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Abstract

Background. Gene networks in living cells can change depending on various conditions such
as caused by different environments, tissue types, disease states, and development stages.
Identifying the differential changes in gene networks is very important to understand molecular
basis of various biological process. While existing algorithms can be used to infer two gene
networks separately from gene expression data under two different conditions, and then to
identify network changes, such an approach does not exploit the data jointly, and it is thus
suboptimal. A desirable approach would be clearly to infer two gene networks jointly, which can
yield improved estimates of network changes.

Results. In this paper, we developed a proximal gradient algorithm for differential network
(ProGAdNet) inference, that jointly infers two gene networks under different conditions and
then identifies changes in the network structure. Computer simulations demonstrated that our
ProGAdNet outperformed existing algorithms in terms of inference accuracy, and was much
faster than a similar approach for joint inference of gene networks. Gene expression data of
breast tumors and normal tissues in the TCGA database were analyzed with our ProGAdNet,
and revealed that 268 genes were involved in the changed network edges. Gene set enrichment
analysis of this set of 268 genes identified a number of gene sets related to breast cancer
or other types of cancer, which corroborated the gene set identified by ProGAdNet was very
informative about the cancer disease status. A software package implementing the ProGAdNet
and computer simulations is available upon request.

Conclusion. With its superior performance over existing algorithms, ProGAdNet provides a
valuable tool for finding changes in gene networks, which may aid the discovery of gene-gene
interactions changed under different conditions.
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Background

Genes in living cells interact and form a complex network to regulate molecular functions and biological
processes. Gene networks can undergo toplogical changes depending on the molecular context in which
they operate [1, 2]. For example, it was observed that transcription factors (TFs) can bind to and thus
regulate different target genes under varying environmental conditions [3, 4]. Changes of genetic interactions
when cells are challenged by DNA damage as observed in [5] may also reflect the structural changes of the
underlying gene network. This kind of rewiring of gene networks has been observed not only in yeast [3—6],
but also in mammalian cells [7, 8]. More generally, differential changes of gene networks can occur depending
on environment, tissue type, disease state, development and speciation [1]. Therefore, identification of such
differential changes in gene networks is of paramount importance when it comes to understanding the
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molecular basis of various biological processes.

Although a number of computational methods have been developed to infer the structure of gene regulatory
networks from gene expression and related data [9-12], they are mainly concerned with the static structure of
gene networks under a single condition. These methods rely on similarity measures such as the correlation or
mutual information [13, 14], Gaussian graphical models (GGMs) [15, 16], Bayesian networks [17, 18], or
linear regression models [19-22]. Existing methods for the analysis of differential gene interactions under
different conditions typically attempt to identify differential co-expression of genes based on correlations
between their expression levels [23]. While it is possible to use an existing method to infer a gene network
under different conditions separately, and then compare the inferred networks to determine their changes,
such an approach does not jointly leverage the data under different conditions in the inference; thus, it may
markedly sacrifice the accuracy in the inference of network changes.

In this paper, we develop a very efficient proximal gradient algorithm for differential network (ProGAdNet)
inference, that jointly infers gene networks under two different conditions and then identifies changes in these
two networks. To overcome the challenge of the small sample size and a large number of unknowns, which
is common to inference of gene networks, our method exploits two important attributes of gene networks:
1) sparsity in the underlying connectivity, meaning that the number of gene-gene interactions in a gene
network is much smaller than the number of all possible interactions [19, 24-26]; and, ii) sparsity in the
structural changes, meaning that the number of interactions changed in response to different conditions is
much smaller than the total number of interactions present in the network. A similar network inference setup
was considered in [27] for inferring multiple gene networks, but no new algorithm was developed there;
instead [27] adopted the 1ga algorithm of [28] that was designed for generalized linear models. Our computer
simulations demonstrated superior performance of our ProGAdNet algorithm relative to existing methods
including the 1qa algorithm. Analysis of a set of RNA-Seq data from normal tissues and breast tumors with
ProGAdNet identified genes involved in changes of the gene network.

The differential gene-gene interactions identified by our ProGAdNet algorithm yield a list of genes
alternative to the list of differentially expressed genes. This may provide additional insight into the molecular
mechanism behind the phenotypical difference of the tissue under different conditions. Alternatively, the two
gene networks inferred by our ProGAdNet algorithm can be used for further differential network analysis
(DiNA). DiNA has received much attention recently; the performance of ten DiNA algorithms was assessed
in [29] using gene networks and gene/microRNA networks. Given two networks with the same set of nodes,
a DiNA algorithm computes a score for each node based on the difference of global and/or local topologies of
the two networks, and then ranks nodes based on these scores. Apparently, DiNA relies on the two networks
that typically need to be constructed from certain data. Our ProGAdNet algorithm provides an efficient and
effective tool for constructing two gene networks of the same set of genes from gene expression data under
two different conditions, which can be used by a DiNA algorithm for further analysis.

