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Abstract

Despite intensive study for 50 years, the biochemical and genetic links between lysine
metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish
these biochemical links, we leveraged Random Barcode Transposon Sequencing (RB-TnSeq), a
genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple
novel enzymes in both L- and D-lysine metabolism. We first describe three pathway enzymes
that catabolize L-2-aminoadipate (L-2AA) to 2-ketoglutarate (2KG), connecting D-lysine to the
TCA cycle. One of these enzymes, PP_5260, contains a DUF1338 domain, a family with no
previously described biological function. Our work also identified the recently described CoA
independent route of L-lysine degradation that metabolizes to succinate. We expanded on
previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-
oxoacid selectivity. Proteomics of select pathway enzymes revealed that expression of catabolic
genes is highly sensitive to particular pathway metabolites, implying intensive local and global
regulation. This work demonstrates the utility of RB-TnSeq for discovering novel metabolic
pathways in even well-studied bacteria, as well as a powerful tool for validating previous

research.
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Importance
P. putida lysine metabolism can produce multiple commodity chemicals, conferring great
biotechnological value. Despite much research, connecting lysine catabolism to central
metabolism in P. putida remained undefined. Herein we use Random Barcode Transposon
Sequencing to fill in the gaps of lysine metabolism in P. putida. We describe a route of 2-
oxoadipate (20A) catabolism in bacteria, which utilizes DUF1338 containing protein PP_5260.
Despite its prevalence in many domains of life, DUF1338 containing proteins had no known
biochemical function. We demonstrate PP_5260 is a metalloenzyme which catalyzes an unusual
20A to D-2HG decarboxylation. Our screen also identified a recently described novel glutarate
metabolic pathway. We validate previous results, and expand the understanding of glutarate
hydroxylase CsiD by showing can it use either 20A or 2KG as a cosubstrate. Our work
demonstrates biological novelty can be rapidly identified using unbiased experimental genetics,
and that RB-TnSeq can be used to rapidly validate previous results.
Introduction

Pseudomonas putida is an ubiquitous saprophytic soil bacterium and is a model organism
for bioremediation (1). Interest in utilizing P. putida KT2440 as a chassis organism for metabolic
engineering has recently surged due to the existence of well-established genetic tools and its
robust metabolism of aromatic compounds that resemble lignin hydrolysis products (2-4). As
lignin valorization remains essential for the economic feasibility of cellulosic bioproducts, a
nuanced and predictable understanding of P. putida metabolism is highly desirable (5).

Although its aromatic metabolism has garnered much attention, the lysine metabolism of
P. putida has also been rigorously studied for over fifty years (6). An understanding of lysine

metabolism has had biotechnological value, as it has been used to produce glutarate, 5-
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69 aminovalerate (5AVA), as well as valerolactam in P. putida and in the other bacteria (7—10). Our
70  current understanding of lysine catabolism however, remains incomplete. In particular, the
71  connection between D-lysine metabolism and central metabolism in P. putida is unclear and has

72 not been fully characterized.
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Figure S1: Metabolic pathways of lysine catabolism in P. putida KT2440. A) L-lysine metabolic pathway is
shown in blue, while the known steps of D-lysine metabolism are shown in red. B) Proposed route of 2AA

metabolism in P. putida.

73 P. putida employs bifucating pathways to catabolize lysine, separately metabolizing the
74  L-and D-isomers (Figure S1a) (11). The L-lysine degradation pathway proceeds to glutarate,

75  which can then be either be degraded to acetyl-CoA via a glutaryl-CoA intermediate, or to
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succinate without a CoA bound intermediate (Figure S1a) (9). The final steps of D-lysine
catabolism remain more elusive. The initial steps of D-lysine catabolism are well described, but
the genetic basis stops at 2AA (12). Furthermore, 3C labeling experiments by Revelles et al.
demonstrated a putative metabolic connection between the D- and L-lysine pathways at 2AA
(11). Subsequent steps to central carbon metabolism have never been fully validated. (6, 11-13).
Given the importance of lysine metabolism, and recent availability of high-throughput genetic
tools, we sought to identify the missing steps in D-lysine metabolism that have remained despite
50 years of research.

Random barcode transposon sequencing (RB-TnSeq) is a genome-wide approach that
measures the importance of each gene to growth (or fitness) in a massively parallel assay (14).
RB-TnSeq can identify phenotypes for thousands of previously uncharacterized genes (14, 15),
including the levulinic acid degradation pathway in P. putida KT2440 (16). In this study, we
applied RB-TnSeq to uncover multiple novel genes implicated in L- and D-lysine metabolism in
P. putida. We first describe a three enzyme route connecting L-2AA to 2KG (Figure S1B).
Within this pathway, D-lysine metabolism connects to central metabolism through a 2HG
intermediate, which is directly produced from 20A in a reaction catalyzed by a DUF1338-
containing protein. This protein family, widely distributed across many domains of life,
previously had no known function. Subsequently, we further characterize the glutarate
hydroxylase CsiD, by demonstrating its 2-oxoacid promiscuity during the hydroxylation of
glutarate. Finally, we show the expression of all newly discovered enzymes changes significantly
in response to specific metabolites within the two catabolic pathways.

Results

Identification of lysine catabolism genes via RB-TnSeq
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Figure 1: Results of RB-TnSeq screen. A) Genes that showed less than -2 log; fitness on either D-lysine, L-lysine,
or 5AVA but showed no less than -0.5 log. fitness defect when grown on glucose. B) Plot of genome wide
fitness values of libraries grown on either L-lysine or D-lysine. Genes encoding for enzymes known to be
involved in D-lysine metabolism are shown in red, while those known to be involved in L-lysine metabolism
are shown in blue. C) Venn diagram of genes with significant fitness defects when grown on either D-lysine,

L-lysine, or 5AVA.

99
100 To identify mutants defective in lysine catabolism in P. putida KT2440, an RB-TnSeq
101  library of this bacterium (16) was grown on minimal medium supplemented with either D-lysine
102  or L-lysine as the sole carbon source. To evaluate whether D-lysine metabolism was required for
103  the metabolism of other downstream metabolites of L-lysine, the library was also grown on
104 5AVA. As a control, we also grew the library on glucose. Fitness was calculated as the logz ratio

105  of strain and gene abundance at the end of selective growth relative to initial abundance (14).
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Fitness profiling revealed 39 genes with significant fitness values of less than -2 for 5AVA, D-
lysine, or L-lysine, and no less than -0.5 fitness for glucose (Figure 1a, Supplementary Table 1).
Within this set, 10 of the 12 known lysine degradation genes were identified, with the exception
of the two enzymes in the CoA-dependent route of glutarate degradation (gcdH and gcdG),
which both had significant fitness values (t <-4 ) but whose fitness was greater than -2. Instead,
we identified the recently-characterized genes involved in the CoA independent pathway (csiD
and IghO) (9).

The fitness data corroborated previous work showing a functional D-lysine pathway is
required for L-lysine catabolism (6, 11). None of the known L-lysine catabolic genes showed
fitness defects for growth on D-lysine, but transposon insertions in all previously-identified D-
lysine genes showed negative fitness scores when grown on L-lysine (Figure 1b). No known D-
lysine catabolic enzymes showed fitness defects when grown on 5SAV A, suggesting the D-lysine
dependence of L-lysine catabolism may only occur for early catabolic steps (Figure 1c).

