

1 Massively parallel fitness profiling reveals multiple novel enzymes in *Pseudomonas putida*
2 lysine metabolism

3 Mitchell G. Thompson^{1,2,3}, Jacquelyn M. Blake-Hedges^{1,2,4}, Pablo Cruz-Morales^{1,2,5}, Jesus F.
4 Barajas^{2,6}, Samuel C. Curran^{1,2,7}, Christopher B. Eiben^{1,2,8}, Nicholas C. Harris³, Veronica T.
5 Benites^{1,2}, Jennifer W. Gin^{1,2}, William A. Sharpless^{1,2,3}, Frederick F. Twigg⁸, Will Skyrud⁴,
6 Rohith N. Krishna^{1,2,4}, Jose Henrique Pereira^{1,9}, Edward E. K. Baidoo^{1,2}, Christopher J.
7 Petzold^{1,2}, Paul D. Adams^{1,9,10}, Adam P. Arkin^{10,11}, Adam M. Deutschbauer^{3,11}, Jay D.
8 Keasling^{1,2,8,10,12}

9 ¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.

10 ²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley,
11 CA 94720, USA.

12 ³Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720,
13 USA

14 ⁴Department of Chemistry, University of California, Berkeley, CA 94720, USA

15 ⁵Centro de Biotecnología FEMSA, Tecnológico de Monterrey, NL, Mexico

16 ⁶Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA

17 ⁷Comparative Biochemistry Graduate Group, University of California, Berkeley, CA 94720,
18 USA

19 ⁸Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA
20 94720, USA

21 ⁹Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National
22 Laboratory, Berkeley, CA 94720, USA.

23 ¹⁰Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA 94720,

24 USA

25 ¹¹Environmental Genomics and Systems Biology Division, Lawrence Berkeley National

26 Laboratory, Berkeley, CA 94720, USA.

27 ¹²The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark,

28 Denmark

29

30 **Abstract**

31 Despite intensive study for 50 years, the biochemical and genetic links between lysine
32 metabolism and central metabolism in *Pseudomonas putida* remain unresolved. To establish
33 these biochemical links, we leveraged Random Barcode Transposon Sequencing (RB-TnSeq), a
34 genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple
35 novel enzymes in both L- and D-lysine metabolism. We first describe three pathway enzymes
36 that catabolize L-2-amino adipate (L-2AA) to 2-ketoglutarate (2KG), connecting D-lysine to the
37 TCA cycle. One of these enzymes, PP_5260, contains a DUF1338 domain, a family with no
38 previously described biological function. Our work also identified the recently described CoA
39 independent route of L-lysine degradation that metabolizes to succinate. We expanded on
40 previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-
41 oxoacid selectivity. Proteomics of select pathway enzymes revealed that expression of catabolic
42 genes is highly sensitive to particular pathway metabolites, implying intensive local and global
43 regulation. This work demonstrates the utility of RB-TnSeq for discovering novel metabolic
44 pathways in even well-studied bacteria, as well as a powerful tool for validating previous
45 research.

46 **Importance**

47 *P. putida* lysine metabolism can produce multiple commodity chemicals, conferring great
48 biotechnological value. Despite much research, connecting lysine catabolism to central
49 metabolism in *P. putida* remained undefined. Herein we use Random Barcode Transposon
50 Sequencing to fill in the gaps of lysine metabolism in *P. putida*. We describe a route of 2-
51 oxoadipate (2OA) catabolism in bacteria, which utilizes DUF1338 containing protein PP_5260.
52 Despite its prevalence in many domains of life, DUF1338 containing proteins had no known
53 biochemical function. We demonstrate PP_5260 is a metalloenzyme which catalyzes an unusual
54 2OA to D-2HG decarboxylation. Our screen also identified a recently described novel glutarate
55 metabolic pathway. We validate previous results, and expand the understanding of glutarate
56 hydroxylase CsiD by showing can it use either 2OA or 2KG as a cosubstrate. Our work
57 demonstrates biological novelty can be rapidly identified using unbiased experimental genetics,
58 and that RB-TnSeq can be used to rapidly validate previous results.

59 **Introduction**

60 *Pseudomonas putida* is an ubiquitous saprophytic soil bacterium and is a model organism
61 for bioremediation (1). Interest in utilizing *P. putida* KT2440 as a chassis organism for metabolic
62 engineering has recently surged due to the existence of well-established genetic tools and its
63 robust metabolism of aromatic compounds that resemble lignin hydrolysis products (2–4). As
64 lignin valorization remains essential for the economic feasibility of cellulosic bioproducts, a
65 nuanced and predictable understanding of *P. putida* metabolism is highly desirable (5).

66 Although its aromatic metabolism has garnered much attention, the lysine metabolism of
67 *P. putida* has also been rigorously studied for over fifty years (6). An understanding of lysine
68 metabolism has had biotechnological value, as it has been used to produce glutarate, 5-

69 aminovalerate (5AVA), as well as valerolactam in *P. putida* and in the other bacteria (7–10). Our
 70 current understanding of lysine catabolism however, remains incomplete. In particular, the
 71 connection between D-lysine metabolism and central metabolism in *P. putida* is unclear and has
 72 not been fully characterized.

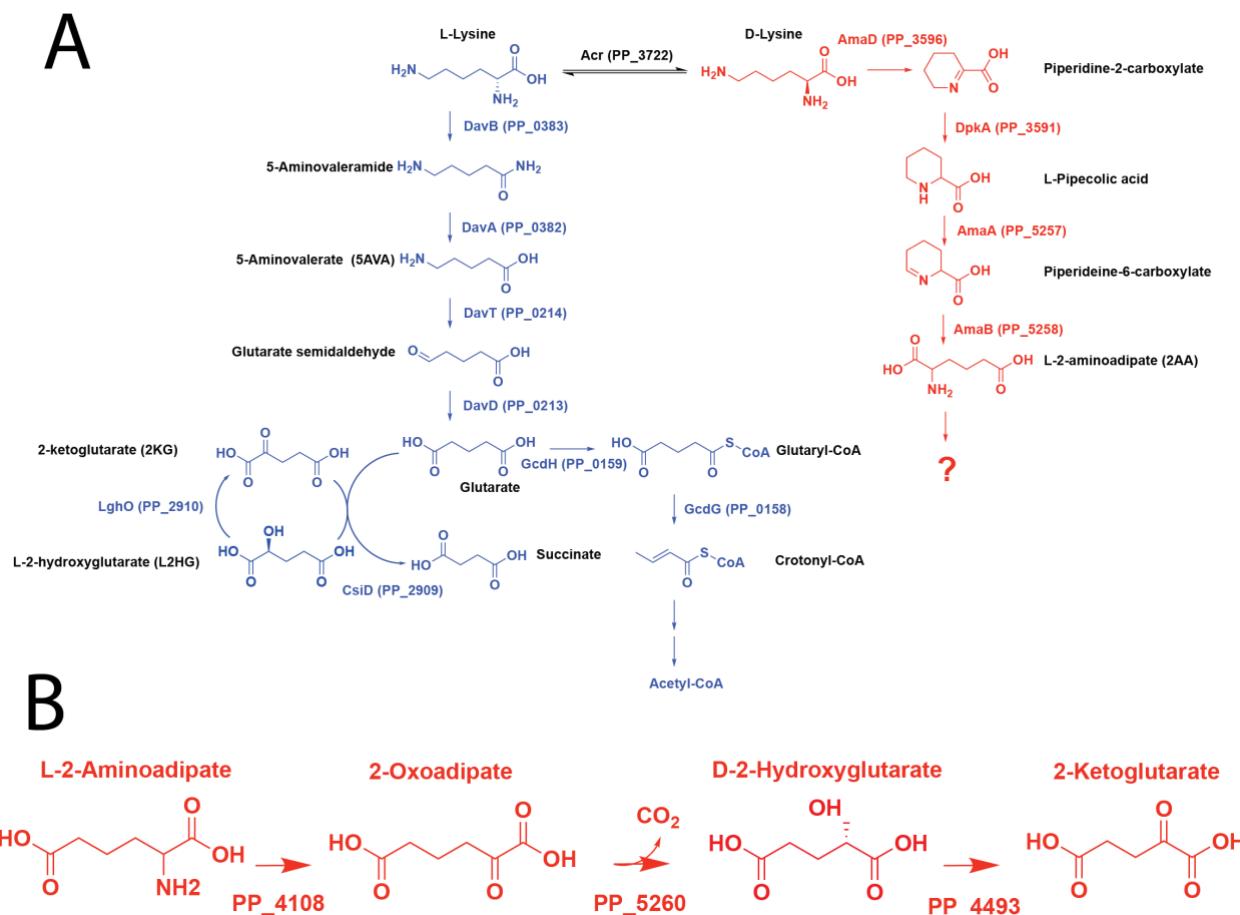
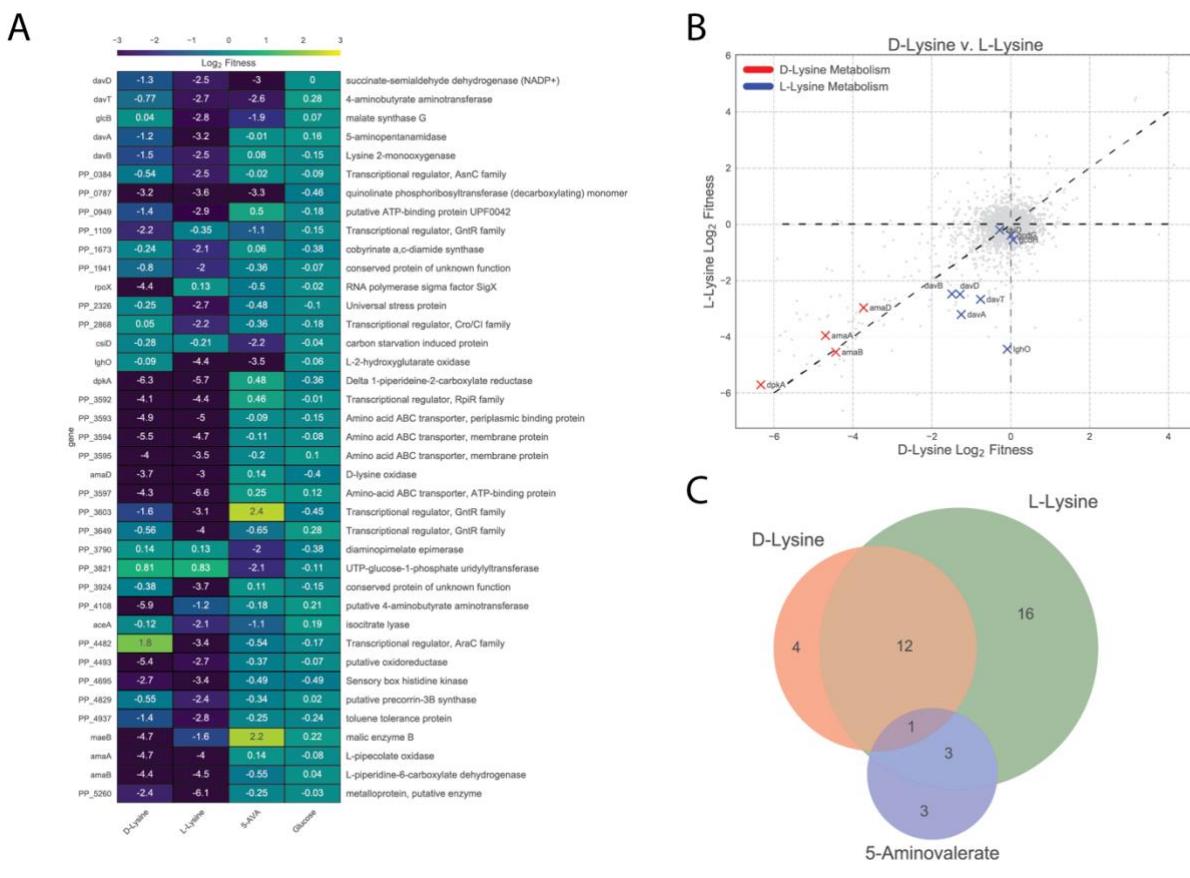


Figure S1: Metabolic pathways of lysine catabolism in *P. putida* KT2440. A) L-lysine metabolic pathway is shown in blue, while the known steps of D-lysine metabolism are shown in red. B) Proposed route of 2AA metabolism in *P. putida*.


73 *P. putida* employs bifurcating pathways to catabolize lysine, separately metabolizing the
 74 L- and D-isomers (Figure S1a) (11). The L-lysine degradation pathway proceeds to glutarate,
 75 which can then be either be degraded to acetyl-CoA via a glutaryl-CoA intermediate, or to

76 succinate without a CoA bound intermediate (Figure S1a) (9). The final steps of D-lysine
77 catabolism remain more elusive. The initial steps of D-lysine catabolism are well described, but
78 the genetic basis stops at 2AA (12). Furthermore, ¹³C labeling experiments by Revelles et al.
79 demonstrated a putative metabolic connection between the D- and L-lysine pathways at 2AA
80 (11). Subsequent steps to central carbon metabolism have never been fully validated. (6, 11–13).
81 Given the importance of lysine metabolism, and recent availability of high-throughput genetic
82 tools, we sought to identify the missing steps in D-lysine metabolism that have remained despite
83 50 years of research.

84 Random barcode transposon sequencing (RB-TnSeq) is a genome-wide approach that
85 measures the importance of each gene to growth (or fitness) in a massively parallel assay (14).
86 RB-TnSeq can identify phenotypes for thousands of previously uncharacterized genes (14, 15),
87 including the levulinic acid degradation pathway in *P. putida* KT2440 (16). In this study, we
88 applied RB-TnSeq to uncover multiple novel genes implicated in L- and D-lysine metabolism in
89 *P. putida*. We first describe a three enzyme route connecting L-2AA to 2KG (Figure S1B).
90 Within this pathway, D-lysine metabolism connects to central metabolism through a 2HG
91 intermediate, which is directly produced from 2OA in a reaction catalyzed by a DUF1338-
92 containing protein. This protein family, widely distributed across many domains of life,
93 previously had no known function. Subsequently, we further characterize the glutarate
94 hydroxylase CsiD, by demonstrating its 2-oxoacid promiscuity during the hydroxylation of
95 glutarate. Finally, we show the expression of all newly discovered enzymes changes significantly
96 in response to specific metabolites within the two catabolic pathways.

97 **Results**

98 Identification of lysine catabolism genes via RB-TnSeq

Figure 1: Results of RB-TnSeq screen. A) Genes that showed less than -2 log₂ fitness on either D-lysine, L-lysine, or 5AVA but showed no less than -0.5 log₂ fitness defect when grown on glucose. B) Plot of genome wide fitness values of libraries grown on either L-lysine or D-lysine. Genes encoding for enzymes known to be involved in D-lysine metabolism are shown in red, while those known to be involved in L-lysine metabolism are shown in blue. C) Venn diagram of genes with significant fitness defects when grown on either D-lysine, L-lysine, or 5AVA.

99

100 To identify mutants defective in lysine catabolism in *P. putida* KT2440, an RB-TnSeq library of this bacterium (16) was grown on minimal medium supplemented with either D-lysine 101 or L-lysine as the sole carbon source. To evaluate whether D-lysine metabolism was required for 102 the metabolism of other downstream metabolites of L-lysine, the library was also grown on 103 5AVA. As a control, we also grew the library on glucose. Fitness was calculated as the log₂ ratio 104 of strain and gene abundance at the end of selective growth relative to initial abundance (14). 105

106 Fitness profiling revealed 39 genes with significant fitness values of less than -2 for 5AVA, D-
107 lysine, or L-lysine, and no less than -0.5 fitness for glucose (Figure 1a, Supplementary Table 1).
108 Within this set, 10 of the 12 known lysine degradation genes were identified, with the exception
109 of the two enzymes in the CoA-dependent route of glutarate degradation (*gcdH* and *gcdG*),
110 which both had significant fitness values ($t < -4$) but whose fitness was greater than -2. Instead,
111 we identified the recently-characterized genes involved in the CoA independent pathway (*csiD*
112 and *lghO*) (9).

113 The fitness data corroborated previous work showing a functional D-lysine pathway is
114 required for L-lysine catabolism (6, 11). None of the known L-lysine catabolic genes showed
115 fitness defects for growth on D-lysine, but transposon insertions in all previously-identified D-
116 lysine genes showed negative fitness scores when grown on L-lysine (Figure 1b). No known D-
117 lysine catabolic enzymes showed fitness defects when grown on 5AVA, suggesting the D-lysine
118 dependence of L-lysine catabolism may only occur for early catabolic steps (Figure 1c).

119 In addition to catabolic enzymes, lysine transporters and multiple transcriptional
120 regulators were identified (Figure 1a). The putative lysine amino acid ABC transporter system
121 (PP_3593, PP_3394, and PP_3395) showed significant fitness defects when grown with either
122 isomer of lysine. Some of the transcriptional regulators were located near known catabolic or
123 transport enzymes (PP_0384, PP_3592, and PP_3603), while others were not clustered with any
124 obviously related genes (PP_1109, PP_2868, PP_3649, and PP_4482). Two known global
125 regulators were identified in our screen: *cbrA* (PP_4695), a histidine kinase sensor that showed
126 fitness defects on both lysine isomers, and the alternative sigma factor *rpoX* (PP_2088) which
127 only had fitness defects when grown on D-lysine.

128 Additionally there were 15 genes which, when disrupted, displayed fitness advantages
129 greater than 2 on 5AVA, D-lysine, or L-lysine and less than 0.5 fitness when grown on glucose.
130 This positive fitness value indicates these mutations confer a competitive advantage compared to
131 other strains when grown on these carbon sources. Most striking amongst these genes were the
132 sigma factor *rpoS* and the LPS export system (PP_1778/9), which when disrupted, both
133 displayed fitness benefits on all three non-glucose carbon sources (Figure S2).

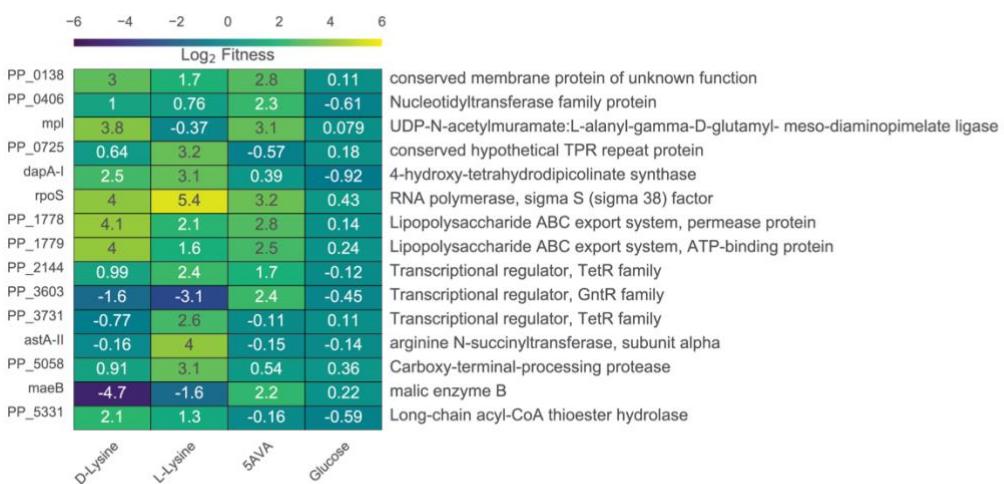


Figure S2: Results of RB-TnSeq screen. A) Genes that showed great than 2 log2 fitness on either D-lysine, L-lysine, or 5AVA but showed no less than 0.5 log2 fitness defect when grown on glucose.

134
135 Only one gene (PP_0787, a quinolinate phosphoribosyltransferase) showed fitness
136 defects on all three non-glucose carbon sources (Figure 1c). However, disruption of PP_0787
137 also showed a significant fitness defect when grown on levulinic acid, suggesting it is unlikely to
138 be uniquely important to lysine metabolism (16). Only 3 genes shared fitness defects between
139 5AVA and L-lysine (*davT*, *davD*, and *lghO*), all of which have been previously implicated in
140 5AVA metabolism (Figure 1c) (9).