Methods

Gene Network Model
Suppose that expression levels of p genes have been measured with microarray or RNA-seq, and let X; be the
expression level of the ith gene, where i = 1, ..., p. To identify the possible regulatory effect of other genes
on the ith gene, we employ the following linear regression model as also used in [19-22]
p
Xi= Y Xjbji+E;, ey
=1

where E; is the error term, and unknown regression coefficients (b;;)’s reflect the correlation between X; and
X after adjusting the effects of other variables, X’s, k ¢ {i, j}. This adjusted correlation may be the result of
possible interaction between genes i and j. The nonzero (b;;)’s define the edges in the gene network. Suppose
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that n samples of gene expression levels of the same organism (or the same type of tissue of an organism)
under two different conditions are available, and let n X 1 vectors x; and X; contain these n samples of the ith
gene under two conditions, respectively. Define n x p matrices X := [x,Xa,...,X,] and X := [1,%2,...,%,)],
and p x p matrices B and B whose element on the ith column and the jth row are b ;i and b ji» respectively.
Letting b; = b;i; = 0, model (1) yields the following

X=XB+E

Y o~ m 2)
X=XB+E,

where n x p matrices E and E contain error terms. Matrices B and B characterize the structure of the gene

networks under two conditions.

Our main goal is to identify the changes in the gene network under two conditions, namely, those edges
from gene j to gene i such that bj; — b ji # 0, j # i. One straightforward way to do this is to estimate B and B
separately from two linear models in (2), and then find gene pairs (i, j) for which bj; — b i 7 0. However,
this approach may not be optimal, since it does not exploit the fact that the network structure does not
change significantly under two conditions, that is, most entries of B and B are identical. A better approach is
apparently to infer gene networks under two conditions jointly, which can exploit the similarity between two
network structures and thereby improve the inference accuracy.

If we denote the ith column of B and B as b; and b;, we can also write model (2) for each gene separately
as follows: x; = Xb;+e; and X; = Xb; +&,i=1,... , P, where e; and &; are the ith column of E and E, respec-

tively. To remove the constraints b; =0,i=1,..., p, we define matrices X_; := [X1,...,X;j—1,Xj+1,- - ,Xp] and
X_i = [f(] oo ;ii—l 7ii+1 R ,f(p], vectors Bi = [b]i, ce 7b(i71)i7b(i+l)i7 e ,bp,']T and Bi = [b]i, e 7b(i71)i7
biiv1yis--- ,bp,-]T. The regression model for the gene network under two conditions can be written as
x; =X_;B;+e
(3)

ii:X,iﬁi—Féi, i=1,...,p.

Based on (3), we will develop a proximal gradient algorithm to infer 8, and B ; jointly, and identify changes
in the network structure.

Network inference
Optimization Formulation
As argued in [30-32], gene regulatory networks or more general biochemical networks are sparse, meaning
that a gene directly regulates or is regulated by a small number of genes relative to the total number of
genes in the network. Taking into account sparsity, only a relatively small number of entries of B and B, or
equivalently entries of f3; and B »1=1,...,p, are nonzero. These nonzero entries determine the network
structure and the regulatory effect of one gene on other genes. As mentioned earlier, the gene network of
an organism is expected to have similar structure under two different conditions. For example, the gene
network of a tissue in a disease (such as cancer) state may have changed, comparing to that of the same tissue
under the normal condition, but such change in the network structure is expected to be small relative to the
overall network structure. Therefore, it is reasonable to expect that the number of edges that change under
two conditions is small comparing with the total number of edges of the network.

Taking into account sparsity in the network and also in the changes of the network under two conditions,
we formulate the following optimization problem to jointly infer gene networks under two conditions:

A 2 _ . i . P
(Bi,B;) =arg mm[giﬁi{H i—X-iB ||

&= XiB 1P+l B+ 11 Bi ) “)
+ 22| Bi—Bi 3,
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where || - || stands for Euclidean norm, || - ||; stands for /; norm, and A; and A, are two positive constants. The
objective function in (4) consists of the squared error of the linear regression model (1) and two regularization
terms Ay (|| B; 1 + || B; l1) and A, || B; — B; ||1. Note that unlike the GGM, the regularized least squared
error approach here does not rely on the Gaussian assumption. The two regularization terms induce sparsity
in the inferred networks and network changes, respectively. This optimization problem is apparently convex,
and therefore it has a unique and globally optimal solution. Note that the term A, || B, — B; |1 is reminiscent
of the fused Lasso [33]. However, all regression coefficients in the fused Lasso are essentially coupled,
whereas here the term A, || B, — B; || only couples each pair of regression coefficients, Bij and ﬁi_,-. As
will be described next, this enables us to develop an algorithm to solve optimization problem (4) that is
different from and more efficient than the algorithm for solving the general fused Lasso problem. Note that
an optimization problem similar to (4) was formulated in [27] for inferring multiple gene networks, but no
new algorithm was developed, instead the problem was solved with the 1qa algorithm [28] that was developed
for general penalized maximum likelihood inference of generalized linear models including the fused Lasso.
Our computer simulations showed that our algorithm not only is much faster than the Iqa algorithm, but also
yields much more accurate results.