In addition to catabolic enzymes, lysine transporters and multiple transcriptional
regulators were identified (Figure 1a). The putative lysine amino acid ABC transporter system
(PP_3593, PP_3394, and PP_3395) showed significant fitness defects when grown with either
isomer of lysine. Some of the transcriptional regulators were located near known catabolic or
transport enzymes (PP_0384, PP_3592, and PP_3603), while others were not clustered with any
obviously related genes (PP_1109, PP_2868, PP_3649, and PP_4482). Two known global
regulators were identified in our screen: cbrA (PP_4695), a histidine kinase sensor that showed
fitness defects on both lysine isomers, and the alternative sigma factor rpoX (PP_2088) which

only had fitness defects when grown on D-lysine.
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128 Additionally there were 15 genes which, when disrupted, displayed fitness advantages
129  greater than 2 on 5AVA, D-lysine, or L-lysine and less than 0.5 fitness when grown on glucose.
130  This positive fitness value indicates these mutations confer a competitive advantage compared to
131  other strains when grown on these carbon sources. Most striking amongst these genes were the
132 sigma factor rpoS and the LPS export system (PP_1778/9), which when disrupted, both

133 displayed fitness benefits on all three non-glucose carbon sources (Figure S2).
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Figure S2: Results of RB-TnSeq screen. A) Genes that showed great than 2 log2 fitness on either D-lysine, L-lysine, or
5AVA but showed no less than 0.5 log2 fitness defect when grown on glucose.

134

135 Only one gene (PP_0787, a quinolinate phosphoribosyltransferase) showed fitness

136  defects on all three non-glucose carbon sources (Figure 1c). However, disruption of PP_0787
137  also showed a significant fitness defect when grown on levulinic acid, suggesting it is unlikely to
138  be uniquely important to lysine metabolism (16). Only 3 genes shared fitness defects between
139 5AVA and L-lysine (davT, davD, and IghO), all of which have been previously implicated in

140  5AVA metabolism (Figure 1c) (9).
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141 PP 4108 is a L-2AA aminotransferase
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Figure 2: Identification of PP_4108 as a L-2AA aminotransferase. A) Growth of wild-type KT2440 and PP_4108
mutant on 2AA as a sole carbon source. Shaded area represents 95% confidence interval (Cl), n=3. B) In vivo
accumulation of 2AA in wild-type KT2440 and a PP_4108 mutant after 12 hours of growth on minimal
medium supplemented with 10 mM glucose and 10 mM D-lysine. Bars represent 10gio transformed spectral
counts, error bars show 95% CI, n=3. C) In vitro transamination reactions of PP_4108 with 2KG as an amino
acceptor. Bars represent UM metabolite concentration of either 20A (black) or 2AA (white) in either boiled
or native protein reactions. Error bars show 95% CI, n=3. D) In vitro transaminations of PP_4108 incubated
with different possible amino donors and 2KG as acceptor. Bars represent relative activity of enzyme

standardized to L-2AA after 16 hour incubation. Error bars show standard deviation, n=2.
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In humans and other animals, L-lysine degradation proceeds through a 2AA intermediate,

which a transaminase converts to 20A (9, 11, 17). Yet, no such transaminase has been identified

in P. putida. We identified a candidate aminotransferase, PP_4108, for which gene inactivation

showed a significant growth defect on D-lysine (-5.9) and a relatively minor defect on L-lysine (-

1.2). To corroborate our RB-TnSeq fitness data, we constructed a deletion mutant of PP_4108

that failed to grow in a plate reader assay on 10 mM DL-2AA (Figure 2a). The mutant showed a

severe growth defect on 10 mM D-lysine and an increased lag time when grown on 10 mM L-

lysine (Figure S3).
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Figure S3: Growth of PP_4108 mutants on lysine. A) Growth of wild-type KT2440 and PP_4108 mutant on D-

lysine as a sole carbon source. Shaded area represents 95% Cl, n=3. B) Growth of wild-type KT2440 and PP_4108

10
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153 mutant on L-lysine as a sole carbon source. Shaded area represents 95% CI, n=3. C) Colorimetric glutamate

154  formation time course of PP_4108. Error bars are standard deviation of n=2.

155 To further validate this hypothesis, the APP_4108 strain was subjected to metabolomics
156  analysis to monitor the accumulation of its expected substrate, 2AA, when grown on glucose and
157  D-lysine. After 12 hours of growth on minimal media supplemented with 10 mM each of glucose
158  and D-lysine, the PP_4108 deletion strain showed a 6.3-fold increase (p = 0.00016) in

159  normalized intracellular 2AA concentration compared to WT (Figure 2b). Next PP_4108 was
160  expressed and purified from E. coli for biochemical characterization. After purified enzyme

161  incubation with DL-2AA, 2KG, and pyridoxal phosphate (PLP) for 16 hours, the reaction

162  mixture was analyzed with LC-TOF. The expected product, 20A, was detected in the enzymatic
163  reaction but not in a boiled enzyme control, confirming PP_4108 as a transaminase that converts
164 2AAto 20A (Figure 2c¢). As many transaminases have broad substrate specificity (18), we also
165  probed the substrate range of PP_4108 using a colorimetric assay for glutamate, a stoichiometric
166  product of the transamination reaction (Figure 2d). The enzyme was most active on L-2AA, and
167  only showed 2.8% relative activity (p = 0.0057) on its enantiomer, D-2AA. This specificity for
168 the L-2AA isomer may explain why only 50% of the DL-2AA was transformed in the previous
169  experiment (Figure 2c). No activity was observed on either lysine isomer; however, the enzyme
170  had slight activity towards 4-aminobutyrate/y-aminobutyrate (GABA) (2.8% relative activity, p =
171  0.0057) and moderate activity on 5AVA (30.5% relative activity, p = 0.0139). Over shorter time
172  scales PP_4108 had no activity on any substrate expect L-2AA (Figure S3c). These results

173  suggest P. putida KT2440 metabolizes D-lysine to L-2AA, which is then converted to 20A by
174  the transaminase PP_4108.

175 PP 5260 is a novel DUF1338 family enzyme that catalyzes the conversion of 20A to 2HG

11
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176 Early work proposed 20A is converted to 2KG via a 2HG intermediate (13, 19), while
177  later results suggested a direct conversion of 20A to glutarate (11). Either route likely requires a
178  decarboxylation of 20A, so we initially searched for decarboxylases within our dataset. Our

179  fitness data on either lysine isomer revealed no obvious decarboxylases or enzymes likely to
180  contain a thiamine pyrophosphate (TPP) cofactor, which are commonly employed by

181  decarboxylases. However, a gene near other D-lysine catabolic genes in the P. putida genome,

182  PP_5260, showed a significant fitness defect. A APP_5260 strain was unable to grow on either

12
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183  isomer of lysine verifying its importance in lysine degradation (Figure 3a).
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185 Figure 3: Identification of ydcJ (PP_5260) as a 20A decarboxylase/hydroxylase. A) Growth of wild-type
186 (black) and PP_5260 mutant (red) on D-lysine (line) or L-lysine (dashed line) as a sole carbon source.
187 Shaded area represents 95% CI, n=3. B) HPLC traces of in vitro reactions run with apo PP_5260 with
188 exogenous metals added at 50 uM. Retention times for 20A and 2HG are shown by vertical dashed lines.
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189 Metal or EDTA control is indicated to the right of traces. C) In vitro assay of 20A conversion to 2HG by
190 purified PP_5260 protein analysed via LC-TOF. 20G in white, 2HG in black. D) In vitro assay of purified
191 PP_5260 protein with 20A as substrate. Black bar represents concentration of D-2HG measured by enzyme
192 coupled assay. White bar represents total 2HG concentration as measured by LC-TOF. Error bars represent
193 95% CI, n=3. E) Initial velocity of reaction catalyzed by PP_5260 as a function of 20A concentration. Blue
194 dots represent individual measurements, while the black fit line shows a Michaelis-Menten fit. F) Chemical
195 reaction catalyzed by PP_5260, 20A is decarboxylated to D-2HG.