141 PP_4108 is a L-2AA aminotransferase

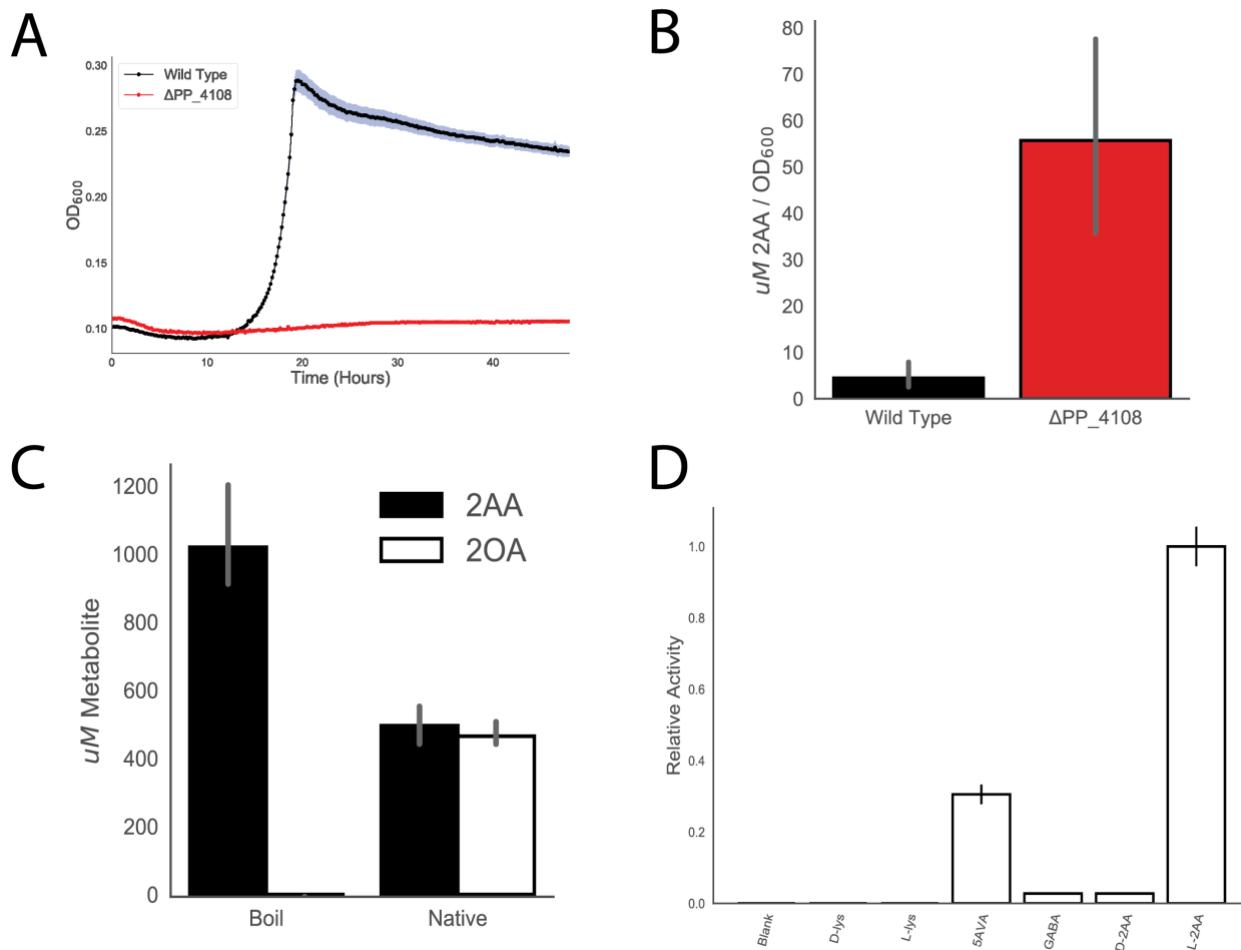
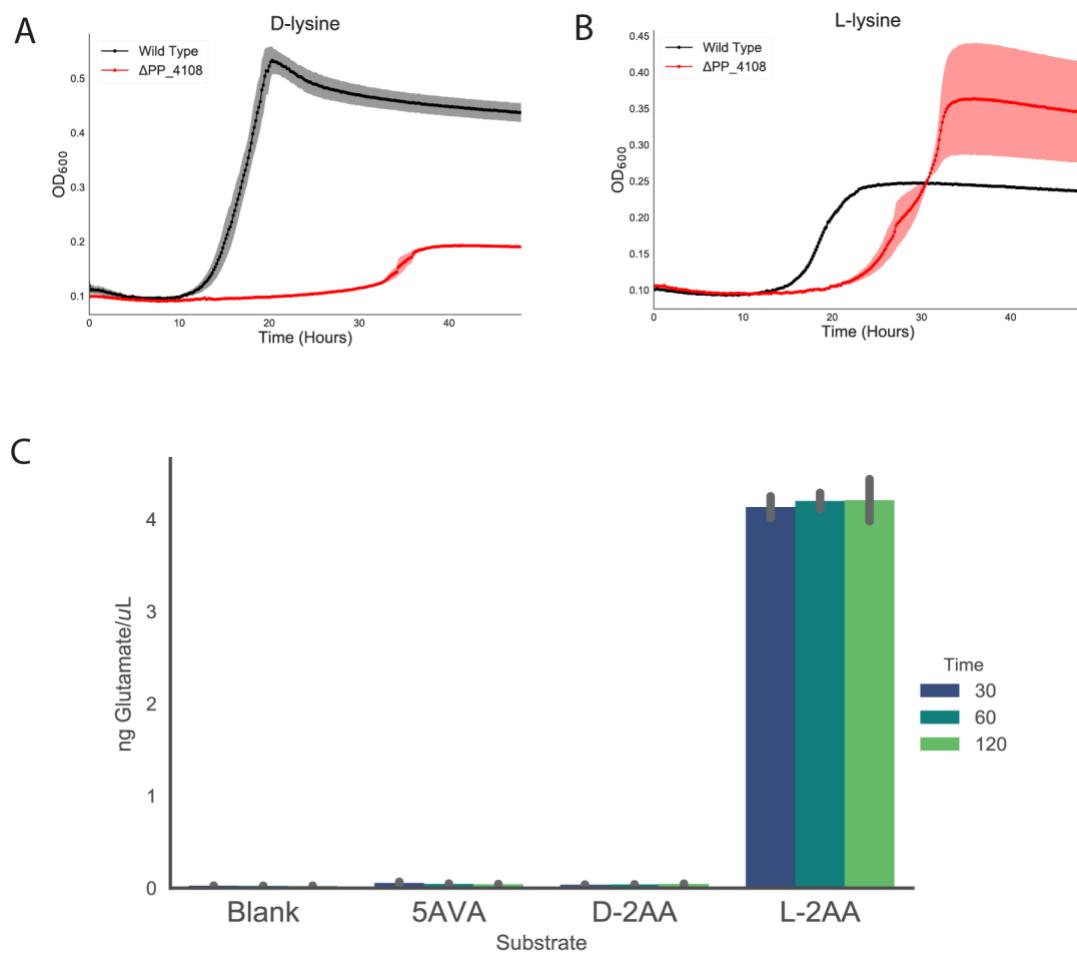
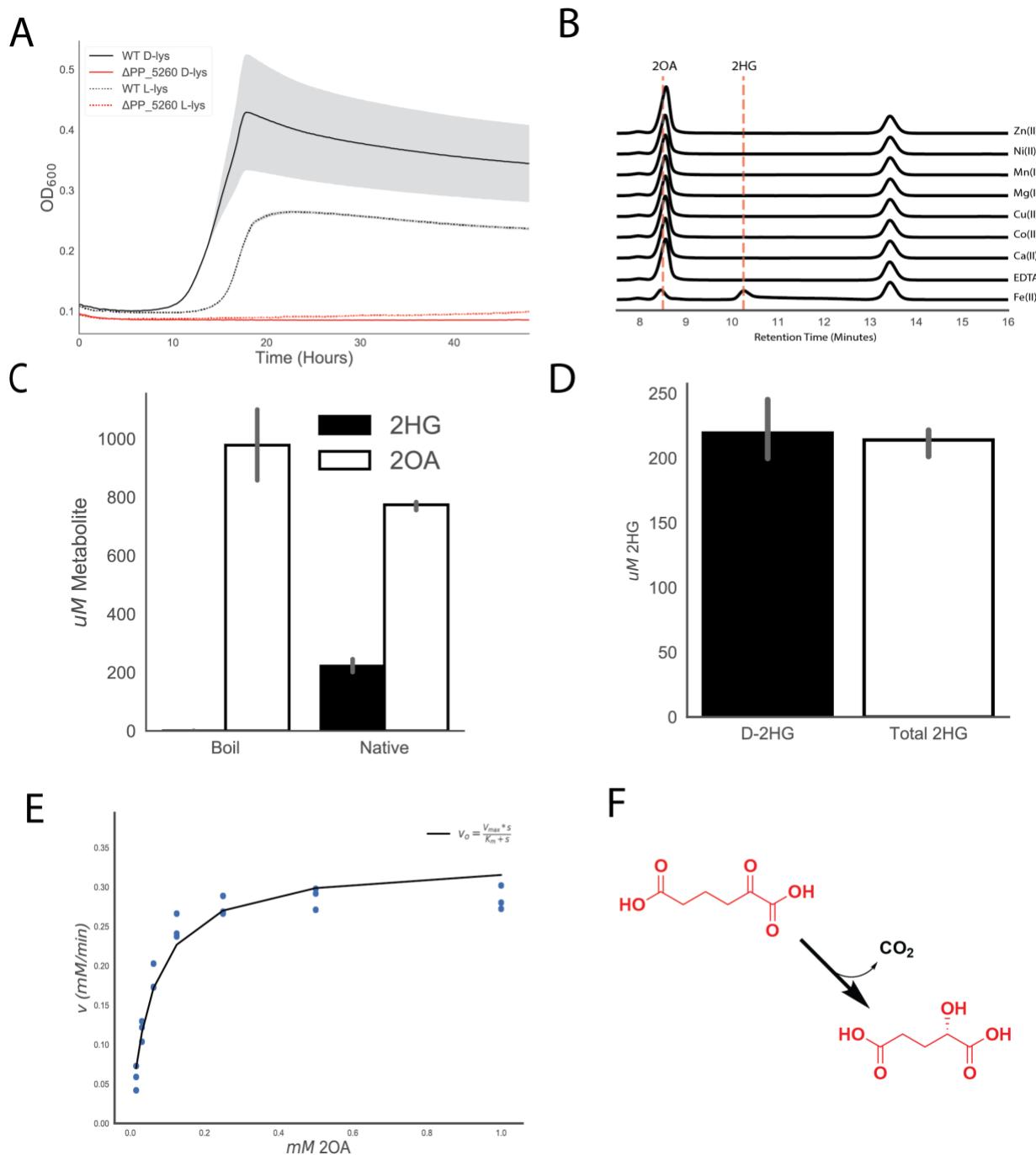



Figure 2: **Identification of PP_4108 as a L-2AA aminotransferase.** A) Growth of wild-type KT2440 and PP_4108 mutant on 2AA as a sole carbon source. Shaded area represents 95% confidence interval (CI), n=3. B) *In vivo* accumulation of 2AA in wild-type KT2440 and a PP_4108 mutant after 12 hours of growth on minimal medium supplemented with 10 mM glucose and 10 mM D-lysine. Bars represent $10\log_{10}$ transformed spectral counts, error bars show 95% CI, n=3. C) *In vitro* transamination reactions of PP_4108 with 2KG as an amino acceptor. Bars represent μM metabolite concentration of either 2OA (black) or 2AA (white) in either boiled or native protein reactions. Error bars show 95% CI, n=3. D) *In vitro* transaminations of PP_4108 incubated with different possible amino donors and 2KG as acceptor. Bars represent relative activity of enzyme standardized to L-2AA after 16 hour incubation. Error bars show standard deviation, n=2.

142 In humans and other animals, L-lysine degradation proceeds through a 2AA intermediate,
143 which a transaminase converts to 2OA (9, 11, 17). Yet, no such transaminase has been identified
144 in *P. putida*. We identified a candidate aminotransferase, PP_4108, for which gene inactivation
145 showed a significant growth defect on D-lysine (-5.9) and a relatively minor defect on L-lysine (-
146 1.2). To corroborate our RB-TnSeq fitness data, we constructed a deletion mutant of PP_4108
147 that failed to grow in a plate reader assay on 10 mM DL-2AA (Figure 2a). The mutant showed a
148 severe growth defect on 10 mM D-lysine and an increased lag time when grown on 10 mM L-
149 lysine (Figure S3).

150

151 Figure S3: **Growth of PP_4108 mutants on lysine.** A) Growth of wild-type KT2440 and PP_4108 mutant on D-
152 lysine as a sole carbon source. Shaded area represents 95% CI, n=3. B) Growth of wild-type KT2440 and PP_4108


153 mutant on L-lysine as a sole carbon source. Shaded area represents 95% CI, n=3. C) Colorimetric glutamate
154 formation time course of PP_4108. Error bars are standard deviation of n=2.

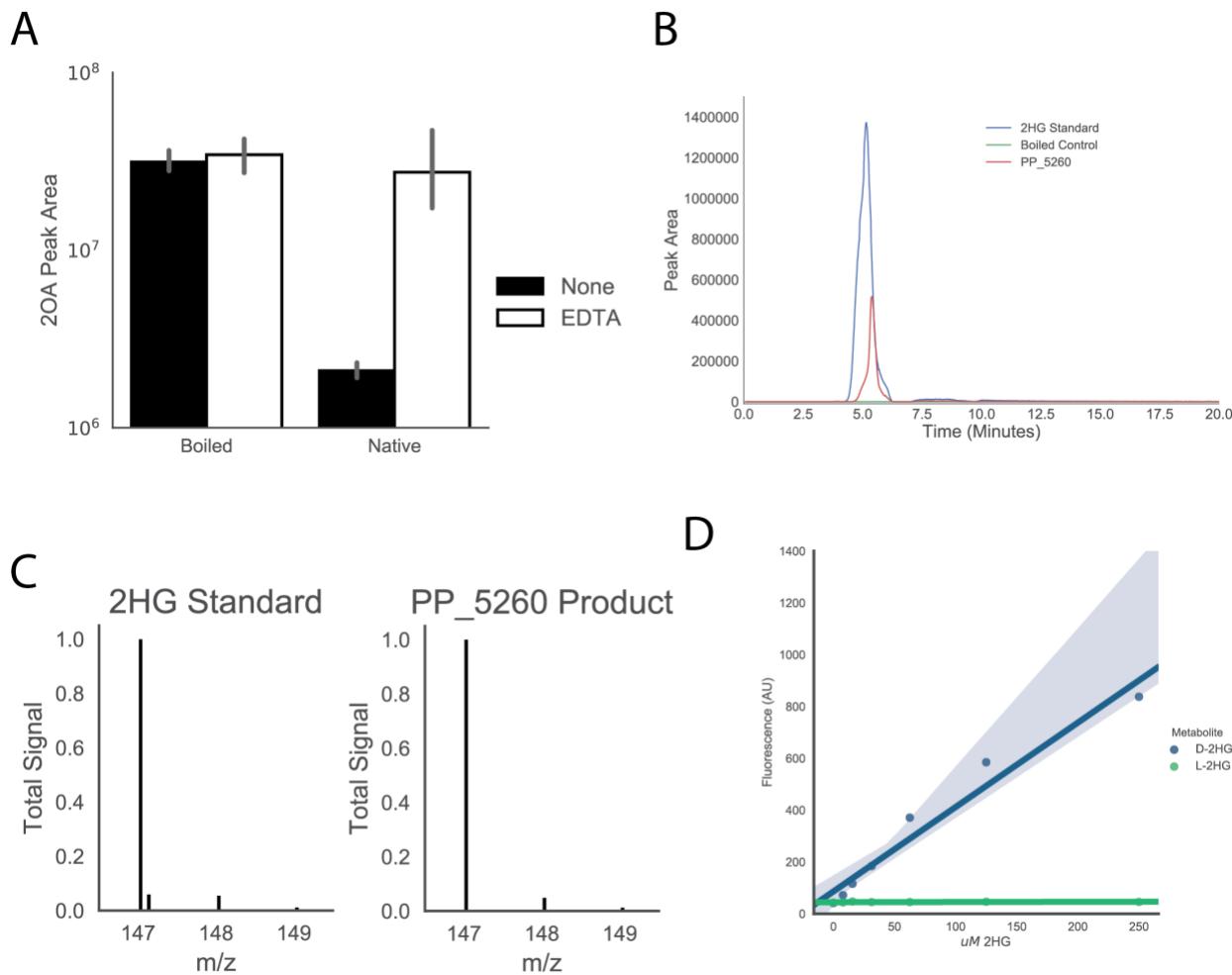
155 To further validate this hypothesis, the Δ PP_4108 strain was subjected to metabolomics
156 analysis to monitor the accumulation of its expected substrate, 2AA, when grown on glucose and
157 D-lysine. After 12 hours of growth on minimal media supplemented with 10 mM each of glucose
158 and D-lysine, the PP_4108 deletion strain showed a 6.3-fold increase ($p = 0.00016$) in
159 normalized intracellular 2AA concentration compared to WT (Figure 2b). Next PP_4108 was
160 expressed and purified from *E. coli* for biochemical characterization. After purified enzyme
161 incubation with DL-2AA, 2KG, and pyridoxal phosphate (PLP) for 16 hours, the reaction
162 mixture was analyzed with LC-TOF. The expected product, 2OA, was detected in the enzymatic
163 reaction but not in a boiled enzyme control, confirming PP_4108 as a transaminase that converts
164 2AA to 2OA (Figure 2c). As many transaminases have broad substrate specificity (18), we also
165 probed the substrate range of PP_4108 using a colorimetric assay for glutamate, a stoichiometric
166 product of the transamination reaction (Figure 2d). The enzyme was most active on L-2AA, and
167 only showed 2.8% relative activity ($p = 0.0057$) on its enantiomer, D-2AA. This specificity for
168 the L-2AA isomer may explain why only 50% of the DL-2AA was transformed in the previous
169 experiment (Figure 2c). No activity was observed on either lysine isomer; however, the enzyme
170 had slight activity towards 4-aminobutyrate/ γ -aminobutyrate (GABA) (2.8% relative activity, $p =$
171 0.0057) and moderate activity on 5AVA (30.5% relative activity, $p = 0.0139$). Over shorter time
172 scales PP_4108 had no activity on any substrate except L-2AA (Figure S3c). These results
173 suggest *P. putida* KT2440 metabolizes D-lysine to L-2AA, which is then converted to 2OA by
174 the transaminase PP_4108.

175 PP_5260 is a novel DUF1338 family enzyme that catalyzes the conversion of 2OA to 2HG

176 Early work proposed 2OA is converted to 2KG via a 2HG intermediate (13, 19), while
177 later results suggested a direct conversion of 2OA to glutarate (11). Either route likely requires a
178 decarboxylation of 2OA, so we initially searched for decarboxylases within our dataset. Our
179 fitness data on either lysine isomer revealed no obvious decarboxylases or enzymes likely to
180 contain a thiamine pyrophosphate (TPP) cofactor, which are commonly employed by
181 decarboxylases. However, a gene near other D-lysine catabolic genes in the *P. putida* genome,
182 PP_5260, showed a significant fitness defect. A Δ PP_5260 strain was unable to grow on either

183 isomer of lysine verifying its importance in lysine degradation (Figure 3a).

184


185 Figure 3: **Identification of ydcJ (PP_5260) as a 2OA decarboxylase/hydroxylase.** A) Growth of wild-type
186 (black) and PP_5260 mutant (red) on D-lysine (line) or L-lysine (dashed line) as a sole carbon source.
187 Shaded area represents 95% CI, n=3. B) HPLC traces of *in vitro* reactions run with apo PP_5260 with
188 exogenous metals added at 50 μ M. Retention times for 2OA and 2HG are shown by vertical dashed lines.

189 Metal or EDTA control is indicated to the right of traces. C) *In vitro* assay of 2OA conversion to 2HG by
190 purified PP_5260 protein analysed via LC-TOF. 2OG in white, 2HG in black. D) *In vitro* assay of purified
191 PP_5260 protein with 2OA as substrate. Black bar represents concentration of D-2HG measured by enzyme
192 coupled assay. White bar represents total 2HG concentration as measured by LC-TOF. Error bars represent
193 95% CI, n=3. E) Initial velocity of reaction catalyzed by PP_5260 as a function of 2OA concentration. Blue
194 dots represent individual measurements, while the black fit line shows a Michaelis-Menten fit. F) Chemical
195 reaction catalyzed by PP_5260, 2OA is decarboxylated to D-2HG.

196 PP_5260 belongs to the DUF1338 protein family (<http://pfam.xfam.org/family/PF07063>).

197 Although several unpublished crystal structures of DUF1338 domain containing proteins have
198 been deposited into the Protein Data Bank, their biological function remains elusive. However,
199 these structures combined with protein sequence alignments suggest a putative metal binding site
200 is conserved throughout the DUF1338 family. As we hypothesized PP_5260 serves as the
201 missing decarboxylase in D-lysine metabolism, we purified the enzyme for biochemical analysis.
202 Enzymatic activity on 2OA was probed and analyzed via LC-TOF. After incubation of 2OA with
203 PP_5260, we observed a ~92% ($p=0.00034$) reduction in the abundance of 2OA, whereas no
204 2OA was consumed in a boiled enzyme control or enzyme treated with EDTA confirming it to
205 be a metalloenzyme (Figure S4a). Initially we believed the product would be either glutarate or
206 glutarate semialdehyde, however neither of these was detected in the reaction. Early biochemical
207 work suggested 2HG as a potential intermediate in pipecolate metabolism (19), and when the
208 enzymatic product was compared to a racemic 2HG standard they shared the same mass,
209 retention time and mass-to-charge ratio (Figure S4b), as well identical isotopic distributions of

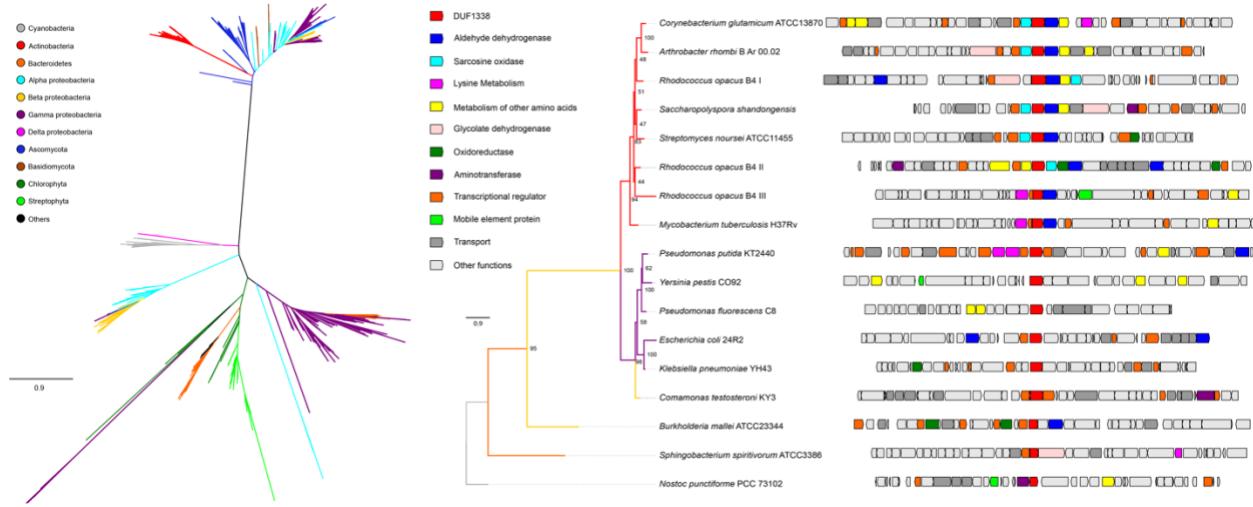
210 [M-H] peaks in the mass spectra (Figure S4c).

211

212 Figure S4: **Characterization of PP_5260.** A) In vitro reactions of boiled or native PP_5260 incubated with 2OA
213 with 50 μM EDTA (white), or without EDTA (black). Bars represent 10^{log} transformed spectral counts, errors bars
214 represent 95% CI, n=3 B) E LC-TOF analysis of a 2HG standard, and products of PP_5260 incubated with 2OA,
215 and boiled control. C) Mass spectra of 2HG standard and product of PP_5260 in vitro reaction. D) Standard curves
216 of D-2HG and L-2HG using a D-2HG specific enzymatic detection assay. Shaded areas represent 95% CI, n=3.