Proximal Gradient Solver

Define o; := [ﬁIT BiT]T, and let us separate the objective function in (4) into the differentiable part g; («;) and
the non-differentiable part g, (;) given by

gi(o:) = x; —X_iB; |I* + || % — X_iB; ||,
g2(a)) =M (|| B Iy + 1 Bi 1) +22 || B;—Bi Il -

Applying the proximal gradient method [34] to solve the optimization problem (4), we obtain an expression
for «; in the rth step of the iterative procedure as follows:

&)

1
o = Prox; o, [0t — A" Vg1 ()], (6)
where prox stands for the proximal operator defined as prox (t) := arg min, f(x) + 57 |[x — t||* for function

f(x) and a constant vector t, and Vg;(a;) is the gradient of g|(a;). Generally, the value of step size A") can
be found using a line search step, which can be determined from the Lipschitz constant [34]. For our problem,
we will provide a closed-form expression for A (") later. Since g1 (a;) is simply in a quadratic form, its gradient
can be obtained readily as Vg (o;) = [Vg1(B,)",Vegi1(B;)T]", where Vg (B,) = 2(XL,X_;8, — X’ x;) and

Vei(B;) =2(XTX_if; — X %). i i
Upon defining t =3, — AVg, (B;,)andt=j,— AVg (B;), the proximal operator in (6) can be written

as
prox(8) =argming g {(Aa(1l B, 1+ | By 1)+ 72 | B, B, I
1 ) . (7
o Bi—t I+ 11 B =)}

It is seen that the optimization problem in proximal operator (7) can be decomposed into p — 1 separate
problems as follows

arg ming 5 {A1(1Bi;| +Bijl) + 42| Bij — Bijl
1 .
o7 (B =) + (B —1)%) } ®
j=1,....,p—1,
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where f;; and [§l- ; are the jth element of B; and Bi, respectively, and 7; and 7; are the jth element of t and t,
respectively. The optimization problem (8) is in the form of the fused Lasso signal approximator (FLSA)
[35]. The general FLSA problem has many variables, and numerical optimization algorithms were developed
to solve the FLSA problem [35, 36]. However, our problem has only two variables, which enables us to
find the solution of (8) in closed form. This is then used in each step of our proximal gradient algorithm for
network inference.

Let us define a soft-thresholding operator S(x,a) as follows

x—a,ifx>a
S(x,a) =< x+a,ifx< —a )

0, otherwise,

where a is a positive constant. Then as shown in [35], if the solution of (8) at A; = 0 is EI(J and [5’, i the
solution of (8) at A; > 0 is given by

(10)

where A; = 4, A("). Therefore, if we can solve the problem (8) at A; = 0, we can find the solution of (8) at
any A; > 0 from (10). It turns out that the solution of (8) at A; = 0 can be found as

ti+it; t;+7i; N -
(%7 J; J)vif‘lj_tj| <2A

5(0) A( y ) i

(ﬁ’ B ) (tj— A, T+ Ap), if t; —1; > 2 (11)
() +j~27fj — 12), otherwise,

where 12 = lg?t(r ), Therefore, our proximal gradient method can solve the network inference problem (6)
efficiently through an iterative process, where each step of the iteration solves the optimization problem (6)
in closed form specified by (10) and (11). To obtain a complete proximal gradient algorithm, we need to find
the step size A(") as will be described next.

Stepsize

As mentioned in [34], if the step size A(") € [0,1/L], where L is the Lipschitz constant of Vg;(¢;), then

the proximal gradient algorithm converges to yield the optimal solution. We next derive an expression

for L. Specifically, we need to find L such that || Vg, (0651)) — Vg (0552)) o< L| (a;l) - 0652)) ||l2 for any
() =+ ozl(z), which is equivalent to

XEX(B B0 B R
RN A

for any (Bgl) , Bfl)) # (ﬁgz),B,@). Let y and 7 be the maximum eigenvalues of X” X_; and X7 X _;, respec-
tively. It is not difficult to see that (12) will be satisfied if L = 2(y+ 7). Note that XLX_,- and X_,XL have
the same set of eigenvalues. And thus, y can be found using a numerical algorithm with a computational
complexity of O((min(n, p))?). After obtaining L, the step size of our proximal gradient algorithm can be
chosen to be ) = 1 /L. Note that A7) does not change across iterations, and it only needs to be computed
once. Since the sum of the eigenvalues of a matrix is equal to the trace of matrix, another possible value for L
is 2(trace(X” ,X_;) + trace(X” ,X_;)), which can save the cost of computing y and ¥. However, this value of

2 12)

L is apparently greater than 2(7y+ ¥), which reduces the step size A("), and may affect the convergence speed
of the algorithm.
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Algorithm
The proximal gradient solver of (4) for inference of differential gene networks is abbreviated as ProGAdNet,
and is summarized in the following table.