196 PP_5260 belongs to the DUF1338 protein family (http://pfam.xfam.org/family/PF07063).

197  Although several unpublished crystal structures of DUF1338 domain containing proteins have
198  been deposited into the Protein Data Bank, their biological function remains elusive. However,
199 these structures combined with protein sequence alignments suggest a putative metal binding site
200 s conserved throughout the DUF1338 family. As we hypothesized PP_5260 serves as the

201  missing decarboxylase in D-lysine metabolism, we purified the enzyme for biochemical analysis.
202  Enzymatic activity on 20A was probed and analyzed via LC-TOF. After incubation of 20A with
203  PP_5260, we observed a ~92% (p=0.00034) reduction in the abundance of 20A, whereas no

204  20A was consumed in a boiled enzyme control or enzyme treated with EDTA confirming it to
205 be a metalloenzyme (Figure S4a). Initially we believed the product would be either glutarate or
206  glutarate semialdehyde, however neither of these was detected in the reaction. Early biochemical
207  work suggested 2HG as a potential intermediate in pipecolate metabolism (19), and when the
208  enzymatic product was compared to a racemic 2HG standard they shared the same mass,

209 retention time and mass-to-charge ratio (Figure S4b), as well identical isotopic distributions of
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210 [M-H] peaks in the mass spectra (Figure S4c).
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212 Figure S4: Characterization of PP_5260. A) In vitro reactions of boiled or native PP_5260 incubated with 20A
213  with 50 uM EDTA (white), or without EDTA (black). Bars represent 10g1o transformed spectral counts, errors bars
214 represent 95% ClI, n=3 B) E LC-TOF analysis of a 2HG standard, and products of PP_5260 incubated with 20A,
215  and boiled control. C) Mass spectra of 2HG standard and product of PP_5260 in vitro reaction. D) Standard curves

216  of D-2HG and L-2HG using a D-2HG specific enzymatic detection assay. Shaded areas represent 95% CI, n=3.

217
218 To identify the metal cofactor, the enzyme was dialyzed against EDTA to remove metals,
219  and individual divalent metals were added back. Only the addition of Fe(Il) restored enzymatic

220  activity as measured by HPLC (Figure 3b). Subsequent reactions quenched after 5 minutes
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221  showed 200 uM of 2HG formed and 800 uM 20A remaining, demonstrating 1:1 20A to 2HG
222 reaction stoichiometry (Figure 3c). Whether the product of the PP_5260 reaction is either L-2HG
223 or D-2HG is critical to understanding the eventual fate of D-lysine, as IghO is specific for L-
224 2HG (Figure S1a). An enzyme coupled assay specific for the detection of D-2HG was used to
225  assess the stereochemistry of the PP_5260 product. Standard curves of D-2HG and L-2HG

226 showed that the assay was only responsive to D-2HG (Figure S4d). The concentration of in vitro
227  reactions of PP_5260 were then measured by both LC-TOF as well as the enzyme coupled assay,
228  revealing all 2HG as the D-isomer (Figure 3d).

229 Kinetic parameters of PP_5260 were determined using an enzyme-coupled assay to

230  spectrophotometrically measure CO:2 evolution via NADH oxidation (20). PP_5260 displayed a
231 Vmax of 0.33 mM/min (+/- 0.08 mM), a Km 0of 0.06 mM (+/- 0.03 mM), and a Kecat of 330 m*

232 using 20A as a substrate. Taken together these results reveal that PP_5260 is novel Fe(ll)

233 dependent decarboxylase that converts 20A to D-2HG (Figure 3f), a chemical reaction not

234 previously observed in nature.

235 DUF1338 proteins are a widely distributed enzyme family with a putative conserved role in

236 amino acid catabolism

237 After functional characterization of PP_5260, we use phylogenomics to propagate the
238 annotation and further explore the biological role of DUF1338 proteins found in other organisms.
239  We found that DUF1338 proteins are widely distributed across the tree of life, with homologs of
240 PP_5260 found in plants and green algae (22), fungi, and bacteria, though they were not found in
241  animals or archaea (Figure 4a). Homologs are widely distributed amongst bacteria, with the

242  Firmicutes being a notable exception. PP_5260 homologs within the plant group Streptophyta, as

243  well as bacterial groups Actinobacteria, Cyanobacteria, and Bacteroidetes formed monophyletic
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clades, while homologs from other taxonomic groups were not monophyletic (Figure 4a).
DUF1338 homologs are found in bacteria important to biotechnology (Corynebacterium
glutamicum), the environment (Nostoc puncitforme), and medicine (Yersinia pestis,

Mycobacterium tuberculosis, Burkholderia pseudomallei).
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Figure 4: Phylogenomics of the DUF1338 enzyme family. A) Phylogenetic relationships among DUF1338
homologs and their distribution among major phyla. Branches in the tree are colored by phylum. DUF1338 is
found in most bacterial phyla as well as in plants and fungi. Non-monophyletic clades suggest pervasive
horizontal gene transfer events in the family. B) Phylogenomics of selected DUF1338 homologs in bacteria.
The phylogeny in the left shows the phylogenetic relationships between selected homologs, the branches
have been colored according to their adscription to a given phylum and the support values are shown at the
nodes. The boxes in the right represent the gene neighborhood for each homolog. The genes have been

colored to represent their annotated functions.

Publicly available fitness data show both Pseudomonas fluorescens FW300-N2C3 and
Sinorhizobium meliloti PP_5260 homologs have L-lysine specific defects when interrupted (15).
Genomic contexts within other bacteria suggest many DUF1338-containing enzymes may be
involved in lysine or other amino acid metabolism (Figure 4b). Within the Actinobacteria

DUF1338 homologs are often found adjacent to sarcosine oxidases, aldehyde dehydrogenases,
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263  and transaminases implying an additional catabolic amino acid function. In both the oleaginous
264  bacterium Rhodococcus opacus B4 and M. tuberculosis, DUF1338 homologs are found next to
265  predicted L-lysine aminotransferases, suggesting an ancestral homolog functioned in lysine
266  catabolism. Interestingly, the R. opacus B4 genome has three DUF1338 homologs, only one of
267  which contains genes predicted to be specific to lysine catabolism. The other two gene

268  neighborhoods are similar in their functional content, mainly differing by containing an

269  oxidoreductase or glycolate dehydrogenase, either of which may perform the same biochemical
270  function. In Alphaproteobacteria, Betaproteobacteria, and Cyanobacteria, the presence of

271  aldehyde dehydrogenases, oxidoreductases, glycolate dehydrogenases, and aminotransferases
272 implies a metabolic function similar to PP_5260.