217

218 To identify the metal cofactor, the enzyme was dialyzed against EDTA to remove metals,
219 and individual divalent metals were added back. Only the addition of Fe(II) restored enzymatic
220 activity as measured by HPLC (Figure 3b). Subsequent reactions quenched after 5 minutes


221 showed 200 uM of 2HG formed and 800 uM 2OA remaining, demonstrating 1:1 2OA to 2HG
222 reaction stoichiometry (Figure 3c). Whether the product of the PP_5260 reaction is either L-2HG
223 or D-2HG is critical to understanding the eventual fate of D-lysine, as *lghO* is specific for L-
224 2HG (Figure S1a). An enzyme coupled assay specific for the detection of D-2HG was used to
225 assess the stereochemistry of the PP_5260 product. Standard curves of D-2HG and L-2HG
226 showed that the assay was only responsive to D-2HG (Figure S4d). The concentration of *in vitro*
227 reactions of PP_5260 were then measured by both LC-TOF as well as the enzyme coupled assay,
228 revealing all 2HG as the D-isomer (Figure 3d).

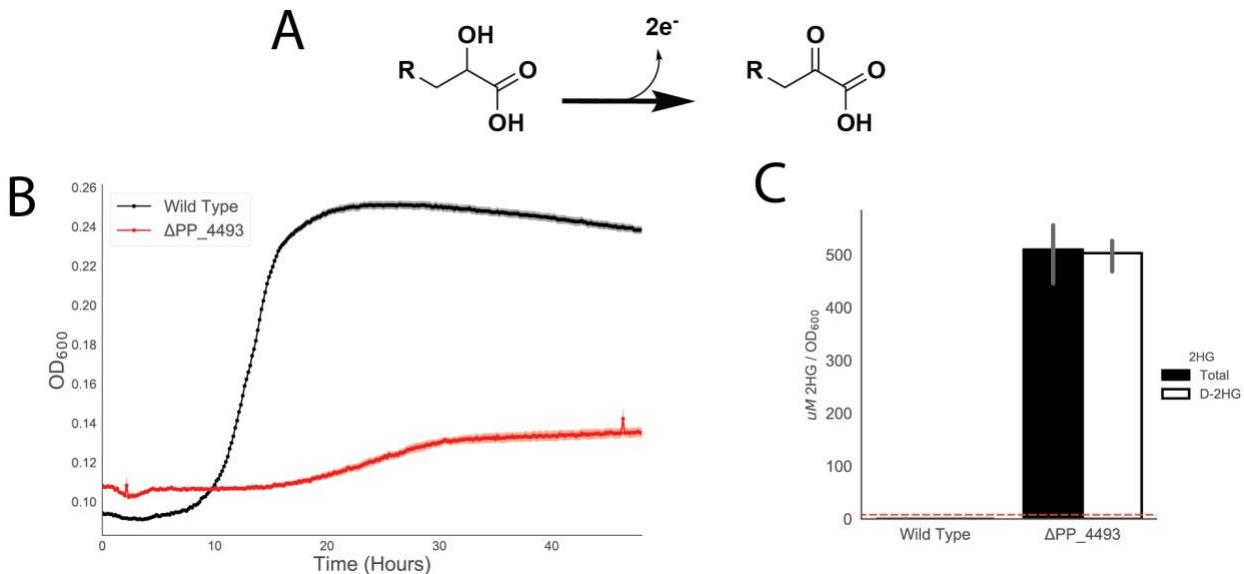
229 Kinetic parameters of PP_5260 were determined using an enzyme-coupled assay to
230 spectrophotometrically measure CO₂ evolution via NADH oxidation (20). PP_5260 displayed a
231 V_{max} of 0.33 mM/min (+/- 0.08 mM), a K_m of 0.06 mM (+/- 0.03 mM), and a K_{cat} of 330 m⁻¹
232 using 2OA as a substrate. Taken together these results reveal that PP_5260 is novel Fe(II)
233 dependent decarboxylase that converts 2OA to D-2HG (Figure 3f), a chemical reaction not
234 previously observed in nature.

235 DUF1338 proteins are a widely distributed enzyme family with a putative conserved role in
236 amino acid catabolism

237 After functional characterization of PP_5260, we use phylogenomics to propagate the
238 annotation and further explore the biological role of DUF1338 proteins found in other organisms.
239 We found that DUF1338 proteins are widely distributed across the tree of life, with homologs of
240 PP_5260 found in plants and green algae (22), fungi, and bacteria, though they were not found in
241 animals or archaea (Figure 4a). Homologs are widely distributed amongst bacteria, with the
242 Firmicutes being a notable exception. PP_5260 homologs within the plant group Streptophyta, as
243 well as bacterial groups Actinobacteria, Cyanobacteria, and Bacteroidetes formed monophyletic

244 clades, while homologs from other taxonomic groups were not monophyletic (Figure 4a).
245 DUF1338 homologs are found in bacteria important to biotechnology (*Corynebacterium*
246 *glutamicum*), the environment (*Nostoc punctiforme*), and medicine (*Yersinia pestis*,
247 *Mycobacterium tuberculosis*, *Burkholderia pseudomallei*).

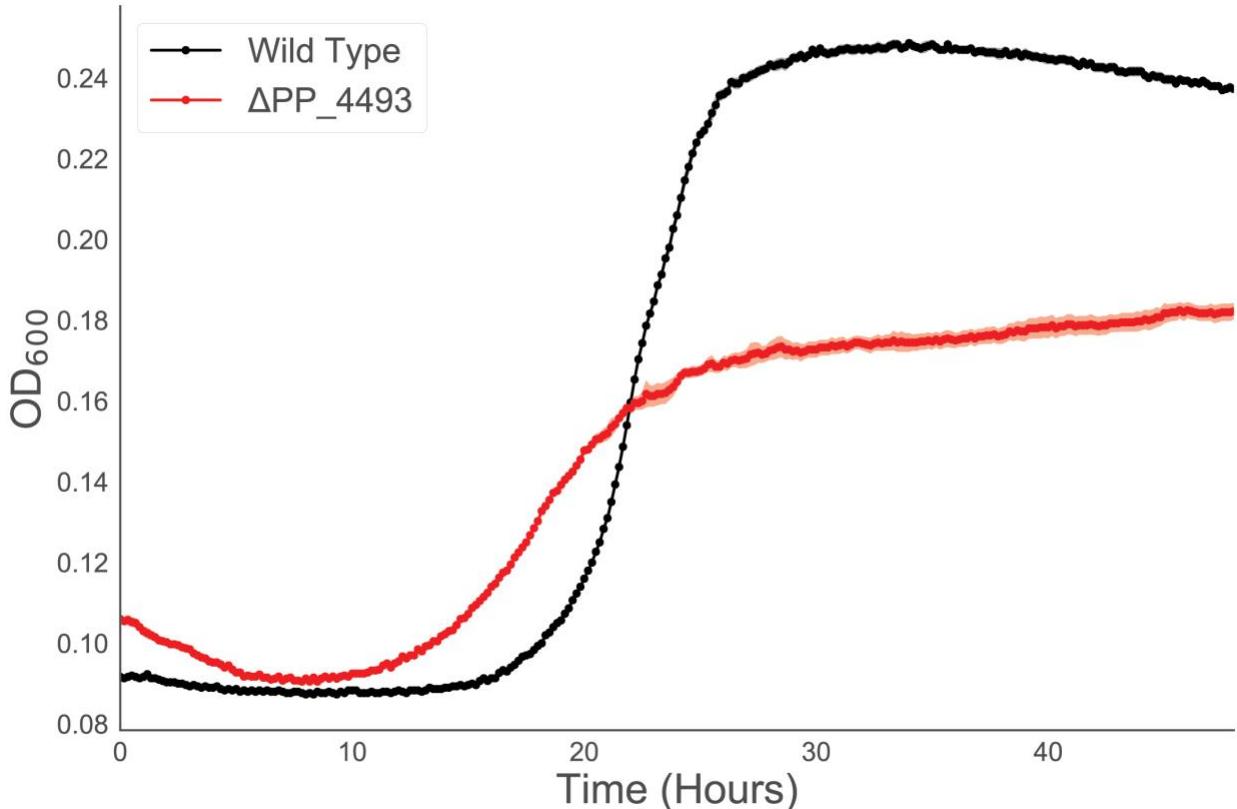
248
249 Figure 4: **Phylogenomics of the DUF1338 enzyme family.** A) Phylogenetic relationships among DUF1338
250 homologs and their distribution among major phyla. Branches in the tree are colored by phylum. DUF1338 is
251 found in most bacterial phyla as well as in plants and fungi. Non-monophyletic clades suggest pervasive
252 horizontal gene transfer events in the family. B) Phylogenomics of selected DUF1338 homologs in bacteria.
253 The phylogeny in the left shows the phylogenetic relationships between selected homologs, the branches
254 have been colored according to their adscription to a given phylum and the support values are shown at the
255 nodes. The boxes in the right represent the gene neighborhood for each homolog. The genes have been
256 colored to represent their annotated functions.


257
258 Publicly available fitness data show both *Pseudomonas fluorescens* FW300-N2C3 and
259 *Sinorhizobium meliloti* PP_5260 homologs have L-lysine specific defects when interrupted (15).
260 Genomic contexts within other bacteria suggest many DUF1338-containing enzymes may be
261 involved in lysine or other amino acid metabolism (Figure 4b). Within the Actinobacteria
262 DUF1338 homologs are often found adjacent to sarcosine oxidases, aldehyde dehydrogenases,

263 and transaminases implying an additional catabolic amino acid function. In both the oleaginous
264 bacterium *Rhodococcus opacus* B4 and *M. tuberculosis*, DUF1338 homologs are found next to
265 predicted L-lysine aminotransferases, suggesting an ancestral homolog functioned in lysine
266 catabolism. Interestingly, the *R. opacus* B4 genome has three DUF1338 homologs, only one of
267 which contains genes predicted to be specific to lysine catabolism. The other two gene
268 neighborhoods are similar in their functional content, mainly differing by containing an
269 oxidoreductase or glycolate dehydrogenase, either of which may perform the same biochemical
270 function. In Alphaproteobacteria, Betaproteobacteria, and Cyanobacteria, the presence of
271 aldehyde dehydrogenases, oxidoreductases, glycolate dehydrogenases, and aminotransferases
272 implies a metabolic function similar to PP_5260.

273 **PP_4493 putatively oxidizes D-2HG to 2KG and connects D-lysine to central metabolism**

274 In the CoA independent route of glutarate metabolism, LghO oxidizes L-2HG to 2KG,
275 however this enzyme is highly specific towards the L-2HG isomer and showed no fitness defect
276 on D-lysine in our RB-TnSeq data (Figure S1a). A putative FAD-dependent and 4Fe-4S cluster-
277 containing glycolate dehydrogenase, PP_4493, did show fitness defects on both D-lysine and L-
278 lysine (fitness scores of -5.4 and -2.7 respectively) (Figure 1a). Glycolate dehydrogenases are
279 members of a larger family of enzymes that oxidize the alcohol group of an alpha-hydroxyacid to
280 their corresponding alpha-ketoacid (Figure 5a). Therefore, we hypothesized PP_4493 could
281 potentially oxidize a similar 2-hydroxyacid, 2HG, to the corresponding alpha-ketoacid, 2KG.
282 Moreover, many PP_5260 homologs were located next to or near putatively annotated glycolate
283 dehydrogenases in other bacteria, underscoring their potential metabolic link (Figure 4b). To
284 confirm these hypotheses, we again constructed a deletion strain, *P. putida* ΔPP_4493, which
285 could not grow on D-lysine as a sole carbon source (Figure 5b), and showed attenuated growth

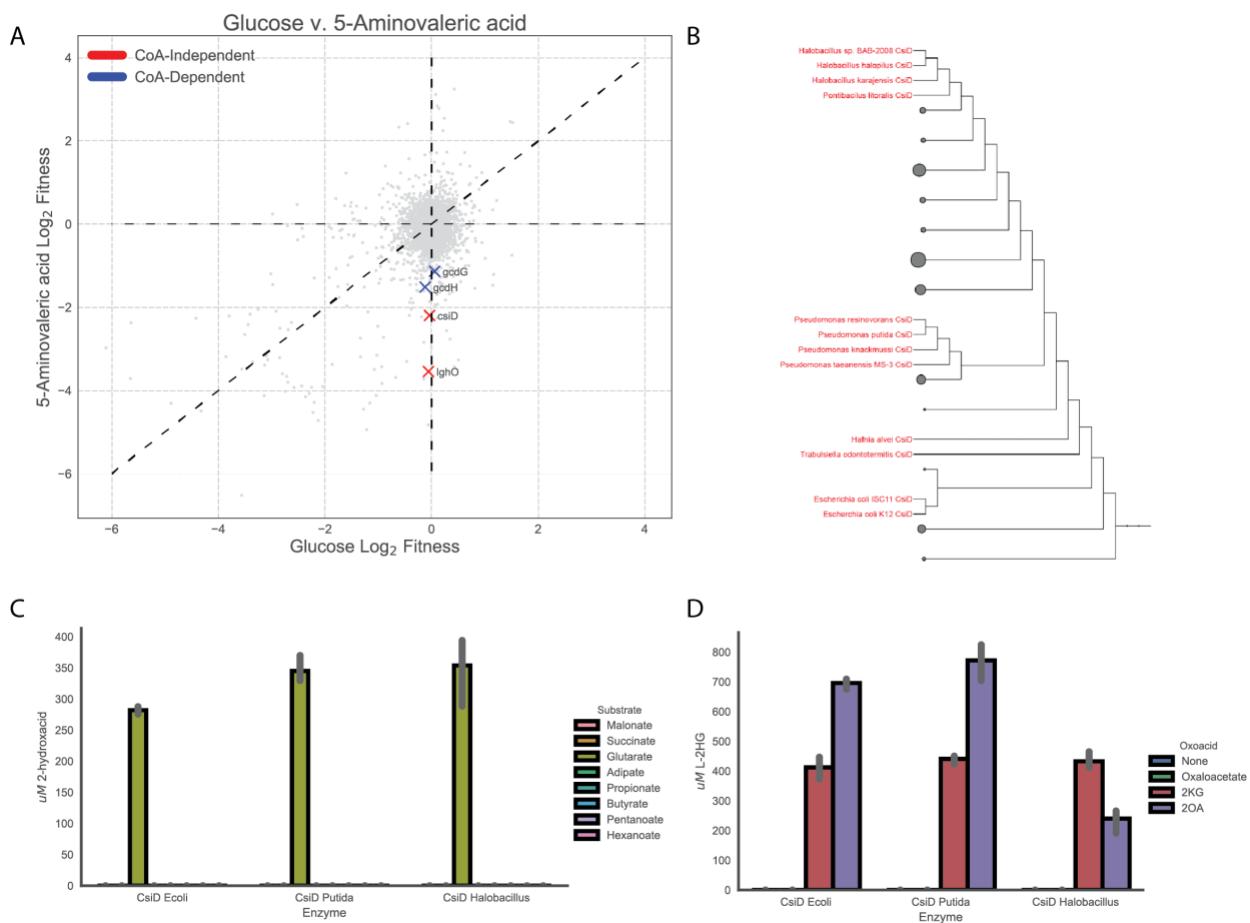

286 on L-lysine (Figure S5). Furthermore, when grown on 10 mM glucose and 10 mM D-lysine the
287 mutant accumulated ~500 uM 2HG normalized to optical density, whereas wild type *P. putida*
288 did not accumulate any detectable 2HG (Figure 5c). Subsequent analysis of accumulated 2HG
289 via a D-2HG specific detection kit revealed that this accumulated 2HG was indeed D-2HG
290 (Figure 5c). These data and the conserved function and genomic context of glycolate
291 dehydrogenases strongly suggest PP_4493 catalyzes the last step of L-2AA metabolism,
292 oxidizing D-2HG to 2KG (Figure S1b).

293
294

295 Figure 5: **Identification of PP_4493 as a putative D-2HG dehydrogenase.** A) General chemical reaction of
296 a dehydrogenase converting a 2-hydroxyacid to a 2-ketoacid B) Growth of *P. putida* KT2440 and PP_4108
297 mutant on D-lysine as a sole carbon source. Shaded area represents 95% CI, n=3. C) *In vivo* accumulation of
298 2HG in wild-type KT2440 and a PP_4108 mutant after 12 hours of growth on minimal medium
299 supplemented with 10 mM glucose and 10 mM D-lysine. White bar represents concentration of D-2HG
300 measured by enzyme coupled assay. Black bar represent total 2HG concentration as measured by LC-TOF.
301 Red line represents limit of detection of enzyme coupled assay for D-2HG. Bars represent 10_{log} transformed
302 spectral counts, error bars show 95% CI, n=3.

303

304

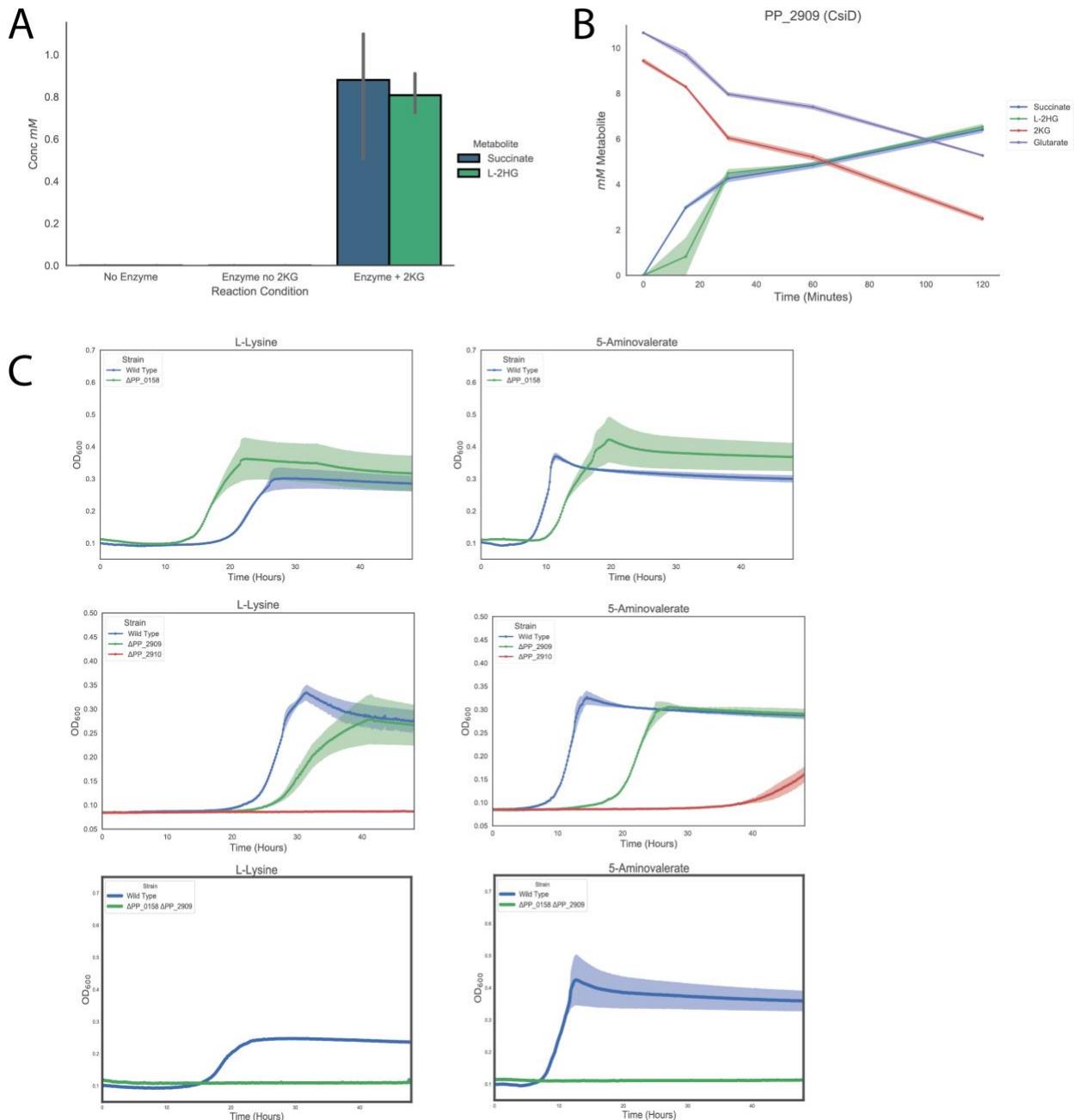

305 **Figure S5: Growth of PP_4493 mutant on L-lysine.** Growth of wild-type KT2440 and PP_4493 mutant on L-
306 lysine as a sole carbon source. Shaded area represents 95% CI, n=3

307

308 CsiD is highly specific for glutarate hydroxylation but promiscuous in 2-oxoacid selectivity

309 During the initial preparation of this manuscript, Zhang et al. discovered a novel pathway
310 of glutarate metabolism in *P. putida* (9). They describe a cyclic reaction cascade wherein a novel
311 2KG-dependent non-heme Fe(II) oxygenase, PP_2909 (CsiD), hydroxylates glutarate to form
312 2HG and succinate using 2KG as a cosubstrate. PP_2910 (LghO), a putative L-2HG oxidase,
313 then subsequently converts L-2HG to 2KG, regenerating the 2KG consumed in the initial
314 reaction. These reactions result in the net incorporation of succinate into central metabolism
315 (Figure S1). Our fitness results of the library grown on 5AVA also identified both *csiD* and
316 *lghO*, in addition to the two enzymes from the CoA-dependent glutarate pathway, glutaryl-CoA

317 ligase (*gcdG*) and glutaryl-CoA dehydrogenase (*gcdH*), mutants of which showed mild fitness
318 defects when grown on 5AVA (Figure 6a). We also purified *csiD* and confirmed it hydroxylates
319 glutarate in a 2KG-dependent manner (Figure S6a). HPLC analysis demonstrated that as
320 glutarate was consumed, equimolar quantities of succinate and L-2HG were produced (Figure
321 S6b). Additionally, a *csiD* deletion mutant showed increased lag time when grown on either L-
322 lysine or 5AVA. By deleting the glutaryl-CoA ligase *gcdG*, and disrupting the CoA-dependent
323 glutarate pathway, we completely prevented growth on 5AVA or L-lysine (Figure S6c). These
324 results are in agreement with those found with Zhang et al (9).