Algorithm 1 ProGAdNet algorithm for solving optimization problem (4): proxg(X, X, A1, A;)

Input data X and X, and parameters A; and A,

Compute the maximum eigenvalues of X_; X" and X ;X7 ,
y and , respectively; set step size 1) = 1/[2(y+ 7)].

Set initial values of 8; and B,

repeat
ComputeVgl( ) =2(XT.X_;B;,—XT x;) and
Vei(B;) = 2(5(55( B - XT%)).
Computet— B -0 (ﬁ yandt= B, — AVg(B;)
C0mpute< ;i ,é 0) 1,...,p, from (11)

Compute [3,] and [3”, j=1,...,p, from (10)

Update 3; and Bi: Bij = Bij and ﬁij = Bij, J=1...p
until convergence
Return 3; and f3;.

Maximum values of 1, and A,
The ProGAdNet solver of (4) is outlined in Algorithm 1 with a specific pair of values of A; and A,. However,
we typically need to solve the optimization problem (4) over a set of values of A; and A,, and then either
use cross validation to determine the optimal values of A; and A,, or use the stability selection technique to
determine nonzero elements of f3; and B ;» as will be described later. Therefore, we also need to know the
maximum values of A; and A,. In the following, we will derive expressions for the maximum values of 4,
and A,.

When we determine the maximum values of A;, A;max, A2 can be omitted in our optimization problem,
since when Ay = Ajmax, we have f8;; = 0 and B,- =20, Vi and j. Thus, we can use the same method for
determining the maximum value of A in the Lasso problem [37] to find A} max, Which leads to

_ T Te

)leax—max{r?igi|iji|,r?§l§(|xjx,\}. (13)

The maximum value of A, Ay max depends on A;. It is difficult to find Ajmax _exactly. Instead, we will find

an upper-bound for Aamax. Let us denote the objective function in (4) as J(;, B,), and let the jth column of

X_; (X_)) be z; (Z). If the optimal solution of (4) is 8; = B, = B*, then the subgradient of J(B,, B,) at the
optimal solution should contain the zero vector, which yields

2Z]T‘(Xi_X7iﬁ*)+11S1j+lzszj =0,j=1,...,p—1

=T (o v * ~ ~ . (14)
sz(Xi—X,iﬁ )-'—A,ISIJ'—'—AQSZJ':O, ]Zl,...,p—l,

where s1; = 1 if Bij >0,=—1if Bij <0, or € [—1,1] if B;; =0, and s5; € [—1,1], and similarly, §;; = 1
if Bij >0, = —1if B;; <0, or € [-1,1] if B;; =0, and §; € [—1,1]. Therefore, we should have 4, >
|2z]T(xi —X_;B") +Aisyj] and A, > |221T-(i,~ X BN+ A151|, which can be satisfied if we choose A, =

max;max{A + |2z} (x; = X_;f")|, A1 +[22} (X; — X_iB")|}. Therefore, the maximum value of A, can be

written as
Mo max = mixmax{kl + 2] (x; — X1 "), A+ |2%] (% — X_iB™) |} (15)
JF!
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To find A3 max from (15), we need to know B*. This can be done by solving the Lasso problem that minimizes
J(B) =] xi —X_;B ||> + || & —X_;B ||> +21 || B ||1 using an efficient algorithm such as glmnet [38].

Stability Selection

As mentioned earlier, parameter A; encourages sparsity in the inferred gene network, while A, induces
sparsity in the changes of the network under two conditions. Generally, larger values of A; and A, induce a
higher level of sparsity. Therefore, appropriate values of A; and A, need to be determined, which can be done
with cross validation [38]. However, the nonzero entries of matrices B and B, estimated with a specific pair
of values of A; and A, determined by cross validation, may not be stable in the sense that small perturbation
in the data may result in considerably different B and B. We can employ an alternative technique, named
stability selection [39], to select stable variables, as described in the following.

We first determine the maximum value of A;, namely A;nax, using the method described earlier, then
choose a set of k; values for A;, denoted as .1 = {A; max, @1 A1 max, Oclzitl Xy - - - 5 Otf“l),l max > Where 0 <
oy < 1. For each value A; € .}, we find the maximum value of A,, namely Ay max (A1), and then choose a set
of ky values for A,, denoted .72 (A1) = {A2max (A1), A2 max (A1), - . -, chrleax(M)}, where 0 < o < 1.
This gives a set of K = kjk; pairs of (A1,4;). After we create the parameter space, for each (A1, A;) pair in
the space, we randomly divide the data (X,X) into two subsets of equal size, and infer the network with our
proximal gradient algorithm using each subset of the data. We repeat this process for N times, which yields
2N estimated network matrices, B and B. Typically, N = 50 is chosen.

