bioRxiv preprint doi: https://doi.org/10.1101/450163; this version posted October 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Bayesian inference of metabolic kinetics from genome-scale
multiomics data

Peter C. St. John!, Jonathan Strutz?, Linda J. Broadbelt?, Keith E.J. Tyoz, Yannick J. Bomble!”

!Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO
80401, USA

2Departmen’c of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road,
Evanston IL 60208, USA

“Email: Yannick.Bomble@nrel.gov

Summary

Modern biological tools generate a wealth of data on metabolite and protein concentrations that can be
used to help inform new strain designs. However, integrating these data sources to generate predictions
of steady-state metabolism typically requires a kinetic description of the enzymatic reactions that occur
within a cell. Parameterizing these kinetic models from biological data can be computationally difficult,
especially as the amount of data increases. Robust methods must also be able to quantify the uncertainty in
model parameters as a function of the available data, which can be particularly computationally intensive.
The field of Bayesian inference offers a wide range of methods for estimating distributions in parameter
uncertainty. However, these techniques are poorly suited to kinetic metabolic modeling due to the complex
kinetic rate laws typically employed and the resulting dynamic system that must be solved. In this paper,
we employ linear-logarithmic kinetics to simplify the calculation of steady-state flux distributions and
enable efficient sampling and variational inference methods. We demonstrate that detailed information on
the posterior distribution of kinetic model parameters can be obtained efficiently at a variety of different
problem scales, including large-scale kinetic models trained on multiomics datasets. These results allow
modern Bayesian machine learning tools to be leveraged in understanding biological data and developing
new, efficient strain designs.

Introduction

Optimizing the metabolism of microorganisms for maximum yields and titers is a critical step in improving
bioprocess economics (Davis et al., 2013). Towards this goal, characterization of engineered strains has
become increasingly detailed with the growing availability of transcriptomic, proteomic, and metabolomic
analysis techniques (Zhang et al., 2009). These methods, collectively termed multiomics, measure relative
changes in gene, protein, or metabolite concentrations across different strains or growth conditions
(Hackett et al., 2016). However, utilizing multiomics data to make informed decisions about future
strain improvements remains a major challenge in modern bioengineering (Marcellin and Nielsen, 2018).
Cellular metabolism is controlled by a vast network of enzymes with complex and nonlinear kinetics,
while regulatory effects (both allosteric and transcriptional) add additional layers of complexity to these
metabolic systems. While the field of systems biology has developed modeling frameworks that can
describe these types of interactions in great detail, parameterizing these models from indirect, in vivo data
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is challenging and typically infeasible at the genome-scale (Saa and Nielsen, 2017). There is therefore a
need for mechanistic modeling frameworks that can handle the large amounts of data generated through
multiomics experiments to yield actionable insight for strain engineers.

Traditionally, multiomics data have been understood through statistical approaches by searching for genes,
proteins, and metabolites whose activity levels are correlated with improved product production (Yoshikawa
et al., 2012). While useful in identifying potential targets, statistical methods that examine multiomics data
without consideration for their interconnected nature may miss important trends. Conversely, metabolic
modeling frameworks that readily reconcile connections between metabolites, fluxes, and proteins can
have difficulty in using multiomics data to improve their predictions. Stoichiometric models of metabolic
networks have proved among the most successful techniques for incorporating existing knowledge of
genomic and biochemical networks into strain designs (Orth et al., 2010). Instead of attempting to estimate
the parameters of detailed rate rules for each enzymatic reaction in the cell, constraint-based models
assume that metabolic reactions reach a pseudo-steady state with respect to the longer time scales of cell
growth and substrate depletion. These methods there investigate feasible steady-state phenomena in a
parameter-free approach by placing constraints on reaction fluxes in accordance with stoichiometric (Orth et
al., 2010), thermodynamic (Henry et al., 2007), enzymatic (Sanchez et al., 2017), and regulatory (reviewed in
(Saha et al., 2014)) rules. The resulting models are invaluable for predicting ways to restrict cell physiology
to specific regions (e.g. forcing growth-coupled product production through gene knockouts (Burgard et al.,
2003)). However, their parameter-free construction renders the direct inclusion of measured metabolite
and enzyme concentrations difficult, and their lack of kinetic information makes them poorly suited to
recommending enzyme expression changes to optimize pathway flux. Additionally, constraint-based
techniques typically assume growth as a cellular objective, making them poorly suited to in vitro or other
non-growth associated bioprocesses.

While some studies have used constraint-based techniques to interpret multiomics data (Brunk et al.,
2016; Cotten and Reed, 2013; O’Brien et al., 2014; Sanchez et al., 2017; Yizhak et al., 2010), building and
parameterizing kinetic models will likely be essential in utilizing these types of data to predict metabolic
interventions that will improve flux through a given pathway. Kinetic models of metabolism typically
describe the interior cellular environment through systems of coupled, nonlinear ordinary differential
equations with metabolite concentrations as the state variables. Metabolite concentrations change with
time according to the kinetics of enzyme-mediated reactions, reaching a stable steady-state for constant
concentrations of extracellular substrates. Understanding systems-level effects is the main motivation
of metabolic control analysis (MCA), which links effects of local perturbations (i.e., changes to enzyme
expression) to changes in the resulting steady-state concentrations and fluxes (Ehlde and Zacchi, 1997;
Visser and Heijnen, 2002). MCA defines local coefficients, or elasticities, which are local approximations
to the reaction rate rule and relate reaction flux to substrate concentration. Through linearization, MCA
also solves for global control coefficients, which relate steady-state fluxes and concentrations to enzyme
levels. Parameters estimated via MCA are directly relevant to strain engineering goals, as they allow the
prediction of which enzymes to over- or underexpress to achieve a desired change in pathway flux. As a
result, a number of computational frameworks have been developed to perform MCA with incomplete
data (Chakrabarti et al., 2013; Delgado and Liao, 1991; Wang et al., 2004; Wu et al., 2004). Most MCA
approaches require an accurate dynamic model of metabolism that must be informed from experimental
measurements. However, direct measurements of enzyme kinetics in vivo are difficult, and measurements
in vitro do not always accurately reflect in vivo dynamic behavior (Teusink et al., 2000; Zotter et al., 2017).
Experimental characterization of genome-scale enzyme kinetics is particularly challenging (Nilsson et al.,
2017). As a result, the most readily available data for parameterizing kinetic metabolic models is obtained
by repeatedly perturbing enzyme expression or external metabolite concentration and characterizing the
resulting strain’s pseudo-steady-state behavior through multiomics experiments.