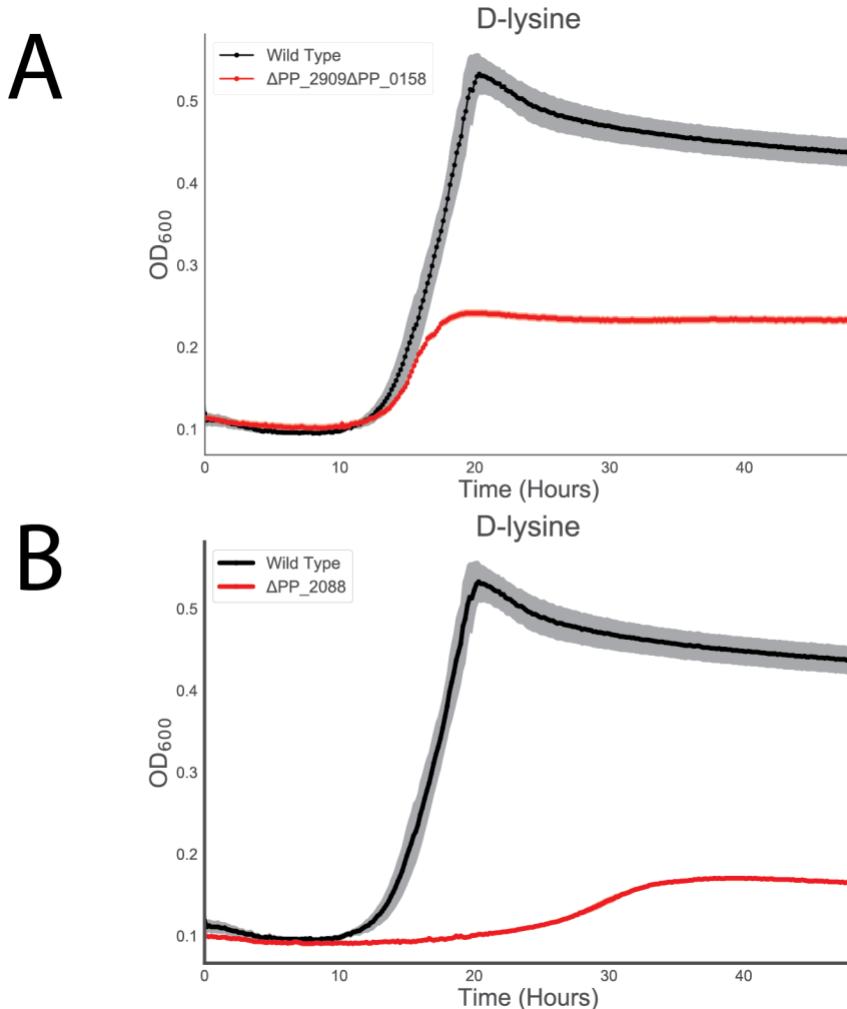

325
326

327

328 Figure 6: **Role of CsiD in *P. putida* lysine metabolism.** A) Plot of genome wide fitness values of libraries

329 grown on either 5AVA or glucose. CoA-dependent glutarate degradation genes are shown in red, while those
330 known to be involved succinate producing metabolism are shown in blue. B) Phylogenetic tree of bacterial
331 CsiD homologs. Homologs used in *in vitro* assays are highlighted in red. C) *in vitro* reactions of CsiD with
332 different substrates using 2KG as a 2-oxoacid. Bars show peak area of 2-hydroxyacid, error bars show 95%
333 CI, n=3. D) *In vitro* reactions of CsiD homologs with different 2-oxoacids. Bars represent spectral counts of
334 L-2HG. Error bars show 95% CI, n=3.

335 Because non-heme Fe(II) oxidases can be promiscuous with respect to the 2-oxoacid
336 cosubstrate (21, 22), we evaluated the 2-oxoacid specificity of CsiD. First, we evaluated the
337 hydroxyl acceptor substrate specificity of CsiD family proteins by purifying two additional
338 homologs from *E. coli* and a halophilic bacterium, *Halobacillus* sp. BAB-2008 (Figure 6b). We
339 probed the activity of the homologs against a panel of 3 to 6 carbon fatty acids and diacids in the
340 presence of 2KG, and found only glutarate served as a hydroxylation substrate (Figure 6c). These
341 results are consistent with the work recently reported by Zhang *et al* (9) and further suggests the
342 specificity of CsiD homologs is conserved across phyla. Although extremely specific for the
343 hydroxylation substrate, all three CsiD homologs could utilize both 2OA and 2KG, but not
344 oxaloacetate, as a cosubstrate for L-2HG formation (Figure 6d). The coproduct of the reaction
345 using 2OA as a 2-oxoacid would be glutarate, rather than succinate. This result is particularly
346 interesting as it provides a possible mechanism for the previously observed metabolic link
347 between D-lysine and L-lysine catabolism. Growth defects observed in a ΔPP_2909 ΔPP_0158
348 double mutant grown on D-lysine also support this hypothesis (Figure S7a).



349

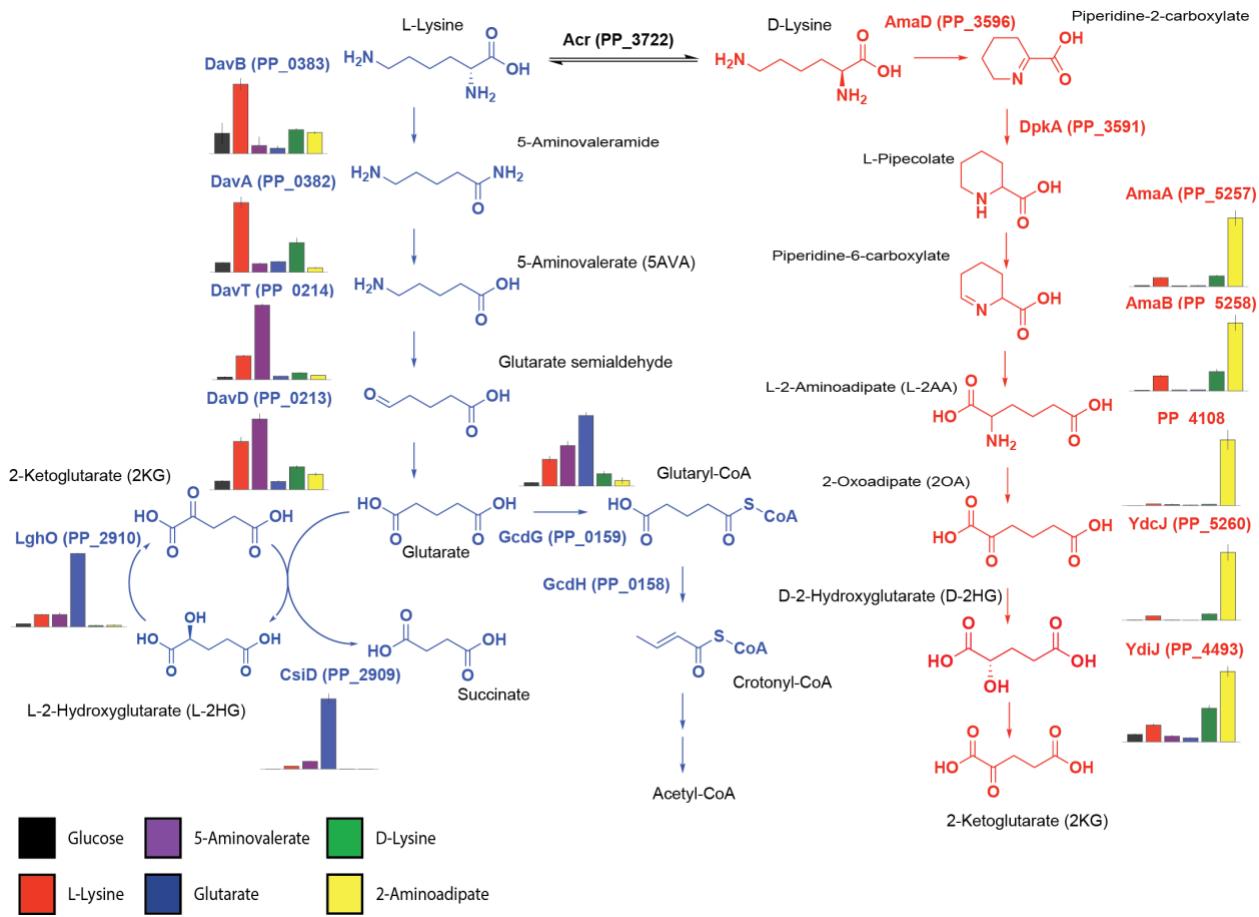
350

351 Figure S6: **Characterization of PP_2909 (CsiD) in *P. putida*.** A) In vitro reactions of PP_2909. Bars show mM of
 352 either succinate (blue), or 2HG (green) formed by boiled enzyme control, no 2KG control, or native enzyme with
 353 2KG added. Errors bars show 95% CI, n=3. B) Time course in vitro reaction of PP_2909. Plot shows 2HG, 2KG,
 354 succinate, and glutarate overtime. Shaded region shows 95% CI, n=3. C) Growth curves of wild-type KT2440,
 355 PP_0158, PP_2909, PP_2910, or PP_2909/PP_0158 double mutants grown on either L-lysine (left column), or

356 5AVA (right column). Shaded region shows 95% CI, n=3.

357

358 Figure S7: **Growth of PP_2909/PP_0158 and PP_2088 mutants on D-lysine.** A) Growth of wild-type KT2440 and
359 PP_2909/PP_0158 mutant on D-lysine as a sole carbon source. Shaded area represents 95% CI, n=3. A) Growth of
360 wild-type KT2440 and PP_2088 mutant on D-lysine as a sole carbon source. Shaded area represents 95% CI, n=3.


361

362 Expression of lysine metabolic proteins is responsive to pathway metabolites

363 Multiple studies have demonstrated the expression of lysine catabolic genes is
364 upregulated in the presence of pathway metabolites (9, 12, 23). To investigate the regulation of
365 the newly-discovered lysine catabolic enzymes from this study, wild-type *P. putida* KT2440 was
366 grown in minimal media on glucose or a single lysine metabolite (e.g. D-lysine, L-lysine, 5AVA,

367 2AA, or glutarate) as a sole carbon source until cultures reached an OD₆₀₀ of 1.0. We then
368 quantified the relative abundance of D- and L-lysine catabolic proteins via targeted proteomics
369 (Figure 7). For each protein, all pairwise statistical comparisons of different carbon sources can
370 be found in Supplemental Table 2. All five D-lysine pathway proteins measured (AmaA
371 (PP_5257), AmaB (PP_5258), PP_4108, YdcJ (PP_5260), and YdiJ (PP_4493)) were
372 upregulated when grown on L-lysine, D-lysine or 2AA compared to the glucose control. Neither
373 5AVA nor glutarate significantly induced expression of any measured D-lysine proteins. Of all
374 the targeted proteins, the three identified in this study that directly degrade 2AA were most
375 strongly induced by 2AA. Somewhat surprisingly, we also found the two enzymes involved in
376 2AA formation, AmaA and AmaB, were also more highly expressed in the presence of 2AA
377 suggesting the possible involvement of a global regulator. An interesting finding from our initial
378 screen showed sigma factor RpoX (PP_2088) to be required for fitness on D-lysine (Figure 1a).
379 Deletion mutants of *rpoX* were severely attenuated in their ability to grow on D-lysine as a sole
380 carbon source (Figure S7b). Further work will be necessary to examine complex regulatory
381 network that controls D-lysine metabolism.

382 The initial two enzymes from L-lysine metabolism, DavA and DavB, were most highly
383 expressed in the presence of L-lysine, but also significantly with D-lysine. As previously
384 observed, DavT and DavD were most strongly upregulated on 5AVA, moderately upregulated on
385 L-lysine, and to a lesser extent D-lysine. The induction of LhgO and CsiD was highest when
386 grown on glutarate, although these proteins were also moderately upregulated by 5AVA and L-
387 lysine. By comparison, PP_0159 (GcdG) expression in the presence of glutarate was stimulated
388 to a lesser extent than LhgO and CsiD expression; in addition, GcdG was slightly upregulated on
389 5AVA and L-lysine.

390

391 **Figure 7: Expression of lysine degradation pathways in response to different lysine metabolites.**

392 Relative abundance of selected lysine degradation enzymes expressed in wild-type KT2440 in response to
393 different carbon sources. Bars show spectral counts of proteins after 36 hours of growth on 10 mM glucose
394 (black), 5AVA (purple), D-lysine (green), L-lysine (red), glutarate (blue), or 2AA (yellow). Error bars show
395 95% CI, n=3.

396

397 **Discussion**

398 Despite intensive study, a complete biochemical and genetic understanding of D-lysine
399 catabolism in *P. putida* has remained elusive. A 2OA degradation pathway has been extensively
400 characterized in mammals, because of its implications in human disease (24). In the mammalian
401 pathway, L-lysine is metabolized to 2OA and eventually converted to acetyl-CoA via a glutaryl-

402 CoA intermediate (24). However, this pathway has not been observed in bacteria. Previous work
403 suggested 2OA is either converted via decarboxylation to glutarate or through several enzymatic
404 steps to 2HG, yet none of these studies conclusively demonstrated a genetic and biochemical
405 basis for these hypotheses (11, 19, 25). In this work we demonstrate plausible biochemical routes
406 to account for both of these previously hypothesized pathways.

407 The first route, catalyzed by the DUF1338-containing metalloenzyme PP_5260, involves
408 the direct conversion of 2OA to D-2HG. The formation of the D-2HG isomer by PP_5260
409 maintains stereochemical separation from the L-2HG formed by L-lysine degradation, thus
410 requiring the dehydrogenase PP_4493 rather than the L-2HG specific oxidase *lghO*. This
411 transformation seemingly involves two separate reactions: a decarboxylation and a
412 hydroxylation. Hydroxymandelate synthase has been shown to catalyze a similar enzymatic
413 reaction, via an intramolecular oxidative decarboxylation similar to 2KG dependent Fe(II)
414 oxidases (26). PP_5260 is also a Fe(II) dependent decarboxylase, and the two share similar Kcat
415 values for their given substrates (330 m⁻¹ for PP_5260 and 270 m⁻¹ for hydroxymandelate
416 synthase) (27). Though PP_5260 and hydroxymandelate synthase share little sequence
417 homology, this enzyme may give us insight into the molecular mechanism of DUF1338
418 enzymes. We have given PP_5260 the tentative title of 2-hydroxyglutarate synthase (*hglS*) until
419 further mechanistic studies (currently underway in our group) are completed and a more accurate
420 enzyme name can be assigned.

421 In bacteria, homologs of PP_5260 appear widely distributed with their genomic contexts
422 suggesting functions both within and beyond lysine metabolism. Genomic contexts in other
423 bacteria, particularly *Actinobacteria*, suggest these homologs may be involved in other amino
424 acid catabolic pathways. Unfortunately, there is scant evidence for homologous function in

425 model organisms. For example, although DUF1338 proteins are present in other *Ascomycota*,
426 there is no homolog in *Saccharomyces cerevisiae*. Interestingly, the *E. coli* homolog of PP_5260
427 is located next to a potential glucans biosynthesis gene: Glucans biosynthesis protein D (28).
428 Another DUF1338-containing protein from rice has been characterized and was implicated in
429 starch granule formation (29). These results suggest DUF1338 proteins could play a role in sugar
430 metabolism.

431 Recently Zhang *et al.* thoroughly characterized a CoA independent glutarate catabolism
432 route ending at succinate involving the Fe(II) dependent oxygenase CsiD (9). Our RB-TnSeq
433 screening convergently uncovered this pathway, and our biochemical and physiological results
434 fully corroborate their findings. While both works show multiple CsiD homologs from divergent
435 bacteria are highly specific towards glutarate as a hydroxyl acceptor, all three homologs we
436 tested showed promiscuous activity toward 2-oxoacid cosubstrates. The ability of the *P. putida*
437 CsiD to utilize 2OA as a cosubstrate is particularly interesting as it may directly connect L- and
438 D-lysine metabolism. The promiscuity of CsiD may explain earlier studies which reported
439 glutarate formation from D-lysine (11). Further studies involving labelled substrates may help
440 elucidate the potential link between the two pathways. While CsiD plays a clear role in L-lysine
441 metabolism in *P. putida*, its role in other organisms remains a mystery. In *E. coli*, RpoS controls
442 the expression of CsiD, but *rpoS* mutants showed fitness benefits on all three lysine metabolites
443 tested in our RB-TnSeq data (30). Recent work has shown that *E. coli* also uses CsiD to
444 metabolize lysine, suggesting a possible conserved role for this pathway across bacteria (31).

445 Work presented here and previous reports have shown expression of both lysine
446 catabolism pathways are highly responsive to their respective metabolites. While this metabolism
447 appears highly coordinated, the genes themselves are dispersed across the genome, with both

448 PP_4018, and PP_4493 found outside of operons, and relatively distant from other lysine
449 catabolic genes. At least two global regulators appeared to be important to lysine metabolism
450 based on our Rb-TnSeq data, *cbrA* (PP_4695) and *rpoX* (PP_2088). The two-component system
451 CbrAB has been implicated in catabolite repression and C/N balance in *P. aeruginosa*, with
452 mutants unable to grow on multiple amino acids (32). Further work in *P. putida* KT2440
453 showed the CbrAB system behaved similarly to that in *P. aeruginosa* (33). It would be
454 unsurprising if this regulator controls the expression of various genes within lysine catabolism;
455 more work into uncovering the regulon is warranted. RpoX on the other hand has been
456 implicated in osmotic tolerance in *P. aeruginosa* (34, 35). This is interesting as lysine
457 metabolism, and specifically pipecolate metabolism, has been associated with osmotic tolerance
458 across multiple bacteria (36). As a *rpoX* deletion mutant was unable to grow on D-lysine, these
459 results suggest D-lysine metabolism of *P. putida* may be involved in adaptation to saline or other
460 osmotically stressful environments.

461 An interesting question remains as to why *P. putida* maintains separate metabolic
462 pathways for D- and L-lysine, and why L-lysine metabolism seems dependent on the presence of
463 an intact D-lysine metabolism. Previously work has proposed that the D-lysine pathway may
464 provide a way of resolving a C/N imbalance that may occur when L-lysine is metabolized.
465 However we believe this is unlikely as both lysine degradation pathways contain one
466 deamination and one transamination reaction (11). Our fitness results indicate D-lysine
467 metabolism is dispensable for growing on 5AVA. This would suggest only the initial two steps
468 of L-lysine metabolism, the oxidation of lysine to 5-aminopentanamide by DavB and its
469 subsequent deamination to 5AVA by DavA are dependent on D-lysine catabolism. We propose
470 the adjacent AsnC family regulator PP_0384 likely responds to L-lysine as many proteins within

471 this family respond to amino acids including lysine (37, 38) and expression of these two enzymes
472 is most responsive to L-lysine. To our knowledge there has been no rigorous characterization of
473 the regulation of the *davAB* operon, nor of the biochemical activities of these two enzymes *in*
474 *vitro*. Future studies to uncover the mechanistic regulation at the transcriptional and post-
475 translational levels at these two steps may uncover the necessity of D-lysine dependency of the
476 L-lysine catabolic pathway. Overall our work highlights the utility of global fitness profiling to
477 discover novel, complex, metabolic pathways in even well-characterized bacteria.

478 **Materials and Methods**

479 Media, chemicals, and culture conditions

480 Routine bacterial cultures were grown in Luria-Bertani (LB) Miller medium (BD
481 Biosciences, USA). *E. coli* was grown at 37 °C, while *P. putida* was grown at 30 °C unless
482 otherwise noted. When indicated, *P. putida* was grown on modified MOPS minimal medium
483 (39). Cultures were supplemented with kanamycin (50 mg/L, Sigma Aldrich, USA), gentamicin
484 (30 mg/L, Fisher Scientific, USA), or carbenicillin (100mg/L, Sigma Aldrich, USA), when
485 indicated. D-2AA was purchased from Takara Bioscience (USA), all other compounds were
486 purchased through Sigma Aldrich.

487 Strains and plasmids

488 All bacterial strains and plasmids used in this work are listed in Supplemental Table 1.
489 All strains and plasmids created in this work are available through the public instance of the
490 JBEI registry. (<https://public-registry.jbei.org/folders/391>). All plasmids were designed using
491 Device Editor and Vector Editor software, while all primers used for the construction of
492 plasmids were designed using j5 software (40–42). Synthetic DNA coding for the *Halobacillus*
493 sp. BAB-2008 *csiD* homolog was purchased from Integrated DNA Technologies (IDT,

494 Coralville, IA). Plasmids were assembled via Gibson Assembly using standard protocols (43), or
495 Golden Gate Assembly using standard protocols (44). Plasmids were routinely isolated using the
496 Qiaprep Spin Miniprep kit (Qiagen, USA), and all primers were purchased from Integrated DNA
497 Technologies (IDT, Coralville, IA).

498 Random barcode TnSeq experiments

499 *P. putida* RB-TnSeq library JBEI-1 was created by diluting a 1 mL aliquot of the
500 previously described *P. putida* RB-TnSeq library (16) in 500 mL of LB media supplemented
501 with kanamycin which was then grown to an OD₆₀₀ of 0.5 and frozen as 1 mL aliquots after
502 adding glycerol to a final concentration of 20% v/v. Libraries were stored at -80 °C until used. A
503 1 mL aliquot of *P. putida* RB-TnSeq library JBEI-1 was thawed on ice and diluted in 25 mL of
504 LB supplemented with kanamycin. The culture was grown until it reached an OD₆₀₀ of 0.5, at
505 which point 3 1-mL aliquots were taken, pelleted, decanted, and then stored at -80 °C to use as a
506 time zero control. The library was then washed once in MOPS minimal medium without any
507 carbon source, and then diluted 1:50 into 10 mL MOPS minimal medium supplemented with
508 either 10 mM glucose, 5AVA, D-lysine, or L-lysine. Cells were grown in 50 mL culture tubes
509 for 48 hours at 30 °C shaking at 200 rpm. After growth 2 ml aliquots from the culture tubes were
510 pelleted, decanted and frozen at -80 °C for barcode sequencing. We performed DNA barcode
511 sequencing (BarSeq) as previously described (14, 16). The fitness of a strain is the normalized
512 log2 ratio of barcode reads in the experimental sample to barcode reads in the time zero sample.
513 The fitness of a gene is the weighted average of the strain fitness for insertions in the central 10–
514 90% of the gene. The gene fitness values are normalized so the typical gene has a fitness of zero.
515 The primary statistic *t*-value is of the form of fitness divided by the estimated variance across
516 different mutants of the same gene. Statistic *t*-values of $>|4|$ were considered significant. All

517 experiments described herein pass the quality metrics described previously unless noted
518 otherwise. All fitness data in this work is publically available at <http://fit.genomics.lbl.gov>.