273 PP 4493 putatively oxidizes D-2HG to 2KG and connects D-lysine to central metabolism

274 In the CoA independent route of glutarate metabolism, LghO oxidizes L-2HG to 2KG,
275  however this enzyme is highly specific towards the L-2HG isomer and showed no fitness defect
276 on D-lysine in our RB-TnSeq data (Figure S1a). A putative FAD-dependent and 4Fe-4S cluster-
277  containing glycolate dehydrogenase, PP_4493, did show fitness defects on both D-lysine and L-
278  lysine (fitness scores of -5.4 and -2.7 respectively) (Figure 1a). Glycolate dehydrogenases are
279  members of a larger family of enzymes that oxidize the alcohol group of an alpha-hydroxyacid to
280 their corresponding alpha-ketoacid (Figure 5a). Therefore, we hypothesized PP_4493 could

281  potentially oxidize a similar 2-hydroxyacid, 2HG, to the corresponding alpha-ketoacid, 2KG.
282  Moreover, many PP_5260 homologs were located next to or near putatively annotated glycolate
283  dehydrogenases in other bacteria, underscoring their potential metabolic link (Figure 4b). To
284  confirm these hypotheses, we again constructed a deletion strain, P. putida APP_4493, which

285  could not grow on D-lysine as a sole carbon source (Figure 5b), and showed attenuated growth
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286  on L-lysine (Figure S5). Furthermore, when grown on 10 mM glucose and 10 mM D-lysine the
287  mutant accumulated ~500 uM 2HG normalized to optical density, whereas wild type P. putida
288  did not accumulate any detectable 2HG (Figure 5¢). Subsequent analysis of accumulated 2HG

289  viaa D-2HG specific detection kit revealed that this accumulated 2HG was indeed D-2HG

290  (Figure 5c). These data and the conserved function and genomic context of glycolate

291  dehydrogenases strongly suggest PP_4493 catalyzes the last step of L-2AA metabolism,

292  oxidizing D-2HG to 2KG (Figure S1b).
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295 Figure 5: Identification of PP_4493 as a putative D-2HG dehydrogenase. A) General chemical reaction of
296 a dehydrogenase converting a 2-hydroxyacid to a 2-ketoacid B) Growth of P. putida KT2440 and PP_4108
297 mutant on D-lysine as a sole carbon source. Shaded area represents 95% ClI, n=3. C) In vivo accumulation of
298 2HG in wild-type KT2440 and a PP_4108 mutant after 12 hours of growth on minimal medium
299 supplemented with 10 mM glucose and 10 mM D-lysine. White bar represents concentration of D-2HG
300 measured by enzyme coupled assay. Black bar represent total 2HG concentration as measured by LC-TOF.
301 Red line represents limit of detection of enzyme coupled assay for D-2HG. Bars represent 10gio transformed
302 spectral counts, error bars show 95% CI, n=3.
303
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305  Figure S5: Growth of PP_4493 mutant on L-lysine. Growth of wild-type KT2440 and PP_4493 mutant on L-

306  lysine as a sole carbon source. Shaded area represents 95% ClI, n=3

307

308 CsiD is highly specific for glutarate hydroxylation but promiscuous in 2-oxoacid selectivity

309 During the initial preparation of this manuscript, Zhang et al. discovered a novel pathway
310  of glutarate metabolism in P. putida (9). They describe a cyclic reaction cascade wherein a novel
311 2KG-dependent non-heme Fe(ll) oxygenase, PP_2909 (CsiD), hydroxylates glutarate to form
312  2HG and succinate using 2KG as a cosubstrate. PP_2910 (LghO), a putative L-2HG oxidase,
313  then subsequently converts L-2HG to 2KG, regenerating the 2KG consumed in the initial

314  reaction. These reactions result in the net incorporation of succinate into central metabolism

315  (Figure S1). Our fitness results of the library grown on 5AVA also identified both csiD and

316 IghO, in addition to the two enzymes from the CoA-dependent glutarate pathway, glutaryl-CoA
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ligase (gcdG) and glutaryl-CoA dehydrogenase (gcdH), mutants of which showed mild fitness

defects when grown on 5AVA (Figure 6a). We also purified csiD and confirmed it hydroxylates

glutarate in a 2KG-dependent manner (Figure S6a). HPLC analysis demonstrated that as

glutarate was consumed, equimolar quantities of succinate and L-2HG were produced (Figure

S6b). Additionally, a csiD deletion mutant showed increased lag time when grown on either L-

lysine or 5AVA. By deleting the glutaryl-CoA ligase gcdG, and disrupting the CoA-dependent
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glutarate pathway, we completely prevented growth on 5AVA or L-lysine (Figure S6c). These
results are in agreement with those found with Zhang et al (9).
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329 grown on either 5AVA or glucose. CoA-dependent glutarate degradation genes are shown in red, while those
330 known to be involved succinate producing metabolism are shown in blue. B) Phylogenetic tree of bacterial
331 CsiD homologs. Homologs used in in vitro assays are highlighted in red. C) in vitro reactions of CsiD with
332 different substrates using 2KG as a 2-oxoacid. Bars show peak area of 2-hydroxyacid, error bars show 95%
333 Cl, n=3. D) In vitro reactions of CsiD homologs with different 2-oxoacids. Bars represent spectral counts of
334 L-2HG. Error bars show 95% ClI, n=3.

335 Because non-heme Fe(ll) oxidases can be promiscuous with respect to the 2-oxoacid

336  cosubstrate (21, 22), we evaluated the 2-oxoacid specificity of CsiD. First, we evaluated the

337  hydroxyl acceptor substrate specificity of CsiD family proteins by purifying two additional

338 homologs from E. coli and a halophilic bacterium, Halobacillus sp. BAB-2008 (Figure 6b). We
339  probed the activity of the homologs against a panel of 3 to 6 carbon fatty acids and diacids in the
340 presence of 2KG, and found only glutarate served as a hydroxylation substrate (Figure 6¢). These
341  results are consistent with the work recently reported by Zhang et al (9) and further suggests the
342  specificity of CsiD homologs is conserved across phyla. Although extremely specific for the
343  hydroxylation substrate, all three CsiD homologs could utilize both 20A and 2KG, but not

344  oxaloacetate, as a cosubstrate for L-2HG formation (Figure 6d). The coproduct of the reaction
345 using 20A as a 2-oxoacid would be glutarate, rather than succinate. This result is particularly
346 interesting as it provides a possible mechanism for the previously observed metabolic link

347  between D-lysine and L-lysine catabolism. Growth defects observed in a APP_2909 APP_0158

348  double mutant grown on D-lysine also support this hypothesis (Figure S7a).
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Figure S6: Characterization of PP_2909 (CsiD) in P. putida. A) In vitro reactions of PP_2909. Bars show mM of
either succinate (blue), or 2HG (green) formed by boiled enzyme control, no 2KG control, or native enzyme with
2KG added. Errors bars show 95% CI, n=3. B) Time course in vitro reaction of PP_2909. Plot shows 2HG, 2KG,
succinate, and glutarate overtime. Shaded region shows 95% CI, n=3. C) Growth curves of wild-type KT2440,

PP_0158, PP_2909, PP_2910, or PP_2909/PP_0158 double mutants grown on either L-lysine (left column), or
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358  Figure S7: Growth of PP_2909/PP_0158 and PP_2088 mutants on D-lysine. A) Growth of wild-type KT2440 and
359 PP_2909/PP_0158 mutant on D-lysine as a sole carbon source. Shaded area represents 95% CI, n=3. A) Growth of
360  wild-type KT2440 and PP_2088 mutant on D-lysine as a sole carbon source. Shaded area represents 95% CI, n=3.