The process for constructing a kinetic metabolic model therefore consists of choosing an appropriate
functional form for the rate rule of each reaction and estimating parameter values from experimental data.
A number of different frameworks for describing the kinetics of enzyme-catalyzed reactions have been
proposed, covering a spectrum of computational efficiency and mechanistic fidelity (reviewed in (Heijnen,
2005; Saa and Nielsen, 2017)). However, regardless of the framework chosen, estimating uncertainty in fitted
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parameter values is a challenging process due to the dimensionality of the resulting parameter space. One
approach is to find an ensemble of possible parameter values that when passed through the kinetic model
closely reproduce the observed experimental data (Tran et al., 2008). These distributions in parameter
values can then be updated as more data is collected and used to predict enzyme targets that give the
most likely chance of improving performance (Contador et al., 2009). This technique has more recently
been formalized as Bayesian inference (Saa and Nielsen, 2016), where parameter values are modeled as
probability distributions. In Bayesian inference, a likelihood model, p(y|6), is constructed for the probability
of observing the measured data, y, given particular values for each parameter, . Combined with a prior
distribution, p(0), for each parameter that represents generally feasible values, numerical approaches use

Bayes theorem,
p(8ly) e p(yl6) p(6)

to estimate the posterior parameter distribution p(0|y): the probability a parameter takes the given value
after accounting for the observed data.

A major limitation of ensemble-based modeling has been its ability to scale both to larger datasets as well as
larger kinetic models. Computation times for metabolic ensemble modeling (MEM) on the order of hours
per parameter sample have been encountered even for relatively small models and datasets in previous
studies (Saa and Nielsen, 2016; Tran et al., 2008). Despite improvements to the computational efficiency of
MEM (Greene et al., 2017; Zomorrodi et al., 2013), applications of ensemble modeling have been restricted
to small datasets and/or kinetic models, without the ability to scale to genome-scale kinetic representations
fit with data from multiomics workflows. This limitation stems from the need to perform computationally
intensive integration of underlying ODE:s to find steady-state concentrations and fluxes, combined with a
relatively inefficient rejection sampler approach used to estimate the posterior distribution. Modern and
efficient inference algorithms (Hoffman and Gelman, 2014; Kucukelbir et al., 2017) require information on
the gradient of the likelihood function with respect to the kinetic parameters, which can only be obtained
for ODE models through numerically intensive ODE sensitivity analysis (Li and Petzold, 2000).

In this study, we present a scalable method for inferring posterior distributions in kinetic parameters of large
metabolic models with multiomics datasets. We sidestep many of the previously discussed computational
bottlenecks through the use of linear logarithmic (linlog) kinetics as an approximate reaction rate rule (Visser
and Heijnen, 2003; Visser et al., 2004). Linlog kinetics is derived using the thermodynamic concept that
reaction rate is proportional to reaction affinity near equilibrium (Onsager, 1931). While many biochemical
reactions are far from equilibrium, this relationship remains linear over a wide range of reaction affinities
for enzymatic reactions (Meer et al., 1980; Rottenberg, 1973), As an approximation, linlog kinetics does not
describe enzyme-mediated kinetics as faithfully as more mechanistic frameworks (Saa and Nielsen, 2017).
However, linlog kinetics has been shown to be accurate up to 20-fold changes in metabolite concentrations
(Visser and Heijnen, 2003), and for 4 to 6-fold changes in enzyme concentration relative to a reference state
(Visser et al., 2004). As a result, linlog kinetics has been used as a framework for estimating flux control
coefficients from a range of data sources (Heijnen et al., 2004; Kresnowati et al., 2005; Nikerel et al., 2006,
2009). Most importantly, this kinetic formalism allows steady-state fluxes and metabolite concentrations as
a function of enzyme expression to be determined directly via linear algebra, without the need to explicitly
integrate the dynamic system until a steady-state is reached (Visser et al., 2004). We are therefore able to
leverage modern Bayesian inference and machine learning algorithms, including Hamiltonian Monte Carlo
(HMC) (Neal, 2010) and variational inference (Blei et al., 2017) to fully characterize the posterior space.
Additionally, this framework naturally lends itself to directly incorporating relative changes in metabolite
and protein concentrations between experimental conditions, without requiring absolute quantification.

We show that this method is capable of providing systems-level insight into metabolic kinetics through
estimated distributions in control coefficients for a wide range of kinetic model and dataset sizes. First, we
demonstrate the method on a simple in vitro example, showing that the method is flexible enough to capture
allosteric interactions between metabolites and enzymes. We next show that the method appropriately
captures uncertainy in estimated parameters, revealing significant flux control coefficients for only the
most likely enzyme perturbations in the case of limited biological data. Finally, we employ the method to
integrate thousands of individual metabolomic, proteomic, and fluxomic data-points with a large-scale
model of yeast metabolism. We therefore show that the field of metabolic modeling can take full advantage
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of recent advances in the fields of probabilistic programming, machine learning, and computational
statistics, and that ensemble-based approximate kinetic modeling approaches are capable of scaling to
genome-sized models and datasets to provide interpretable and actionable insight for strain engineers.

Results and discussion

Enabling efficient Bayesian inference through linlog kinetics

We begin with a review of the relevant equations from dynamic flux balance analysis and the linear-
logarithmic kinetic framework, which together form the theoretical basis for the methodology discussed in
the remainder of the study. In flux balance analysis, we assume that metabolite concentrations, x, quickly
reach a pseudo-steady state by balancing fluxes v through each reaction.

