

1 Full Title: Designer *Sinorhizobium meliloti* strains and multi-functional vectors for direct
2 inter-kingdom transfer of high G+C content DNA

3

4 Short Title: Designer *Sinorhizobium meliloti* strains enable inter-kingdom DNA transfer

5

6 Stephanie L. Brumwell¹, Michael R. MacLeod², Tony Huang¹, Ryan Cochrane¹, Rebecca S.
7 Meaney³, Maryam Zamani², Ola Matysiakiewicz⁴, Preetam Janakirama³, David R. Edgell¹,
8 Trevor C. Charles⁴, Turlough M. Finan², Bogumil J. Karas^{1,3*}

9

10 ¹Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University,
11 London, ON, Canada

12 ²Department of Biology, McMaster University, Hamilton, ON, Canada

13 ³Designer Microbes Inc., London, ON, Canada

14 ⁴Department of Biology, University of Waterloo, Waterloo, ON, Canada

15

16 *Corresponding author

17 E-mail: bkaras@uwo.ca (BJK)

18

19 Author Contributions

20 T.C.C., T.M.F and B.J.K. conceived the project and assisted in design. S.L.B., M.M., T.H., R.C.,
21 R.M., M.Z., O.M., P.J., T.M.F and B.J.K. performed the experiments. S.L.B., P.J., D.R.E.,
22 T.C.C., T.M.F and B.J.K. conducted data analysis and interpretation. S.L.B., D.R.E., T.C.C.,
23 T.M.F. and B.J.K. wrote the manuscript.

24 **Abstract**

25 Storage and manipulation of large DNA fragments is crucial for synthetic biology applications,
26 yet DNA with high G+C content can be unstable in many host organisms. Here, we report the
27 development of *Sinorhizobium meliloti* as a new universal host that can store DNA, including high
28 G+C content, and mobilize DNA to *Escherichia coli*, *Saccharomyces cerevisiae*, and the
29 eukaryotic microalgae *Phaeodactylum tricornutum*. We deleted the *S. meliloti* *hsdR* restriction-
30 system to enable DNA transformation with up to 1.4×10^5 efficiency. Multi-host and multi-
31 functional shuttle vectors (MHS) were constructed and shown to stably replicate in *S. meliloti*, *E.*
32 *coli*, *S. cerevisiae*, and *P. tricornutum*, with a copy-number inducible *E. coli* origin for isolating
33 plasmid DNA. Crucially, we demonstrated that *S. meliloti* can act as a universal conjugative donor
34 for MHS plasmids with a cargo of at least 62 kb of G+C rich DNA derived from *Deinococcus*
35 *radiodurans*.

36

37 *Keywords:* *Sinorhizobium meliloti*, *intra- and inter-kingdom conjugation*, *genome engineering*,
38 *host strain*, *multi-host shuttle plasmids*

39

40 **Introduction**

41 The field of synthetic biology aims to utilize existing or novel biological parts and systems to
42 create organisms that can help address global problems including the increased demand for food,
43 fuel, therapeutics, and high value chemicals. However, one of a major obstacles in synthetic
44 biology is that many organisms of interest lack genetic tools such as autonomously replicating
45 plasmids, well characterized promoters/terminators, selective markers, genome-editing tools, and
46 protocols to uptake and install DNA [1,2]. This problem can be addressed by cloning whole

47 chromosomes or large DNA fragments of a donor genome in a surrogate host, where genetic tools
48 are in place and manipulations can be performed [3,4]. Currently, the most common host for the
49 capture and manipulation of DNA fragments is *Saccharomyces cerevisiae*, however returning
50 cloned or engineered fragments to destination cells is still challenging due to the lack of direct
51 transfer methods from *S. cerevisiae*, such as bacterial conjugation. In addition, *S. cerevisiae* cannot
52 maintain large DNA fragments with G+C content >40% without additional engineering [5–7], and
53 many industrially useful bacterial strains have a G+C content above this range. For example,
54 *Streptomyces* species have a G+C content >65% and are important for the production of antibiotics
55 (gentamicin, kanamycin, tetracycline, etc.) [8]. Therefore, it is desirable to develop a host to clone,
56 maintain, manipulate, and transfer large DNA fragments, including high G+C content, to bacterial
57 and eukaryotic host cells.

58

59 We selected *Sinorhizobium meliloti* as a host due to its high G+C content genome (62%), and
60 available origins of replication that could be used to maintain large DNA fragments [9]. *S. meliloti*
61 model strain Rm1021 has a multipartite genome including a chromosome (3.65 Mb), pSymA
62 megaplasmid (1.35 Mb), and pSymB chromid (1.68 Mb) [10]. Recently, a derivative of *S. meliloti*
63 with a minimal genome lacking the pSymA and pSymB replicons was developed, resulting in a
64 45% reduction of the genome [11]. Two essential genes were identified in the pSymB chromid,
65 *engA* and tRNA^{arg}, and these genes were transferred to the main chromosome [12]. Multiple
66 derivatives of *S. meliloti* now exist that vary in genome size, nutrient requirements and generation
67 time [11]. The replication origins of pSymA and pSymB were identified and characterized [13],
68 and can be used to generate designer replicating plasmids. Additionally, several genetic tools have
69 been developed for this species including vectors based on *repABC* origins taken from various α -

70 Proteobacteria that can be maintained and selected for in *S. meliloti* [14]. Three of these vectors
71 can be maintained within wildtype *S. meliloti* at one time, along with the endogenous pSymA and
72 pSymB replicons [14]. Utilizing these vectors, an *in vivo* cloning method with Cre/lox-mediated
73 translocation of large DNA fragments to the *repABC*-based vector was established [14]. Lastly, *S.*
74 *meliloti* is a Gram-negative α -Proteobacterium that has a symbiotic relationship with legume plants
75 and fixes nitrogen in root nodules, and therefore is of high importance in agriculture.

76

77 Here, we utilized the reduced genome strains of *S. meliloti* [11] to create designer strains with the
78 restriction-system removed and the conjugative pTA-Mob [15] plasmid installed. pTA-Mob,
79 which contains all of the genes needed for direct transfer via conjugation, can mobilize any plasmid
80 containing an origin of transfer (*oriT*). Previous studies have demonstrated DNA transfer methods
81 from *S. meliloti* through introduction of a Ti plasmid to plant species through mobilization of
82 TDNA [16]. In addition, *S. meliloti* has been used to move DNA via conjugation in tri-parental
83 matings [14].

84

85 In addition, we used identified origins from *S. meliloti* pSymA and pSymB replicons to create
86 multi-host shuttle (MHS) vectors (named pAGE1.0, 2.0, 3.0, and pBGE1.0, 2.0, 3.0) that replicate
87 in *S. meliloti*, *Escherichia coli* (by addition of a copy-number inducible bacterial artificial
88 chromosome vector), *S. cerevisiae* (by addition of a yeast artificial chromosome vector), and
89 *Phaeodactylum tricornutum* (by addition of a selective marker and yeast ARS). In addition, all
90 plasmids contain an origin of transfer (*oriT*) that is acted on by proteins encoded on the conjugative
91 plasmid, and is necessary for mobilization of the plasmid to the recipient cell [15,17]. The MHS
92 vectors were tested for replication and stability in *S. meliloti*. Additionally, we demonstrated the

93 ability to maintain large DNA fragments on these plasmids, using pAGE2.0 (18.5 kb) to clone a
94 complete 62 kb native plasmid from *Deinococcus radiodurans* (G+C content 57%) [18]. These
95 plasmids were moved into *S. meliloti* strains via an optimized electroporation protocol and via a
96 newly developed polyethylene glycol (PEG) method. Above all, we have developed protocols to
97 directly transfer the MHS plasmids via conjugation from *S. meliloti* to *E. coli*, *S. cerevisiae*, and
98 *P. tricornutum*.

99

100 **Results and Discussion**

101 **Development of designer bacterial strains**

102 To develop *S. meliloti* as a host we used the Δ pSymA strain that retained the pSymB chromid, as
103 this strain had the fastest doubling time when compared to the other reduced-genome strains [11].
104 First, the strains were engineered to remove the restriction-system (Δ hsdR) to allow for
105 development of more efficient transformation methods. Disruption or deletion of the *hsdR* gene
106 has been previously reported in the Rm1021 strain of *S. meliloti*, and deletion mutants were shown
107 to have enhanced transformation efficiencies [19,20]. In our reduced strains, the *hsdR* gene was
108 replaced by a FRT-Km/Nm-FRT cassette and the resulting Δ hsdR::Nm mutant allele was
109 transferred to various background strains via transduction of Nm^r. The FRT-Km/Nm-FRT cassette
110 was then removed by introducing an unstable plasmid (pTH2505) carrying the Flp recombinase,
111 followed by curing of this plasmid. The *hsdR* deletion strains were verified using diagnostic PCR
112 with primers upstream and downstream of the *hsdR* gene (S1 Fig). *S. meliloti* RmP4098 Δ pSymA
113 Δ hsdR, retaining the Km/Nm cassette, was transformed with the pTA-Mob plasmid [15] and used
114 as the conjugative donor strain for all subsequent experiments (Fig 1a). In addition, reduced *S.*
115 *meliloti* strains RmP3952 Δ pSymB Δ hsdR and RmP3909 Δ pSymAB Δ hsdR were developed using

116 the same method described above.

117

118 **Fig 1. Development of designer *S. meliloti* strains and multi-functional vectors.** (a) Schematic
119 showing the creation of the designer *S. meliloti* $\Delta p\text{SymA } \Delta hsdR$ strains including the genome
120 reduction and deletion of the restriction-system. Several versions of the designer strains are
121 available depending on the desired application including strains with the pTA-Mob conjugative
122 plasmid, and/or compatible genome engineering plasmids (pAGE or pBGE) installed. (b) Plasmid
123 map of pAGE/pBGE MHS vector with both standard and interchangeable components. Standard
124 components include the pCC1BAC-yeast backbone, an origin of transfer (*oriT*), and the selectable
125 marker for *P. tricornutum* nourseothricin N-acetyl transferase (Ntc). Interchangeable components
126 include selectable markers for *S. meliloti*: tetracycline (Tet), kanamycin/neomycin (Neo), and
127 spectinomycin (Spec); and origins of replication for *S. meliloti*: the pSymA origin (*repA2B2C2*),
128 and pSymB origin (*repA1B1C1*). Three vectors (pAGE1.0, pAGE2.0, and pAGE3.0) were
129 constructed utilizing the *repA2B2C2* origin with Spec, Tet or Neo selection, respectively. Three
130 vectors (pBGE1.0, pBGE2.0, and pBGE3.0) were constructed utilizing the *repA1B1C1* origin with
131 Spec, Tet or Neo selection, respectively. (c) Antibiotic selection test of three versions of pAGE
132 plasmids in *S. meliloti* RmP4122 $\Delta p\text{SymA } \Delta hsdR$ Nm^s. Antibiotic resistance includes Spec for
133 pAGE1.0, Tet for pAGE2.0, and Neo for pAGE3.0.

134

135 Additionally, a designer *E. coli* strain was developed to simplify the current method of conjugation
136 from *E. coli*. We used lambda red recombination to create an auxotrophic strain of *E. coli* Epi300,
137 named ECGE101, by deleting the *dapA* gene. This gene is required for synthesis of diaminopimelic
138 acid (DAP) [21], therefore ECGE101 requires DAP supplementation in the growth media and

139 provides a useful, antibiotic-free method for counter-selecting *E. coli* after conjugation to *S.*
140 *meliloti* or any other organism.