361

362  Expression of lysine metabolic proteins is responsive to pathway metabolites

363 Multiple studies have demonstrated the expression of lysine catabolic genes is
364  upregulated in the presence of pathway metabolites (9, 12, 23). To investigate the regulation of
365  the newly-discovered lysine catabolic enzymes from this study, wild-type P. putida KT2440 was

366  grown in minimal media on glucose or a single lysine metabolite (e.g. D-lysine, L-lysine, 5AVA,
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367 2AA, or glutarate) as a sole carbon source until cultures reached an ODeoo of 1.0. We then

368  quantified the relative abundance of D- and L-lysine catabolic proteins via targeted proteomics
369  (Figure 7). For each protein, all pairwise statistical comparisons of different carbon sources can
370  Dbe found in Supplemental Table 2. All five D-lysine pathway proteins measured (AmaA

371  (PP_5257), AmaB (PP_5258), PP_4108, YdcJ (PP_5260), and YdiJ (PP_4493)) were

372 upregulated when grown on L-lysine, D-lysine or 2AA compared to the glucose control. Neither
373  5AVA nor glutarate significantly induced expression of any measured D-lysine proteins. Of all
374  the targeted proteins, the three identified in this study that directly degrade 2AA were most

375  strongly induced by 2AA. Somewhat surprisingly, we also found the two enzymes involved in
376  2AA formation, AmaA and AmaB, were also more highly expressed in the presence of 2AA
377  suggesting the possible involvement of a global regulator. An interesting finding from our initial
378  screen showed sigma factor RpoX (PP_2088) to be required for fitness on D-lysine (Figure 1a).
379  Deletion mutants of rpoX were severely attenuated in their ability to grown on D-lysine as a sole
380 carbon source (Figure S7b). Further work will be necessary to examine complex regulatory

381 network that controls D-lysine metabolism.

382 The initial two enzymes from L-lysine metabolism, DavA and DavB, were most highly
383  expressed in the presence of L-lysine, but also significantly with D-lysine. As previously

384  observed, DavT and DavD were most strongly upregulated on 5AVA, moderately upregulated on
385  L-lysine, and to a lesser extent D-lysine. The induction of LhgO and CsiD was highest when
386  grown on glutarate, although these proteins were also moderately upregulated by 5SAVA and L-
387  lysine. By comparison, PP_0159 (GcdG) expression in the presence of glutarate was stimulated
388  toa lesser extent than LhgO and CsiD expression; in addition, GedG was slightly upregulated on

389 5AVAand L-lysine.
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Figure 7: Expression of lysine degradation pathways in response to different lysine metabolites.
Relative abundance of selected lysine degradation enzymes expressed in wild-type KT2440 in response to
different carbon sources. Bars show spectral counts of proteins after 36 hours of growth on 10 mM glucose
(black), 5AVA (purple), D-lysine (green), L-lysine (red), glutarate (blue), or 2AA (yellow). Error bars show

95% ClI, n=3.

Discussion

Despite intensive study, a complete biochemical and genetic understanding of D-lysine
catabolism in P. putida has remained elusive. A 20A degradation pathway has been extensively
characterized in mammals, because of its implications in human disease (24). In the mammalian

pathway, L-lysine is metabolized to 20A and eventually converted to acetyl-CoA via a glutaryl-
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402  CoA intermediate (24). However, this pathway has not been observed in bacteria. Previous work
403  suggested 20A is either converted via decarboxylation to glutarate or through several enzymatic
404  steps to 2HG, yet none of these studies conclusively demonstrated a genetic and biochemical
405  basis for these hypotheses (11, 19, 25). In this work we demonstrate plausible biochemical routes
406  to account for both of these previously hypothesized pathways.

407 The first route, catalyzed by the DUF1338-containing metalloenzyme PP_5260, involves
408 the direct conversion of 20A to D-2HG. The formation of the D-2HG isomer by PP_5260

409  maintains stereochemical separation from the L-2HG formed by L-lysine degradation, thus

410  requiring the dehydrogenase PP_4493 rather than the L-2HG specific oxidase IghO. This

411 transformation seemingly involves two separate reactions: a decarboxylation and a

412 hydroxylation. Hydroxymandelate synthase has been shown to catalyze a similar enzymatic

413  reaction, via an intramolecular oxidative decarboxylation similar to 2KG dependent Fe(ll)

414  oxidases (26). PP_5260 is also a Fe(ll) dependent decarboxylase, and the two share similar Kcat
415  values for their given substrates (330 m for PP_5260 and 270 m for hydroxymandelate

416  synthase) (27). Though PP_5260 and hydroxymandelate synthase share little sequence

417  homology, this enzyme may give us insight into the molecular mechanism of DUF1338

418  enzymes. We have given PP_5260 the tentative title of 2-hydroxyglutarate synthase (hglS) until
419 further mechanistic studies (currently underway in our group) are completed and a more accurate
420  enzyme name can be assigned.

421 In bacteria, homologs of PP_5260 appear widely distributed with their genomic contexts
422  suggesting functions both within and beyond lysine metabolism. Genomic contexts in other

423  Dbacteria, particularly Actinobacteria, suggest these homologs may be involved in other amino

424  acid catabolic pathways. Unfortunately, there is scant evidence for homologous function in
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model organisms. For example, although DUF1338 proteins are present in other Ascomycota,
there is no homolog in Saccharomyces cerevisiae. Interestingly, the E. coli homolog of PP_5260
is located next to a potential glucans biosynthesis gene: Glucans biosynthesis protein D (28).
Another DUF1338-containing protein from rice has been characterized and was implicated in
starch granule formation (29). These results suggest DUF1338 proteins could play a role in sugar
metabolism.

Recently Zhang et al. thoroughly characterized a CoA independent glutarate catabolism
route ending at succinate involving the Fe(Il) dependent oxygenase CsiD (9). Our RB-TnSeq
screening convergently uncovered this pathway, and our biochemical and physiological results
fully corroborate their findings. While both works show multiple CsiD homologs from divergent
bacteria are highly specific towards glutarate as a hydroxyl acceptor, all three homologs we
tested showed promiscuous activity toward 2-oxoacid cosubstrates. The ability of the P. putida
CsiD to utilize 20A as a cosubstrate is particularly interesting as it may directly connect L- and
D-lysine metabolism. The promiscuity of CsiD may explain earlier studies which reported
glutarate formation from D-lysine (11). Further studies involving labelled substrates may help
elucidate the potential link between the two pathways. While CsiD plays a clear role in L-lysine
metabolism in P. putida, its role in other organisms remains a mystery. In E. coli, RpoS controls
the expression of CsiD, but rpoS mutants showed fitness benefits on all three lysine metabolites
tested in our RB-TnSeq data (30). Recent work has shown that E. coli also uses CsiD to
metabolize lysine, suggesting a possible conserved role for this pathway across bacteria (31).

Work presented here and previous reports have shown expression of both lysine
catabolism pathways are highly responsive to their respective metabolites. While this metabolism

appears highly coordinated, the genes themselves are dispersed across the genome, with both
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448  PP_4018, and PP_4493 found outside of operons, and relatively distant from other lysine

449  catabolic genes. At least two global regulators appeared to be important to lysine metabolism
450  based on our Rb-TnSeq data, cbrA (PP_4695) and rpoX (PP_2088). The two-component system
451  CbrAB has been implicated in catabolite repression and C/N balance in P. aeruginosa, with
452  mutants unable to grown on multiple amino acids (32). Further work in P. putida KT2440

453  showed the CbrAB system behaved similarly to that in P. aeruginosa (33). It would be

454  unsurprising if this regulator controls the expression of various genes within lysine catabolism;
455  more work into uncovering the regulon is warranted. RpoX on the other hand has been

456  implicated in osmotic tolerance in P. aeruginosa (34, 35). This is interesting as lysine

457  metabolism, and specifically pipecolate metabolism, has been associated with osmotic tolerance
458  across multiple bacteria (36). As a rpoX deletion mutant was unable to grow on D-lysine, these
459  results suggest D-lysine metabolism of P. putida may be involved in adaptation to saline or other
460  osmotically stressful environments.