519 Construction of deletion mutants

520 Deletion mutants in *P. putida* were constructed by homologous recombination and *sacB*
521 counterselection using the allelic exchange vector pMQ30 (45). Briefly, homology fragments
522 ranging from 1 kbp to 2 kbp up- and downstream of the target gene, including the start and stop
523 codons respectively, were cloned into pMQ30. An exception to these design parameters was
524 plasmid pMQ-PP_5260 which maintained an additional 21 nt at the 5' end of the gene in
525 addition to the stop codon. Plasmids were then transformed via electroporation into *E. coli* S17
526 and then mated into *P. putida* via conjugation. Transconjugants were selected for on LB agar
527 plates supplemented with gentamicin 30 mg/mL, and chloramphenicol 30 mg/mL.
528 Transconjugants were then grown overnight on LB media also supplemented with 30 mg/mL
529 gentamicin, and 30 mg/mL chloramphenicol, and then plated on LB agar with no NaCl
530 supplemented with 10% w/v sucrose. Putative deletions were restreaked on LB agar with no
531 NaCl supplemented with 10% w/v sucrose, and then were screened via PCR with primers
532 flanking the target gene to confirm gene deletion.

533 Plate based growth assays

534 Growth studies of bacterial strains were conducted a microplate reader kinetic assays.
535 Overnight cultures were inoculated into 10 mL of LB medium from single colonies, and grown
536 at 30 °C. These cultures were then washed twice with MOPS minimal media without any added
537 carbon and diluted 1:100 into 500 uL of MOPS medium with 10 mM of a carbon source in 48-

538 well plates (Falcon, 353072). Plates were sealed with a gas-permeable microplate adhesive film
539 (VWR, USA), and then optical density was monitored for 48 hours in an Biotek Synergy 4 plate
540 reader (BioTek, USA) at 30 °C with fast continuous shaking. Optical density was measured at
541 600 nm and all OD₆₀₀ measurements are reported without pathlength corrections.

542 Expression and purification of proteins

543 A 5 mL overnight culture of *E. coli* BL21 (DE3) containing the expression plasmid was
544 used to inoculate a 500 mL culture of LB. Cells were grown at 37 °C to an OD₆₀₀ of 0.6 then
545 induced with isopropyl β-D-1-thiogalactopyranoside to a final concentration of 1 mM. The
546 temperature was lowered to 30 °C and cells were allowed to express for 18 hours before being
547 harvested via centrifugation. Cell pellets were stored at -80 °C until purification. For purification,
548 cell pellets were resuspended in lysis buffer (50 mM sodium phosphate, 300 mM sodium
549 chloride, 10 mM imidazole, 8% glycerol, pH 7.5) and sonicated to lyse cells. Insolubles were
550 pelleted via centrifugation (30 minutes at 40,000xg). The supernatant was applied to a fritted
551 column containing Ni-NTA resin (Qiagen, USA) which had been pre-equilibrated with several
552 column volumes of lysis buffer. The resin was washed with lysis buffer containing 50 mM
553 imidazole, then the protein was eluted using a step-wise gradient of lysis buffer containing
554 increasing imidazole concentrations (100 mM, 200 mM, and 400 mM). Fractions were collected
555 and analyzed via SDS-PAGE. Purified protein was dialyzed overnight at 4 °C against 50 mM
556 HEPES pH 7.5, 5% glycerol.

557 CsID *in vitro* assays

558 The activity of purified CsID homologs was analyzed in 100 μL reaction mixtures
559 containing 50 mM HEPES (pH 7), 5 mM glutarate, 5 mM 2KG, 25 μM FeSO₄, 0.1 mM
560 ascorbate, and 0.5 mM dithiothreitol. For negative control reactions, each respective reaction

561 component was omitted. To initiate reactions, CsiD was added to a final concentration of 7 μ M.
562 For the no enzyme control, CsiD was denatured at 98 °C for 10 minutes prior to addition to the
563 reaction mix. Reactions were allowed to proceed at 22 °C for 3 hours. Products were analyzed
564 via LC-TOF method 3 after quenching via the addition of acetonitrile and methanol for a final
565 ACN:H₂O:MeOH ratio of 6:3:1 To analyze products from substrate range as well 2-oxoacid
566 specificity experiments, reactions were measured via LC-TOF method 1.

567 Transamination assays

568 To determine product formation via PP_4108, assays were conducted in 50 mM HEPES
569 (pH 7.5), with 5 mM 2KG, 0.1 mM PLP, and 5 mM of substrate, and 10 μ M of purified enzyme
570 or boiled enzyme control in 100 μ L volumes. Reactions were incubated at 30 °C for 16 hours and
571 quenched via the addition of ACN and MeOH for a final ACN:H₂O:MeOH ratio of 6:3:1 for LC-
572 TOF method 3. To determine substrate specificity reactions were set up at 75 μ L scale and
573 carried out at 30°C for up to 16 hours before freezing. For analysis, reactions were diluted 15-
574 fold in water and assessed by a colorimetric assay for glutamate (Sigma MAK004) in 96-well
575 format via a SpectraMax M4 plate reader (Molecular Devices, USA).

576 PP_5260 *in vitro* assays

577 The activity of PP_5260 was initially assessed in 50 mM HEPES, with 5 mM 2OA as
578 substrate and 10 μ M purified enzyme or boiled enzyme control. Reactions were incubated for 16
579 hours at 30 °C. To test the necessity of metal cofactors EDTA was added to a final concentration
580 of 50 μ M. Reactions and quenched via the addition of ACN and methanol MeOH for a final
581 ACN:H₂O:MeOH ratio of 6:3:1 for LC-TOF analysis method 3, or with an equal volume of ice-
582 cold methanol for HPLC analysis and LC-TOF method 2.

583 To determine the metal cofactor, after purification over Ni-NTA resin the protein was
584 concentrated and dialyzed overnight against 50mM HEPES, 100mM NaCl, pH 7.5. To generate
585 apo-enzyme, the protein was then dialyzed four times at a protein:dialysis buffer ratio of 1:300
586 against the same buffer containing 5mM EDTA in order to remove any bound metal. The
587 enzyme was dialyzed once more against buffer without EDTA overnight in order to remove any
588 remaining chelating reagent. The apo-enzyme was then assayed in the presence of 50 μ M of a
589 variety of potential metal cofactors in 50 mM HEPES with 10 mM 2OA as substrate and 10 μ M
590 purified enzyme. Reactions were incubated for 30 minutes at 30 °C and activity was assessed via
591 HPLC.

592 Determination of enzyme stoichiometry was assessed in 50 mM HEPES, 50 μ M FeCl₂,
593 with 1 mM 2OA as substrate and 0.1 μ M purified enzyme or boiled enzyme control. Reactions
594 were incubated for 5 minutes at 30 °C and then quenched with an equal volume of ice-cold
595 methanol then quantified with LC-TOF method 2.

596 Enzyme coupled decarboxylation assays were carried out as previously described (20).
597 Reaction mixtures contained 100 mM Tris-HCl (pH 7), 10 mM MgCl₂, 0.4 mM NADH, 4 mM,
598 50 μ M FeCl₂, phosphoenol pyruvate (PEP), 100U/mL pig heart malate dehydrogenase(Roche),
599 2U/mL microbial PEP carboxylase (Sigma), and 10 mM 2OA. Reactions were initiated by the
600 addition of purified PP_5260 or boiled enzyme controls, and absorbance at 340 nm was
601 measured via a SpectraMax M4 plate reader (Molecular Devices, USA). Michaelis-Menten
602 behavior was formulated as previously described (46). Least-squares minimization was used to
603 derive K_m and K_{cat}. Determination of D-2HG concentration was assayed with a D-2-
604 Hydroxyglutarate (D-2HG) Assay Kit (Sigma MAK320).

605 **Acknowledgements**

606 This manuscript is dedicated to the memory of Cornell Professor Dr. Eugene Madsen. The
607 authors would like to thank Morgan Price, Dr. John Hangasky, Dr. Jamie Meadows, Dr. Robert
608 Haushalter, Dr. Bo Pang, Dr. Nick Weathersby, Mary Thompson, and Catharine Adams for their
609 helpful discussions in preparing this manuscript. We would also like to thank the UC Berkeley
610 SMART program for providing support for R.K to conduct summer research. This work was part
611 of the DOE Joint BioEnergy Institute (<https://www.jbei.org>) supported by the U.S. Department
612 of Energy, Office of Science, Office of Biological and Environmental Research, and protein
613 purification and homology modelling components were part of the Agile BioFoundry
614 (<http://agilebiofoundry.org>) supported by the U.S. Department of Energy, Energy Efficiency and
615 Renewable Energy, Bioenergy Technologies Office, through contract DE-AC02-05CH11231
616 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The views
617 and opinions of the authors expressed herein do not necessarily state or reflect those of the
618 United States Government or any agency thereof. Neither the United States Government nor any
619 agency thereof, nor any of their employees, makes any warranty, expressed or implied, or
620 assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
621 information, apparatus, product, or process disclosed, or represents that its use would not
622 infringe privately owned rights.

623 **Contributions**

624 Conceptualization, M.G.T., and J.M.B.; Methodology, M.G.T., J.M.B., J.F.B., P.C.M., S.C.C.,
625 N.C.H, C.B.E, E.E.K.B, C.J.P., and A.M.D.; Investigation, M.G.T., J.M.B, W.N.S., R.A.K,
626 J.F.B., V.T.B, P.C.M., J.W.G, C.J.P, N.C.H., F.F.T., J.H.P W.S., E.E.K.B.; Writing – Original

627 Draft, M.G.T.; Writing – Review and Editing, All authors.; Resources and supervision, P.D.A.,
628 A.P.A., A.M.D., and J.D.K.

629 **Competing Interests**

630 J.D.K. has financial interests in Amyris, Lygos, Constructive Biology, Demetrix, Napigen and
631 Maple Bio.

632 Table 1

Strain	JBEI Part ID	Reference	Genotype
<i>E. coli</i> DH10B		ThermoFisher	
<i>E. coli</i> S17		ATCC 47055	
<i>E. coli</i> BL21(DE3)		Novagen	
<i>P. putida</i> KT2440		ATCC 47054	
<i>P. putida</i> ΔPP_0158	JPUB_010967	This work	
<i>P. putida</i> ΔPP_2088	JPUB_013224	This work	
<i>P. putida</i> ΔPP_2909	JPUB_010968	This work	
<i>P. putida</i> ΔPP_2910	JPUB_010969	This work	
<i>P. putida</i> ΔPP_0158 ΔPP_2909	JPUB_010970	This work	
<i>P. putida</i> ΔPP_4108	JPUB_010971	This work	
<i>P. putida</i> ΔPP_4493	JPUB_010972	This work	
<i>P. putida</i> ΔPP_5260	JPUB_010973	This work	
Plasmids			
pMQ30		45	Gm, SacB
pET28		Novagen	Kan
pET21b		Novagen	Amp
pMQ30-PP_0158	JPUB_010989	This work	Gm, SacB
pMQ30-PP_2088	JPUB_013222	This work	Gm, SacB
pMQ30-PP_2909	JPUB_010991	This work	Gm, SacB
pMQ30-PP_2910	JPUB_010995	This work	Gm, SacB
pMQ30-PP_4108	JPUB_010981	This work	Gm, SacB
pMQ30-PP_4493	JPUB_010979	This work	Gm, SacB
pMQ30-PP_5260	JPUB_010977	This work	Gm, SacB

pET28-CsiD_Halo	JPUB_010987	This work	Kan
pET28-CsiD_Ecoli	JPUB_010993	This work	Kan
pET28-CsiD_Pput	JPUB_010975	This work	Kan
pET21b-PP_4108	JPUB_010983	This work	Amp
pET21b-PP_5260	JPUB_010985	This work	Amp

633

634

635

636

637 **References**

638

639 1. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts
640 DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay
641 J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Fraser CM. 2002. Complete
642 genome sequence and comparative analysis of the metabolically versatile *Pseudomonas*
643 *putida* KT2440. *Environ Microbiol* 4:799–808.

644 2. Nikel PI, Chavarría M, Danchin A, de Lorenzo V. 2016. From dirt to industrial
645 applications: *Pseudomonas putida* as a Synthetic Biology chassis for hosting harsh
646 biochemical reactions. *Curr Opin Chem Biol* 34:20–29.

647 3. Loeschke A, Thies S. 2015. *Pseudomonas putida*-a versatile host for the production of
648 natural products. *Appl Microbiol Biotechnol* 99:6197–6214.

649 4. Jiménez JI, Miñambres B, García JL, Díaz E. 2002. Genomic analysis of the aromatic
650 catabolic pathways from *Pseudomonas putida* KT2440. *Environ Microbiol* 4:824–841.

651 5. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH,

652 Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan
653 GA, Wyman CE. 2014. Lignin valorization: improving lignin processing in the
654 biorefinery. *Science* 344:1246843.

655 6. Chang YF, Adams E. 1971. Induction of separate catabolic pathways for L- and D-lysine
656 in *Pseudomonas putida*. *Biochem Biophys Res Commun* 45:570–577.

657 7. Chae TU, Ko Y-S, Hwang K-S, Lee SY. 2017. Metabolic engineering of *Escherichia coli*
658 for the production of four-, five- and six-carbon lactams. *Metab Eng* 41:82–91.

659 8. Zhang J, Barajas JF, Burdu M, Wang G, Baidoo EE, Keasling JD. 2017. Application of an
660 Acyl-CoA Ligase from *Streptomyces aizunensis* for Lactam Biosynthesis. *ACS Synth Biol*
661 6:884–890.

662 9. Zhang M, Gao C, Guo X, Guo S, Kang Z, Xiao D, Yan J, Tao F, Zhang W, Dong W, Liu
663 P, Yang C, Ma C, Xu P. 2018. Increased glutarate production by blocking the glutaryl-
664 CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate.
665 *Nat Commun* 9:2114.

666 10. Kim HT, Khang TU, Baritugo K-A, Hyun SM, Kang KH, Jung SH, Song BK, Park K, Oh
667 M-K, Kim GB, Kim HU, Lee SY, Park SJ, Joo JC. 2018. Metabolic engineering of
668 *Corynebacterium glutamicum* for the production of glutaric acid, a C5 dicarboxylic acid
669 platform chemical. *Metab Eng* 51:99–109.

670 11. Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. 2005. Multiple and
671 interconnected pathways for L-lysine catabolism in *Pseudomonas putida* KT2440. *J*
672 *Bacteriol* 187:7500–7510.

673 12. Revelles O, Wittich R-M, Ramos JL. 2007. Identification of the initial steps in D-lysine

674 catabolism in *Pseudomonas putida*. *J Bacteriol* 189:2787–2792.

675 13. Perfetti R, Campbell RJ, Titus J, Hartline RA. 1972. Catabolism of pipecolate to glutamate

676 in *Pseudomonas putida*. *J Biol Chem* 247:4089–4095.

677 14. Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J,

678 Butland G, Arkin AP, Deutschbauer A. 2015. Rapid quantification of mutant fitness in

679 diverse bacteria by sequencing randomly bar-coded transposons. *MBio* 6:e00306-15.

680 15. Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, Kuehl JV, Melnyk RA,

681 Lamson JS, Suh Y, Carlson HK, Esquivel Z, Sadeeshkumar H, Chakraborty R, Zane GM,

682 Rubin BE, Wall JD, Visel A, Bristow J, Blow MJ, Deutschbauer AM. 2018. Mutant

683 phenotypes for thousands of bacterial genes of unknown function. *Nature* 557:503–509.

684 16. Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, Campbell CE,

685 Markley AL, Price MN, Ray J, Wetmore KM, Suh Y, Arkin AP, Deutschbauer AM,

686 Amador-Noguez D, Pfleger BF. 2017. A metabolic pathway for catabolizing levulinic acid

687 in bacteria. *Nat Microbiol* 2:1624–1634.

688 17. Okuno E, Tsujimoto M, Nakamura M, Kido R. 1993. 2-Aminoadipate-2-oxoglutarate

689 aminotransferase isoenzymes in human liver: a plausible physiological role in lysine and

690 tryptophan metabolism. *Enzyme Protein* 47:136–148.

691 18. Wilding M, Peat TS, Newman J, Scott C. 2016. A β -Alanine Catabolism Pathway

692 Containing a Highly Promiscuous ω -Transaminase in the 12-Aminododecanate-Degrading

693 *Pseudomonas* sp. Strain AAC. *Appl Environ Microbiol* 82:3846–3856.

694 19. Kopchick JJ, Hartline RA. 1979. alpha-Hydroxyglutarate as an intermediate in the

695 catabolism of alpha-aminoadipate by *Pseudomonas putida*. *J Biol Chem* 254:3259–3263.

696 20. Witkowski A, Joshi AK, Smith S. 2002. Mechanism of the β -Ketoacyl Synthase Reaction
697 Catalyzed by the Animal Fatty Acid Synthase[†]. *Biochemistry* 41:10877–10887.

698 21. Martinez S, Hausinger RP. 2016. Biochemical and Spectroscopic Characterization of the
699 Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from
700 *Pseudomonas syringae* pv. *phaseolicola* PK2. *Biochemistry* 55:5989–5999.

701 22. Martinez S, Hausinger RP. 2015. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-
702 dependent Oxygenases. *J Biol Chem* 290:20702–20711.

703 23. Revelles O, Espinosa-Urgel M, Molin S, Ramos JL. 2004. The davDT operon of
704 *Pseudomonas putida*, involved in lysine catabolism, is induced in response to the pathway
705 intermediate delta-aminovaleric acid. *J Bacteriol* 186:3439–3446.

706 24. Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom
707 TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kölker S. 2012.
708 DHTKD1 mutations cause 2-amino adipic and 2-oxoadipic aciduria. *Am J Hum Genet*
709 91:1082–1087.

710 25. REITZ M, RODWELL V. 1969. α -Hydroxyglutarate Oxidoreductase of *Pseudomonas*
711 *putida*. *J Bacteriol*.

712 26. Wójcik A, Broclawik E, Siegbahn PEM, Borowski T. 2012. Mechanism of benzylic
713 hydroxylation by 4-hydroxymandelate synthase. A computational study. *Biochemistry*
714 51:9570–9580.

715 27. Di Giuro CML, Konstantinovics C, Rinner U, Nowikow C, Leitner E, Straganz GD. 2013.
716 Chiral hydroxylation at the mononuclear nonheme Fe(II) center of 4-(S) hydroxymandelate
717 synthase--a structure-activity relationship analysis. *PLoS ONE* 8:e68932.

718 28. Lequette Y, Odberg-Ferragut C, Bohin J-P, Lacroix J-M. 2004. Identification of mdoD, an
719 mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls
720 osmoregulated periplasmic glucan backbone structures. *J Bacteriol* 186:3695–3702.

721 29. Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X, Wang Y,
722 Zhang W, Wang Y, Liu S, Wu F, Zhang X, Guo X, Bao Y, Jiang L, Wan J. 2016.
723 FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast
724 development essential for peripheral endosperm development in rice. *J Exp Bot* 67:633–
725 647.

726 30. Vijayakumar SRV, Kirchhof MG, Patten CL, Schellhorn HE. 2004. RpoS-regulated genes
727 of *Escherichia coli* identified by random lacZ fusion mutagenesis. *J Bacteriol* 186:8499–
728 8507.

729 31. Knorr S, Sinn M, Galetskiy D, Williams RM, Wang C, Müller N, Mayans O, Schleheck D,
730 Hartig JS. 2018. Widespread bacterial lysine degradation proceeding via glutarate and L-2-
731 hydroxyglutarate. *Nat Commun* 9:5071.

732 32. Nishijyo T, Haas D, Itoh Y. 2001. The CbrA-CbrB two-component regulatory system
733 controls the utilization of multiple carbon and nitrogen sources in *Pseudomonas*
734 *aeruginosa*. *Mol Microbiol* 40:917–931.

735 33. Valentini M, García-Mauriño SM, Pérez-Martínez I, Santero E, Canosa I, Lapouge K.
736 2014. Hierarchical management of carbon sources is regulated similarly by the CbrA/B
737 systems in *Pseudomonas aeruginosa* and *Pseudomonas putida*. *Microbiology (Reading,*
738 *Engl)* 160:2243–2252.

739 34. Bouffartigues E, Gicquel G, Bazire A, Bains M, Maillot O, Vieillard J, Feuilloley MGJ,

740 Orange N, Hancock REW, Dufour A, Chevalier S. 2012. Transcription of the oprF gene of
741 *Pseudomonas aeruginosa* is dependent mainly on the SigX sigma factor and is sucrose
742 induced. *J Bacteriol* 194:4301–4311.

743 35. Blanka A, Schulz S, Eckweiler D, Franke R, Bielecka A, Nicolai T, Casilag F, Düvel J,
744 Abraham W-R, Kaever V, Häussler S. 2014. Identification of the alternative sigma factor
745 SigX regulon and its implications for *Pseudomonas aeruginosa* pathogenicity. *J Bacteriol*
746 196:345–356.

747 36. Neshich IAP, Kiyota E, Arruda P. 2013. Genome-wide analysis of lysine catabolism in
748 bacteria reveals new connections with osmotic stress resistance. *ISME J* 7:2400–2410.

749 37. Brinkman AB, Bell SD, Lebbink RJ, de Vos WM, van der Oost J. 2002. The *Sulfolobus*
750 *solfataricus* Lrp-like protein LysM regulates lysine biosynthesis in response to lysine
751 availability. *J Biol Chem* 277:29537–29549.

752 38. Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB,
753 Akerboom J, van der Oost J, Rafferty JB. 2006. Structural insight into gene transcriptional
754 regulation and effector binding by the Lrp/AsnC family. *Nucleic Acids Res* 34:1439–1449.