~ 2

Let ml(f), nﬁg{), and Amg.{) be the number of nonzero lA)ij’s and lc),- i’s, and (bij —b; j)’s, respectively,
obtained with the kth pair of (A1,42). Then, r;j = Y m{} /(NK), i = T& | m¥) /(NK), and Ar;; =

ZkK:1 Amg.{) /(NK) give the frequency of an edge from gene j to gene i detected under two conditions, and the
frequency of the changes for an edge from gene j to gene i, respectively. A larger r;;, 7i;, or Ar;; indicates a
higher likelihood that an edge from gene j to gene i exists, or the edge from gene j to gene i has changed.
Therefore, we will use r;;, 7;; and Ar;; to rank the reliability of the detected edges and the changes of edges,
respectively. Alternatively, we can declare an edge from gene j to gene i exists if r;; > ¢ or 7;; > ¢; and
similarly the edge between gene j to gene i has changed if Ar;; > ¢, where c is constant and can be any value

in [0.6,0.9] [39].

Software glmnet and Iga

Two software packages, glmnet and lqa, were used in computer simulations. The software glmnet [38] for solv-
ing the Lasso problem is available at https://cran.r-project.org/web/packages/glmnet. The software lqa [28]
used in [27] for inferring multiple gene networks is available at https://cran.r-project.org/web/packages/lqa/.

Results and Discussion

Computer Simulation with Linear Regression Model

We generated data from one of p pairs of linear regression models in (3) instead of all p pairs of simultaneous
equations in (2), or equivalently (3), as follows. Without loss of generality, let us consider the first equation
in (3). The goal was to estimate 3, and [31, and then identify pairs (B;1, 3i1), where f3;; # Bil. Entries of
nx (p— 1) matrices X_; and X_| were generated independently from the standardized Gaussian distribution.
In the first simulation setup, we chose n = 100 and p — 1 = 200. Twenty randomly selected entries of 3,
were generated from a random variable uniformly distributed over the intervals [0.5,1.5] and [—1.5,—0.5],
and remaining entries were set to zero; [31 was generated by randomly changing 10 entries of 3, as follows:
4 randomly selected nonzero entries were set to zero, and 6 randomly selected zero entries were changed to a
value uniformly distributed over the intervals [0.5,1.5] and [—1.5,—0.5]. The noise vectors e; and &; were
generated from a Gaussian distribution with mean zero and variance ¢ varying from 0.01 to 0.05, 0.1, and
0.5, and then x| and X; were calculated from (3).
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Simulated data x;, X;, X_; and X_; were analyzed with our ProGAdNet, 1qa [28] and glmnet [38].
Since lga was employed by [27], the results of lqa represent the performance of the network inference
approach in [27]. The glmnet algorithm implements the Lasso approach in [40]. Both ProGAdNet and
lga estimate f3; and [3 | jointly by solving the optimization problem (4), but glmnet estimates f3; and B 1
separately, by solving the following two problems separately, 5, = arg min B, {l x1 =X=1By 12+ [ By s

and f, = arg min[3 | % —X_1B, > +42 || B, || The lqa algorithm uses a local quadratic approximation
of the nonsmooth ﬁenalty term [41] in the objective function, and therefore, it cannot shrink \:ariables to
zero exactly. T(Z alleviate this problem, we set 31'1 =0if \ﬁl 1] < 10~4, and similarly ﬁil =0if |[§i1\ <1074,
where Bil and Bil represent the estimates of 3;; and Bz‘ 1, respectively. Five fold cross validation was used
to determine the optimal values of parameters A; and A, in the optimization problem. Specifically, for
ProGAdNet and lqa, the prediction error (PE) was estimated at each pair of values of A; and A,, and the
smallest PE along with the corresponding values of A; and Ay, A min and A, min, were determined. Then, the
optimal values of A; and A, were the values corresponding to the PE that was two standard error (SE) greater
than the minimum PE, and were greater than A; i, and A, min, respectively. For glmnet, the optimal values of
A1 and A, were determined separately also with the two-SE rule.

The inference process was repeated for 50 replicates of the data, and the detection power and the false
discovery rate (FDR) for (3, B andAB =, — B] calculated from the results of the 50 replicates in the first
simulation setup are plotted in Figure 1. It is seen that all three algorithms offer almost identical power equal
or close to 1, but exhibit different FDRs. The FDR of Iqa is the highest, whereas the FDR of ProGAdNet is
almost the same as that of glmnet for 3, and Bl, and the lowest for AB ;.