461 An interesting question remains as to why P. putida maintains separate metabolic

462  pathways for D- and L-lysine, and why L-lysine metabolism seems dependent on the presence of
463  an intact D-lysine metabolism. Previously work has proposed that the D-lysine pathway may
464  provide a way of resolving a C/N imbalance that may occur when L-lysine is metabolized.

465  However we believe this is unlikely as both lysine degradation pathways contain one

466  deamination and one transamination reaction (11). Our fitness results indicate D-lysine

467  metabolism is dispensable for growing on 5AVA. This would suggest only the initial two steps
468  of L-lysine metabolism, the oxidation of lysine to 5-aminopentanamide by DavB and its

469  subsequent deamination to 5SAVA by DavA are dependent on D-lysine catabolism. We propose

470 the adjacent AsnC family regulator PP_0384 likely responds to L-lysine as many proteins within
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471  this family respond to amino acids including lysine (37, 38) and expression of these two enzymes
472  is most responsive to L-lysine. To our knowledge there has been no rigorous characterization of
473  the regulation of the davAB operon, nor of the biochemical activities of these two enzymes in
474  vitro. Future studies to uncover the mechanistic regulation at the transcriptional and post-

475 translational levels at these two steps may uncover the necessity of D-lysine dependency of the
476  L-lysine catabolic pathway. Overall our work highlights the utility of global fitness profiling to
477  discover novel, complex, metabolic pathways in even well-characterized bacteria.

478  Materials and Methods

479  Media, chemicals, and culture conditions

480 Routine bacterial cultures were grown in in Luria-Bertani (LB) Miller medium (BD

481  Biosciences, USA). E. coli was grown at 37 °C, while P. putida was grown at 30 °C unless

482  otherwise noted. When indicated, P. putida was grown on modified MOPS minimal medium
483  (39). Cultures were supplemented with kanamycin (50 mg/L, Sigma Aldrich, USA), gentamicin
484 (30 mg/L, Fisher Scientific, USA), or carbenicillin (100mg/L, Sigma Aldrich, USA), when

485 indicated. D-2AA was purchased from Takara Bioscience (USA), all other compounds were
486  purchased through Sigma Aldrich.

487  Strains and plasmids

488 All bacterial strains and plasmids used in this work are listed in Supplemental Table 1.
489  All strains and plasmids created in this work are available through the public instance of the
490  JBEI registry. (https://public-registry.jbei.org/folders/391). All plasmids were designed using
491  Device Editor and Vector Editor software, while all primers used for the construction of

492  plasmids were designed using j5 software (40—42). Synthetic DNA coding for the Halobacillus

493  sp. BAB-2008 csiD homolog was purchased from Integrated DNA Technologies (IDT,
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494  Coralville, 1A). Plasmids were assembled via Gibson Assembly using standard protocols (43), or
495  Golden Gate Assembly using standard protocols (44). Plasmids were routinely isolated using the
496  Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were purchased from Integrated DNA
497  Technologies (IDT, Coralville, 1A).

498 Random barcode TnSeq experiments

499 P. putida RB-TnSeq library JBEI-1 was created by diluting a 1 mL aliquot of the

500 previously described P. putida RB-TnSeq library (16) in 500 mL of LB media supplemented
501  with kanamycin which was then grown to an ODeoo of 0.5 and frozen as 1 mL aliquots after

502 adding glycerol to a final concentration of 20% v/v. Libraries were stored at —80 °C until used. A
503 1 mL aliquot of P. putida RB-TnSeq library JBEI-1 was thawed on ice and diluted in 25 mL of
504 LB supplemented with kanamycin. The culture was grown until it reached an ODsoo of 0.5, at
505  which point 3 1-mL aliquots were taken, pelleted, decanted, and then stored at —80 °C to use as a
506 time zero control. The library was then washed once in MOPS minimal medium without any
507 carbon source, and then diluted 1:50 into 10 mL MOPS minimal medium supplemented with
508 either 10 mM glucose, 5AVA, D-lysine, or L-lysine. Cells were grown in 50 mL culture tubes
509 for 48 hours at 30 °C shaking at 200 rpm. After growth 2 ml aliquots from the culture tubes were
510 pelleted, decanted and frozen at —80 °C for barcode sequencing. We performed DNA barcode
511  sequencing (BarSeq) as previously described (14, 16). The fitness of a strain is the normalized
512  log2 ratio of barcode reads in the experimental sample to barcode reads in the time zero sample.
513  The fitness of a gene is the weighted average of the strain fitness for insertions in the central 10—
514  90% of the gene. The gene fitness values are normalized so the typical gene has a fitness of zero.
515  The primary statistic t-value is of the form of fitness divided by the estimated variance across

516  different mutants of the same gene. Statistic t-values of >|4| were considered significant. All
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experiments described herein pass the quality metrics described previously unless noted

otherwise. All fitness data in this work is publically available at http://fit.genomics.lbl.gov.

Construction of deletion mutants

Deletion mutants in P. putida were constructed by homologous recombination and sacB
counterselection using the allelic exchange vector pMQ30 (45). Briefly, homology fragments
ranging from 1 kbp to 2 kbp up- and downstream of the target gene, including the start and stop
codons respectively, were cloned into pMQ30. An exception to these design parameters was
plasmid pMQ-PP_ 5260 which maintained an additional 21 nt at the 5° end of the gene in
addition to the stop codon. Plasmids were then transformed via electroporation into E. coli S17
and then mated into P. putida via conjugation. Transconjugants were selected for on LB agar
plates supplemented with gentamicin 30 mg/mL, and chloramphenicol 30 mg/mL.
Transconjugants were then grown overnight on LB media also supplemented with 30 mg/mL
gentamicin, and 30 mg/mL chloramphenicol, and then plated on LB agar with no NaCl
supplemented with 10% w/v sucrose. Putative deletions were restreaked on LB agar with no
NaCl supplemented with 10% w/v sucrose, and then were screened via PCR with primers

flanking the target gene to confirm gene deletion.

Plate based growth assays

Growth studies of bacterial strains were conducted a microplate reader Kinetic assays.
Overnight cultures were inoculated into 10 mL of LB medium from single colonies, and grown
at 30 °C. These cultures were then washed twice with MOPS minimal media without any added

carbon and diluted 1:100 into 500 uL of MOPS medium with 10 mM of a carbon source in 48-
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538  well plates (Falcon, 353072). Plates were sealed with a gas-permeable microplate adhesive film
539 (VWR, USA), and then optical density was monitored for 48 hours in an Biotek Synergy 4 plate
540 reader (BioTek, USA) at 30 °C with fast continuous shaking. Optical density was measured at
541 600 nm and all ODsoo measurements are reported without pathlength corrections.