755 39. LaBauve AE, Wargo MJ. 2012. Growth and laboratory maintenance of *Pseudomonas*
756 *aeruginosa*. *Curr Protoc Microbiol Chapter 6:Unit 6E.1.*

757 40. Ham TS, Dmytriv Z, Plahar H, Chen J, Hillson NJ, Keasling JD. 2012. Design,
758 implementation and practice of JBEI-ICE: an open source biological part registry platform
759 and tools. *Nucleic Acids Res* 40:e141.

760 41. Chen J, Densmore D, Ham TS, Keasling JD, Hillson NJ. 2012. DeviceEditor visual
761 biological CAD canvas. *J Biol Eng* 6:1.

762 42. Hillson NJ, Rosengarten RD, Keasling JD. 2012. j5 DNA assembly design automation
763 software. ACS Synth Biol 1:14–21.

764 43. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. 2009.
765 Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods
766 6:343–345.

767 44. Engler C, Kandzia R, Marillonnet S. 2008. A one pot, one step, precision cloning method
768 with high throughput capability. PLoS ONE 3:e3647.

769 45. Shanks RMQ, Kadouri DE, MacEachran DP, O'Toole GA. 2009. New yeast
770 recombineering tools for bacteria. Plasmid 62:88–97.

771 46. Cornish-Bowden A. 2012. Fundamentals of Enzyme Kinetics, 4th ed. Wiley, John & Sons,
772 Incorporated.

Massively parallel fitness profiling reveals multiple novel enzymes in *Pseudomonas putida* lysine metabolism

Mitchell G. Thompson^{1,2,3}, Jacquelyn M. Blake-Hedges^{1,2,4}, Pablo Cruz-Morales^{1,2,5}, Jesus F. Barajas^{2,6}, Samuel C. Curran^{1,2,7}, Christopher B. Eiben^{1,2,8}, Nicholas C. Harris³, Veronica T. Benites^{1,2}, Jennifer W. Gin^{1,2}, William A. Sharpless^{1,2,3}, Frederick F. Twigg⁸, Will Skyrud⁴, Rohith N. Krishna^{1,2,4}, Jose Henrique Pereira^{1,9}, Edward E. K. Baidoo^{1,2}, Christopher J. Petzold^{1,2}, Paul D. Adams^{1,9,10}, Adam P. Arkin^{10,11}, Adam M. Deutschbauer^{3,11}, Jay D. Keasling^{1,2,8,10,12}

¹Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA.

²Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

³Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

⁴Department of Chemistry, University of California, Berkeley, CA 94720, USA

⁵Centro de Biotecnología FEMSA, Tecnológico de Monterrey, NL, Mexico

⁶Department of Energy Agile BioFoundry, Emeryville, CA 94608, USA

⁷Comparative Biochemistry Graduate Group, University of California, Berkeley, CA 94720, USA

⁸Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA

⁹Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

¹⁰Joint Program in Bioengineering, University of California, Berkeley/San Francisco, CA 94720, USA

¹¹Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

¹²The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark

Supplementary Materials and Methods

HPLC analysis

HPLC analysis was performed on an Agilent Technologies 1200 series liquid chromatography instrument coupled to a refractive index detector (35°C, Agilent Technologies, Santa Clara, CA). Samples were injected onto an Aminex HPX-87H Ion Exclusion Column (300 x 7.8 mm, 60°C, Bio-Rad, Hercules, CA) and eluted isocratically with 4 mM H₂SO₄ at 600 uL/min for 20 minutes. Compounds were quantified via comparison to a calibration curve prepared with authentic standards and normalized to injection volume.

Proteomics analysis

P. putida KT2440 wild type was grown on MOPS minimal media with 10 mM of either glucose, L-lysine, D-lysine, 5AVA, 2AA, or glutarate. Cells were harvested when cultures reached an OD₆₀₀ of 1.0 with a 1 cm pathlength. Cell lysis and protein precipitation were achieved by using a chloroform-methanol extraction as previously described (1). Thawed pellets were loosened from 14 mL falcon tubes and transferred to PCR 8-well tube strip, followed by the

addition of 80 μ L of methanol, 20 μ L of chloroform, and 60 μ L of water, with vortexing. The samples were centrifuged at \sim 20,000 \times g for 1 minute for phase separation. The methanol and water (top) layer was removed, then 100 μ L of methanol was added and the sample was vortexed briefly. The samples were centrifuged at \sim 20,000 \times g for 1 minute to isolate the protein pellet. The protein pellet was air-dried for 10 minutes and resuspended in 100 mM ammonium bicarbonate with 20% methanol. The protein concentration was measured using the DC Protein Assay Kit (Bio-Rad, Hercules, CA) with bovine serum albumin for the standard curve. A total of 100 μ g of protein from each sample was digested with trypsin for targeted proteomic analysis. The protein was reduced by adding tris 2-(carboxyethyl) phosphine (TCEP) at a final concentration of 5 mM, alkylated by adding iodoacetamide at a final concentration of 10 mM, and digested overnight at 37 °C with trypsin at a ratio of 1:50 (w/w) trypsin:total protein. As previously described (2), peptides were analyzed using an Agilent 1290 liquid chromatography system coupled to an Agilent 6460QQQ mass spectrometer (Agilent Technologies, Santa Clara, CA). Peptide samples (10 μ g) were separated on an Ascentis Express Peptide ES-C18 column (2.7 μ m particle size, 160 Å pore size, 50 mm length x 2.1 mm i.d., 60 °C; Sigma-Aldrich, St. Louis, MO) by using a chromatographic gradient (400 μ L/min flow rate) with an initial condition of 95% buffer A (99.9% water, 0.1% formic acid) and 5% buffer B (99.9% acetonitrile, 0.1% formic acid) then increasing linearly to 65% buffer A/35% buffer B over 5.5 minutes. Buffer B was then increased to 80% over 0.3 minutes and held at 80% for two minutes followed by ramping back down to 5% buffer B over 0.5 minutes where it was held for 1.5 minutes to re-equilibrate the column for the next sample. The peptides were ionized by an Agilent Jet Stream ESI source operating in positive-ion mode with the following source parameters: gas Temperature: 250 °C, gas Flow: 13 L/min, nebulizer pressure: 35 psi, sheath gas temperature:

250 °C, sheath gas flow: 11 L/min, nozzle voltage: 0 V, chamber voltage: 3,500 V. The data were acquired using Agilent MassHunter, version B.08.02, processed using Skyline (3) version 4.1, and peak quantification was refined with mProphet (4) in Skyline. Data are available at Panorama Public via this link:

https://panoramaweb.org/massive_fitness_profiling_Pseudomonas_putida.url. All pairwise combinations of spectral counts from carbon sources for each protein were compared via Student's t-test followed by a Bonferroni correction.

Detection of metabolites

Sampling of intracellular metabolites was conducted as described previously (5). Multiple methods were used to detect compounds in this work. Method (1) HILIC-HRMS analysis was performed using an Agilent Technologies 6510 Accurate-Mass Q-TOF LC-MS instrument using positive mode and an Atlantis HILIC Silica 5 μ m column (150 x 4.6 mm) with a linear of 95 to 50% acetonitrile (v/v) over 8 minutes in water with 40 mM ammonium formate, pH 4.5, at a flow rate of 1 mL minute⁻¹. Method (2) HILIC-HRMS analysis was performed using an Agilent Technologies 6510 Accurate-Mass Q-TOF LC-MS instrument using negative mode and an Atlantis HILIC Silica 5 μ m column (150 x 4.6 mm) with an isocratic mobile phase (80% acetonitrile (v/v) with 40 mM ammonium formate, pH 4.5) for 20 minute at a flow rate of 1 mL minute⁻¹. Method (3) is described in George et al (5). Briefly, samples were separated via a SeQuantZIC-pHILIC guard column (20-mm length, 2.1-mm internal diameter, and 5- μ m particle size; from EMD Millipore, Billerica, MA, USA), then with a short SeQuantZIC-pHILIC column (50-mm length, 2.1-mm internal diameter, and 5- μ m particle size) followed by a long SeQuantZIC-pHILIC column (150-mm length, 2.1-mm internal diameter, and 5- μ m particle size) using an Agilent Technologies 1200 Series Rapid Resolution HPLC system (Agilent

Technologies, Santa Clara, CA, USA). The mobile phase was composed of 10 mM ammonium carbonate and 118.4 mM ammonium hydroxide in acetonitrile/water (60.2:39.8, v/v).

Metabolites were eluted isocratically via a flow rate of 0.18 mL/min from 0 to 5.4 minutes, which was increased to 0.27 mL/min from 5.4 to 5.7 minutes, and held at this flow rate for an additional 5.4 minutes. The HPLC system was coupled to an Agilent Technologies 6210 TOF-MS system in negative mode. Determination of D-2HG concentration was assayed with a D-2-Hydroxyglutarate (D2HG) Assay Kit (Sigma MAK320).

Phylogenomic analyses

Amino acid sequences of CsiD homologs were downloaded from the pFAM database and aligned with MAFFT-linsi (13). Phylogenetic trees of CsiD alignments were constructed with FastTree 2, and trees were visualized on iTOL (14, 15).

Representative DUF1338 sequences were obtained from pFAM (<https://pfam.xfam.org/family/PF07063#tabview=tab3>). All genomes analyzed were downloaded from the NCBI FTP site and annotated using RAST (16). Amino acid sequences of DUF1338 proteins from these genomes were retrieved using BlastP with a bit score cutoff of 150 and an E-value of 0.000001. All sequences alignments were performed using Muscle v3.8 (17) and the alignments were manually curated using Jalview V2 (18).

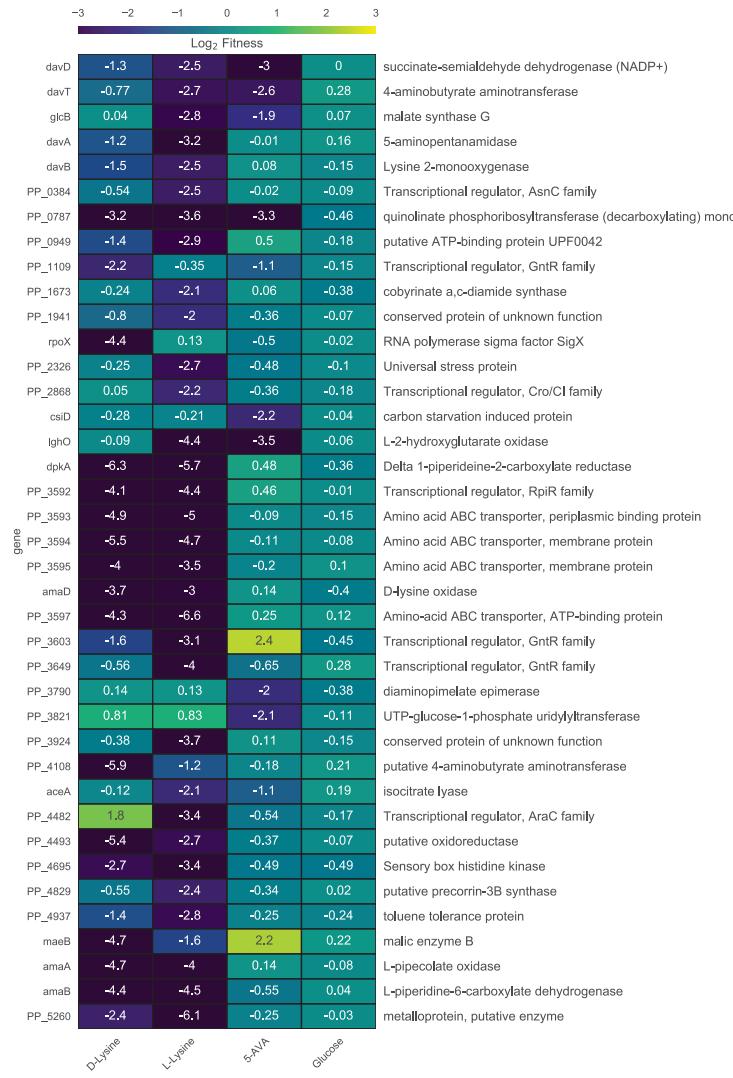
For the phylogenetic reconstructions, the best amino acid substitution model was selected using ModelFinder implemented on IQ-tree (19) the phylogenies were obtained using IQ-tree v 1.6.7 (20), with 10,000 bootstrap replicates. The final trees were visualized and annotated using FigTree v1.4.3 (<http://tree.bio.ed.ac.uk/software/figtree/>). Genome neighborhoods of DUF1338 were obtained using CORASON-BGC (21) and manually colored and annotated.

Statistical analyses and data presentation

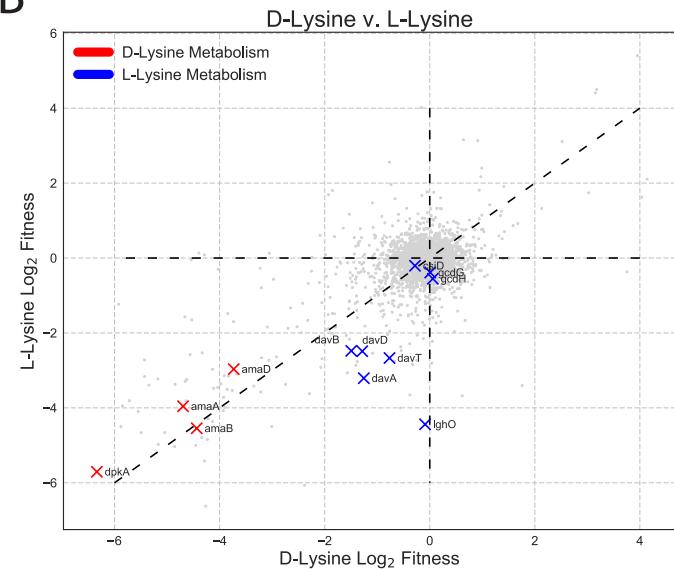
All numerical data were analyzed using custom Python scripts. All graphs were visualized using either Seaborn or Matplotlib. Calculation of 95% confidence intervals, standard deviations, and T-test statistics were conducted via the Scipy library. Bonferroni corrections were calculated using the MNE python library (22).

Bibliography

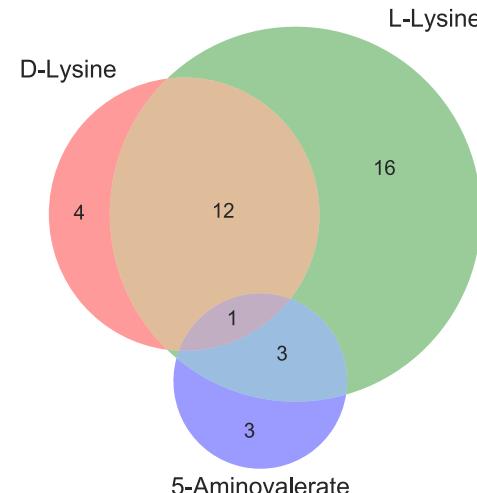
1. González Fernández-Niño SM, Smith-Moritz AM, Chan LJG, Adams PD, Heazlewood JL, Petzold CJ. 2015. Standard flow liquid chromatography for shotgun proteomics in bioenergy research. *Front Bioeng Biotechnol* 3:44.
2. Batth TS, Singh P, Ramakrishnan VR, Sousa MML, Chan LJG, Tran HM, Luning EG, Pan EHY, Vuu KM, Keasling JD, Adams PD, Petzold CJ. 2014. A targeted proteomics toolkit for high-throughput absolute quantification of *Escherichia coli* proteins. *Metab Eng* 26:48–56.
3. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* 26:966–968.
4. Reiter L, Rinner O, Picotti P, Hüttenhain R, Beck M, Brusniak M-Y, Hengartner MO, Aebersold R. 2011. mProphet: automated data processing and statistical validation for large-scale SRM experiments. *Nat Methods* 8:430–435.
5. George KW, Thompson MG, Kim J, Baidoo EEK, Wang G, Benites VT, Petzold CJ, Chan LJG, Yilmaz S, Turhanen P, Adams PD, Keasling JD, Lee TS. 2018. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing *Escherichia coli*. *Metab Eng* 47:60–72.
6. Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* 9:40.
7. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein

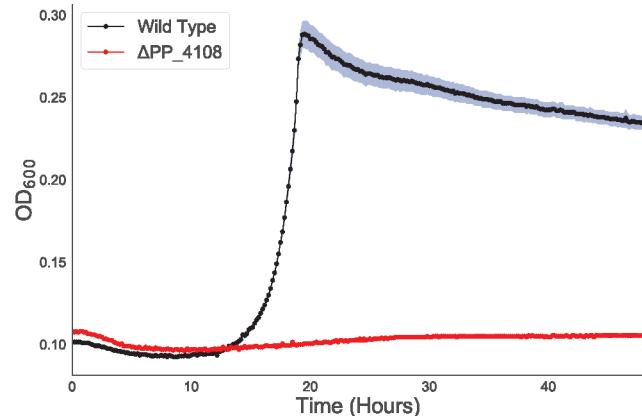
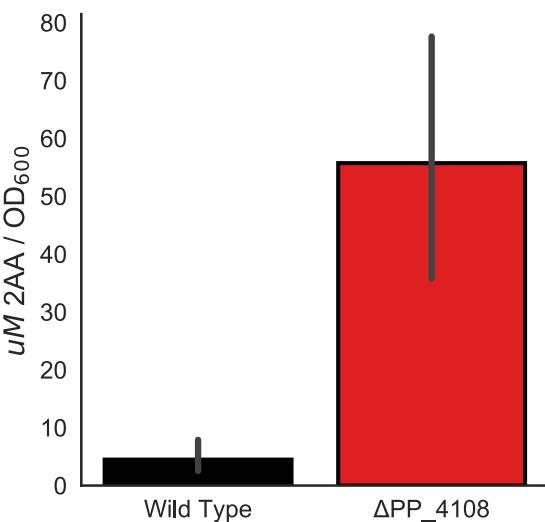
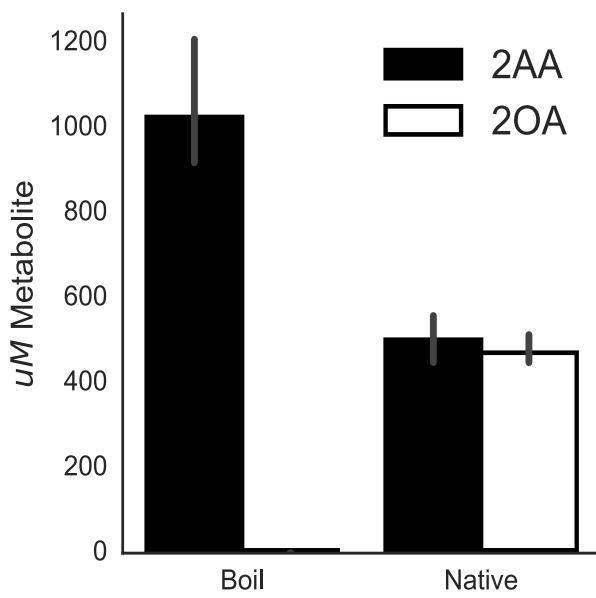
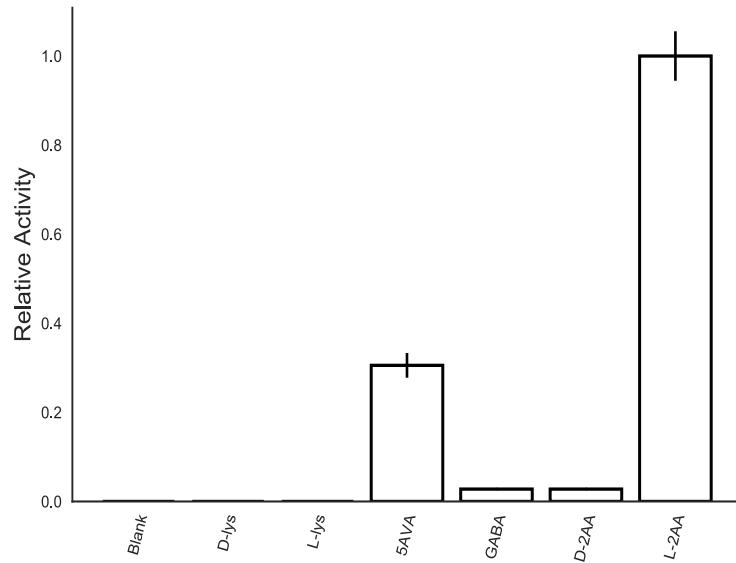

structure and function prediction. *Nat Protoc* 5:725–738.