141

142 **Design, assembly and characterization of multi-host shuttle plasmids**

143 With the reduced, restriction-system minus strains of *S. meliloti* created, and the origins of
144 replications of the large megaplasmid and chromid (*repA1B1C1* and *repA2B2C2*) identified, multi-
145 host shuttle (MHS) plasmids were developed. Six MHS plasmids were constructed to allow for
146 stable replication and selection in *S. meliloti*, *E. coli*, *S. cerevisiae*, and *P. tricornutum*. These
147 organisms were chosen as they are well-characterized model strains for bacterial, yeast and algal
148 systems. These plasmids were constructed using a bacterial artificial chromosome (BAC) and yeast
149 artificial chromosome (YAC) backbone [17]. The MHS plasmids contain an origin of replication
150 captured from the native megaplasmid and chromid of *S. meliloti*, pSymA (*repA2B2C2*, added to
151 pAGE vectors) or pSymB (*repA1B1C1*, added to pBGE vectors). The YAC also allows replication
152 in *P. tricornutum* [17,22]. Selectable markers include spectinomycin (Sp), tetracycline (Tc), or
153 kanamycin/neomycin (Km/Nm) resistance for *S. meliloti* (but also conferring some resistance in
154 *E. coli*), nourseothricin N-acetyl transferase (Ntc) for *P. tricornutum*, HIS3 for *S. cerevisiae*, and
155 chloramphenicol (Cm) resistance for *E. coli*. Finally, the plasmids contain an origin of transfer
156 (*oriT*) that is necessary to allow for conjugation of these plasmids from *S. meliloti* to *E. coli*, *S.*
157 *cerevisiae*, and *P. tricornutum* using the pTA-Mob helper plasmid (Fig 1b). Three versions of the
158 pAGE vector differing only in the *S. meliloti* selective marker, pAGE1.0 (Sp), pAGE2.0 (Tc), and
159 pAGE3.0 (Km/Nm), were constructed with the pSymA origin (*repA2B2C2*). An additional three
160 pBGE vectors differing only in the *S. meliloti* selective marker, pBGE1.0 (Sp), pBGE2.0 (Tc), and
161 pBGE3.0 (Km/Nm), were constructed with the pSymB origin (*repA1B1C1*). Once assembled [23],

162 the plasmids were transformed into *E. coli* Epi300 (Epicentre) cells and a diagnostic digest was
163 performed to confirm the correct assembly of the vectors (S2 Fig). The three pAGE plasmids were
164 conjugated to *S. meliloti* RmP4122 Δ pSymA Δ hsdR Nm^s from *E. coli* ECGE101 conjugative
165 strains, and transconjugants were spot plated on their respective antibiotic selections. We
166 demonstrated plasmid replication of pAGE1.0, pAGE2.0, and pAGE3.0 in *S. meliloti* and their
167 ability to provide resistance to Sp, Tc, and Nm, respectively (Fig 1c). Following transformation of
168 pAGE2.0 into *S. meliloti* RmP4122 Δ pSymA Δ hsdR Nm^s, plasmid stability was tested by iterative
169 subculturing every 10 generations to a total of about 50 generations. We observed, on average, that
170 about 25% of plasmids were lost after 50 generations, as determined by the number of colonies
171 unable to grow on selective media (LBmc 38 μ M FeCl₃ 2 μ M CoCl₂ Tc 5 μ g/mL) after restreaking
172 from nonselective media (LBmc 38 μ M FeCl₃ 2 μ M CoCl₂) (S3 Fig, S1 Table).

173

174 **Optimization of DNA transfer to *S. meliloti* via electroporation, a new polyethylene glycol
175 transformation method and conjugation**

176 In order to develop *S. meliloti* as a host, a highly efficient transformation method is required for
177 the uptake of DNA. Currently, the most common transformation method used in *S. meliloti* is
178 electroporation. Optimization of this method through transformation of *S. meliloti* RmP4122
179 Δ pSymA Δ hsdR Nm^s with three pAGE plasmids (~18 kb) produced efficiencies averaging 1.4 x
180 10⁵ CFU μ g⁻¹ of DNA (Fig 2a). Additionally, since a PEG transformation method was successfully
181 applied to move large DNA fragments (>1 Mb) in the transplantation protocol required to create
182 the first synthetic cell [24], we developed a PEG transformation method in *S. meliloti* and were
183 able to obtain efficiencies on average of 2.1 x 10³ CFU μ g⁻¹ of DNA (Fig 2b, S4 Fig). In addition,
184 conjugation has been previously established as a method of DNA transfer to *S. meliloti* [20,25],

185 therefore we have developed an improved conjugation protocol from our conjugative *E. coli*
186 ECGE101 strain carrying the pTA-Mob and pAGE1.0 plasmids. Using this method we obtained a
187 conjugation efficiency averaging 4 transconjugants per every 10 recipient cells (S2 Table).

188

189 **Fig 2. Workflow of optimized transformation protocols.** (a) Preparation of competent cells for
190 *S. meliloti* and electroporation protocol. (b) Preparation of competent cells for *S. meliloti* and
191 PEG-mediated transformation protocol.

192

193 **Direct DNA transfer (via conjugation) from *S. meliloti* to *E. coli*, *S. cerevisiae* and *P.*
194 *tricornutum***

195

196 We utilized the designer *S. meliloti* RmP4098 Δ pSymA Δ hsdR host strain carrying the pTA-Mob
197 conjugative plasmid and pAGE1.0 compatible genome engineering plasmid to develop direct
198 DNA transfer of pAGE1.0 (via conjugation) from *S. meliloti* to *E. coli*, *S. cerevisiae*, and *P.*
199 *tricornutum* (Fig 3a-c,e). The ~18 kb pAGE1.0 plasmid contains the pSymA origin (*repA2B2C2*)
200 and the spectinomycin selectable marker for *S. meliloti*. Conjugation efficiencies from the *S.*
201 *meliloti* conjugative donor to *E. coli*, *S. cerevisiae*, and *P. tricornutum* are 2.22×10^{-1} , 7.99×10^{-6}
202 and 9.40×10^{-5} , respectively. After optimization, all conjugation experiments yielded a useable
203 number of colonies (>20 per selective plate) for downstream applications (Fig 4). Additionally,
204 we have developed a high throughput 96-well protocol that can be used for large-scale experiments
205 and in an automated facility (Fig 3de). This is a critical step in the development of *S. meliloti* as a
206 robust host for genome engineering and will facilitate its use in synthetic biology applications.

207

208 **Fig 3. Optimized conjugation protocols from *S. meliloti* RmP4098 host strain to various**
209 **recipient organisms.** (a) Schematic of protocol for conjugation of pAGE1.0 from *S. meliloti* to *E.*
210 *coli*. (b) Schematic of protocol for conjugation of pAGE1.0 plasmid from *S. meliloti* to *S.*
211 *cerevisiae*. (c) Schematic of protocol for conjugation of pAGE1.0 plasmid from *S. meliloti* to *P.*
212 *tricornutum* – standard protocol. (d) Schematic of protocol for conjugation of pAGE1.0 plasmid
213 from *S. meliloti* to *P. tricornutum* – 96-well plate protocol. (e) Examples of plates containing final
214 colonies that result from conjugation from *S. meliloti* to *E. coli*, *S. cerevisiae*, and *P. tricornutum*
215 (standard or in a 96-well plate).

216

217 **Fig 4. Summary of transconjugant counts and conjugation efficiency using *S. meliloti* as a**
218 **donor to *E. coli*, *S. cerevisiae*, and *P. tricornutum*.** (a) Number of transconjugants for each donor-
219 recipient pair per experimental plate. The amount of conjugation mixture and ratio or donor to
220 recipient per plate varies based on the different conjugation protocols. (b) Conjugation efficiency
221 for each donor-recipient pair. Post-conjugation non-selective plates and pAGE selective plates
222 were used to determine the conjugation efficiency (recorded as transconjugants/recipient) between
223 each donor and recipient pair. Data is shown as bar plots with three biological and three technical
224 replicates with error bars illustrating standard error of the mean.

225

226 Next, we evaluated the pAGE1.0 plasmids for DNA rearrangements and potential mutations that
227 could have been introduced during conjugation from *S. meliloti* to *E. coli*, *S. cerevisiae* and *P.*
228 *tricornutum*. In the first case, *E. coli* transconjugant plasmids were induced with 0.1% arabinose
229 to obtain high copy number and directly isolated from *E. coli*. Plasmids from *S. cerevisiae* and *P.*
230 *tricornutum* transconjugants were isolated and transformed into *E. coli*, then induced and once

231 again isolated to obtain high quality DNA (pAGE1.0 replicates as a low-copy plasmid in *S.*
232 *cerevisiae* and in *P. tricornutum* and it cannot be induced with arabinose to obtain high copy
233 number within these species). Sixty exconjugants from each donor-recipient pair were selected
234 and transformed to *E. coli*. DNA isolated from 59/60 *S. cerevisiae* colonies and 58/60 *P.*
235 *tricornutum* colonies produced *E. coli* colonies (S4 Table). Then, 20 *E. coli* transformants (each
236 transformed with DNA from independent *S. cerevisiae* colonies) and 30 *E. coli* transformants (each
237 transformed with DNA from independent *P. tricornutum* colonies) were selected, induced with
238 0.1% arabinose, and the plasmid DNA was isolated. Diagnostic digests were performed on these
239 plasmids with EcoRV-HF, and the number of plasmids with the expected banding pattern for *E.*
240 *coli* was 18/20, *S. cerevisiae* 19/20 and *P. tricornutum* 16/30. (S5-S7 Figs) (S4 Table). Therefore,
241 we can observe that correct pAGE1.0 plasmids can be rescued when conjugated from *S. meliloti*
242 90% of time in *E. coli*, 93% of the time in *S. cerevisiae*, and 52% of the time in *P. tricornutum*.
243

244 **Cloning of large high G+C content DNA fragment**

245 With our MHS plasmids generated and protocols for direct transfer from *S. meliloti* in place, we
246 were able to demonstrate the ability for our MHS plasmids to maintain large, high G+C content
247 DNA in *S. meliloti*. *D. radiodurans* is an extremophile with a sequenced genome (G+C content
248 67%) and has many interesting characteristics including resistance to ionizing radiation and
249 enhanced DNA-damage repair mechanisms [26]. We cloned the large 62 kb plasmid (CP1) (G+C
250 content 57%) native to *D. radiodurans* R1 into pAGE2.0 that was transformed into *E. coli* and *S.*
251 *meliloti* (Fig 5a). Diagnostic multiplex PCR and diagnostic digests using ApaI and ScaI were
252 performed on *E. coli* and *S. meliloti* extracted DNA to verify the capture of the 62 kb *D.*
253 *radiodurans* CP1 plasmid (Fig 5bc).

254 **Fig 5. Cloning of 62 kb Plasmid II from *D. radiodurans* genome.** (a) Schematic illustrating the
255 strategy to clone the 62 kb *D. radiodurans* native plasmid into the pAGE2.0 plasmid. (b)
256 Diagnostic MPX PCR of 62 kb *D. radiodurans* Plasmid II cloned into the pAGE2.0 plasmid after
257 transformation into *E. coli* and *S. meliloti*. L, NEB 2-log ladder. E, pAGE2.0-DradPII extracted
258 from *E. coli* Epi300. S1, S2, S3, pAGE2.0-DradPII extracted from *E. coli* after transformation
259 from *S. meliloti* extracted DNA. D, *D. radiodurans* genomic DNA. -, no DNA negative control.
260 (c) Diagnostic digest of 62 kb *D. radiodurans* Plasmid II cloned on the pAGE2.0 plasmid with
261 ApaI and ScaI after transformation into *E. coli* and *S. meliloti*. L, NEB 2-log ladder. E, pAGE2.0-
262 DradPII extracted from *E. coli* Epi300. S1, S2, S3, pAGE2.0-DradPII extracted from *E. coli* after
263 transformation from DNA from three *S. meliloti* clones.