dx

— = v(x) =0, 1
7 = N o(x) ©)
for n reactions and m metabolites, where N;; indicates the stoichiometry of metabolite i in reaction j. Linlog
kinetics approximates a reaction rate v(x) as a sum of logarithms (Visser and Heijnen, 2003). For the
reaction A — B + C, the reaction rate is modeled as

v = e(k+ alog[A] + blog[B] + clog[C]),

for which the coefficients 2 > 0; b,c < 0 allow an approximation of Michaelis-Menten-type kinetics
(Figure 1). This approximation is most accurate in the vicinity of an introduced reference state, e*, v*, x*
(Visser and Heijnen, 2003). As the goal of the proposed method is to tailor enzyme expression to maximize
desired fluxes, the reference state is best chosen as the current optimal performing strain. Deviations from
this state can be described by the flux expression

v(x,y) = diag (Ue*e) (1n + € log% + €, log yy*> )

nxm nxp

where y is the concentration of p external (independently controllable) metabolite species, and €} and €,
are sparse matrices of kinetic parameters describing the effects of changes to metabolite concentrations
on reaction rates. Elasticities parameterize the slope of the reaction rate rule near the reference state.
Linear-logarithmic kinetics therefore offer a close approximation to standard Michaelis-Menten kinetics in
the vicinity of the reference state concentration (x*). A benefit of the linlog approximation is that enzyme
elasticities are direct kinetic parameters. Since these slopes tend to be positive for reactants, negative for
products, and not be much larger than 1, reasonable starting guesses and bounds can be generated for
all kinetic parameters in the model in a much easier fashion and for rate rules parameterized through
traditional enzymatic expressions. Elasticities for linear logarithmic kinetics have typically been estimated
in the literature using multiple linear regression (Chen et al., 2017; Wu et al., 2004), where estimated
fluxes for each reaction are fitted as a function of their measured metabolite concentrations. However, this
approach does not enforce the Nv = 0 constraint, nor does it allow for missing data in concentration or
flux measurements. We demonstrate that incorporating steady-state constraints is computationally feasible,
and that a full characterization of the posterior space can be accomplished using Hamiltonian Monte Carlo.

While linlog kinetics is a close approximation of more mechanistic rate rules, it suffers from a number of
notable inconsistencies. One consequence is that fluxes can approach negative infinity as metabolite con-
centrations approach zero, making the framework unsuitable for describing complete pathway knockouts.
However, in practice metabolite concentrations are typically expressed as log-transformed variables which
also cannot fall to zero. Other methodological strategies discussed later also prevent fluxes from taking
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unrealistic values, including using a least-norm linear solve for steady-state concentrations and clipping
data to a finite range. Additionally, as a local approximation, the method will poorly reproduce alternative
rate rules at large deviations from the reference state. However, because cellular systems are constrained
by homeostasis, metabolite concentrations generally do not change drastically enough to invalidate rate
estimates (Ishii et al., 2007).

A key step in dynamic modeling of metabolic networks is solving for the steady-state concentrations
and fluxes that arise from a given parameterization. Simulating this perturbation efficiently with the
mathematical model is therefore a key step in estimating parameter values for the €* matrices. In doing so,
it is useful to define transformed variables in order to rewrite Equation 2 in a linear form (as demonstrated
by Smallbone et al., 2007):

X eV s T s e
o YElesys =g =g )

v = diag(v"é) (1, +exx +€,7)

x = log

Since log-transformed metabolite concentrations are linearly related to the reaction fluxes, concentrations
which yield steady-state behavior can therefore be determined via a linear solve (Visser and Heijnen, 2003)
after combining Equation 3 with Equation 1:

N diag(v"é)(1n + exx +€,7) =0

N diag(v*é)ey x = —N diag(v*¢)(1, + €,7)
_— (4)

A b
x=A"1p

This significant result is the key advantage of linlog kinetics over alternative nonlinear rate laws. While
determination of steady-state concentrations would typically require a computationally intensive ODE
integration, in this approximation they can instead be calculated using a single linear solve. Additionally, it
is relatively straightforward to obtain forward and reverse-mode gradients for this operation (changes in
steady-state with respect to changes in kinetic parameters), a much more difficult task for ODE integration
(Petersen and Pedersen, 2012).

However, in general a metabolic system will contain conserved moieties, or metabolite quantities which can
be expressed as linear combinations of other metabolites (e.g. ATP + ADP = constant). The stoichiometric
matrix N, and as a result the A matrix defined above, will therefore not be full row rank. In effect, this
means that Equation 4 has multiple solutions, each of which corresponds to a different total cofactor
pool. In metabolic control theory, this problem has traditionally been solved through the introduction
of a link matrix, L, and a reduced set of metabolites with conserved moieties removed (Smallbone et al.,
2007; Visser and Heijnen, 2002). Through the link matrix, the matrix A can be transformed to a full-rank,
square matrix and a unique steady-state can be determined that corresponds to the dynamic system’s
true steady-state. However, in most biological experiments, changes to steady-state enzyme expression
correspond with separately cultured cell lines for which the assumption that total cofactor pools would
remain constant is not necessarily valid. Instead, we propose that a more biologically relevant solution to
Equation 4 is one that minimizes ||x||2: i.e., the solution that results in the smallest deviation of metabolite
concentrations from the reference state. This assumption has experimental support in that intracellular
metabolite concentrations tend to be buffered from drastic changes through feedback circuits at the genetic
and enzyme level (Ishii et al., 2007). We therefore calculate steady-state metabolite concentrations through
a pseudoinverse,

Xss = A'b 5)

A derivation of the forward and reverse-mode gradients for the regularized linear solve operation is
included in the supplemental text. We note that in practice, numerical stability is improved if A can be
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made full row-rank prior to the least-norm linear solve. We can therefore replace N with N (by removing
rows corresponding to redundant conservation relations) in order to form a wide A matrix (with more
columns than rows) prior to performing the least-norm linear solve in Equation 5. Since a flux vector that
satisfies N v = 0 will also satisfy N v = 0, this change can be made without affecting the final solution.

Due to the changes to traditional MCA theory introduced by the altered steady-state calculation defined
above, we also slightly modify the traditional calculations of metabolite and flux control coefficients (FCCs).

e dx
* ] k N L «\ T X7 q: *
= L% _ (N4 Nd
= L~ (Nago)er) Nt
e¥ do.
* ] i *
v orde; YT

Since flux and metabolite control coefficient matrices describe the response of the steady-state to changes in
enzyme expression, our altered versions describe the flux response at the particular steady-state in which
metabolite concentrations are as close as possible to the unperturbed state. In practice, this has the effect of
improving the identifiability of FCCs in the numerical experiments described below. A plot of FCC values
obtained via both traditional and modified methods for the following genome-scale model is shown in
Fig. S1, indicating that either both methods tend to yield a similar result, or that the identifiability of the
link-matrix FCC is particularly poor, with the pseudoinverse FCC pulled close to zero.