In the second simulation setup, we let sample size n = 150, noise variance 6> = 0.1, and the number
of variables p — 1 be 500, 800, and 1,000. Detection power and FDR are depicted in Figure 2. Again, the
three algorithms have almost identical power, and ProGAdNet offers an FDR similar to that of glmnet, but
lower than that of lqa for 8, and Bl, and the lowest FDR for AB ;. Simulation results in Figures 1 and 2
demonstrate that our ProGAdNet offers the best performance when compared with glmnet and 1qa. The CPU
times of one run of ProGAdNet, 1qa, and glmnet for inferring a linear model with n = 150, p — 1 = 1,000,
and 62 = 0.1 at the optimal values of A; and A, were 5.82, 145.15, and 0.0037 seconds, respectively.

Note that although ProGAdNet and lqa solve the same optimization problem, ProGAdNet significantly
outperforms lqa. The performance gap is due to the fact that the lqa algorithm uses an approximation of
the objective function, whereas our algorithm solves optimization problem (4) exactly. In other words, our
ProGAdNet algorithm can always find the optimal solution to the optimization problem, since the objective
function is convex, but the lqa algorithm generally cannot find the optimal solution. Moreover, our computer
simulations show that our ProGAdNet algorithm is much faster than the 1qa algorithm.

Computer Simulation with Gene Networks
The GeneNetWeaver software [42] was used to generate gene networks whose structures are similar to those
of real gene networks. Note that GeneNetWeaver was also employed by the DREAMS challenge for gene
network inference to simulate golden standard networks [12]. GeneNetWeaver outputs an adjacency matrix
to characterize a specific network structure. We chose the number of genes in the network to be p = 50, and
obtained a p x p adjacency matrix A through GeneNetWeaver. The number of nonzero entries of A, which
determined the edges of the network, was 62. Hence the network is sparse, as the total number of possible
edges is p(p — 1) = 2,450. We randomly changed 6 entries of A to yield another matrix A as the adjacency
matrix of the gene network under another condition. Note that the number of changed edges is small relative
to the number of existing edges.

After the two network topologies were generated, the next step was to generate gene expression data.
Letting a;; be the entry of A on the ith row and the jth column, we generated a p x p matrix B such that
bij=0if a;; = 0, and b;; was randomly sampled from a uniform random variable on the intervals [—1,0) and
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(0,1] if a;; # 0. Another p x p matrix B was generated such that Eij = b;j if d;; = a;j, or Eij was randomly
generated from a uniform random variable on the intervals [—1,0) and (0,1] if @;; # a;;. Note that (2)
gives X = (I—-B)"'E and X = (I - B)~'E. These relationships suggest generating first entries of E and E
independently from a Gaussian distribution with zero mean and unit variance, and then finding matrices X
and X from these two equations, respectively. With real data, gene expression levels X and X are measured
with techniques such as microarray or RNA-seq, and there are always measurement errors. Therefore, we
simulated measured gene expression data as Y = X+V and Y = X+ V, where V and V model measurement
errors that were independently generated from a Gaussian distribution with zero mean and variance ¢
that will be specified later. Fifty pairs of network replicates and their gene expression data were generated
independently.

Finally, gene networks were inferred with our ProGAdNet algorithm by solving the optimization problem
(4), where x;, X_;, X;, and X_; were replaced with the measured gene expression data y;, Y_;, ¥;, and Y.
Stability selection was employed to rank the edges that were changed under two conditions. As comparison,
we also used Lasso to infer the network topology under each condition by solving the following optimization
problems

B =arg ming | Y= YB ||> +A; | B ||,

subjectto b; =0,i=1,...,p,
) o= ; (16)
B =arg ming || Y—YB ||“+A, || B ||

subject to b;; =0,i=1,...,p.

Note that each optimization problem can be decomposed into p separate problems that can be solved with
Lasso. The glmnet algorithm [38] was again used to implement Lasso. The stability selection technique was
employed again to rank the differential edges detected by Lasso. The lqa algorithm was not considered to
infer simulated gene networks, because it is very slow and its performance is worse than ProGAdNet and
Lasso as shown in the previous section. We also employed the GENIE3 algorithm in [43] to infer B and
B separately, because GENIE3 gave the best overall performance in the DREAMS5 challenge [12]. Finally,
following the performance assessment procedure in [12], we used the precision-recall (PR) curve and the area
under the PR curve (AUPR) to compare the performance of ProGAdNet with that of Lasso and GENIE3. For
ProGAdNet and Lasso, the estimate of AB = B — B was obtained, and the nonzero entries of AB were ranked
based on their frequencies obtained in stability selection. Then, the PR curve for changed edges was obtained
from the ranked entries of AB from pooled results for the 50 network replicates. Two lists of ranked network
edges were obtained from GENIE3: one for B and the other for B. For each cutoff value of the rank, we
obtain an adjacency matrix A from B as follows: the (i, j)th entry of A a;; = 1 if b;; is above the cutoff value,
and otherwise a;; = 0. Similarly, another adjacency matrix A was obtained from B. Then, the PR curve for
changed edges detected by GENIE3 was obtained from A — A, again from pooled results for the 50 network
replicates.