264
265 In summary, MHS plasmids were developed and shown to be stably maintained in *S. meliloti*, *E.*
266 *coli*, *S. cerevisiae*, and *P. tricornutum*. These multi-host and multi-functional plasmids have
267 promising applications for the cloning of large, high G+C content DNA fragments and their direct
268 transfer to target organisms, as shown by the cloning of a 62 kb plasmid from *D. radiodurans*. As
269 well, the pAGE/pBGE plasmids can be tailored for transfer to a target organism of interest, by
270 including an origin of replication and selectable marker compatible with that organism.
271 Conjugation from *S. meliloti* to *E. coli*, *S. cerevisiae*, and *P. tricornutum*, as well as showing *S.*
272 *meliloti* as a conjugative recipient, illustrates that *S. meliloti* can be a suitable host organism for
273 transfer of DNA with many model organisms, some of which are already used as host organisms.
274 As well, 96-well plate conjugation from *S. meliloti* to *P. tricornutum* is promising for the future
275 automation of these protocols. Due to the range of target organisms, it is possible that other target
276 organisms can be added in the future, and the direct conjugative transfer from the *S. meliloti* host

277 could contribute greatly to the field of constructing and installing synthetic chromosomes. These
278 hosts will be invaluable for the cloning and installation of genes or large biosynthetic pathways,
279 the study of organisms lacking genetic tools, and specifically for applications in industrially and
280 agriculturally important strains (plants, marine organisms, soil microbiomes, etc.).

281

282 **Materials and Methods**

283 **Microbial strains and growth conditions**

284 *Sinorhizobium meliloti* strains was grown at 30°C in LBmc supplemented with appropriate
285 antibiotics (streptomycin (100 µg mL⁻¹), spectinomycin (200 µg mL⁻¹), gentamicin (40 µg mL⁻¹),
286 tetracycline (5 µg mL⁻¹), neomycin (100 µg mL⁻¹), and 38 µM FeCl₃ and/or 2 µM CoCl₂, when
287 appropriate.

288 *Saccharomyces cerevisiae* VL6–48 (ATCC MYA-3666: MAT α his3-Δ200 trp1-Δ1 ura3-52 lys2
289 ade2-1 met14 cir⁰) was grown at 30°C in rich medium (2X YPD) or yeast synthetic complete
290 medium lacking histidine supplemented with adenine (Teknova, Inc.) [27].

291 *Escherichia coli* (Epi300, Epicenter) was grown at 37°C in Luria Broth (LB) supplemented with
292 appropriate antibiotics (chloramphenicol (15 µg mL⁻¹)). *Escherichia coli* (ECGE101) was grown
293 at 37°C in Luria Broth (LB) supplemented with appropriate antibiotics (chloramphenicol (15 µg
294 mL⁻¹), gentamicin (20 µg mL⁻¹)), and diaminopimelic acid (60 µg mL⁻¹).

295 *Phaeodactylum tricornutum* (Culture Collection of Algae and Protozoa CCAP 1055/1) was grown
296 in L1 medium without silica at 18 °C under cool white fluorescent lights (75 µE m⁻² s⁻¹) and a
297 photoperiod of 16 h light:8 h dark. Media was prepared as previously described [28].

298 *Deinococcus radiodurans* (R1) was grown at 30°C in TGY media.

299

300 **Development of $\Delta hsdR$ *S. meliloti* strains**

301 Designer *S. meliloti* strains used in this study were created by taking the strain RmP3500, which
302 lacks pSymA and pSymB where the *engA-tRNA^{Arg}-rmlC* genomic region has been introduced into
303 the chromosome [29] and re-introducing either pSymA or pSymB or both. Specifically, RmP4098,
304 was made by re-introducing pSymB from RmP3491 into the strain RmP3910, which is derived
305 from RmP3500, to create the strain RmP3950. From there, a Nm resistance cassette from strain
306 RmP3975 was transduced into strain RmP3950. Double homologous recombination of the Nm
307 cassette from RmP3975 into the genome of RmP3950 was selected on Nm Sm plates. The resulting
308 strain, RmP4098, is Δ pSymA pSymB+ *hsdR*::Nm, Nm^R Sm^R.

309

310 RmP3975 is a strain where the *hsdR* restriction gene has been replaced by a Nm resistance cassette.
311 This strain was created by first PCR amplifying a downstream region and upstream region of the
312 *hsdR* gene and cloning these PCR products into the *XbaI* site of pUCP30T using SLiC [30], then
313 transforming into chemically competent DH5 α . This construct was then verified via sequencing
314 using M13 universal primers. The pUCP30T plasmid (Gm^R) with the *hsdR* upstream/downstream
315 regions was then transformed into an *E. coli* strain harboring pKD46 (Amp^R) which includes genes
316 for lambda red recombinase, the resulting strain was named M2453. A Km/Nm cassette for *hsdR*
317 deletion was then PCR amplified using high-fidelity DNA polymerase and purified. The cassette
318 consisted of the antibiotic resistance gene flanked by regions of homology to the *hsdR* regions
319 cloned into pUCP30T. The cassette was then electroporated into competent M2453 cells (grown
320 in 1mM Arabinose to induce lambda red recombinase genes) and selected using Km (25 μ g mL⁻¹).
321 Cells were then patched on Km (25 μ g mL⁻¹), Gm (10 μ g mL⁻¹) and Amp (100 μ g mL⁻¹). A
322 Km^R, Gm^R, and Amp^S strain was then streak purified and named M2459. The resulting plasmid

323 was then conjugated into RmP110 as recipient and M2459 as donor. Selection was done in Sm
324 (200 μ g mL⁻¹) Nm (200 μ g mL⁻¹) plates. Resulting transconjugants were then patched on Gm (10
325 μ g mL⁻¹), (Nm 200 μ g mL⁻¹) and Sm (200 μ g mL⁻¹) plates and a Gm sensitive colony was streak
326 purified (indicating double recombination of cassette with *hsdR* locus). The strain was then
327 verified using diagnostic primers that spanned the *hsdR* upstream/downstream region with the
328 Km/Nm cassette.

329

330 The Nm resistance cassette was then able to be transduced into the *S. meliloti* strains containing
331 various combinations of pSymA and pSymB and selecting for Nm resistance. The Nm resistance
332 cassette was then excised by introducing Flp recombinase to flip out the cassette using flanking
333 FRT sites. The resulting strains are RmP4258 (pSymA- pSymB- Δ *hsdR*), RmP4260 (pSymA+
334 pSymB- Δ *hsdR*), RmP4124 (pSymA- pSymB+ Δ *hsdR*), and RmP4125 (pSymA+ pSymB+
335 Δ *hsdR*).

336

337 **Development of *E. coli* ECGE101 Δ *dapA* strain**

338 The *dapA* gene replacement with lambda pir and an erythromycin cassette from strain β DH10B
339 was replicated in Epi300, resulting in a strain containing *trfA* and requirement of diaminopimelic
340 acid (DAP) supplementation for growth. This is useful because it allows for replication of plasmids
341 with RK2 oriV and makes it a convenient donor in biparental conjugation because the DAP
342 requirement eliminates the need for antibiotic counter-selection. A lambda red recombinase
343 plasmid (pKD46) was electroporated into Epi300, because Epi300 is recA-. The *dapA* region from
344 β DH10B was amplified using the flanking primers DAP1 and DAP2. The fragment was
345 electroporated into *E. coli* Epi300 containing pKD46 and transformants were selected on LB with

346 DAP (60 $\mu\text{g mL}^{-1}$) and erythromycin (200 $\mu\text{g mL}^{-1}$), and inability to grow in the absence of DAP
347 was confirmed. Such transformants were cured of pKD46 by growing at 37°C and confirming
348 ampicillin (100 $\mu\text{g mL}^{-1}$) sensitivity.

349

350 **Plasmid construction (pAGE/pBGE multi-host shuttle plasmids)**

351 Briefly, pAGE and pBGE plasmids were constructed based on the pCC1BAC vector to which
352 elements for replication in yeast were added. This backbone was amplified from plasmid p0521s
353 (created at Venter institute and available on Addgene). This will allow replication and selection in
354 yeast and *E. coli*. Additionally, it is low copy plasmid that can be induced to high copy with
355 arabinose. Other components amplified for plasmid assembly include the antibiotic resistance
356 cassettes for selection in *S. meliloti*, *repA2B2C2* or *repA1B1C1* for replication in *S. meliloti*, origin
357 of transfer (*oriT*) for conjugation, and selective marker for algae (Ntc). The six fragments were
358 PCR amplified and assembled in yeast using a yeast spheroplast transformation method. Next,
359 DNA was isolated from yeast and moved to *E. coli* strain PG5alpha and genotyped using a
360 multiplex PCR screen. Correct plasmids were moved from PG5alpha to Epi300 and Epi300 pTA-
361 Mob. Diagnostic digests were performed to confirm correct assembly of plasmids.

362

363 **Plasmid stability assay of pAGE2.0**

364 To characterize the ability of the $\Delta hsdR$ strains to maintain these large pAGE plasmids, stability
365 assays were performed to determine how long pAGE2.0 can be maintained in RmP4122
366 $\Delta p\text{SymA}\Delta hsdRNm^s$. This was performed in triplicate. Single colonies harboring pAGE2.0 were
367 inoculated into LBmc FeCl₃ + CoCl₂ with Tc (5 $\mu\text{g mL}^{-1}$) at 30°C. The next day, 100uL of culture
368 diluted to 10⁻⁶ was plated on LBmc FeCl₃ + CoCl₂ and grown 3 days at 30°C. Cultures were

369 subcultured 1000X in LBmc FeCl_3 + CoCl_2 without antibiotics and grown overnight.
370 Approximately 10 doublings occurred per day. The next day, cultures were diluted to 10^{-6} and
371 again 100 μL was plated on LBmc FeCl_3 + CoCl_2 . Cultures were subcultured again as before. When
372 visible, 100 colonies were patched onto LBmc FeCl_3 + CoCl_2 with Tc (5 $\mu\text{g mL}^{-1}$) and without Tc
373 as a control to ensure colony viability. These plates were incubated at 30°C for 3 days. The number
374 of patched colonies that were able to grow on selective media was then recorded. The experiment
375 was performed for 5 days to assess stability of pAGE2.0.

376

377 **Electroporation of *S. meliloti***

378 **Preparation of competent *S. meliloti* cells for electroporation**

379 Grow 500 mL of *S. meliloti* overnight in LBmc, 38 μM FeCl_3 , and streptomycin 100 $\mu\text{g mL}^{-1}$ at
380 30 °C with shaking incubation to an OD_{600} of 2.0. Incubate flask on ice for 10 min then pellet at
381 6000 x g at 4°C for 10 min. Resuspend cells in 250 mL of sddH₂O by gentle agitation in a water
382 bath, top up volume to 500 mL, then pellet with the same conditions. Repeat this wash step with
383 sddH₂O two additional times, and then repeat once more with the same volume of 10% glycerol.
384 Resuspend the pellet in 3 mL of 10% glycerol, flash freeze 200 μL aliquots and store at -80 °C.

385

386 **Electroporation of *S. meliloti***

387 Incubate frozen cells on ice until fully thawed (about 15 min). Add 50 ng of DNA to 50 μL of
388 competent cells in a 1.5 mL Eppendorf tube on ice, flick to mix, and incubate on ice for 5 min.
389 Add transformation mixture to a 0.1 mm path length cuvette on ice and electroporate at 1.8 kV.
390 Immediately add 1 mL LBmc 38 μM FeCl_3 and recover in a test tube at 30°C with shaking
391 incubation (225rpm) for 120 min. Spread 500 μL of the transformation mixture on LBmc plates

392 containing 38 μM FeCl_3 , 100 $\mu\text{g mL}^{-1}$ streptomycin, and an appropriate concentration of antibiotic
393 selection based on the transformed DNA. Incubate plates at 30°C for 3 days to allow for colony
394 formation.