With a suitable kinetic framework for calculating steady-state fluxes and concentrations as a function of
enzyme expression, we next discuss the prior distributions and likelihood function required for Bayesian
inference. The prior distributions represent our belief of possible parameter values before any experimental
data is collected. For metabolite elasticity matrices we assume that for any given reaction, reactants are
likely to be associated with a positive elasticity, while products likely have a negative elasticity (increasing
reactant concentration increases reaction rate, while increasing product concentration decreases reaction
rate). Alternatively, we assume that if a metabolite does not directly participate in a reaction, it can only
regulate the reaction if it appears in the same sub-cellular compartment. We denote the vectors ¢, and ¢, of
metabolite and reaction compartments, respectively. Since regulation of enzymatic reactions by otherwise
nonparticipatory metabolites is relatively rare, we place a sparsity-inducing prior on its elasticity value.
This distribution encourages elasticities for off-target metabolites to take values near zero, unless strong
experimental evidence for a regulator interaction is present. The combined priors for enzyme elasticities
can then be expressed through the following functional form, also depicted graphically in Figure 1.

sign(—Nj;) - HalfNormal(c = 1) if Nj; #0
€,ji ~ 4 Laplace(y = 0,b = 0.05) if Njj =0and cy,; = ¢y 6)
’ if Nyj = 0 and ¢,,, # oy

We note that the assumption that reactants and products must take positive and negative elasticity values,
respectively, can be relaxed by replacing the half-normal distribution in Equation 6 with a skew-normal
distribution with a positive shape parameter. This distribution reflects the belief that while reactants
typically take positive elasticities, rare cases may exist where substrate inhibition results in a negative
slope of reaction rate with respect to substrate concentration. In practice, however, this choice of a
prior distribution results in less robust convergence to a stable posterior distribution and was avoided in
higher-dimensional inference problems.


https://doi.org/10.1101/450163
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/450163; this version posted October 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A Reaction network B Elasticity matrix sparsity C Elasticity prior distributions D Linlog rate law matches MM kinetics
° ¢ my product inhibits Vmex 7 .
reaction rate ve o
g H N
m, rs 4 I reactant activates 3 Y -
<~ rs . D reaction rate
I i
\’ C rC D . L. —k/ll?c#geglis—Memen
. regulator elasticity 0 -
close to zero Cr '
P 4 [ | 0Ky Xx* 10 Ky

Figure 1: Overview of the modeling framework. (A) The stoichiometry of the reaction
network is used to determine prior distributions for the elasticity parameters (B), represented
in matrix form. (C) For a metabolite m,, the prior distribution has predominatly negative
support for reactions in which the metabolite is a product (r4), positive support for reactions
in which the metabolite is a reactant (rp), and a zero-centered, sparsity inducing prior for
reactions in which the metabolite does not participate (rc). (D) The resulting rate law for linlog
kinetics closely approximates Michaelis-Menten kinetics in the vacinity of the reference state.

An explicit likelihood function can be formed by constructing a statistical model for the observed data. We
assume that observed data are normally distributed around the calculated steady-state metabolite and flux
values.

Xobs ~ Normal (X/ ‘797;) 7
R s 2 @)
Bops ~ Normal(d,07)

Experimental errors, oy and oy, can either be set explicitly or estimated from the data. For smaller-scale
examples, we place half-normal priors on these variables, while for larger datasets we set these values
explicitly to improve numerical stability. We also note that for genome-scale multiomics data, computational
stability can be improved by fitting log-transformed normalized fluxes,

log Bs ~ Normal(log 3, 02),

so that flux, metabolite, and enzyme expression data fall on similar orders of magnitude. While this
assumption comes at the cost of preventing measured fluxes from reversing directions between perturbed
states, this restriction was not significant for the examples considered in this study. However, this
framework could be easily extended to handle situations where a measured flux reverses directions between
experimental conditions. Most simply, the reversible reaction could be withheld from the log transform and
fit in linear space. Alternatively, if separate estimates for the forward and reverse flux could be obtained,
as is often the case in '>C labeling studies, the reaction could be decomposed and modeled separately as
irreversible forward and reverse reactions.

Once the prior distribution and likelihood model have been specified, the remaining task is to numerically
estimate posterior distributions in elasticity parameters Towards this goal, two inference algorithms were
used. The No-U-turn sampler (NUTS) (Hoffman and Gelman, 2014), as a variant of Hamiltonian Monte
Carlo (HMC), constructs an iterative process (a Markov chain) that eventually converges to the true posterior
distribution. Markov chain Monte Carlo methods, while accurate, are computationally intensive and likely
limited in application to smaller-scale models and datasets. While the major computational bottleneck
in metabolic ensemble modeling (integrating an ODE until steady state) has been removed, calculating
the likelihood function still involves a separate linear solve for each steady-state experimental condition.
Therefore as model sizes approach the genome-scale, HMC methods quickly become computationally
infeasible. Variational methods, however, offer an alternative to Markov chain Monte Carlo methods
that can scale to models with thousands of parameters. Automatic differentiation variational inference
(ADVI)approximates the posterior distribution by a simple, closed-form probability (typically Gaussian),
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then estimates parameters for the approximate posterior to minimize the distance between the true and
approximated distribution.

Characterization of an in vitro linear pathway

While the primary purpose of the proposed modeling framework is to parameterize genome-scale kinetic
models from large, multiomics datasets, we first demonstrate the method on a simple pathway. We re-fit
a simple three-reaction model (Wu et al., 2004) to steady-state in vitro flux and concentration data for a
reconstructed subsection of lower glycolysis (Giersch, 1995). A schematic of the considered pathway is
shown in Figure 2A. The model consists of two internal metabolite species, 2-phosphoglycerate (2PG) and
phosphoenolpyruvate (PEP), and two metabolites with externally-controllable concentrations, adenosine
diphosphate (ADP) and 2,3-bisphosphoglycerate (BPG). The model consists of three reactions in series,
phosphoglycerate mutase (PGM), enolase (ENO), and pyruvate kinase (PK); therefore each carries the same
flux at steady-state. The dataset consists of 19 separate experiments, each of which contains the enzyme
loadings (concentrations) and external metabolite concentrations together with the resulting internal
metabolite concentrations and steady-state flux.

Since all metabolites (including external species) are present in the same compartment, all elasticities are
allowed to have allosteric interactions normalized with Laplace priors. Measurement errors in fluxes and
metabolite concentrations were fit by the inference algorithm by placing a half-normal prior distribution on
the ¢ values in Equation 7. The same reference steady-state was chosen (experiment 2) as was done by Wu
et al., 2004.

Using NUTS, stable traces were found across four independent chains, indicating that each trace converged
to the true posterior distribution (Figure 2B, Figure 5). For this small-scale example, NUTS sampling
took less than 10 minutes on a single computer. Applying ADVI to this example, the evidence lower
bound (ELBO), a measure of the closeness of fit between the approximated and true posterior distribution,
converged after approximately 10,000 iterations of stochastic gradient descent (Figure 6). A full 25,000
iterations were completed in under 40 seconds on a single computer.