Figures 3 and 4 depict the PR curves of ProGAdNet, Lasso, and GENIE3 for measurement noise variance
02 =0.05 and 0.5, respectively. The number of samples varies from 50, 100, 200 to 300. It is seen from
Figure 3 that our ProGAdNet offers much better performance than Lasso and GENIE3. When the noise
variance increases from 0.05 to 0.5, the performance of all three algorithms degrades, but our ProGAdNet
still outperforms Lasso and GENIE3 considerably, as shown in Figure 4. Table 1 lists AUPRs of ProGAdNet,
Lasso and GENIE3, which again shows that our ProGAdNet outperforms Lasso and GENIE3 consistently at
all sample sizes.

Real Data Analysis
We next use the ProGAdNeT algorithm to analyze RNA-seq data of breast tumors and normal tissues. In The
Cancer Genome Atlas (TCGA) database, there are RNA-seq data for 1,101 breast invasive carcinoma (BRCA)
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samples and 113 normal tissues. Although the TCGA database contains RNA-seq data of a number of other
cancers, only the BRCA dataset has more than 100 normal tissue samples, and all other datasets contain less
than 60 normal tissue samples. Since a small number of samples may compromise the accuracy of network
inference, we only analyzed the BRCA dataset. The RNA-seq level 3 data for 113 normal tissues and their
matched BRCA tumors were downloaded. The TCGA IDs of these 226 samples are given in Additional file
1. The scaled estimates of gene expression levels in the dataset were extracted, and they were multiplied by
10%, which yielded transcripts per million (TPM) value of each gene. The batch effect was corrected with the
removeBatchEffect function in the Limma package [44] based on the batch information in the TCGA barcode
of each sample (the “plate” field in the barcode). The RNA-seq data include expression levels of 20,531
genes. Two filters were used to obtain informative genes for further network analysis. First, genes with their
expression levels in the lower 30 percentile were removed. Second, the coefficient of variation (CoV) was
calculated for each of the remaining genes, and then genes with their CoVs in the lower 70 percentile were
discarded. This resulted in 4,310 genes, and their expression levels in 113 normal tissues and 113 matched
tumor tissues were used by the ProGAdNet algorithm to jointly infer the gene networks in normal tissues and
tumors, and then to identify the difference in the two gene networks.”

Since small changes in b ; in the network model (1) may not have much biological effect, we regarded
the regulatory effect from gene j to gene i to be changed using the following two criteria rather than the
simple criterion b;; # bj;. The first criterion is |b; — bj;| > min{|bji|,|b;;| }, which ensures that there is at
least one-fold change relative to min{|b jil, |bji|}. However, when one of b ji and bj; is zero or near zero, this
criterion does not filter out very small \l; ji—b J-l-|. To avoid this problem, we further considered the second
criterion. Specifically, nonzero b ji and bj; for all j and i were obtained, and the 20 percentile value of all
|bji| and |bj;| , T, was found. Then, the second criterion is max{|b;i,|bji|} > T. As in computer simulations,
the stability selection was employed to identify network changes reliably. As the number of genes, 4,310, is
quite big, it is time consuming to repeat 100 runs per A; and A, pair. To reduce the computational burden, we
used five-fold cross validation to choose the optimal values of A; and A, based on the two-SE rule used in
computer simulation, and then performed stability selection with 100 runs for the pair of optimal values. Note
that stability selection at an appropriate point of hyperparameters is equally valid compared with that done
along a path of hyperparameters [39]. The threshold for Ar;; for determining network changes as described
in the Method section was chosen to be ¢ = 0.9.

Our network analysis with ProGAdNeT identified 268 genes that are involved in at least one changed
edge. Names of these genes are listed in supplementary file 2. We named the set of these 268 genes as the
dNet set. To assess whether the dNet genes relate to the disease status, we performed gene set enrichment
analysis (GSEA) with the C2 gene sets in the molecular signatures database (MSigDB) [45, 46]. C2 gene sets
consist of 4,738 gene sets that include pathways in major pathway dabases such as KEGG [47], REACTOME
[48], and BIOCARTA [49]. After excluding gene sets with more than 268 genes or less than 15 genes, 2,469
gene sets remained. Searching over the names of these 2,469 gene sets with key words “breast cancer”,
“breast tumor”, “breast carcinoma” and “BRCA” identified 139 gene sets that are related to breast cancer.
Using Fisher’s exact test, we found that 78 of 2,469 C2 gene sets were enriched in the dNet gene set at a FDR
of < 107*. The list of the 78 gene sets is in Additional file 3. Of these 78 gene sets, 24 are among the 139
breast cancer gene sets, which is highly significant (at Fisher’s exact test p-value 2.3 x 10~%). The top 20
enriched gene sets are listed in Table 2. As seen from names of these gene sets, 11 of the 20 gene sets are
breast cancer gene sets, and 7 sets are related to other types of cancer. These GSEA results clearly show that
the dNet gene set that our ProGAdNet algorithm identified is very relevant to the cancer disease status.