395

396 **PEG-mediated transformation of *S. meliloti***

397 **Preparation of competent *S. meliloti* cells for PEG-mediated transformation**

398 *S. meliloti* cells were cultured overnight in LBmc, 38 μM FeCl_3 , and 100 $\mu\text{g mL}^{-1}$ streptomycin at
399 30 °C with shaking incubation (225rpm). Upon reaching $\text{OD}_{600} = 0.4$, cells were harvested into
400 sterile 500 mL centrifuge bottles, incubated on ice for 10 minutes, and pelleted at 4000 x g and
401 4°C for 10 minutes. Cells were then resuspended in 100 mL of ice-cold 100 mM CaCl_2 by gentle
402 pipetting and incubated on ice for an additional 30 minutes. Following incubation, cells were
403 pelleted again at 4000 x g and 4°C for 10 minutes and resuspended in 1.25 mL of ice-cold 100
404 mM CaCl_2 + 15% glycerol. The final resuspension volume was split into 25 μL aliquots, flash
405 frozen using liquid nitrogen, and stored at -80°C for later use.

406

407 **PEG-mediated transformation of *S. meliloti***

408 Frozen cells (25 μL aliquots) were incubated on ice until fully thawed. 200 ng of supercoiled
409 pAGE DNA and 25 μL of 10% PEG 4000 were then added to the reaction tube and mixed evenly
410 by gentle pipetting. Cells were then incubated on ice for 30 minutes, transferred to a 40°C water
411 bath for 8 minutes, and immediately placed back on ice for 10 minutes. Following, 500 μL of
412 LBmc, 38 μM FeCl_3 was added to the reaction tube and cells were recovered at 30°C with shaking
413 incubation (225rpm) for 90 minutes. Following recovery, 250 μL of the transformation mixture
414 were spread on LBmc plates containing 38 μM FeCl_3 , 100 $\mu\text{g mL}^{-1}$ streptomycin, and an

415 appropriate concentration of antibiotic selection. Plates were incubated at 30°C for 3 days to allow
416 for colony formation.

417

418 **Transfer of DNA from *E. coli* to *S. meliloti* via conjugation**

419 **Preparation of *S. meliloti* (RmP4122) cells**

420 An overnight culture ($OD_{600}=2.0$) in LBmc, 38 μ M FeCl₃, streptomycin 100 μ g mL⁻¹ was diluted
421 20x to make 20 mL culture and grown 6 hours shaking at 30°C in LBmc supplemented with
422 streptomycin 100 μ g mL⁻¹ and Fe to OD_{600} of 0.9. The culture was diluted 2000X and grown with
423 shaking at 30°C in 50 mL LBmc supplemented with streptomycin 100 μ g mL⁻¹ and Fe to OD_{600}
424 of 0.6. The culture was centrifuged for 10 min at 6,000 x g at 4°C and resuspended in 300 μ L of
425 LBmc media.

426

427 **Preparation of *E. coli* (ECGE 101 pTA-Mob pAGE1.0) cells**

428 Saturated overnight culture of *E. coli* was diluted 20X into 50 mL LB supplemented with
429 diaminopimelic acid 60 μ g mL⁻¹, chloramphenicol 15 μ g mL⁻¹, and gentamicin 20 μ g mL⁻¹ and
430 grown with shaking at 37°C to OD_{600} of 0.6. The culture was centrifuged for 10 min at 6,000 x g
431 at 4°C and resuspended in 300 μ L of LBmc media.

432

433 **Conjugation from *E. coli* to *S. meliloti***

434 50 μ L of *E. coli* cells and 50 μ L of *S. meliloti* cells were mixed directly on LBmc plates
435 supplemented with 38 μ M FeCl₃ and diaminopimelic acid 60 μ g mL⁻¹ and incubated for 180
436 minutes at 30°C. 1 mL of LBmc media was added to plates, cells were scraped, and 100 μ L (from
437 a dilution series of 10⁻³ to 10⁻⁹) was plated on LBmc plates supplemented with Fe, streptomycin

438 100 $\mu\text{g mL}^{-1}$, and spectinomycin 200 $\mu\text{g mL}^{-1}$ (Note: plates should be at least 35 mL thick). Plates
439 were incubated at 30°C for 3 days before colonies are counted.

440

441 **Transfer of DNA from *S. meliloti* to *E. coli* via conjugation**

442 **Preparation of *S. meliloti* (RmP4098 pTA-Mob pAGE1.0) cells**

443 Stock culture ($\text{OD}_{600}=2.0$) was diluted 20X to make 20 mL culture and grown 6 hours shaking at
444 30°C in LBmc supplemented with streptomycin 100 $\mu\text{g mL}^{-1}$ spectinomycin 200 $\mu\text{g mL}^{-1}$,
445 gentamicin 40 $\mu\text{g mL}^{-1}$ and Fe to OD_{600} of 0.3. The culture was diluted 500X and grown with
446 shaking at 30°C in 50 mL LBmc supplemented with streptomycin 100 $\mu\text{g mL}^{-1}$, spectinomycin
447 200 $\mu\text{g mL}^{-1}$, gentamicin 40 $\mu\text{g mL}^{-1}$ to OD_{600} of 0.6. The culture was centrifuged for 10 min at
448 6,000 x g at 4°C and resuspended in 300 μL of LBmc media.

449

450 **Preparation of *E. coli* (Epi300) cells**

451 Saturated overnight culture of *E. coli* was diluted 20X into 50 mL LB and grown with shaking at
452 37°C to OD_{600} of 0.6. The culture was centrifuged for 10 min at 6,000 x g at 4°C and resuspended
453 in 300 μL of LBmc media.

454

455 **Conjugation from *S. meliloti* to *E. coli***

456 50 μL of *E. coli* cells and 50 μL of *S. meliloti* cells were mixed directly on LBmc plates
457 supplemented with Fe and incubated for 180 minutes at 30°C. 1 mL of LBmc media was added to
458 plates, cells were scraped, and 100 μL (from a dilution series of 10^{-3} to 10^{-9}) was plated on LB
459 plates supplemented with chloramphenicol 15 $\mu\text{g mL}^{-1}$. Plates were incubated at 37°C for 16 hours
460 before colonies are counted.

461 **Transfer of DNA from *S. meliloti* to *S. cerevisiae* via conjugation**

462 **Preparation of *S. meliloti* (RmP4098 pTA-Mob pAGE1.0) cells**

463 Stock culture ($OD_{600}=2.0$) was diluted 20x to make 20 mL culture and grown 6 hours shaking at
464 30°C in LBmc supplemented with streptomycin 100 μ g mL $^{-1}$, spectinomycin 200 μ g mL $^{-1}$,
465 gentamicin 40 μ g mL $^{-1}$ and 38 μ M FeCl $_3$ to OD_{600} of 0.3. The culture was diluted and grown with
466 shaking at 30°C in 120 mL LBmc supplemented with streptomycin 100 μ g mL $^{-1}$, spectinomycin
467 200 μ g mL $^{-1}$, gentamicin 40 μ g mL $^{-1}$, acetosyringone 100 μ g mL $^{-1}$ to OD_{600} of 2.0 (add arabinose
468 100 μ g mL $^{-1}$ to the growing culture 1 hour before the target OD is reached). The culture was
469 centrifuged for 10 min at 6,000 x g at 4°C and resuspended in 1.5 mL of LBmc media.

470

471 **Preparation of *S. cerevisiae* (VL6-48) cells**

472 100 mL of liquid grown culture was grown with shaking at 30°C in 2X YPAD media to OD_{600} of
473 2.5. The culture was centrifuged for 10 min at 5,000 x g and resuspended in 1 ml of H $_2$ O.

474

475 **Conjugation from *S. meliloti* to *S. cerevisiae***

476 200 μ L of *S. cerevisiae* cells and 250 μ L of *S. meliloti* was directly mixed on a 2% -HIS plate
477 supplemented with 10% LBmc, 38 μ M FeCl $_3$ and acetosyringone 100 μ g mL $^{-1}$ (Note: plates were
478 dried out in the hood for 1 hour prior to conjugation). Then plates were incubated for 180 minutes
479 at 30°C. Then, 2 mL of sddH $_2$ O was added to plates and cells were scraped. 100 μ L of the scraped
480 cells was plated on 2% -HIS plates supplemented with ampicillin 100 μ g mL $^{-1}$. Plates were
481 incubated at 30°C where colonies start to appear after 2-3 and colonies are counted after 5 days.

482

483 **Transfer of DNA from *S. meliloti* to *P. tricornutum* via conjugation**

484 **Preparation of *P. tricornutum* cells**

485 250 μ L of liquid grown culture was adjusted to 1.0 x 10^8 cells mL^{-1} using counts from a
486 hemocytometer, was plated on $\frac{1}{2}$ L1 1% agar plates and grown for 4 days. 1 mL of L1 media was
487 added to the plate and cells were scraped, counted using a hemocytometer, and adjusted to a
488 concentration of 1 x 10^9 cells mL^{-1} .

489

490 **Preparation of *S. meliloti* (strain A-R-, pAGE1.0, pTA-Mob) cells**

491 Stock culture ($\text{OD}_{600}=2.0$) was diluted 20x to make 20 mL culture and grown 6 hours shaking at
492 30°C in LBmc supplemented with spectinomycin 200 $\mu\text{g mL}^{-1}$, gentamicin 40 $\mu\text{g mL}^{-1}$ and Fe to
493 OD_{600} of 0.3. The culture was diluted 25X and grown for 12 hours with shaking at 30°C in 50 mL
494 LBmc supplemented with spectinomycin 200 $\mu\text{g mL}^{-1}$, gentamicin 40 $\mu\text{g mL}^{-1}$ to OD_{600} of 0.6.
495 The culture was centrifuged for 10 min at 5,000 x g at 4°C and resuspended in 500 μL of LBmc
496 media.

497

498 **Conjugation from *S. meliloti* to *P. tricornutum***

499 200 μL of *P. tricornutum* cells and 200 μL of *S. meliloti* cells were mixed directly on $\frac{1}{2}$ L1 10%
500 LBmc 1% agar plates (Note: plates are dried in the biosafety cabinet for one hour before
501 conjugation) and incubated for 180 minutes at 30°C in the dark, then moved to 18°C in the light
502 and grown for 2 days. After two days, 2 mL of L1 media was added to plates, cells were scraped,
503 and 100 μL (5%) was plated on $\frac{1}{4}$ L1 1% agar plates supplemented with nourseothricin 100 μg
504 mL^{-1} , and ampicillin 100 $\mu\text{g mL}^{-1}$ (Note: plates should be at least 35 mL thick). Plates were
505 incubated at 18°C in the light/dark cycle and colonies start to appear after 7 days and are allowed
506 to develop to 14 days before colonies are counted.

507 **Transfer of DNA from *S. meliloti* to *P. tricornutum* via conjugation in a 96-well plate**

508 **Preparation of *P. tricornutum* cells**

509 200 μ L of liquid grown culture was diluted using counts from a hemocytometer, and grown in
510 $\frac{1}{2}$ L1 media for 4 days. Cell counts from a hemocytometer were used and culture was pelleted at
511 4000 x g 10 min 4°C, and adjusted to a concentration of 1×10^9 cells mL $^{-1}$.

512

513 **Preparation of *S. meliloti* (strain A-R-, pAGE1.0, pTA-Mob) cells**

514 Stock culture ($OD_{600}=2.0$) was diluted 20x to make 20 mL culture and grown 6 hours shaking at
515 30°C in LBmc supplemented with spectinomycin 200 μ g mL $^{-1}$, gentamicin 40 μ g mL $^{-1}$ and Fe to
516 OD_{600} of 0.3. The culture was diluted 25X and grown for 12 hours with shaking at 30°C in 50 mL
517 LBmc supplemented with spectinomycin 200 μ g mL $^{-1}$, gentamicin 40 μ g mL $^{-1}$ to OD_{600} of 0.6.
518 The culture was centrifuged for 10 min at 5,000 x g at 4°C and resuspended in 500 μ L of LBmc
519 media.