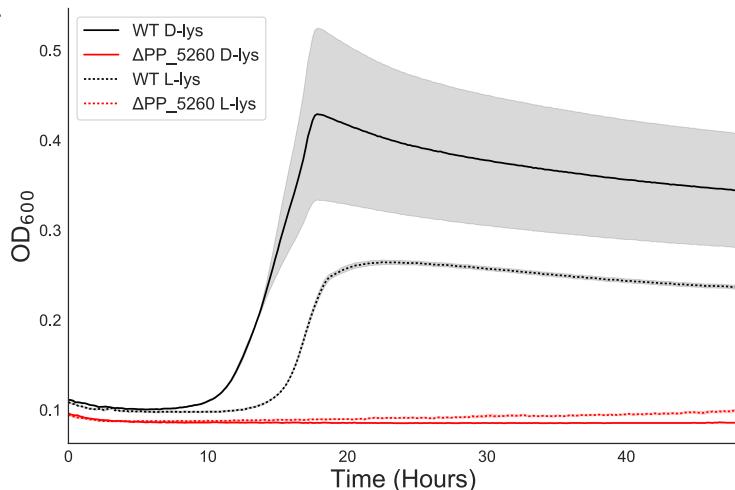
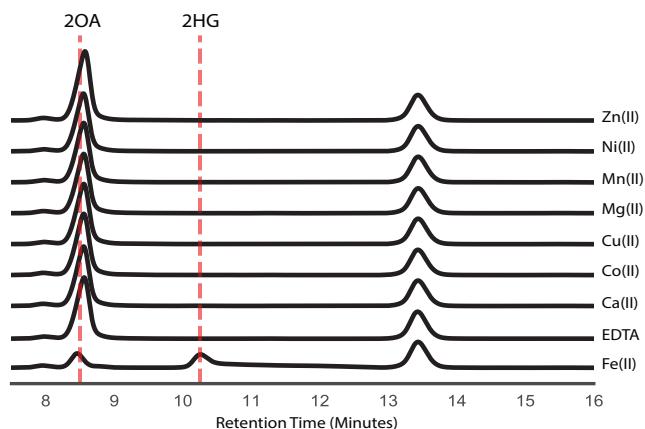
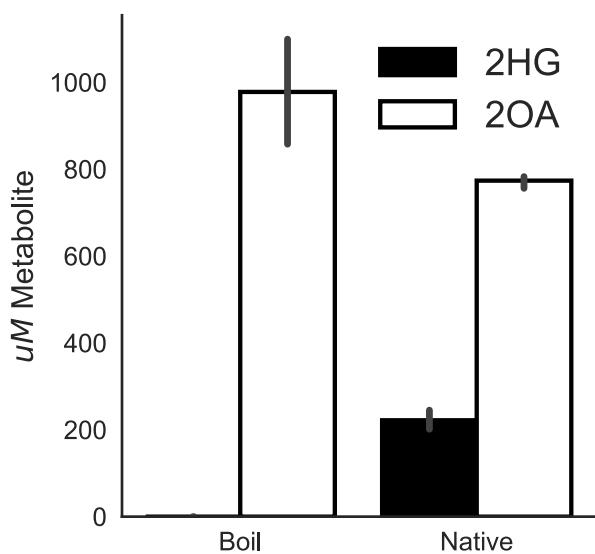
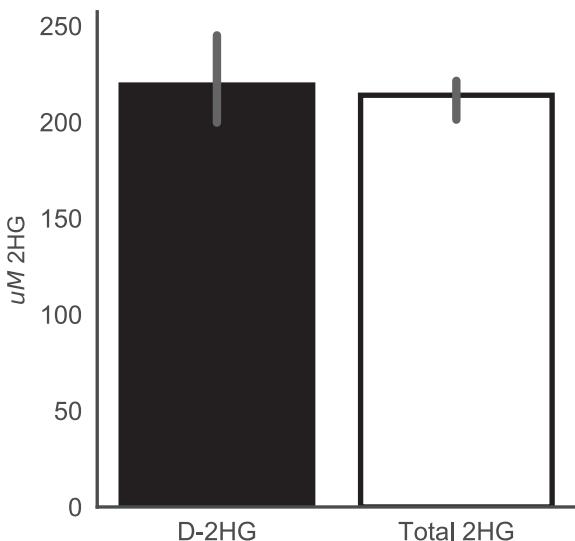
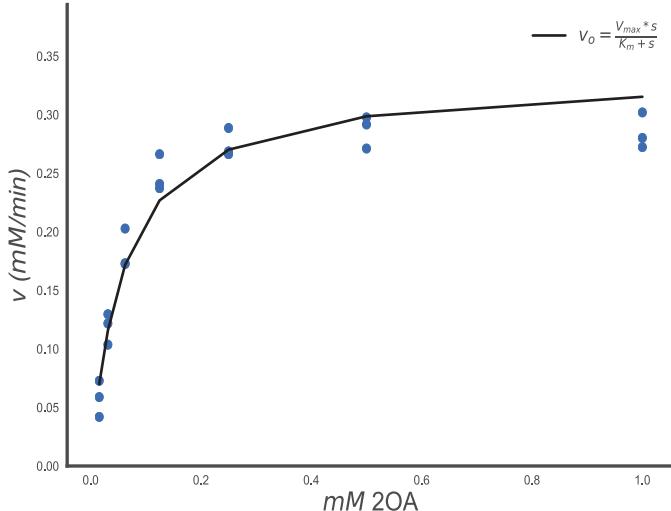
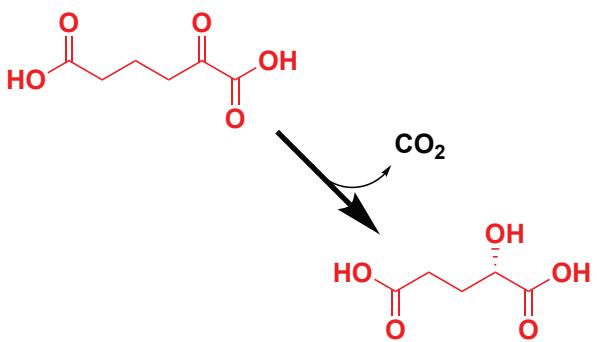
8. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. *Nat Methods* 12:7–8.
9. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. *J Comput Chem* 25:1605–1612.
10. Adams PD, Afonine PV, Bunkóczki G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66:213–221.
11. Grosdidier A, Zoete V, Michelin O. 2011. SwissDock, a protein-small molecule docking web service based on EADock DSS. *Nucleic Acids Res* 39:W270-7.
12. Grosdidier A, Zoete V, Michelin O. 2011. Fast docking using the CHARMM force field with EADock DSS. *J Comput Chem* 32:2149–2159.
13. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol* 30:772–780.
14. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. *PLoS ONE* 5:e9490.
15. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res* 44:W242-5.
16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 9:75.
17. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high

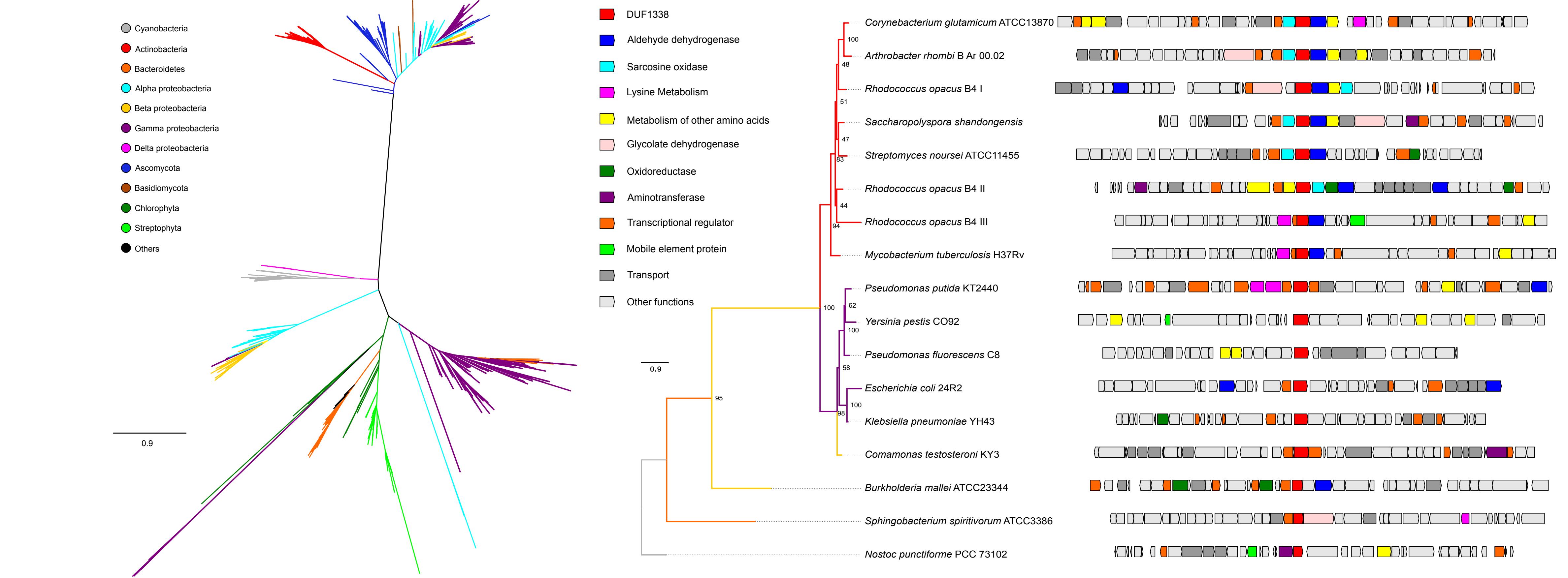

throughput. *Nucleic Acids Res* 32:1792–1797.

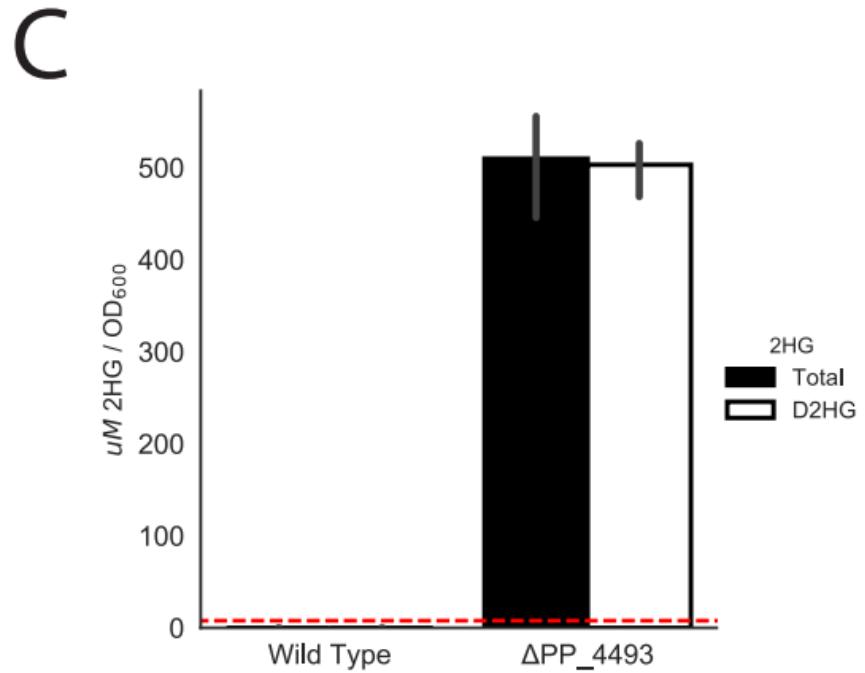
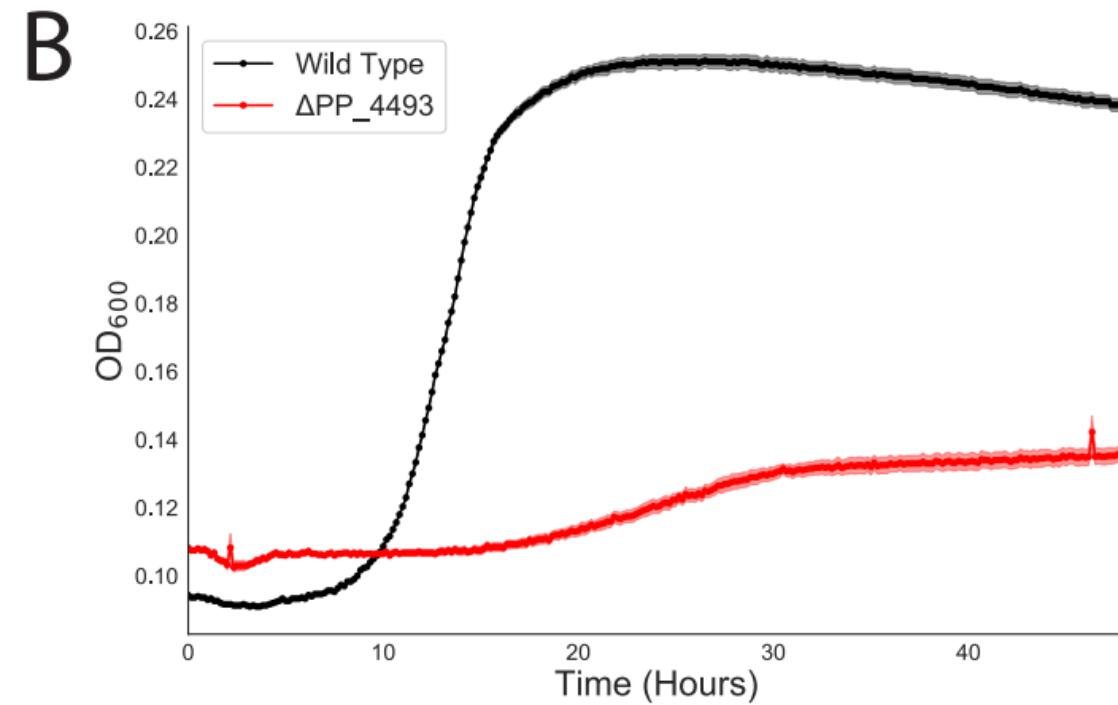
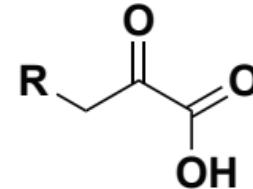
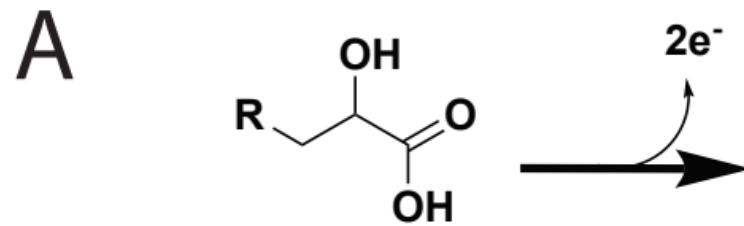
18. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25:1189–1191.
19. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods* 14:587–589.
20. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* 32:268–274.
21. Cruz-Morales P, Ramos-Aboites HE, Licona-Cassani C, Selem-Mójica N, Mejía-Ponce PM, Souza-Saldívar V, Barona-Gómez F. 2017. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. *FEMS Microbiol Ecol* 93.
22. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS. 2014. MNE software for processing MEG and EEG data. *Neuroimage* 86:446–460.