Comparing the results of the two inference methods indicates that both methods yield similar conclusions.
ADVI fits a mean-field approximation - i.e., each parameter’s posterior is represented by a mean and
standard deviation. Comparing the mean and variance of the elasticity posterior distributions from the two
different approaches, we notice that while the mean values agree closely, ADVI underestimates the variance
for many parameters (Figure 7). This underestimation is typical of mean-field ADVI (Kucukelbir et al., 2017),
and might be alleviated in the future through more advanced variational methods (Rezende and Mohamed,
2015). A posterior predictive check for both inference methods indicates that the measured experimental
data is well-captured by the model (Figure 2C). Despite normalizing priors on off-target regulation, all
elasticity values in the internal metabolite elasticity matrix, €}, were confidently nonzero (as determined by
whether the 95% highest posterior density (HPD) interval overlapped zero). Inferred regulatory interactions,
which were all consistent between both inference methods, are shown in gray in Figure 2A. These include
a strong repression of PGM by PEP, and a weaker repression of PK by 2PG. These off-target regulatory
interactions (with similar elasticity values) were also found through the original linear regression approach
of Wu et al., 2004. For the external metabolite species, only one of the four possible off-target regulatory
interactions, ADP activation of PGM, resulted in a posterior distribution that was confidently nonzero. This
relatively weak interaction was rejected by the original linear regression method through a combination
of experimental and mathematical reasoning, but underscores that interactions between metabolites and
fluxes are inherently difficult to predict from this type of data: direct vs. indirect interactions often look
similar, and causality is often impossible to establish. Notably, the posterior distribution as estimated via
NUTS contains a rich amount of information on the identifiability of elasticity values (Figure 2D). Strong
correlations in estimated parameters typically occur where the two elasticities share either a metabolite or
reaction.

The main goal of the method is determining posterior predictive distributions in flux control coefficients,
i.e., determining major control points that determine how flux is distributed in the pathway. In this example,
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since steady-state fluxes are constrained to be equal for all three reactions, the FCCs are a vector of three
coefficients that determine whether increasing enzyme concentration will increase or decrease pathway
flux. Figure 2E shows posterior distributions in FCCs as estimated with both inference methods. These are
compared against FCC distributions resulting from only the prior distributions on elasticity parameters,
without considering any experimental results. Prior distributions are similar between all three enzymes
and indicate no structural bias on flux control values. The data therefore indicate that pyruvate kinase
(PK) is the limiting enzyme at the reference state. We also compare our FCC estimates against those
originally calculated via linear regression, assuming specific allosteric interactions between metabolites
and enzymes that differ from those found to be significant through our approach. Our estimates of flux
control coefficients closely match those found by Wu et al., 2004, indicating that systems-level properties
are relatively insensitive to the particular parameterization of allosteric regulation.

The close agreement of the estimates provided by the approximate ADVI method to the more accurate
NUTS sampling in elasticities and flux control coefficients is an important result. As most applications in
metabolism involve a larger reaction network, approximate inference methods are likely the only techniques
that will scale to biologically-relevant in vivo examples. We therefore rely only on these variational
techniques for subsequent examples that deal with larger reaction networks.
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Figure 2: In vitro pathway inference. (A) Schematic of the considered pathway. Inferred
allosteric interactions are shown in gray, in which arrows indicate an activation, while bar-
headed lines indicate inhibition. (B) Traces for €} values as estimated by NUTS. Samples
come from four parallel chains stacked together as indicated by the shaded regions. Resulting
posterior densities are indicated by the inset on the right. (C) Posterior predictive distributions
of steady-state flux and metabolite concentrations. Points represent medians of the posterior
predictive distributions, with lines extending to cover the 95% HPD interval. Slight jitter was
added to differentiate the distributions as estimated by NUTS and ADVI. (D) Pairplot of the
posterior distributions of elasticity variables as estimated via NUTS. Strong correlations can
exist between fitted parameters, which are missed by the mean-field ADVI approximation. (E)
Violin plot of distributions in posterior flux control coefficients. Median and inner quartile
range are indicated by the inner box plots, overlaid on a kernel density plot of each distribution.

Determining optimal enzyme targets from limited data

We next demonstrate how the inference framework can be used to suggest enzyme targets in a many-
reaction network, including branched reaction networks and conserved metabolite pools. The problem
we consider was previously examined through ensemble metabolic modeling (Contador et al., 2009), and
involves predicting what manipulations might further increase lysine production in engineered E. coli
strains. We therefore replicate the previous ensemble modeling assumptions as closely as possible in order
to allow a direct comparison of resulting predictions. The experimental data consists of six sequential
enzyme overexpression experiments, all of which were observed to improve l-lysine yields (Kojima et al.,
1993). The metabolic model used for inference comprises 44 reactions and 44 metabolites covering central
carbon metabolism and lysine production, taken from Contador et al., 2009. A schematic of the reaction
network is shown in Figure 3A.

As the goal of the inference approach is to estimate targets for subsequent lysine flux improvement, we
chose the reference state for linlog kinetics to be the final, optimized strain with 5 overexpressed enzymes.
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Following the assumptions made in (Contador et al., 2009), we also assumed each overexpression doubled
the concentration of the respective enzyme. Since the reference state was chosen to be the final, optimized
strain, perturbed strains had lower relative enzyme concentrations and lysine flux. Reference state fluxes
were also taken from previously published values, corresponding to a total lysine yield of 11.2% (Contador
et al., 2009).

When analyzed with metabolic ensemble modeling, each successive enzyme overexpression was required
to increase lysine flux over the previous base strain. However in our framework, we require a continuous
and differentiable likelihood function. We therefore assume that each enzyme overexpression increases
lysine flux relative to the wild-type strain by an additional 20% on average (with standard deviation 0.5%).
Target relative fluxes after normalizing to the new reference are shown in Table 1. Prior distributions in
enzyme elasticities were specified as described in Equation 6, and since the dataset did not include changes
in external metabolites, no €, values were needed. Posterior distributions were estimated using ADVI,
with the optimization taking under three minutes. The posterior predictive distribution for each strain
closely matches the target lysine fluxes, indicating the model is capable of reproducing the desired behavior
(Figure 3B).