520

521 **Conjugation from *S. meliloti* to *P. tricornutum***

522 5 μ L of *P. tricornutum* cells and 5 μ L of *S. meliloti* cells were mixed together in a 96-well plate.
523 The mixture (10 μ L) was transferred to a 96-well plate containing 200 μ L of $\frac{1}{2}$ L1 10% LBmc 1%
524 agar (note: plates are dried in the biosafety cabinet for one hour before conjugation). This
525 conjugation plate was incubated for 180 minutes at 30°C in the dark, then moved to 18°C in the
526 light and grown for 2 days. After two days, 100 μ L of L1 media was added to wells and cells were
527 scraped (X2), and 10 μ L (5%) was plated on $\frac{1}{4}$ L1 1% agar supplemented with nourseothricin 100
528 μ g mL $^{-1}$, and ampicillin 100 μ g mL $^{-1}$ in a 96-well plate. Plates were incubated at 25°C in the
529 light/dark cycle for 24 hours and then 18°C in the light/dark cycle for an additional 24 hours.

530 Colonies start to appear after 7 days and are allowed to develop up to 14 days before colonies are
531 counted.

532

533 **Plasmid DNA isolation**

534 Plasmid DNA (<60 kb) was isolated from *E. coli* using the BioBasic EZ-10 miniprep kit. Plasmid
535 DNA was isolated from all other species using a modified alkaline lysis protocol. Plasmid DNA
536 was isolated from all other species and *E. coli* containing plasmids >60 kb using the modified
537 alkaline lysis protocol described below. Steps 1–3 are variable depending on the species, while
538 steps 4–10 are common for all species. Steps 1–3 for *E. coli* and *S. meliloti*. (1) Five mL cultures
539 were grown to saturation overnight. (2) Cells were pelleted at 5000 x g for 10 min at 4°C, and the
540 supernatant was discarded. (3) Cells were resuspended in 250 uL of resuspension buffer (which
541 contained 240 ml P1 (Qiagen), 5 ml of 1.4 M b-Mercaptoethanol and 5 ml Zymolyase solution
542 (Zymolyase solution: 200 mg Zymolyase 20 T (USB), 9 ml H2O, 1 ml 1 M Tris pH7.5, 10 ml 50%
543 glycerol, stored at 20 °C). Steps 1–3 for *S. cerevisiae*. (1) Five mL of culture was grown to
544 saturation. (2) Cells were pelleted at 5000 x g for 10 min 10 min at 4°C, and the supernatant was
545 discarded. (3) Cells were resuspended in 250 mL resuspension buffer (as described above) and
546 incubated at 37 °C for 60 min. Steps 1–3 for *P. tricornutum*. (1) Five mL cultures were harvested
547 during exponential growth phase. (2) Cells were pelleted at 4,000g for 10 min at 4°C, and the
548 supernatant was discarded. (3) Cells were resuspended in 250 mL resuspension buffer, which
549 contained 235 ml P1 (Qiagen), 5 ml hemicellulase 100 mg ml 1, 5 ml of lysozyme 25 mg ml 1,
550 and 5 ml Zymolyase solution (Zymolyase solution: 200 mg Zymolyase 20T (USB), 9 ml H2O, 1
551 ml 1 M Tris pH7.5, 10 ml 50% glycerol, stored at 20 °C) and then cells were incubated at 37 °C
552 for 30 min. Steps 4–10 common for all species. (4) 250 uL of lysis buffer P2 (Qiagen) was added

553 and samples were inverted 5–10 times to mix. (5) 250 ml of neutralization buffer P3 was added
554 and samples were inverted 5–10 times to mix. (6) Then samples were spun down at 16,000g, 10
555 min at 4°C (7) Supernatant was transferred to a clean tube and 750 ul ice-cold isopropanol was
556 added and the samples were mixed by inversion and spun down at 16,000g, 10 min at 4°C (8) Next
557 the supernatant was removed and 750 ul ice-cold 70% EtOH was added and samples were mixed
558 by inversion and spun down at 16,000g, 5 min. (9) Next the supernatant was discarded, pellets
559 were briefly dried and resuspended in 50 uL of TE buffer. (10) After that the samples were kept at
560 37 °C for 30–60 min to dissolve.

561

562 **Agarose plug DNA isolation**

563 DNA from *Deinococcus radiodurans* for Transformation-Associated Recombination (TAR)
564 cloning [23] of the 62-kb plasmid was isolated in agarose plugs using the Bio-Rad CHEF Genomic
565 DNA Plug Kit with an adapted protocol. To prepare the plugs, 50 mL of *D. radiodurans* culture
566 was grown to OD₆₀₀ of 1.0, chloramphenicol (100 µg mL⁻¹) was added and the culture was grown
567 for an additional hour. The culture was centrifuged at 5000 × g for 5 min at 10°C. Cells were
568 washed once with 1 M sorbitol in 1.5 mL Eppendorf tubes and centrifuged at 4000 RPM for 3 min.
569 The supernatant was removed. Cells were resuspended in 600 uL of protoplasting solution. The
570 cell suspension was incubated for 5 min at 37°C and mixed with an equal volume of 2.0% low-
571 melting-point agarose in 1 × TAE buffer (40 mM Tris, 20 mM acetic acid and 1 mM EDTA) which
572 was equilibrated at 50°C. Aliquots of 95 µl were transferred into plug molds (Bio-Rad, catalog #
573 170–3713) and allowed to solidify for 10 min at 4°C. Next, plugs were removed from the molds
574 into 50 ml conical tube containing 5 mL of protoplasting solution (for 10 mL: 4.56 mL of SPEM
575 solution, 1000 µl Zymolyase-20 T solution (50 mg mL⁻¹ dissolved in H₂O), 400 µl lysozyme

576 (25 mg ml⁻¹), 400 µl Hemicellulase (25 mg mL⁻¹), 50 µl β-Mercaptoethanol) and incubated for 45
577 min at 37°C. Next, plugs were washed with 25 ml of wash buffer (20 mM Tris, 50 mM EDTA,
578 pH 8.0), and then incubated in 5 ml in Proteinase K buffer (100 mM EDTA (pH 8.0), 0.2% sodium
579 deoxycholate, and 1% sodium lauryl sarcosine, 1 mg ml⁻¹ Proteinase K) for 24 hr at 50°C. Wash
580 the plugs 4 times with 25 mL of wash buffer (20 mM Tris, pH 8.0, 50 mM EDTA) for 30 minutes
581 each at room temperature. Leave it in wash buffer overnight. The next day, transfer 1-2 plugs to a
582 1.5 mL Eppendorf tube and wash it 4 times with 10X diluted wash buffer for 30 minutes each.
583 Store at 4°C in 1.5 mL tube of diluted wash buffer. To isolate the DNA from the plug, wash once
584 with 10X diluted wash buffer for 1 hour. Wash once with TE buffer for 1 hour, then remove all
585 the TE. Put the 1.5 mL tube with the plug in a 42°C water bath for 10 mins. Then transfer to 65°C
586 water bath for 10 mins. Return to 42°C water bath, wait for 5-10 mins then add 50 µl of TE buffer
587 followed by 3 µl of agarose and leave it at 42°C for an hour. Add 50 µl TE buffer and leave it for
588 2-4 hours. Run 1-2 µl of this on 1% gel.

589

590 **Cloning 62 kb CP1 plasmid from *Deinococcus radiodurans***

591 High quality total genomic DNA from *D. radiodurans* was isolated using low melting point agar
592 plugs. To clone the CP1 plasmid from *D. radiodurans*, a single cut restriction enzyme (NotI) site
593 was identified and used to linearize the plasmid. A 200 bp sequence on either side of the NotI cut
594 site was amplified and inserted into Designer Microbes Inc proprietary plasmid using yeast
595 assembly, to create regions of homology to CP1. The resulting plasmid was called pDRR. Next,
596 TAR cloning [23] was performed using the linearized plasmids with homology to CP1 and *D.*
597 *radiodurans* genomic DNA digested with NotI, resulting in yeast clone pDDR c1. Sub-cloning of
598 CP1 was carried through yeast assembly using the linearized pAGE2.0 with hooks, short

599 homologous sequences, to *D. radiodurans* CP1 (pAGE2.0-D. rad-PII-HOOKS), along with I-CeuI
600 and I-SceI digested product of pDDR c1. The resulting yeast colonies were pooled and DNA was
601 extracted by modified alkaline lysis and transformed into *E. coli*. Following induction with
602 arabinose, DNA was extracted from *E. coli* by alkaline lysis and subsequently electroporated into
603 *S. meliloti*.

604

605 **Acknowledgements**

606 This work was supported by a Genome Canada Grant (OGI-111) to T.C.C., T.M.F. and B.J.K.
607 Research in the labs of D.R.E., T.C.C., T.M.F. and B.J.K. is also supported by Natural Sciences
608 and Engineering Research Council of Canada (NSERC), RGPIN-2015-04800, RGPIN-2018-
609 04754, RGPIN-2018-06481, RGPIN-2018-06172 respectively.

610 We would like to thank Dr. Murray Junop, Western University, London, On, Canada, for
611 providing *Deinococcus radiodurans* (R1) strain.

612 Conflict of interest statement. B.J.K. is Chief Executive Officer of Designer Microbes Inc. and
613 holds Designer Microbes Inc. stock.

614

615 **References**

- 616 1. Waller MC, Bober JR, Nair NU, Beisel CL. Toward a genetic tool development pipeline
617 for host-associated bacteria. *Current Opinion in Microbiology*. 2017.
- 618 2. Rahn-Lee L, Byrne ME, Zhang M, Le Sage D, Glenn DR, Milbourne T, et al. A Genetic
619 Strategy for Probing the Functional Diversity of Magnetosome Formation. *PLoS Genet*.
620 2015;
- 621 3. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, et al. Creation of

622 a bacterial cell controlled by a chemically synthesized genome. *Science*. 2010

623 Jul;329(5987):52–6.

624 4. Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, et
625 al. Design and synthesis of a minimal bacterial genome. *Science* (80-).
626 2016;351(6280):aad6253-aad6253.

627 5. Noskov VN, Karas BJ, Young L, Chuang RY, Gibson DG, Lin YC, et al. Assembly of
628 large, high G+C bacterial DNA fragments in yeast. *ACS Synth Biol*. 2012;1(7):267–73.

629 6. Karas BJ, Molparia B, Jablanovic J, Hermann WJ, Lin YC, Dupont CL, et al. Assembly of
630 eukaryotic algal chromosomes in yeast. *J Biol Eng*. 2013;

631 7. Karas BJ, Suzuki Y, Weyman PD. Strategies for cloning and manipulating natural and
632 synthetic chromosomes. *Chromosom Res*. 2015 Feb;23(1):57–68.

633 8. Wright F, Bibb MJ. Codon usage in the G+C-rich *Streptomyces* genome. *Gene*.
634 1992;113(1):55–65.

635 9. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, et al. The composite genome
636 of the legume symbiont *Sinorhizobium meliloti*. *Science* (80-). 2001;

637 10. Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A. Replicon-dependent
638 bacterial genome evolution: The case of *Sinorhizobium meliloti*. *Genome Biol Evol*.
639 2013;5(3):542–58.

640 11. diCenzo GC, MacLean AM, Milunovic B, Golding GB, Finan TM. Examination of
641 Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction.
642 Hughes D, editor. *PLoS Genet* [Internet]. 2014 Oct 23 [cited 2017 Dec
643 18];10(10):e1004742. Available from: <http://dx.plos.org/10.1371/journal.pgen.1004742>

644 12. diCenzo G, Milunovic B, Cheng J, Finan TM. The tRNA_{Arg} gene and engA are essential

645 genes on the 1.7-Mb pSymB megaplasmid of *Sinorhizobium meliloti* and were
646 translocated together from the chromosome in an ancestral strain. *J Bacteriol* [Internet].
647 2013 Jan 15 [cited 2017 Dec 18];195(2):202–12. Available from:
648 <http://www.ncbi.nlm.nih.gov/pubmed/23123907>

649 13. MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM. Identification of a
650 megaplasmid centromere reveals genetic structural diversity within the repABC family of
651 basic replicons. *Mol Microbiol*. 2006;59(5):1559–75.