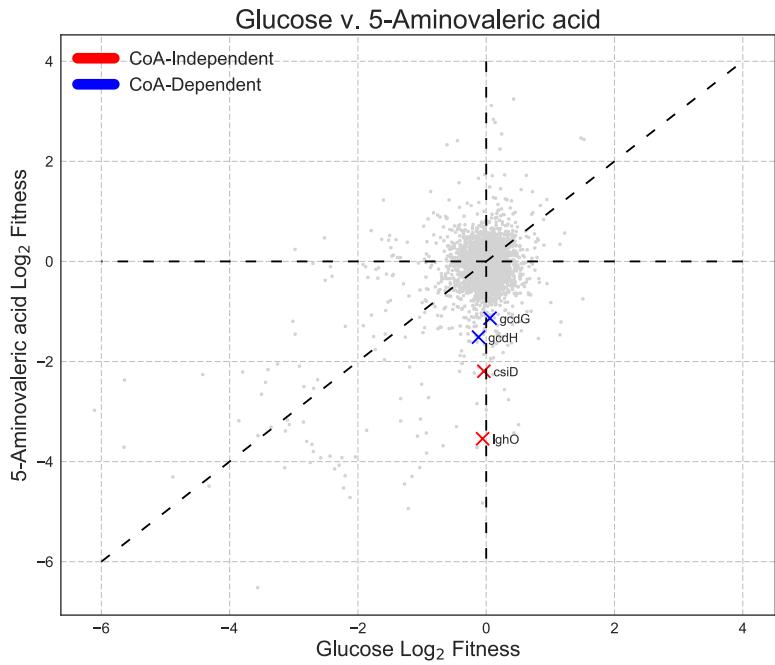

A

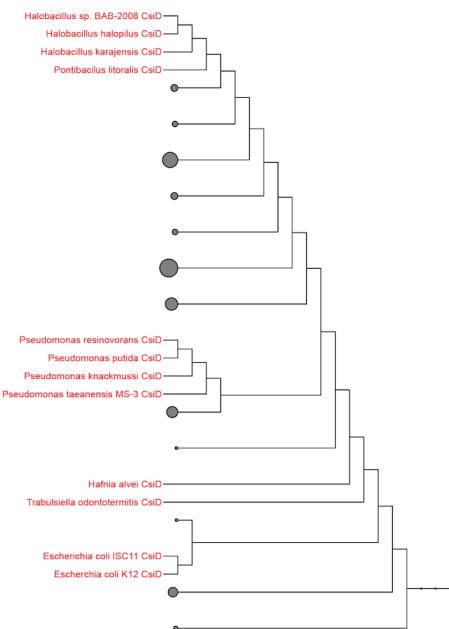






B

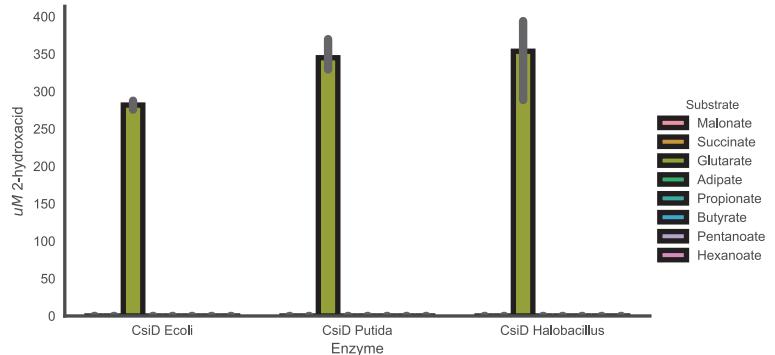


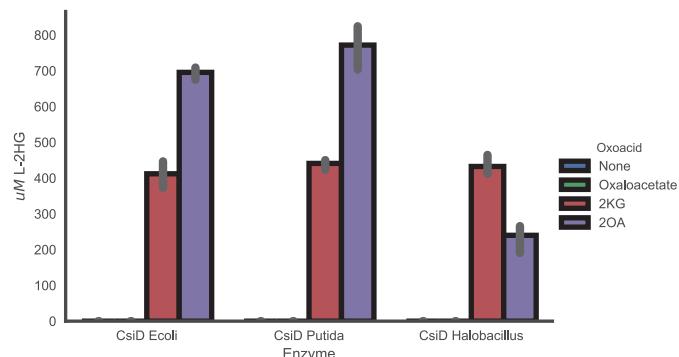




C

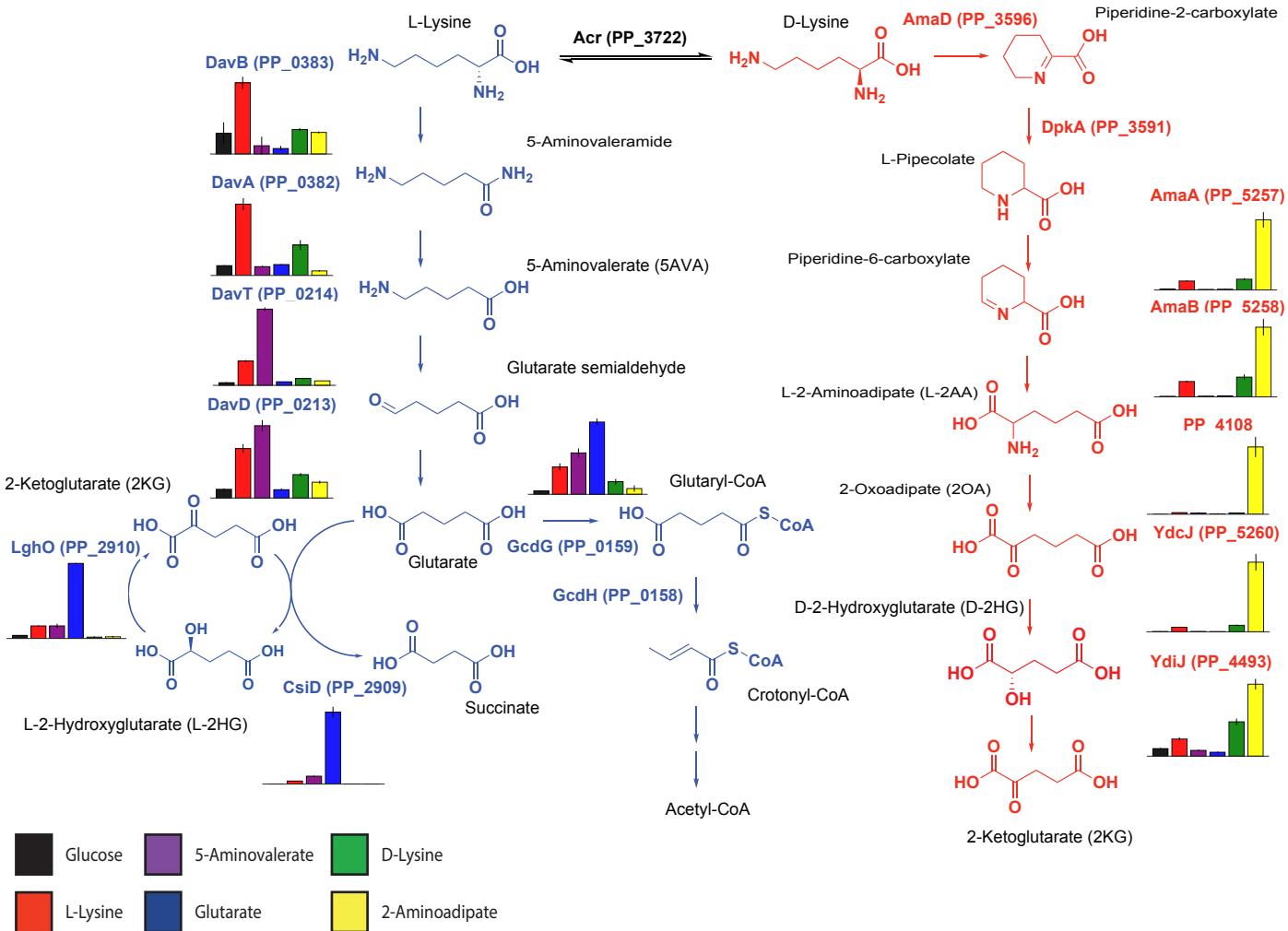

A**B****C****D**

A**B****C****D****E****F**

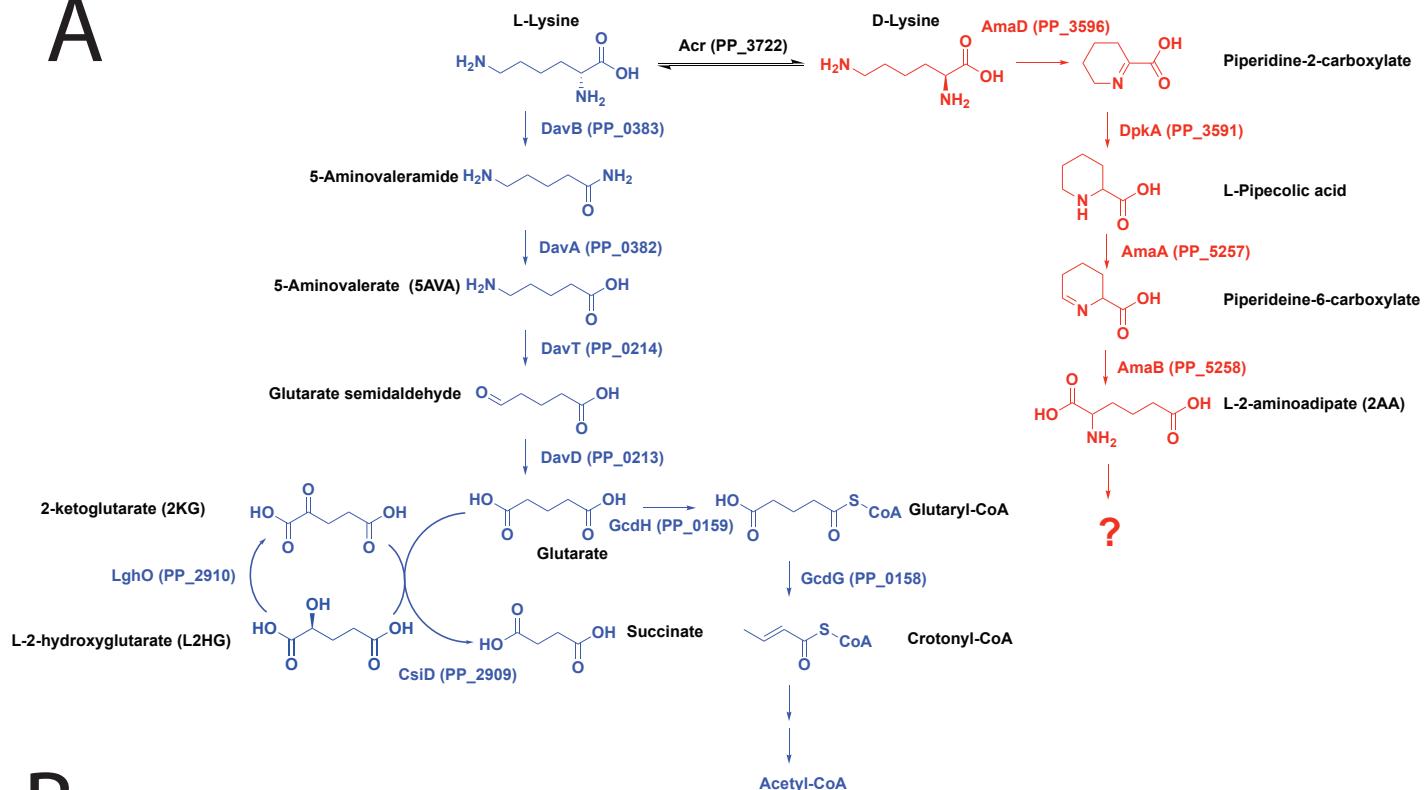



A

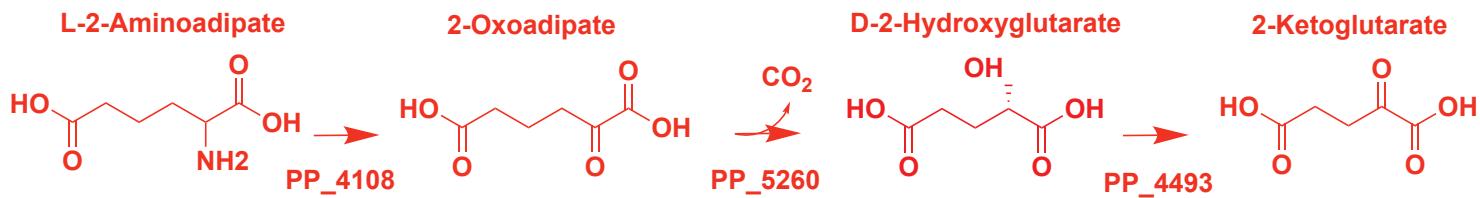

B



C

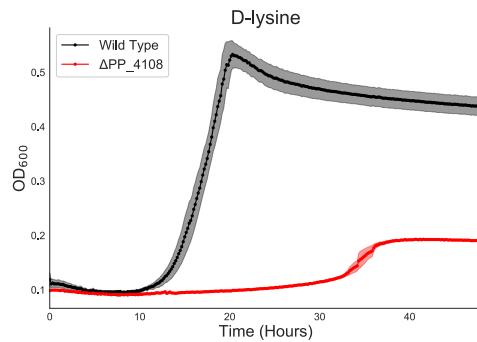
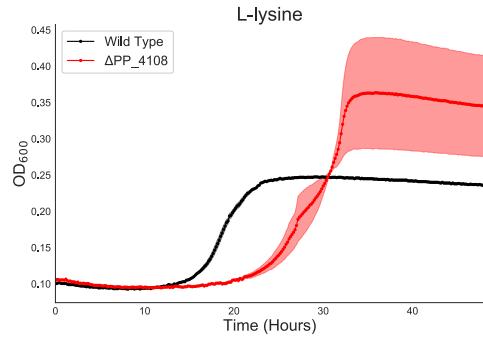
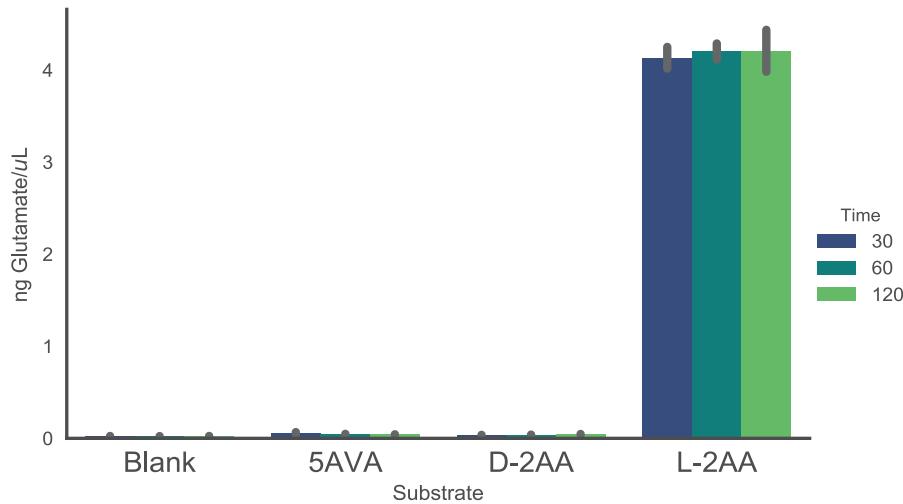


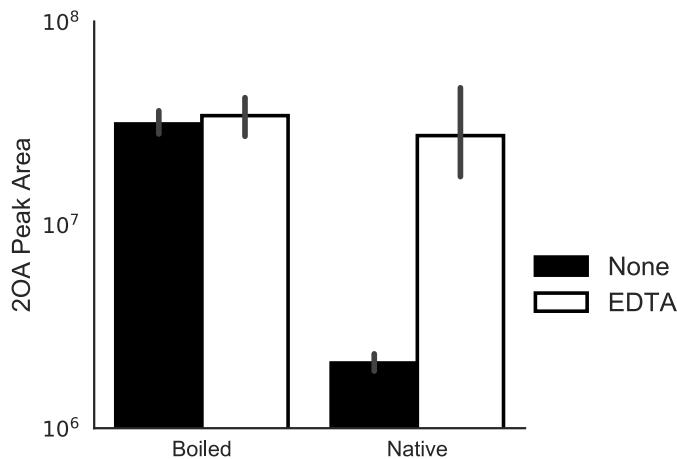
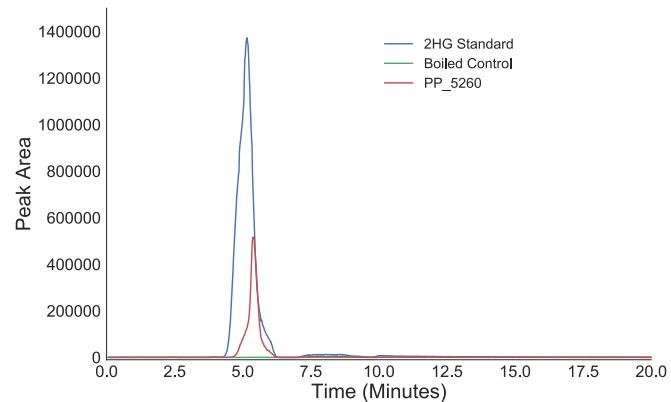
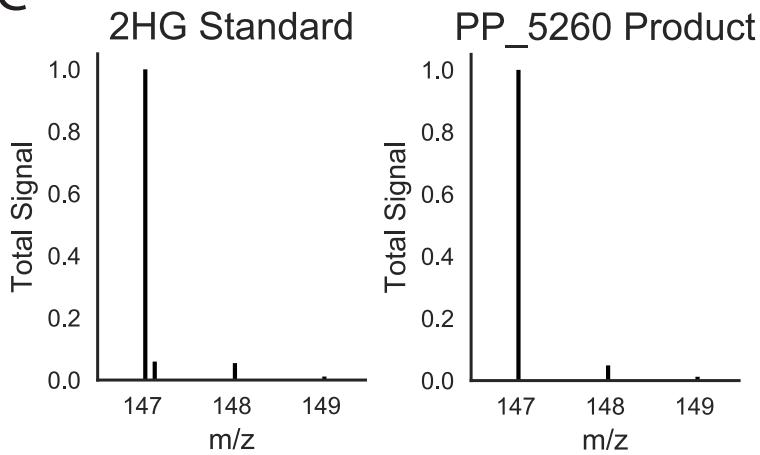
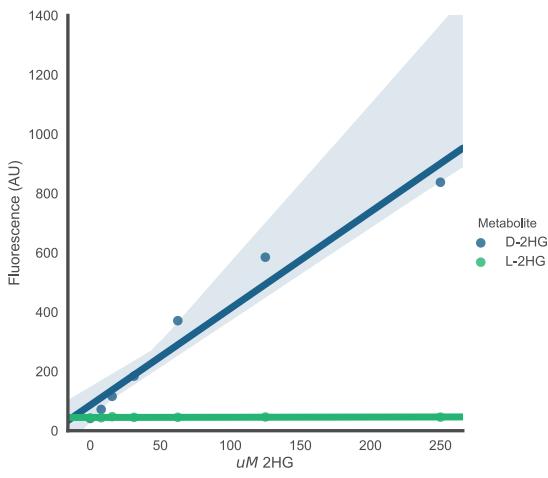
D

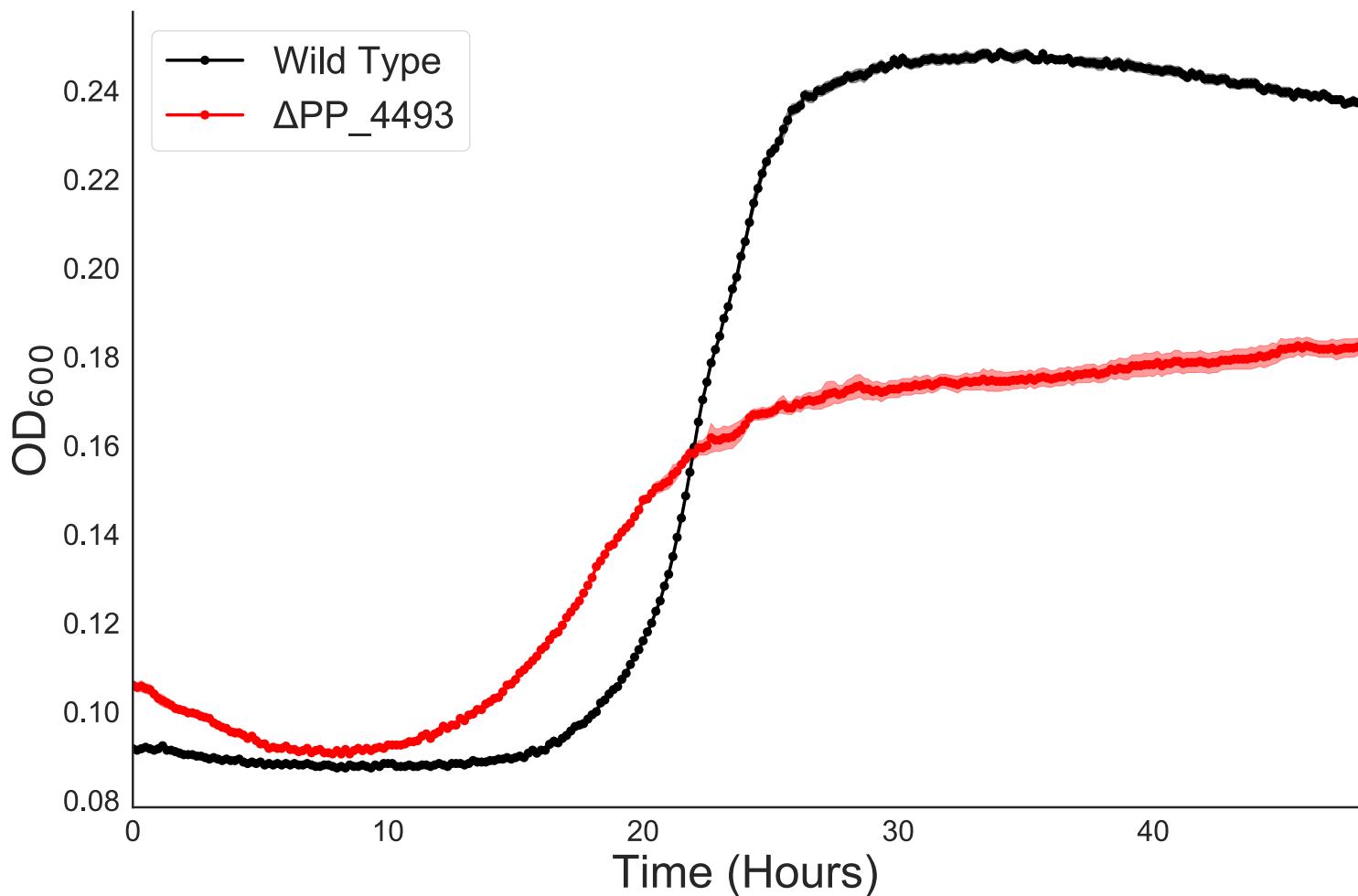


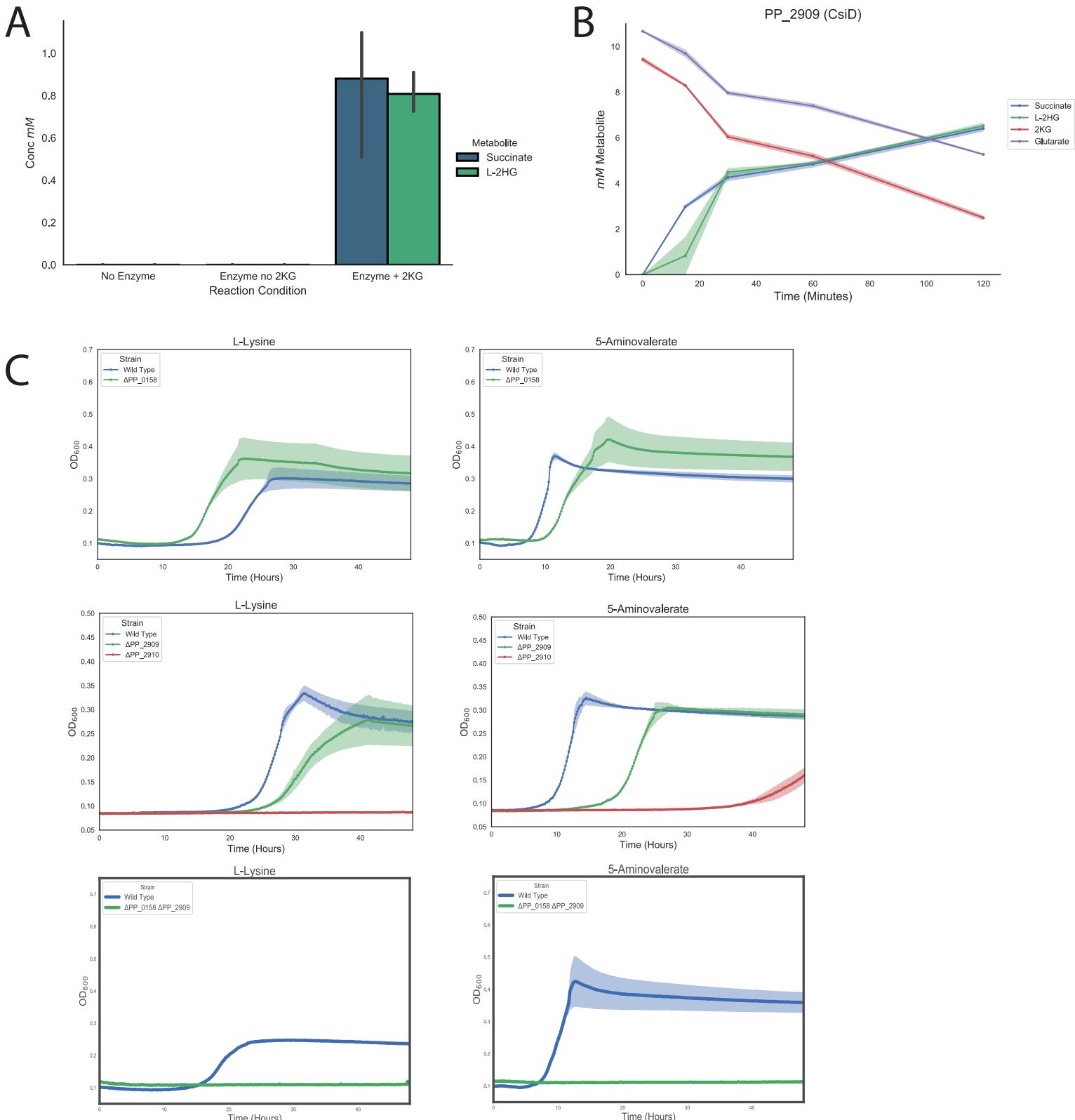
A

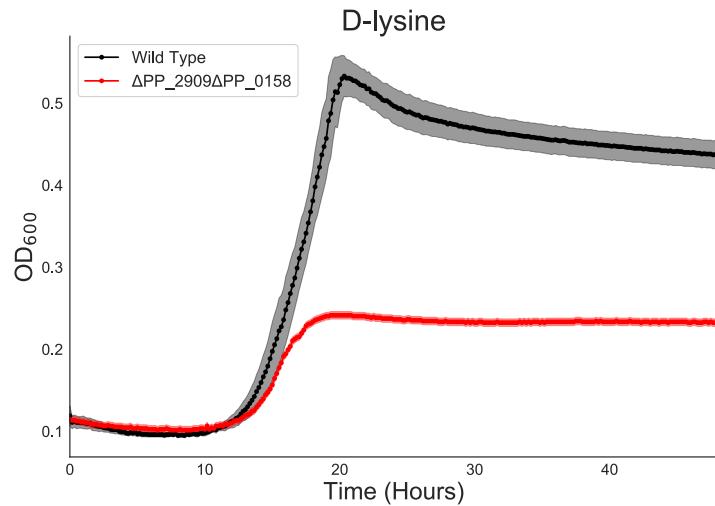
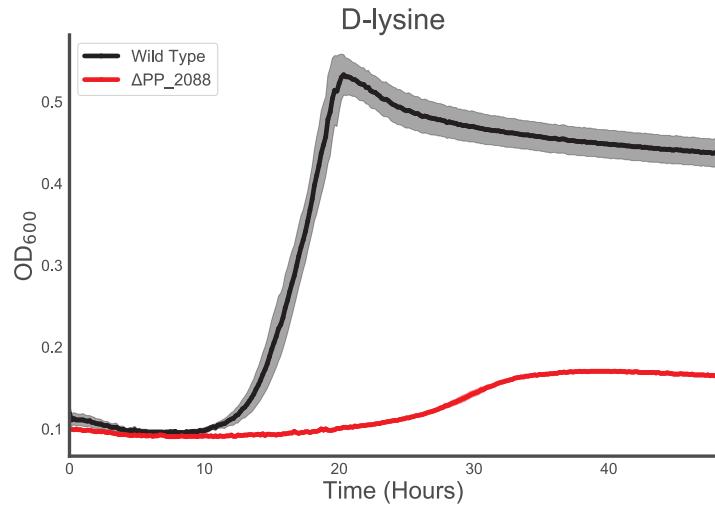
B


Log₂ Fitness


	D-Lysine	L-Lysine	5AVA	Glucose	
PP_0138	3	1.7	2.8	0.11	conserved membrane protein of unknown function
PP_0406	1	0.76	2.3	-0.61	Nucleotidyltransferase family protein
mpl	3.8	-0.37	3.1	0.079	UDP-N-acetylMuramate:L-alanyl-gamma-D-glutamyl- meso-diaminopimelate ligase
PP_0725	0.64	3.2	-0.57	0.18	conserved hypothetical TPR repeat protein
dapA-I	2.5	3.1	0.39	-0.92	4-hydroxy-tetrahydrodipicolinate synthase
rpoS	4	5.4	3.2	0.43	RNA polymerase, sigma S (sigma 38) factor
PP_1778	4.1	2.1	2.8	0.14	Lipopolysaccharide ABC export system, permease protein
PP_1779	4	1.6	2.5	0.24	Lipopolysaccharide ABC export system, ATP-binding protein
PP_2144	0.99	2.4	1.7	-0.12	Transcriptional regulator, TetR family
PP_3603	-1.6	-3.1	2.4	-0.45	Transcriptional regulator, GntR family
PP_3731	-0.77	2.6	-0.11	0.11	Transcriptional regulator, TetR family
astA-II	-0.16	4	-0.15	-0.14	arginine N-succinyltransferase, subunit alpha
PP_5058	0.91	3.1	0.54	0.36	Carboxy-terminal-processing protease
maeB	-4.7	-1.6	2.2	0.22	malic enzyme B
PP_5331	2.1	1.3	-0.16	-0.59	Long-chain acyl-CoA thioester hydrolase



Figure S2: Results of RB-TnSeq screen. A) Genes that showed great than 2 log2 fitness on either D-lysine, L-lysine, or 5AVA but showed no less than 0.5 log2 fitness defect when grown on glucose.

A**B****C**

A**B****C****D**

A**B**