Table 1: Assumed relative lysine fluxes for each considered strain, relative to both the wild-
type flux and the chosen reference strain (dapA, lysC, dapB, dapD, dapE). Strain designs taken
from (Kojima et al., 1993).

Strain Lysine Flux (relative to WT) Lysine Flux (relative to reference)
Wild Type (WT) 1.0 0.5
dapA 1.2 0.6
dapA, lysC 14 0.7
dapA, lysC, dapB 1.6 0.8
dapA, lysC, dapB, dapD 1.8 0.9
dapA, lysC, dapB, dapE 1.8 0.9
dapA, lysC, dapB, dapD, dapE 2.0 1.0

Using a half-normal distribution with ¢ = 1, prior distributions in elasticities associated with stoichiometric
metabolite-reaction pairs had a 95% HPD that spanned from 0 to 2. Of these 133 ‘kinetic” elasticity terms,
only twelve were constrained by the experimental data to a 95% highest posterior density that spanned less
than 0.75 elasticity units. In addition to these kinetic terms, three regulatory elasticities were identified as
confidently nonzero (with a 95% HPD that did not include 0). These regulations include both feedback
and feedforward connections, likely used by the model to fine tune the lysine expression to the desired
20% target in response to doubling of enzyme concentration. Posterior distributions for these elasticities
are shown in Figure 3C, and confidently inferred regulatory interactions are shown in gray in Figure 3A.
Unsurprisingly, nearly all of these elasticities involve reactions and metabolites in the lysine synthesis
pathway, the only portion of the model for which overexpression results were provided.

Prior and posterior distributions in flux control coefficients were also calculated. Because only a limited
selection of data was available to constrain the elasticity values, only five of the 44 reactions had a flux
control coefficient for lysine export whose 95% HPD did not overlap zero. However, these five reactions
were the same set of dapA, lysC, dapB, dapD, and dapE previously specified as successful modifications
for improving lysine flux. Prior and posterior distributions in FCC values for lysine export are shown
in Figure 3D. While previous ensemble modeling results indicated several enzyme overexpressions that
might increase lysine pathway flux, our reimplementation demonstrates that the observed sequential
overexpression experiments can be recreated through a wide variety of possible parameterizations, with
a resulting wide distribution in possible flux responses. These results show that the method generalizes
well to the case where insufficient data is provided to constrain model predictions and underscores the
importance of rigorously characterizing posterior parameter space to determine the full range of possible
model responses.
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Figure 3: Inference on a medium-scale metabolic network with limited data. (A) Schematic
of a portion of the considered metabolic network corresponding to lysine biosynthesis. Reac-
tions shown in green were experimentally determined to improve lysine yields. Regulatory
elasticities that were confidently inferred by the model are shown in gray. (B) Posterior
predictive distributions for the enzyme overexpression experiments. Since the reference state
was chosen as the highest-producing strain, all other strains have a relative lysine flux less than
one. (C) Distributions of elasticities informed by the experimental results. Prior distributions
for these elasticities are shown in light gray. Allosteric elasticities with Laplace priors that
are confidently inferred are shown as the last four entries. (D) Flux control coefficients for
each reaction in the model. Prior distributions (light gray) are mostly centered around zero.
Posterior distributions (dark gray) are highlighted in green if their 95% HPD does not overlap
zero. All lines indicate 95% HPD ranges, dots indicate median.

Informing strain design through multiomics

The main strength of the proposed method is its ability to constrain kinetic parameters using multiomics
data, even for large-scale metabolic systems. We therefore demonstrate the method using literature data on
metabolomics, proteomics, and quantification of exchange fluxes for 25 different chemostat experiments
with yeast (Hackett et al., 2016). The dataset comprises 5 different media conditions, each of which was
run at 5 different dilution rates. We adapt a large-scale metabolic model of yeast metabolism that includes
many of the genes, metabolites and boundary fluxes of interest (from (Jol et al., 2012)). The adapted
model contains 203 metabolites and 240 reactions and was obtained by removing blocked metabolites and
reactions under growth on glucose. As the goal in this example is to demonstrate that linlog kinetics are
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able to consume large amounts of multiomics data, a reference state near the center of the considered
data was chosen, specifically the chemostat with phosphate-limiting media at a 0.11 hr™! dilution rate.
Reference fluxes (v*) were calculated by minimizing error with the experimental boundary measurements
while enforcing a nonzero flux through each reaction. In total, the experimental data consists of 1800
metabolite measurements, 792 boundary flux measurements, and 3480 enzyme measurements (omitting
the reference state). Since the linlog inference framework only uses relative changes to enzyme, flux, and
metabolite concentrations with respect to a reference state, it can naturally ingest large-scale multiomics
datasets without the need for absolute quantification. In this example, relative metabolite concentrations
are given as log2-transformed values (Boer et al., 2010). Even with an unknown pre-exponential constant A,
relative concentrations x can be calculated from log2-transformed concentrations a and b:

x A2°
x = log (E) = log (AZ”) = (a—Db)log2.

Distributions of the transformed data are shown in Figure 4A, indicating that the majority of data falls
within one order of magnitude from the reference state value (values shown are natural logs).

In fitting the observed steady-state phenotypes, the model has to account for not only experimental error in
measured enzyme concentrations, but also for potential changes in gene expression in unmeasured enzymes.
Allowing all enzyme concentrations to vary induces a trade-off where steady-state fluxes are controlled
through changes to enzyme expression instead of changes to steady-state metabolite concentrations. While
Hackett et al., 2016 have previously shown that metabolic control is mainly determined by metabolite
concentrations, some mechanism for adjusting enzyme levels is required to buffer against errors in model
formulation and experimental measurements. We therefore place prior distributions on log enzyme
concentrations for each condition that drive enzyme changes towards their measured values, or, if the
reaction is not measured, towards zero (unchanged):

Normal(p = log(&; ops,0 = 0.2) if e; measured
logé; ~ ¢ Laplace(y = 0,b =0.1) if e; unmeasured
0 if reaction 7 uncatalyzed

By placing a Laplace prior on unmeasured enzymes, we create a regularizing effect that penalizes an
over-reliance on enzymatic control. Thus, we allow unmeasured enzyme concentrations to deviate from
zero only if there is sufficient evidence. The model also has to consider changes in the external metabolite
concentrations between media formulations and dilution rates. We therefore place vague priors on the
external concentrations of imported substrates, including glucose, phosphate, sulfate, nitrogen, and oxygen:

v ~ Normal(y = 0,0 = 10).