652 14. Döhleman J, Wagner M, Happel C, Carrillo M, Sobetzko P, Erb TJ, et al. A Family of
653 Single Copy *repABC* -Type Shuttle Vectors Stably Maintained in the Alpha-
654 Proteobacterium *Sinorhizobium meliloti*. *ACS Synth Biol* [Internet]. 2017 Jun 16 [cited
655 2017 Dec 18];6(6):968–84. Available from:
656 <http://pubs.acs.org/doi/10.1021/acssynbio.6b00320>

657 15. Strand TA, Lale R, Degnes KF, Lando M, Valla S. A new and improved host-independent
658 plasmid system for RK2-based conjugal transfer. *PLoS One*. 2014;9(3):1–6.

659 16. Brothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, et al. Gene transfer
660 to plants by diverse species of bacteria. *Nature*. 2005;

661 17. Karas BJ, Diner RE, Lefebvre SC, McQuaid J, Phillips APR, Noddings CM, et al.
662 Designer diatom episomes delivered by bacterial conjugation. *Nat Commun* [Internet].
663 2015 Apr 21 [cited 2017 Dec 18];6:6925. Available from:
664 <http://www.ncbi.nlm.nih.gov/pubmed/25897682>

665 18. Hua X, Hua Y. Improved Complete Genome Sequence of the Extremely Radioresistant
666 Bacterium *Deinococcus radiodurans* R1 Obtained Using PacBio Single-Molecule
667 Sequencing. *Genome Announc*. 2016;

668 19. Ferri L, Gori A, Biondi EG, Mengoni A, Bazzicalupo M. Plasmid electroporation of
669 Sinorhizobium strains: The role of the restriction gene *hsdR* in type strain Rm1021.
670 Plasmid [Internet]. 2010;63(3):128–35. Available from:
671 <http://dx.doi.org/10.1016/j.plasmid.2010.01.001>

672 20. Döhlemann J, Brennecke M, Becker A. Cloning-free genome engineering in
673 Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination. J
674 Biotechnol [Internet]. 2016 Sep 10 [cited 2017 Dec 18];233:160–70. Available from:
675 <http://www.sciencedirect.com/science/article/pii/S016816561631389X>

676 21. Gerdes S, Scholle MD, Campbell JW, Balázs G, Ravasz E, Daugherty MD, et al.
677 Experimental determination and system level analysis of essential genes in *Escherichia*
678 *coli* MG1655. J Bacteriol. 2003;

679 22. Diner RE, Noddings CM, Lian NC, Kang AK, McQuaid JB, Jablanovic J, et al. Diatom
680 centromeres suggest a mechanism for nuclear DNA acquisition. Proc Natl Acad Sci U S A
681 [Internet]. 2017 Jul 18 [cited 2017 Dec 18];114(29):E6015–24. Available from:
682 <http://www.ncbi.nlm.nih.gov/pubmed/28673987>

683 23. Kouprina N, Larionov V. Selective isolation of genomic loci from complex genomes by
684 transformation-associated recombination cloning in the yeast *Saccharomyces cerevisiae*.
685 Nat Protoc. 2008;

686 24. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, et al. Creation of
687 a bacterial cell controlled by a chemically synthesized genome. Science [Internet]. 2010
688 Jul 2 [cited 2018 Feb 9];329(5987):52–6. Available from:
689 <http://www.ncbi.nlm.nih.gov/pubmed/20488990>

690 25. House BL, Mortimer MW, Kahn ML. New recombination methods for *Sinorhizobium*

meliloti genetics. *Appl Environ Microbiol*. 2004;

26. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin E V., et al. Genome of the Extremely Radiation-Resistant Bacterium *Deinococcus radiodurans* Viewed from the Perspective of Comparative Genomics. *Microbiol Mol Biol Rev*. 2001;

27. Karas BJ, Jablanovic J, Sun L, Ma L, Goldgof GM, Stam J, et al. Direct transfer of whole genomes from bacteria to yeast. *Nat Methods*. 2013 May;10(5):410–2.

28. Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, Jazey T, et al. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in *Phaeodactylum tricornutum*. *ACS Synth Biol* [Internet]. 2018;acssynbio.7b00191. Available from: <http://pubs.acs.org/doi/10.1021/acssynbio.7b00191>

29. diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N₂-fixing symbiotic genome. *Environ Microbiol* [Internet]. 2016 Sep 1 [cited 2017 Dec 18];18(8):2534–47. Available from: <http://doi.wiley.com/10.1111/1462-2920.13221>

30. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, et al. One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics Studies. *Appl Environ Microbiol*. 2012;

710 Supporting Information

711 **S1 Fig. Verification of *hsdR* deletion in *S. meliloti* by diagnostic PCR.** (a) Schematic of primer
712 set locations at the *hsdR* gene locus in wildtype *S. meliloti*, when the *hsdR* gene is present, and
713 when the *hsdR* gene is replaced with FRT-Km/Nm-FRT cassette, which was subsequently excised

714 via Flp recombinase. The pink arrow indicates an FRT site following loss of the FRT-Km/Nm-
715 FRT cassette. (b) Gel electrophoresis of diagnostic colony PCR conducted with primer sets A, B,
716 and C on wildtype and designer *S. meliloti* strains. Expected band size for primer set A is 953 bp
717 if the *hsdR* gene is present or absent. Expected band size for primer set B is 912 bp if the *hsdR*
718 gene is present, and no band is expected if the *hsdR* gene is absent. Expected band size for primer
719 set C is 4013 bp if the *hsdR* gene is present, and 787 bp if the *hsdR* gene is absent. L, 1 kb ladder.
720 1, RmP3909 Δ pSymAB Δ hsdR. 2, RmP3952 Δ pSymB Δ hsdR. 3, RmP3953 Δ pSymA Δ hsdR. 4,
721 RmP3954 Δ hsdR. 5, Rm5000 Δ pSymA Δ hsdR Rif^R. 6, RmP110 wildtype. 7, RmP110 wildtype
722 isolated gDNA. 8, no DNA control.

723

724 **S2 Fig. Diagnostic digest of MHS plasmids.** Following yeast assembly, transformation to *E. coli*
725 Epi300 cells, induction and plasmid DNA extraction, MHS plasmids (pAGE1.0, pAGE2.0,
726 pAGE3.0, pBGE1.0, pBGE2.0, pBGE3.0) were digested with I-CeuI, I-SceI, PacI, and PmeI,
727

728 **S3 Fig. Plasmid stability assay of pAGE2.0 in *S. meliloti* over 50 generations.** Graph depicting
729 the percentage of RmP4122 Δ pSymA Δ hsdR colonies, from three independent cultures originally
730 containing pAGE2.0, unable to grow on selective media (LBmc 38 μ M FeCl₃ Tc 5 μ g mL⁻¹) after
731 each subculturing event in non-selective media, to a total of approximately 50 generations.

732

733 **S4 Fig. PEG-mediated transformation of MHS plasmids into *S. meliloti*.** Experimental and
734 control plates from PEG-mediated transformation of pAGE1.0, pAGE2.0 and pAGE3.0 into *S.*
735 *meliloti* RmP4122 Δ pSymA Δ hsdR. pAGE1.0 transformation results were discarded due to the
736 comparable number of colonies consistently observed on experimental and control plates.

737

738 **S5 Fig. EcoRV-HF diagnostic digest of pAGE1.0 plasmids extracted from 20 *E. coli* colonies**
739 **following conjugation from *S. meliloti* to *E. coli*.** Expected band sizes are 10,288 bp, 5235 bp,
740 2377 bp, and 229 bp. L, 1 kb ladder. 1-20, the 20 pAGE1.0 plasmid extracts from *E. coli*.

741

742 **S6 Fig. EcoRV-HF diagnostic digest of pAGE1.0 plasmids extracted from 20 *E. coli* colonies**
743 **following conjugation from *S. meliloti* to *P. tricornutum*, plasmid isolation, transformation to**
744 ***E. coli*, and plasmid induction in *E. coli*.** Expected band sizes are 10,288 bp, 5235 bp, 2377 bp,
745 and 229 bp. L, 1 kb ladder. 1-20, the 20 pAGE1.0 plasmid extracts from *E. coli*.

746

747 **S7 Fig. EcoRV-HF diagnostic digest of pAGE1.0 plasmids extracted from 20 *E. coli* colonies**
748 **following conjugation from *S. meliloti* to *S. cerevisiae*, plasmid isolation, transformation to**
749 ***E. coli*, and plasmid induction in *E. coli*.** Expected band sizes are 10,288 bp, 5235 bp, 2377 bp,
750 and 229 bp. L, 1 kb ladder. 1-20, the 20 pAGE1.0 plasmid extracts from *E. coli*.

751

752 **S1 Table. Plasmid stability of pAGE2.0 in *S. meliloti* RmP4122 Δ pSymA Δ hsdR.** Determined
753 by the number of colonies unable to grow on selective media (LBmc 38 μ M FeCl₃ Tc 5 μ g mL⁻¹)
754 following subculturing in nonselective media (LBmc 38 μ M FeCl₃).

755

756 **S2 Table. Summary of DNA transfer to *S. meliloti* RmP4122 Δ A Δ R including PEG-mediated**
757 **transformation, electroporation and conjugation of pAGE1.0, pAGE2.0 and pAGE3.0,**
758 **where applicable.** Transformation efficiency for PEG-mediated and electroporation is reported as
759 CFU μ g⁻¹ of DNA, conjugation efficiency is reported as transconjugants/recipient. Mean is the

760 average of three biological and three technical replicates. *pAGE1.0 for the PEG-mediated
761 transformation method consistently results in a similar number of colonies observed on the
762 experimental and negative control plates (which can be seen in S4 Fig).

