 dp_3 \cdots dp_{L-1} \\ &= \int_0^{q_{L-1}} \cdots \int_0^{q_3} q_2^{\Theta_1 + \Theta_2 - 1} \int_0^1 \left(\frac{1 - \tilde{p}_2}{1 - \tilde{p}_2 q_2} \right)^{\Theta_1 - 1} \tilde{p}_2^{\Theta_2 - 1} d\tilde{p}_2 \prod_{i=3}^L p_i^{\Theta_i - 1} dp_3 \cdots dp_{L-1}. \end{aligned}$$

Since the \tilde{p}_2 integral is bounded by $1/\Theta_2$ from below and by $1/\Theta_2 + 1/\Theta_1$ from above for all $0 \leq q_2 \leq 1$, it does not contribute to a singularity in $\mathsf{P}_{f_w}[p_L | \Theta]$. For the singular part, we thus have

$$\mathsf{P}_{f_w}[p_L | \Theta] \sim \int_0^{q_{L-1}} \cdots \int_0^{q_3} q_2^{\Theta_1 + \Theta_2 - 1} \prod_{i=3}^L p_i^{\Theta_i - 1} dp_3 \cdots dp_{L-1}.$$

Iterating the substitution procedure for variables p_3 to p_{L-1} , we arrive at

$$\mathsf{P}_{f_w}[p_L | \Theta] \sim q_{L-1}^{\sum_{j=1}^{L-1} \Theta_j - 1} p_L^{\Theta_L - 1} = \left(\frac{1 - f_w - p_L}{1 - p_L} \right)^{\sum_{j=1}^{L-1} \Theta_j - 1} p_L^{\Theta_L - 1},$$

demonstrating the singular behavior for $p_L \rightarrow 0$ and for $p_L \rightarrow 1 - f_w$. Since the labeling of loci is arbitrary, the assertion follows for all loci.

Incomplete phenotypic adaptation, $f_w > 0$, tight linkage

317

Even if all loci are completely linked, the joint distribution of allele frequency *ratios* is still given by (M.10). However, the transformation to absolute allele frequencies at the stopping condition $f_w \neq 0$ depends on linkage. Because all mutant alleles are rare during the stochastic phase, we can ignore haplotypes with more than a single mutant during this time. Since we ignore new mutations during the deterministic phase, mutant alleles stay in maximal linkage disequilibrium in the absence of recombination. We thus have

318

319

320

321

322

323

324

$$\sum_{j=1}^L p_j = 1 - f_w \quad \Rightarrow \quad x_i = \frac{p_i}{p_1} = \frac{p_i}{1 - f_w - \sum_{j=2}^L p_j}$$

with corresponding Jacobian

$$\mathbf{J}_{ij} = \frac{\partial x_i}{\partial p_j} = \frac{p_i + \delta_{i,j} p_1}{p_1^2} \quad ; \quad \text{Det}[\mathbf{J}] = \frac{1 - f_w}{p_1^L}.$$

Using this transformation on (M.10), the joint distribution of mutant frequencies reads

$$P_{f_w, \text{tl}}[\{p_i\}_{i \geq 1} | \Theta] = \frac{\delta_{\sum_{i=1}^L p_i - 1 + f_w}}{B[\Theta] (1 - f_w)^{L-1}} \prod_{i=1}^L \left(\frac{p_i}{1 - f_w} \right)^{\Theta_i - 1}. \quad (\text{M.29})$$

Evidently, this is just the Dirichlet distribution on the cube $[0, 1 - f_w]^L$. This is expected since the problem reduces to a single-locus, L -alleles problem for tight linkage. The marginal distributions can be derived for an arbitrary number of loci and are given by transformed β -distributions,

$$P_{f_w, \text{tl}}[p_k | \Theta] = \frac{(1 - f_w)^{-1}}{B[\Theta]} \left(\frac{p_k}{1 - f_w} \right)^{\Theta_k - 1} \left(1 - \frac{p_k}{1 - f_w} \right)^{\left(\sum_{j \neq k}^L \Theta_j \right) - 1}, \quad (\text{M.30})$$

with singularities at the boundaries $p_k = 0$ for $\Theta_k < 1$ and at $p_k = 1 - f_w$ for

329

$\sum_{j \neq k} \Theta_j < 1$ as in the linkage equilibrium case. For two tightly linked loci, the major locus must have frequency $p > (1 - f_w)/2$. The distribution at the major/minor locus therefore reads

330

331

332

$$\mathsf{P}_{f_w, \text{tl}}^{\pm}[p|\Theta_1, \Theta_2] = (\mathsf{P}_{f_w, \text{tl}}[p|\Theta_1, \Theta_2] + \mathsf{P}_{f_w, \text{tl}}[p|\Theta_2, \Theta_1]) H_{\pm(p-(1-f_w)/2)} \quad (\text{M.31})$$

and conditioned distributions follow as in (M.28).

333

References

334

1. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. *Genetics*. 2005;169(4):2335–2352. 335
336
2. Joyce P, Tavaré S. Cycles, permutations and the structure of the Yule process with immigration. *Stochastic processes and their applications*. 1987;25:309–314. 337
338
3. Durrett R. Probability: theory and examples. Cambridge University Press; 2010. 339
4. Etheridge A, Pfaffelhuber P, Wakolbinger A, et al. An approximate sampling formula under genetic hitchhiking. *The Annals of Applied Probability*. 2006;16(2):685–729. 340
341
342
5. Hermisson J, Pfaffelhuber P. The pattern of genetic hitchhiking under recurrent mutation. *Electronic Journal of Probability*. 2008;13:2069–2106. 343
344
6. Uecker H, Hermisson J. On the fixation process of a beneficial mutation in a variable environment. *Genetics*. 2011;188(4):915–930. 345
346
7. Pennings PS, Hermisson J. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. *Molecular Biology and Evolution*. 2006;23(5):1076–1084. 347
348
349
8. Wright S. Evolution in Mendelian populations. *Genetics*. 1931;16(2):97–159. 350
9. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. *Methods in Ecology and Evolution*. 2017;8(6):700–716. 351
352
353