The model parameters therefore include 915 elasticities associated with direct kinetic regulation, 23,684
elasticities associated with potential off-target allosteric regulation, 4,680 enzyme expression levels (195
enzymes over 24 experiments), and 192 external metabolite concentrations (8 metabolites over 24 experi-
ments), for a total of 29,471 parameters. While this number is far greater than the number of experimental
data points, regularization forces many of these parameters to be zero.

Observed steady-state metabolite concentrations and fluxes are incorporated through a likelihood model
that assumes experimental error is normally distributed around log-transformed metabolite and boundary
flux data. Standard deviations were chosen as 0y = 0.2 for the metabolite data and ¢, = 0.1 for the log-
transformed fluxes. To improve numerical stability, we also clip the log-transformed, relative experimental
data to 1.5, such that log-transformed experimental data and model predictions greater than 1.5 or less
than -1.5 are replaced by £1.5. This process has the effect of reducing the influence of extreme points,
especially in regimes far from the reference state that are unlikely to be fit well by the linlog approximation.
However, the model is still required to predict the directionality and high-magnitude of these points
correctly. Fitting the model using ADVI required 40,000 iterations of stochastic gradient descent, taking
approximately five hours on a single compute node (Figure 8). The model is able to recapture a vast
majority of the variance seen in the experimental fluxes, enzymes, and metabolites. Median absolute errors
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between the model predictions (median of the posterior predictive distribution) and experimental data
points are 0.124, 0.0952, and 0.0186 for log-transformed metabolite, flux, and enzymes, respectively, for
normalized points that fall within the [—1.5,1.5] window.
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Figure 4: Parameterizing a genome-scale kinetic model with multiomics data (A) Distribu-
tions in log-transformed experimental data after normalizing with respect to the phosphate-
limited reference state. (B) Posterior predictive distributions after fitting with ADVI. Higher
weight was given to experimental datapoints close to the reference state (£1.5) as indicated
by the gray boxes. (C) Heat map of correlation coefficient between experimental enzyme
measurements (x-axis) and experimental boundary flux measurements. Boundary fluxes and
enzymes are sorted with hierarchical clustering. (D) Heat map of flux control coefficients as
estimated from posterior parameter distributions. Boundary flux and enzyme ordering match
those determined in (C). Colors represent medians of the posterior predictive distributions,
FCCs with a direction that could not be confidently determined (having a 95% HPD that
crossed zero) are colored white.

Posterior distributions in fitted parameter values indicate that the model is able to fit the observed
experimental data while using relatively few of the additional regulatory parameters. Of the 23,684
regulatory elasticities, only 153 (0.65%) were confidently nonzero. However, we note that determining
mechanistically accurate regulatory interactions from observations of steady-state flux behavior is inherently
difficult. For instance, for a regulatory pathway in which A regulates B and B regulates C, identifiability
issues might cause the pathway to be modeled as A regulates B and A directly regulates C. While poorly
identifiable, the impacts of these alternative regulatory topologies on flux control coefficients are largely
similar. Of the 50 unmeasured enzymes, only half were nonzero in at least one experimental condition.
Overall, only 35% of the available unmeasured enzyme expressions differed from their reference state value.

We next look at what the model is able to learn about the systems-level control of yeast metabolism. A
common goal in strain engineering is to find gene targets for increasing the yield of a given metabolic
product. We therefore look at relationships between enzymes with measured protein concentrations and
measured boundary fluxes. In a traditional statistical approach, correlations between enzyme levels and
metabolite fluxes might be used to further enhance production of a desired metabolite. Figure 4C shows a
heat map of Pearson correlation coefficients between enzyme expression levels (as determined through
proteomics) and measured metabolite boundary fluxes. A permutation test was performed to determine
correlations significant at the « = 0.05 confidence level; non-significant correlations were masked from
the array. In this map, hierarchical clustering is used to reveal clear groups of metabolites and enzymes
that vary together in the experimental data. A larger version of this image, with labelled axes, is shown in
Figure 9. However, correlations between proteins and metabolite boundary fluxes do not necessarily imply
that a particular enzyme is involved in directing flux to a particular product. For instance, several of the
highest correlations exist between methionine synthase and relatively distant amino acid products alanine,
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arginine, and histidine. The top ten enzyme-boundary flux correlations are shown in Table 2.

Table 2: Largest significant correlations between measured enzymes and measured boundary
fluxes.

Enzyme Boundary P

Methionine synthase L-Alanine  0.910
Glycine hydroxymethyltransferase, reversible ~ L-Alanine  0.884
Glycine hydroxymethyltransferase, reversible =~ Pyruvate 0.866

3’,5"-bisphosphate nucleotidase Succinate 0.854
Methionine synthase L-Arginine  0.850
Argininosuccinate lyase Succinate 0.844
Phosphoserine transaminase Succinate 0.844
Asparagine synthase (glutamine-hydrolysing) Succinate 0.839
Methionine synthase L-Histidine  0.835
Imidazole-glycerol-3-phosphate synthase Succinate 0.835

Flux control coefficients as estimated through the proposed method therefore offer an alternative approach
for determining potential enzyme targets that more systematically considers the effects of metabolic
stoichiometry and kinetics. Before considering posterior distributions in flux control coefficients, we
first look at whether the prior assumptions on enzyme elasticities and model stoichiometry esult in any
confidently nonzero values. From the prior predictive distribution, only 6 enzyme-boundary flux pairs
have a significantly nonzero FCC, and typically involve reactions directly associated with metabolite
production. For instance, a positive flux control coefficient is associated with asparagine synthase and
valine transaminase on asparagine and valine export, respectively. A heat map of FCCs calculated from the
fitted posterior elasticity matrix is shown in Figure 4C, in which FCCs that have a 95% HPD that includes
zero are colored white. Unlike the map of correlation coefficients, FCCs result in a much sparser matrix
of inferred connections between enzyme concentration and steady-state flux. However, these coefficients
are much more interpretable as direct causality between enzyme expression and increased downstream
flux. The top 10 largest, identifiable flux control coefficients are shown in Table 3. Some pairs of enzymes
and boundary fluxes, i.e. glycerol-3-phosphate dehydrogenase enhancing glycerol production, are direct
upstream enzymes for the boundary flux in question. However, since linear pathways can have an uneven
distribution of flux control coefficients, determining the rate-limiting step in biosynthesis pathways is an
important result. Other confident FCCs represent more indirect effects, for instance the consumption of the
upstream phosphoenolpyruvate in 3-phosphoshikimate 1-carboxyvinyltransferase reducing the export of
pyruvate.