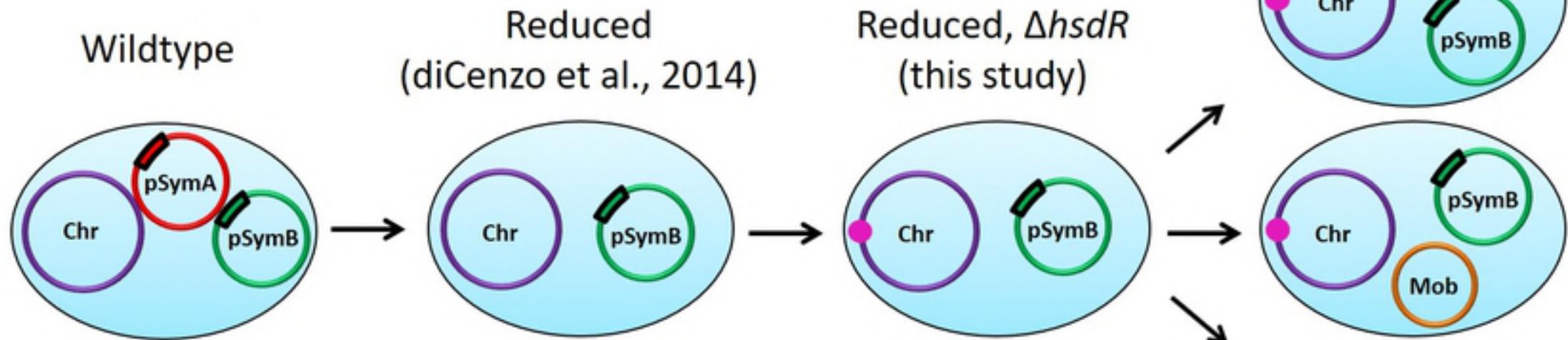
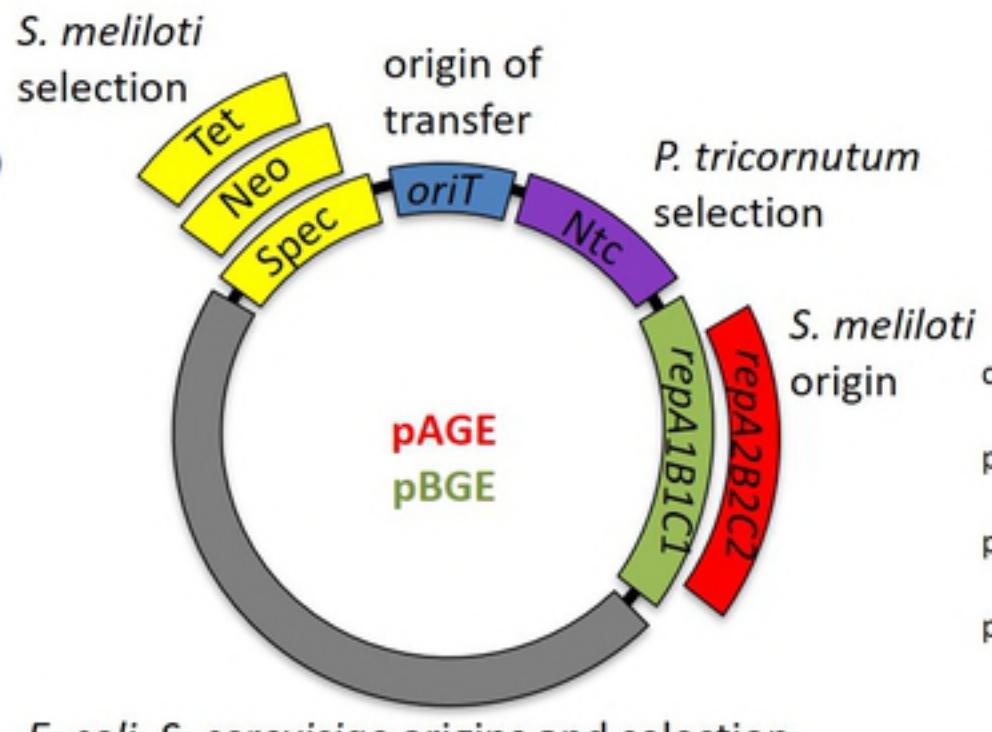
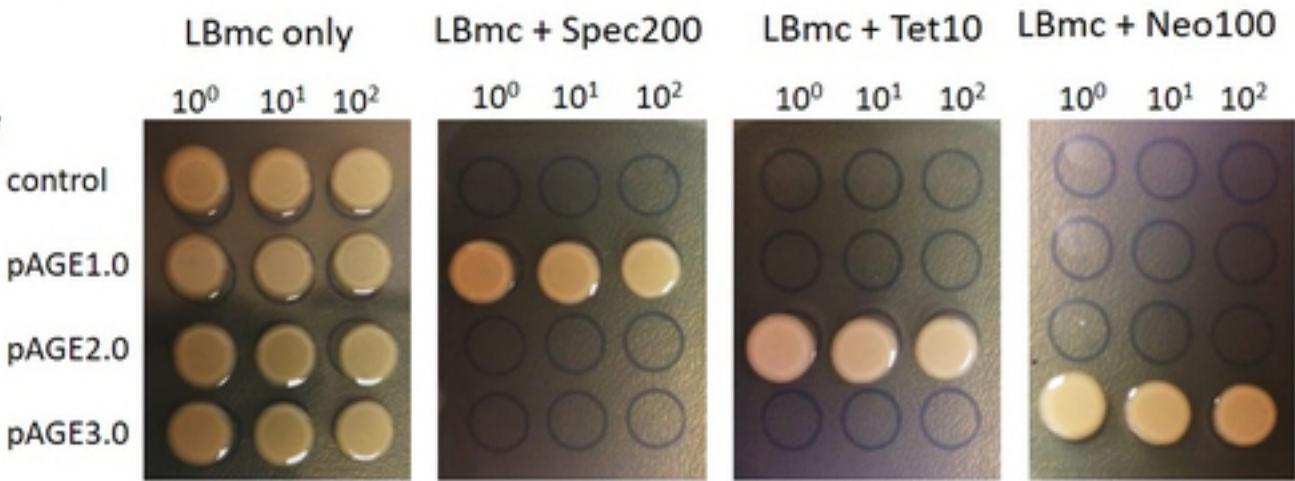
763

764 **S3 Table. Ratio of donor to recipient cells and conjugation efficiency (as**
765 **transconjugants/recipient) for each donor and recipient pair.** Pre-conjugation plates selecting
766 for the conjugative participants and colony counts were used to determine the ratio of donor to
767 recipient organism going into the conjugation mixture.

768

769 **S4 Table. Analysis of pAGE1.0 plasmids recovered from conjugations from *S. meliloti* to *E.***
770 ***coli*, *S. cerevisiae*, and *P. tricornutum*.** Diagnostic digests of pAGE1.0 plasmids with EcoRV-HF,
771 following transformation and induction in *E. coli*, where applicable.