542  Expression and purification of proteins

543 A5 mL overnight culture of E. coli BL21 (DE3) containing the expression plasmid was
544  used to inoculate a 500 mL culture of LB. Cells were grown at 37 °C to an ODsoo of 0.6 then
545 induced with isopropyl B-D-1-thiogalactopyranoside to a final concentration of 1 mM. The

546  temperature was lowered to 30 °C and cells were allowed to express for 18 hours before being
547  harvested via centrifugation. Cell pellets were stored at -80 °C until purification. For purification,
548  cell pellets were resuspended in lysis buffer (50 mM sodium phosphate, 300 mM sodium

549 chloride, 10 mM imidazole, 8% glycerol, pH 7.5) and sonicated to lyse cells. Insolubles were
550 pelleted via centrifugation (30 minutes at 40,000xg). The supernatant was applied to a fritted
551  column containing Ni-NTA resin (Qiagen, USA) which had been pre-equilibrated with several
552  column volumes of lysis buffer. The resin was washed with lysis buffer containing 50 mM

553  imidazole, then the protein was eluted using a step-wise gradient of lysis buffer containing

554 increasing imidazole concentrations (100 mM, 200 mM, and 400 mM). Fractions were collected
555 and analyzed via SDS-PAGE. Purified protein was dialyzed overnight at 4 °C against 50 mM
556  HEPES pH 7.5, 5% glycerol.

557  CsiD in vitro assays

558 The activity of purified CsiD homologs was analyzed in 100 pL reaction mixtures
559  containing 50 mM HEPES (pH 7), 5 mM glutarate, 5 mM 2KG, 25 pM FeSO4, 0.1 mM

560 ascorbate, and 0.5 mM dithiothreitol. For negative control reactions, each respective reaction
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561 component was omitted. To initiate reactions, CsiD was added to a final concentration of 7 uM.
562  For the no enzyme control, CsiD was denatured at 98 °C for 10 minutes prior to addition to the
563  reaction mix. Reactions were allowed to proceed at 22 °C for 3 hours. Products were analyzed
564  via LC-TOF method 3 after quenching via the addition of acetonitrile and methanol for a final
565 ACN:H20:MeOH ratio of 6:3:1 To analyze products from substrate range as well 2-oxoacid
566  specificity experiments, reactions were measured via LC-TOF method 1.

567 Transamination assays

568 To determine product formation via PP_4108, assays were conducted in 50 mM HEPES
569  (pH 7.5), with 5 mM 2KG, 0.1 mM PLP, and 5 mM of substrate, and 10 uM of purified enzyme
570  or boiled enzyme control in 100uL volumes. Reactions were incubated at 30 °C for 16 hours and
571  quenched via the addition of ACN and MeOH for a final ACN:H20:MeOH ratio of 6:3:1 for LC-
572  TOF method 3. To determine substrate specificity reactions were set up at 75 pL scale and

573  carried out at 30°C for up to 16 hours before freezing. For analysis, reactions were diluted 15-
574  fold in water and assessed by a colorimetric assay for glutamate (Sigma MAKO004) in 96-well
575 format via a SpectraMax M4 plate reader (Molecular Devices, USA).

576 PP 5260 in vitro assays

577 The activity of PP_5260 was initially assessed in 50 mM HEPES, with 5 mM 20A as
578  substrate and 10 uM purified enzyme or boiled enzyme control. Reactions were incubated for 16
579  hours at 30 °C. To test the necessity of metal cofactors EDTA was added to a final concentration
580 of 50 uM. Reactions and quenched via the addition of ACN and methanol MeOH for a final

581 ACN:H20:MeOH ratio of 6:3:1 for LC-TOF analysis method 3, or with an equal volume of ice-

582  cold methanol for HPLC analysis and LC-TOF method 2.
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583 To determine the metal cofactor, after purification over Ni-NTA resin the protein was
584  concentrated and dialyzed overnight against 50mM HEPES, 100mM NaCl, pH 7.5. To generate
585  apo-enzyme, the protein was then dialyzed four times at a protein:dialysis buffer ratio of 1:300
586  against the same buffer containing 5mM EDTA in order to remove any bound metal. The

587  enzyme was dialyzed once more against buffer without EDTA overnight in order to remove any
588  remaining chelating reagent. The apo-enzyme was then assayed in the presence of 50 UM of a
589 variety of potential metal cofactors in 50 mM HEPES with 10 mM 20A as substrate and 10 uM
590 purified enzyme. Reactions were incubated for 30 minutes at 30 °C and activity was assessed via
591 HPLC.

592 Determination of enzyme stoichiometry was assessed in 50 mM HEPES, 50 uM FeClz,
593  with 1 mM 20A as substrate and 0.1 M purified enzyme or boiled enzyme control. Reactions
594  were incubated for 5 minutes at 30 °C and then quenched with an equal volume of ice-cold

595  methanol then quantified with LC-TOF method 2.

596 Enzyme coupled decarboxylation assays were carried out as previously described (20).
597  Reaction mixtures contained 100 mM Tris-HCI (pH 7), 10 mM MgClz, 0.4 mM NADH, 4 mM,
598 50 uM FeClz, phosphoenol pyruvate (PEP), 100U/mL pig heart malate dehydrogenase(Roche),
599  2U/mL microbial PEP carboxylase (Sigma), and 10 mM 20A. Reactions were initiated by the
600 addition of purified PP_5260 or boiled enzyme controls, and absorbance at 340 nm was

601 measured via a SpectraMax M4 plate reader (Molecular Devices, USA). Michaelis-Menten

602  behavior was formulated as previously described (46). Least-squares minimization was used to
603  derive Kmand Kcat. Determination of D-2HG concentration was assayed with a D-2-

604  Hydroxyglutarate (D-2HG) Assay Kit (Sigma MAK320).
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632 Tablel
Strain JBEI Part ID Reference Genotype
E. coli DH10B ThermoFisher
E. coli S17 ATCC 47055
E. coli BL21(DE3) Novagen
P. putida KT2440 ATCC 47054
P. putida APP_0158 JPUB_010967 | This work
P. putida APP 2088 JPUB 013224 | This work
P. putida APP_2909 JPUB 010968 | This work
P. putida APP 2910 JPUB 010969 | This work
P pullda APP_OI3 JPUB_010970 | This work
P. putida APP_4108 JPUB_010971 | This work
P. putida APP_4493 JPUB_010972 | This work
P. putida APP_5260 JPUB_010973 | This work
Plasmids
pMQ30 45 Gm, SacB
pET28 Novagen Kan
pET21b Novagen Amp
pMQ30-PP_0158 JPUB_010989 | This work Gm, SacB
pMQ30-PP_2088 JPUB 013222 | This work Gm, SacB
pMQ30-PP_2909 JPUB_ 010991 | This work Gm, SacB
pMQ30-PP_2910 JPUB 010995 | This work Gm, SacB
pMQ30-PP_4108 JPUB 010981 | This work Gm, SacB
pMQ30-PP_4493 JPUB 010979 | This work Gm, SacB
pMQ30-PP_5260 JPUB 010977 | This work Gm, SacB
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pET28-CsiD_Halo JPUB_010987 | This work Kan
pET28-CsiD_Ecoli JPUB_010993 | This work Kan
pET28-CsiD_Pput JPUB_ 010975 | This work Kan
pET21b-PP_4108 JPUB_ 010983 | This work Amp
pPET21b-PP_5260 JPUB_010985 | This work Amp
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Supplementary Materials and Methods

HPLC analysis

HPLC analysis was performed on an Agilent Technologies 1200 series liquid chromatography
instrument coupled to a refractive index detector (35°C, Agilent Technologies, Santa Clara, CA).
Samples were injected onto an Aminex HPX-87H lon Exclusion Column (300 x 7.8 mm, 60°C,
Bio-Rad, Hercules, CA) and eluted isocratically with 4 mM H2SO4 at 600 uL/min for 20
minutes. Compounds were quantified via comparison to a calibration curve prepared with
authentic standards and normalized to injection volume.