Conclusion

In this paper, we developed a very efficient algorithm, named ProGAdNet, for inference of two gene networks
based on gene expression data under two different conditions, which were further used to identify differential

10
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changes in the network. Computer simulations showed that our ProGAdNet offered much better inference
accuracy than existing algorithms. Analysis of a set of RNA-seq data of breast tumors and normal tissues
with ProGAdNet identified a set of genes involved in differential changes of the gene network. A number of
gene sets of breast cancer or other types of cancer are significantly enriched in the identified gene set, which
shows that the identified gene set is very informative about the disease status of the tissues. As gene network
rewiring occurs frequently under different molecular context, our ProGAdNet algorithm provides a valuable
tool for identifying changed gene-gene interactions.
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Figure 1. Performance of ProGAdNet, lqa, and Lasso in the inference of linear regression models. Number of

samples n = 100, and number of variables p — 1 = 200.
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Figure 2. Performance of ProGAdNet, lqa, and Lasso in the inference of linear regression models. Number of
samples n = 150 and noise variance 6> = 0.1.
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Figure 3. Precision-recall curves for ProGAdNet, Lasso, and GENIE3 in detecting changed edges of
simulated gene networks. Variance of the measurement noise is 6> = 0.05, and sample size n=50, 100, 200,

and 300.
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Figure 4. Precision-recall curves for ProGAdNet, Lasso, and GENIE3 in detecting changed edges of
simulated gene networks. Variance of the measurement noise is 6> = 0.5, and sample size n=50, 100, 200,

and 300.
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Table 1. AUPRs of ProGAdNet, Lasso, and GENIE3 for detecting the changed edges of simulated gene

networks
0% =0.05 0>=05

# samples | ProGAdNet | Lasso | GENIE3 | ProGAdNet | Lasso | GENIE3

50 0.206 0.023 0.018 0.106 0.018 0.014

100 0.288 0.025 0.028 0.202 0.021 0.022

200 0.356 0.030 | 0.039 0.280 0.024 | 0.031

300 0.380 0.031 0.044 0.289 0.026 | 0.038

Table 2. Top 20 MSigDB C2 gene sets that are enriched in the dNet gene set.

Gene sets g-value
SMID_BREAST_CANCER_LUMINAL_A_UP 1.55E-27
NAKAYAMA _SOFT_TISSUE_TUMORS_PCA2_DN 1.73E-20
TURASHVILI. BREAST DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN 1.40E-16
SMID_BREAST_CANCER_RELAPSE_IN_LUNG_DN 1.40E-16
POOLA_INVASIVE_BREAST_CANCER_UP 1.25E-12
SMID_BREAST_CANCER_RELAPSE_IN_BONE_UP 2.35E-12
TURASHVILI_ BREAST DUCTAL_CARCINOMA_VS_LOBULAR_.NORMAL_DN | 2.72E-12
VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY_UP 3.04E-12
MCLACHLAN_DENTAL_CARIES_UP 3.04E-12
POOLA_INVASIVE BREAST_CANCER _DN 3.04E-12
TURASHVILI_ BREAST _LOBULAR_CARCINOMA _VS DUCTAL_NORMAL_DN | 9.32E-12
CROMER_TUMORIGENESIS_UP 1.26E-11
TURASHVILI_ BREAST _LOBULAR_CARCINOMA _VS_LOBULAR_NORMAL_UP | 1.52E-11
DOANE_BREAST_CANCER_ESR1_UP 1.52E-11
LIEN_BREAST_CARCINOMA _METAPLASTIC_VS_DUCTAL_DN 2.28E-11
SABATES_COLORECTAL_ADENOMA_DN 3.70E-09
JAEGER_METASTASIS_DN 4.31E-09
WALLACE_PROSTATE_CANCER_RACE_UP 4.46E-09
ANASTASSIOU_MULTICANCER_INVASIVENESS _SIGNATURE 4.68E-09
KORKOLA_TERATOMA 7.24E-09

Additional files
Additional file 1: the list of the TCGA IDs of 113 breast tumors and 113 normal tissue samples.

Additional file 2: the list of 268 genes that are involved in at least one changed network edges identified from
the gene expression data of breast tumor and normal tissues.

Additional file 3: the list of 78 MSigDB C2 gene sets that are significantly enriched in the gene sets in
Additional file 2.
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