Table 3: Largest flux control coefficients for the modulation of measured enzymes on measured
boundary fluxes. FCC ranges represent upper and lower bounds of the 95% highest posterior
density. Enzyme-boundary pairs that also appear as confident predictions prior to including
experimental data are omitted.

Enzyme Boundary FCC Range

Glycerol 3 phosphate dehydrogenase (NAD) Glycerol [+0.661, +0.867]
Triose-phosphate isomerase Glycerol ~ [—0.529, —0.375]
Threonine aldolase Glycine [+0.323, +0.420]
Pyruvate decarboxylase Pyruvate  [—0.379, —0.308]
Pyruvate kinase Pyruvate  [+0.207,40.281]
Phosphofructokinase Glycerol [+0.150, 4-0.278]
ATPase cytosolic Pyruvate  [+0.178,+0.242]
Pyruvate kinase Ethanol [+0.184, +0.226]
Fructose-bisphosphate aldolase Pyruvate  [—0.244, —0.156]
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Enzyme Boundary FCC Range

3-phosphoshikimate 1-carboxyvinyltransferase Pyruvate  [—0.219, —0.157]

Methods

All simulations were performed in Python using the pymc3 library (Salvatier et al., 2016). Additional code
to initialize the elasticity prior matrices and calculate the steady-state metabolites and fluxes is provided at
github.com/pstjohn/emll, along with jupyter notebooks detailing the use cases described above.

Conclusion

In this study we demonstrate how kinetic models of microbial metabolism can be analyzed through
modern probabilistic programming frameworks. In doing so, we have invoked approximate formalisms for
enzymatic kinetics; however, we note that similar trade-offs between modeling fidelity and computational
efficiency are common throughout biology and chemistry. For instance, while small-scale pathways might
be better modeled at a higher level of kinetic theory, a complete kinetic description of a genome-scale
kinetic model is likely currently infeasible given available data and computational resources. As biological
experiments are becoming increasingly easy to iterate with modeling results, a complete kinetic description
of a given pathway may not be as valuable as a reasonable guess as to how to improve a desired phenotype.
Computational methodologies that quickly converge to generate a list of potential targets, such as the one
proposed in this study, may therefore be essential in keeping up with the growing ease of multiomics
experiments. The proposed method can also be run efficiently on consumer-grade hardware, a important
factor for applications in industrial microbiology where access to large-scale high performance computing
resources is limited.

As the field of variational inference is rapidly evolving, this technique could likely be made more robust or
efficient through the use of alternative inference algorithms. For instance, correlations between elasticities
were demonstrated through a Hamiltonian Monte Carlo trace but were missed by the corresponding
mean-field Gaussian approximation. While fitting a full-rank Gaussian is likely impractical at larger data
set sizes, reduced-rank approximations (Rezende and Mohamed, 2015) might offer a suitable compromise
between posterior accuracy and computational efficiency. Additionally, inference approaches which only
consider a subset of the experimental data might also prove useful. Since each perturbed state involves
a new linear solve in calculating the likelihood, stochastic variational inference (Hoffman et al., 2013) or
firefly MCMC (Maclaurin and Adams, 2014) might reduce the cost of approximating or drawing samples
from the posterior.
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Figure 5: Trace of the NUTS sampler for the in vitro dataset. (left) kernel density estimates of
each parameter. Vertical bars indicate the values obtained using the multiple linear regression
technique of (Wu et al., 2004). (right) Samples from the MCMC sampler
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Figure 6: Convergence of the Evidence Lower Bound (ELBO) for the in vitro dataset.
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Figure 7: Comparison between posterior distributions for the in vitro dataset as estimated by
NUTS (solid lines) or ADVI (dashed lines). ADVI posteriors have a similar mean but smaller
variance.
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Figure 8: Convergence of the Evidence Lower Bound (ELBO) for the multiomics dataset and
yeast metabolic model
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Figure 9: Full heatmaps (with labeled boundary fluxes and enzymes) for the multiomics
dataset. Full names for the reaction IDs shown can be found in the detailed model description.
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Calculating reverse-mode gradients for regularized linear solve

In order to efficiently perform many inference approaches, forward and reverse-mode gradients for the
likelihood function are required. In this method, the least-squares linear solve is a particularly tricky
operation for which gradients in some automatic differentiation packages are not automatically supplied.
In this section, we therefore derive the necessary matrix equations to calculate forward and reverse mode
gradients for the least-norm linear solve, xss = A'b. In practice, it is much more efficient to calculate this
least-norm solution directly (i.e., using the LAPACK routine dgelsy) instead of explicitly calculating the
pseudoinverse matrix.

Gradients for the least-norm solution are derived by first calculating those for Tikhonov regularization,
and subsequently taking the limit as A — 0. Definitions for matrix derivatives are taken from (Giles, 2008).
Similar to example 2.3.1 in Giles (2008), the forward derivative for a Tikhonov-regularized linear takes the
form

C=(ATA+AI)1ATB
—— ~~
D E
dC =D YdE—-dDC) fromC=D"'E
dD = dATA + ATdA
dE =dA"B + ATdB
Substituting into the equation for dC,

dC = (ATA+ D)7 (dATB + ATdB — (dATA+ ATdA)C)

dC = (ATA)"! (dATB + ATdB — (dATA + ATdA)C)

Also following Giles (2.3.1), the reverse mode gradient can be found:
Tr(CTdC) = Tr(CTD'dE) — Tr(CTD~'dD ()
= Tr(CTD—ldATB) +Tr(CTD1ATdB)
Tr(CTD1dATA C) — Tr(CTDTATdA C)
= Tr (B~ AC)CTD 14 AT) — Te(cCTD ' ATdA)
~Tr(CTD1ATdB)
Tr [( ~T¢(B - AC)T CCTD—lAT) dA}
—Tr(CTD1ATdB)

therefore,

(CTD 1AT) = ADTC
- _ _ T
A= (DTE(B~AC)T —cCTD1AT)
= (B—AC)CTD ' - AD"TCCT
H_,—/
B
= (B—-AC)CTD! - BCT
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Since D = ATA + Al = (AT A + AI)T, these gradients can be further simplified using the relations
D

C
D~1C
CTp—1!

=N v R
I

X

After substituting into the equations for A and B, we are left with

B = Ax
A= (B—AC)xT —BCT

as the reverse-mode gradients for the least-norm solve C = A'B.
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