Proteomics analysis

P. putida KT2440 wild type was grown on MOPS minimal media with 10 mM of either
glucose, L-lysine, D-lysine, 5AVA, 2AA, or glutarate. Cells were harvested when cultures
reached an ODeoo of 1.0 with a 1 cm pathlength. Cell lysis and protein precipitation were
achieved by using a chloroform-methanol extraction as previously described (1). Thawed pellets

were loosened from 14 mL falcon tubes and transferred to PCR 8-well tube strip, followed by the
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addition of 80 pL of methanol, 20 pL of chloroform, and 60 pL of water, with vortexing. The
samples were centrifuged at ~20,000 x g for 1 minute for phase separation. The methanol and
water (top) layer was removed, then 100 puL of methanol was added and the sample was vortexed
briefly. The samples were centrifuged at ~20,000 x g for 1 minute to isolate the protein pellet.
The protein pellet was air-dried for 10 minutes and resuspended in 100 mM ammonium
bicarbonate with 20% methanol. The protein concentration was measured using the DC Protein
Assay Kit (Bio-Rad, Hercules, CA) with bovine serum albumin for the standard curve. A total of
100 pg of protein from each sample was digested with trypsin for targeted proteomic analysis.
The protein was reduced by adding tris 2-(carboxyethyl) phosphine (TCEP) at a final
concentration of 5 mM, alkylated by adding iodoacetamide at a final concentration of 10 mM,
and digested overnight at 37 °C with trypsin at a ratio of 1:50 (w/w) trypsin:total protein. As
previously described (2), peptides were analyzed using an Agilent 1290 liquid chromatography
system coupled to an Agilent 6460QQQ mass spectrometer (Agilent Technologies, Santa Clara,
CA). Peptide samples (10 pg) were separated on an Ascentis Express Peptide ES-C18 column
(2.7 um particle size, 160 A pore size, 50 mm length x 2.1 mm i.d., 60 °C; Sigma-Aldrich, St.
Louis, MO) by using a chromatographic gradient (400 pL/min flow rate) with an initial condition
of 95% buffer A (99.9% water, 0.1% formic acid) and 5% buffer B (99.9% acetonitrile, 0.1%
formic acid) then increasing linearly to 65% buffer A/35% buffer B over 5.5 minutes. Buffer B
was then increased to 80% over 0.3 minutes and held at 80% for two minutes followed by
ramping back down to 5% buffer B over 0.5 minutes where it was held for 1.5 minutes to re-
equilibrate the column for the next sample. The peptides were ionized by an Agilent Jet Stream
ESI source operating in positive-ion mode with the following source parameters: gas

Temperature: 250 °C, gas Flow: 13 L/min, nebulizer pressure: 35 psi, sheath gas temperature:
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250 °C, sheath gas flow: 11 L/min, nozzle voltage: 0 V, chamber voltage: 3,500 V. The data
were acquired using Agilent MassHunter, version B.08.02, processed using Skyline (3) version
4.1, and peak quantification was refined with mProphet (4) in Skyline. Data are available at
Panorama Public via this link:

https://panoramaweb.org/massive_fitness_profiling_Pseudomonas_putida.url. All pairwise

combinations of spectral counts from carbon sources for each protein were compared via
Student's t-test followed by a Bonferroni correction.

Detection of metabolites

Sampling of intracellular metabolites was conducted as described previously (5).
Multiple methods were used to detect compounds in this work. Method (1) HILIC-HRMS
analysis was performed using an Agilent Technologies 6510 Accurate-Mass Q-TOF LC-MS
instrument using positive mode and an Atlantis HILIC Silica 5 um column (150 x 4.6 mm) with
a linear of 95 to 50% acetonitrile (v/v) over 8 minutes in water with 40 mM ammonium formate,

pH 4.5, at a flow rate of 1 mL minute™* . Method (2) HILIC-HRMS analysis was performed

using an Agilent Technologies 6510 Accurate-Mass Q-TOF LC-MS instrument using negative
mode and an Atlantis HILIC Silica 5 pm column (150 x 4.6 mm) with an isocratic mobile phase
(80% acetonitrile (v/v) with 40 mM ammonium formate, pH 4.5) for 20 minute at a flow rate of

1

1 mL minute™" . Method (3) is described in George et al (5). Briefly, samples were separated via

a SeQuantZIC-pHILIC guard column (20-mm length, 2.1-mm internal diameter, and 5-um
particle size; from EMD Millipore, Billerica, MA, USA), then with a short SeQuantZIC-pHILIC
column (50-mm length, 2.1-mm internal diameter, and 5-um particle size) followed by a long
SeQuantZIC-pHILIC column (150-mm length, 2.1-mm internal diameter, and 5-pum particle size)

using an Agilent Technologies 1200 Series Rapid Resolution HPLC system (Agilent
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Technologies, Santa Clara, CA, USA). The mobile phase was composed of 10 mM ammonium
carbonate and 118.4 mM ammonium hydroxide in acetonitrile/water (60.2:39.8, v/v).
Metabolites were eluted isocratically via a flow rate of 0.18 mL/min from 0 to 5.4 minutes,
which was increased to 0.27 mL/min from 5.4 to 5.7 minutes, and held at this flow rate for an
additional 5.4 minutes. The HPLC system was coupled to an Agilent Technologies 6210 TOF-
MS system in negative mode. Determination of D-2HG concentration was assayed with a D-2-
Hydroxyglutarate (D2HG) Assay Kit (Sigma MAK320).

Phylogenomic analyses

Amino acid sequences of CsiD homologs were downloaded from the pFAM database and
aligned with MAFFT-linsi (13). Phylogenetic trees of CsiD alignments were constructed with
FastTree 2, and trees were visualized on iTOL (14, 15).

Representative DUF1338 sequences were obtained from pFAM
(https://pfam.xfam.org/family/PF07063#tabview=tab3). All genomes analyzed were downloaded
from the NCBI FTP site and annotated using RAST (16). Amino acid sequences of DUF1338
proteins from these genomes were retrieved using BlastP with a bit score cutoff of 150 and an E-
value of 0.000001. All sequences alignments were performed using Muscle v3.8 (17) and the
alignments were manually curated using Jalview V2 (18).

For the phylogenetic reconstructions, the best amino acid substitution model was selected
using ModelFinder implemented on 1Q-tree (19) the phylogenies were obtained using 1Q-tree v
1.6.7 (20), with 10,000 bootstrap replicates. The final trees were visualized and annotated using
FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). Genome neighborhoods of DUF1338
were obtained using CORASON-BGC (21) and manually colored and annotated.

Statistical analyses and data presentation
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All numerical data were analyzed using custom Python scripts. All graphs were
visualized using either Seaborn or Matplotlib. Calculation of 95% confidence intervals, standard
deviations, and T-test statistics were conducted via the Scipy library. Bonferroni corrections

were calculated using the MNE python library (22).
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Figure S2: Results of RB-TnSeq screen. A) Genes that showed great than 2 log2 fitness on either D-lysine, L-lysine, or
5AVA but showed no less than 0.5 log2 fitness defect when grown on glucose.
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