772




773 **S5 Table. List of oligonucleotides used in this study.**

774

775 **S6 Table. List of strains used in this study.**

776

777 **S7 Table. List of plasmids used in this study.**

a**b****c****Figure 1**

Figure 2

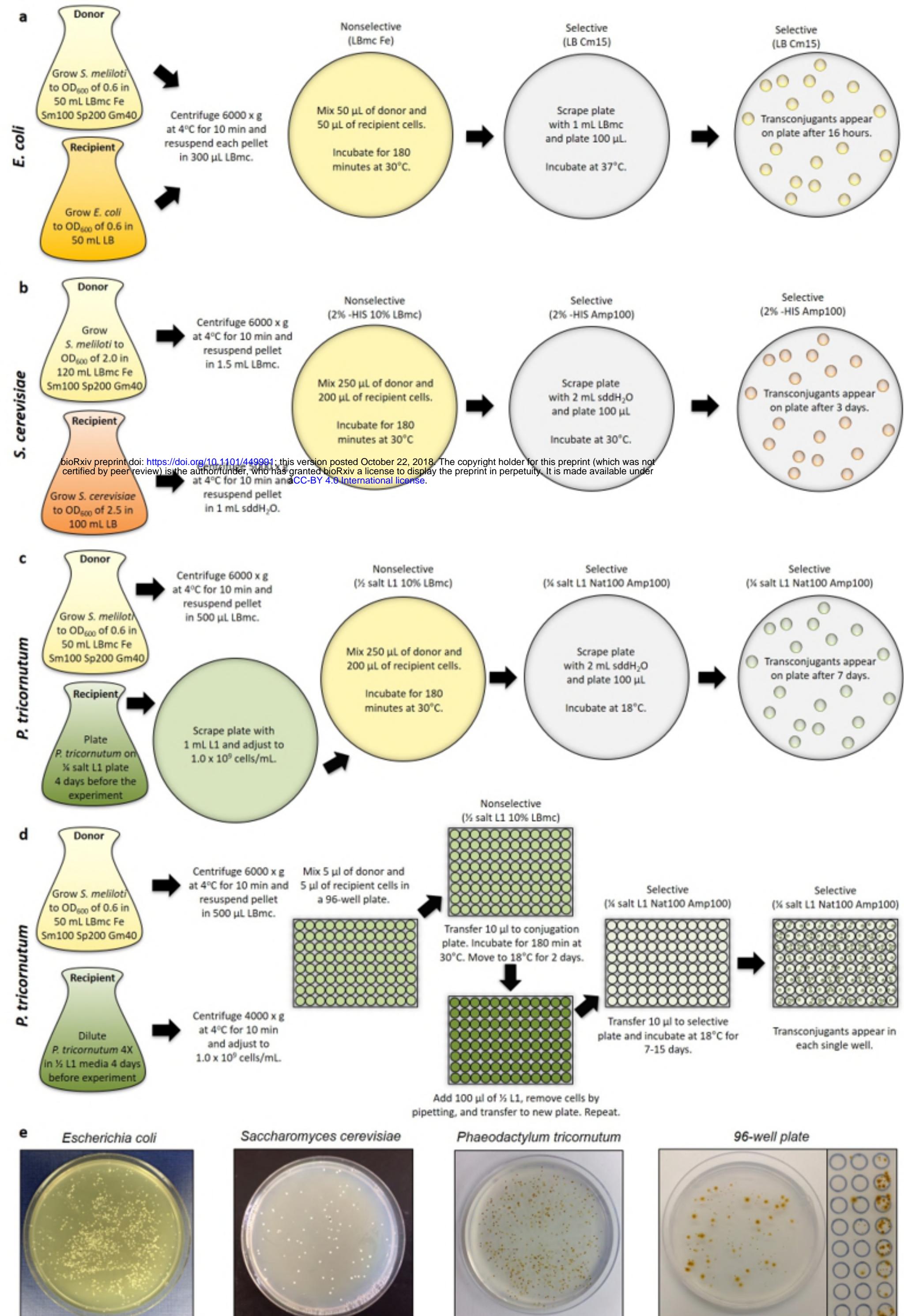


Figure 3

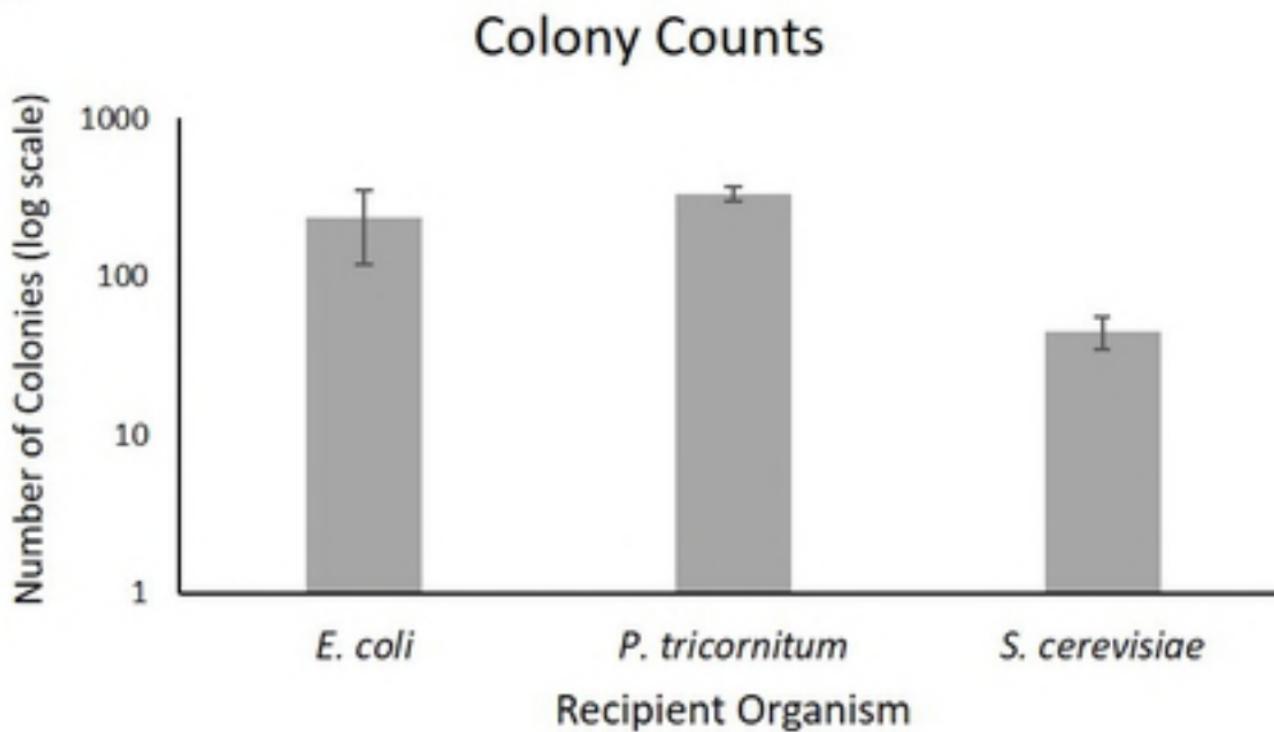
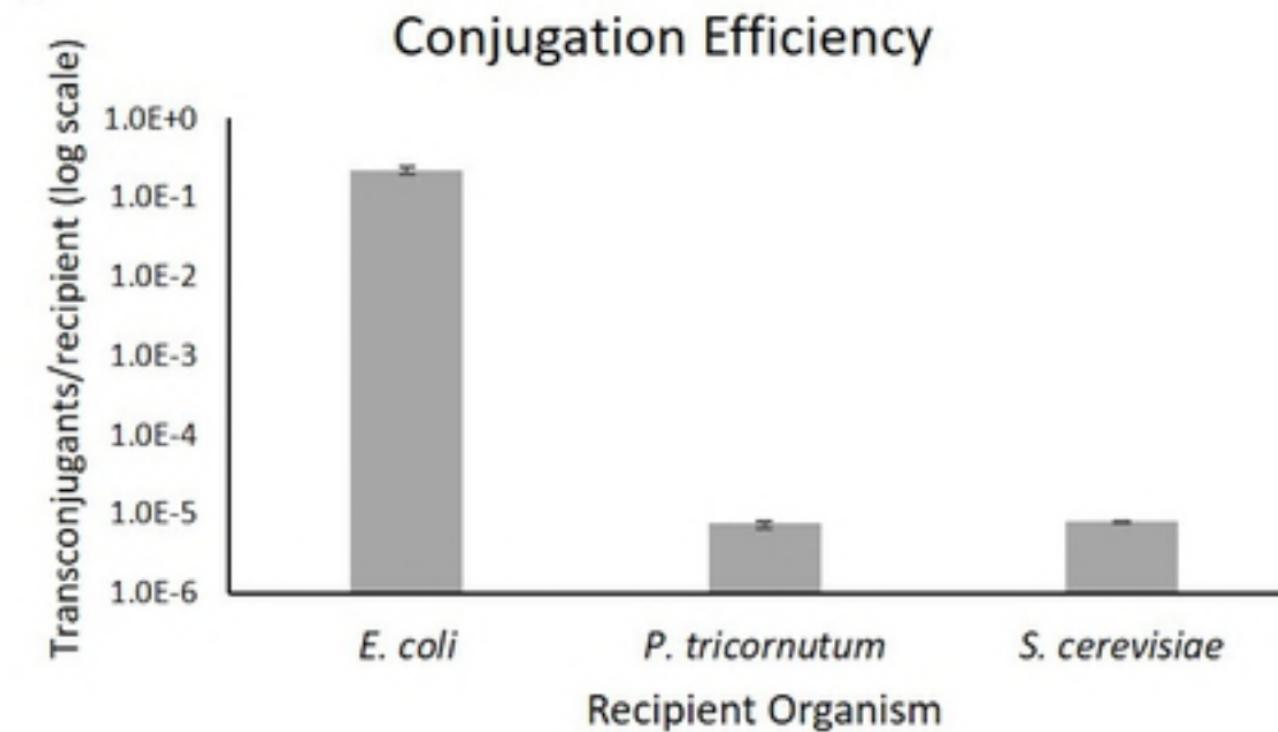
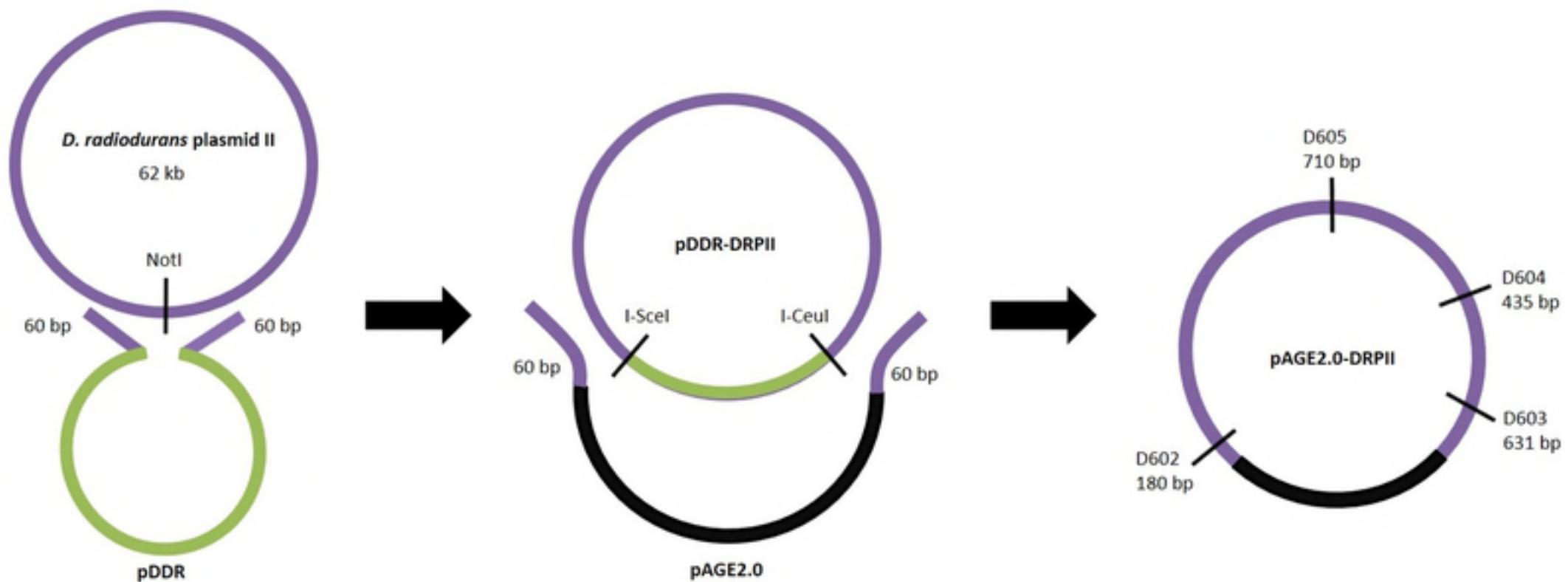
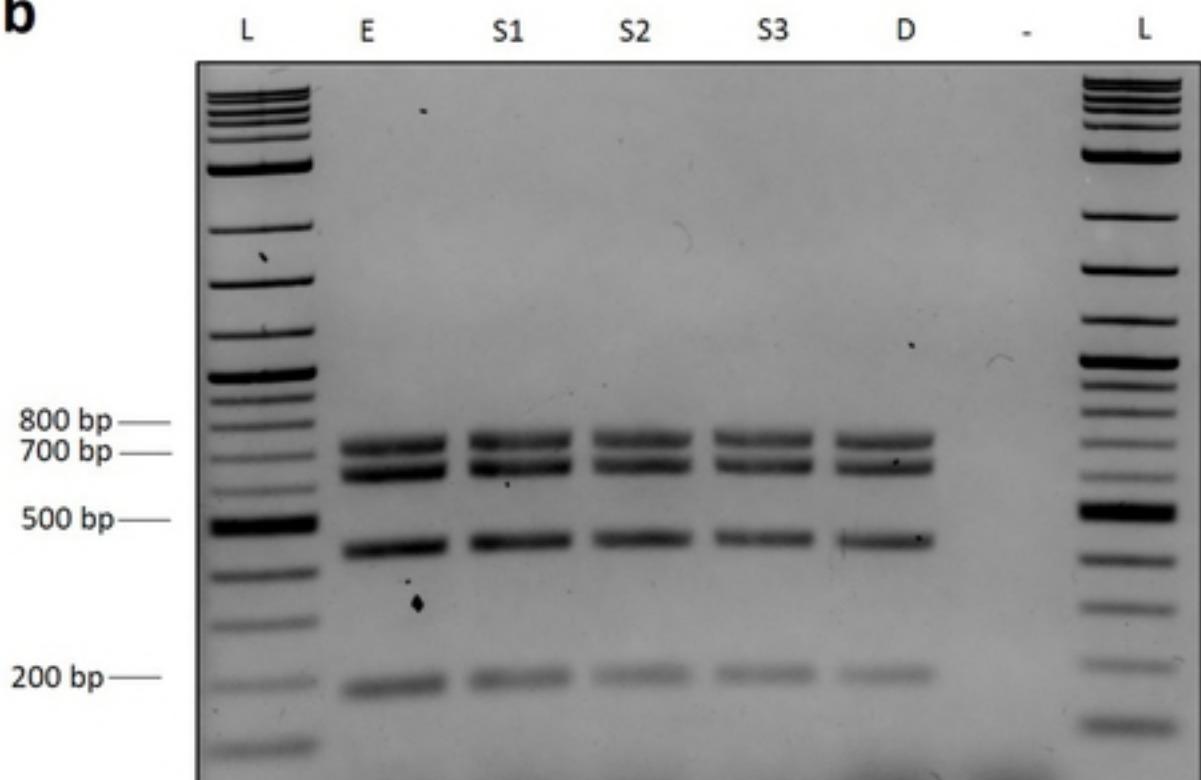
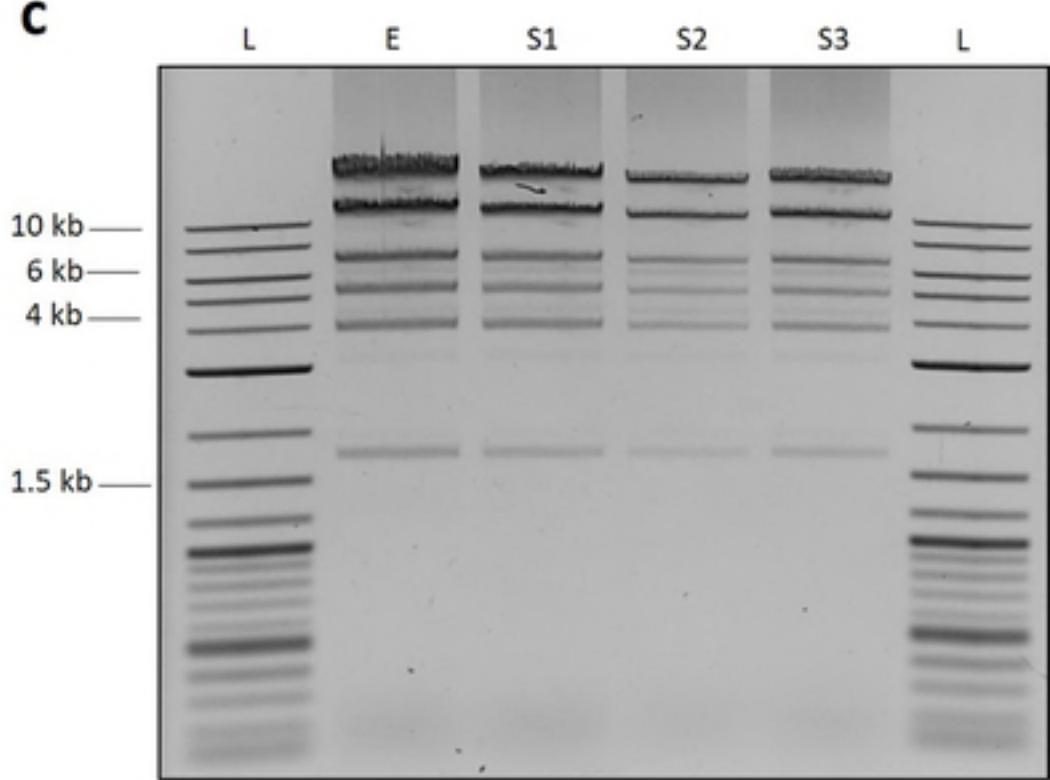





a**b**

Figure 4

a**b****c****Figure 5**