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Abstract

Genetic interactions, a phenomenon whereby combinations of mutations lead to
unexpected effects, reflect how cellular processes are wired and play an important
role in complex genetic diseases. Understanding the molecular basis of genetic
interactions is crucial for deciphering pathway organization as well as understanding
the relationship between genetic variation and disease. Several putative molecular
mechanisms have been linked to different genetic interaction types. However,
differences in genetic interaction patterns and their underlying mechanisms have
not yet been compared systematically between different functional gene classes.
Here, differences in the occurrence and types of genetic interactions are compared
for two classes, gene-specific transcription factors (GSTFs) and signaling genes
(kinases and phosphatases). Genome-wide gene expression data for 63 single and
double deletion mutants in baker’s yeast reveals that the two most common genetic
interaction patterns are buffering and inversion. Buffering is typically associated with
redundancy and is well understood. In inversion, genes show opposite behavior in
the double mutant compared to the corresponding single mutants. The underlying
mechanism is poorly understood. Although both classes show buffering and
inversion patterns, the prevalence of inversion is much stronger in GSTFs. To
decipher potential mechanisms, a Petri Net modeling approach was employed,
where genes are represented as nodes and relationships between genes as edges.
This allowed over 9 million possible three and four node models to be exhaustively
enumerated. The models show that a quantitative difference in interaction strength
is a strict requirement for obtaining inversion. In addition, this difference is

frequently accompanied with a second gene that shows buffering. Taken together,
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these results provide a mechanistic explanation for inversion. Furthermore, the
ability of transcription factors to differentially regulate expression of their targets
provides a likely explanation why inversion is more prevalent for GSTFs compared to

kinases and phosphatases.
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Author Summary

The relationship between genotype and phenotype is one of the major challenges in
biology. While many previous studies have identified genes involved in complex
genetic diseases, there is still a gap between genotype and phenotype. One of the
difficulties in filling this gap has been attributed to genetic interactions. Large-scale
studies have revealed that genetic interactions are widespread in model organisms
such as baker’s yeast. Several molecular mechanisms have been proposed for
different genetic interaction types. However, differences in occurrence and
underlying molecular mechanism of genetic interactions have not yet been
compared between gene classes of different function. Here, we compared genetic
interaction patterns identified using gene expression profiling for two classes of
genes: gene specific transcription factors and signaling related genes. We modelled
all possible molecular networks to unravel putative molecular differences underlying
different genetic interaction patterns. Our study proposes a new mechanistic
explanation for a certain genetic interaction pattern that is more strongly associated
with transcription factors compared to signaling related genes. Overall, our findings
and the computational methodologies implemented here can be valuable for

understanding the molecular mechanisms underlying genetic interactions.
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Introduction

Understanding the relationship between genotype and phenotype of an organism is
a major challenge [1,2]. One of the difficulties for unravelling genotype-phenotype
relationship has been genetic interactions, when combinations of mutations lead to
phenotypic effects that are unexpected based on the phenotypes of the individual
mutations [3-5]. Large-scale analyses of single and double deletion mutants have
revealed that genetic interactions are pervasive in many model organisms [6—11].
Recently, efforts have been initiated to investigate genetic interactions in human cell
lines too, using large-scale RNA interference and Crispr-Cas9 knock downs [12—15].
Our understanding of the molecular mechanisms that underlie genetic interactions
lags behind our ability to detect genetic interactions. Understanding the molecular
basis of genetic interactions and their interplay with cellular processes is important
for unraveling how different processes are connected [16—-18], to what degree
genetic interactions shape pathway architecture [6], as well as for understanding the

role genetic interactions play in human disease [5,19].

One of the phenotypes that is frequently used to investigate genetic interactions is
cell growth [6,20-28]. Based on this phenotype, genetic interactions can be broadly
subdivided in two types, negative genetic interactions where the double mutant is
growing slower than expected given the growth rate of the single deletion mutants,
and positive genetic interactions where the double mutant is growing faster than
expected [3]. Negative genetic interactions have frequently been associated with a
redundancy relationship between two functionally related genes [29]. The

redundancy mechanisms by which two genes can compensate for each other’s loss
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has been linked with close paralog genes or redundant pathways [30,31]. Positive
genetic interactions have been associated with genes participating in the same
protein complex or pathway [32]. There are however many exceptions to these rules
and it also has become clear that there are many other potential mechanisms

underlying these genetic interactions [3,18].

Another phenotype that has been less frequently used for investigating genetic
interactions is gene expression [16,17,33-36]. Expression-based genetic interaction
profiling provides detailed information at the molecular level which is beneficial for
unraveling mechanisms of genetic interactions [16,17,33—36]. Unlike growth-based
profiling, which gives a subdivision into either positive or negative interactions,
expression-based genetic interaction profiling provides further subdivision into more
specific genetic interaction patterns including buffering, quantitative buffering,
suppression, quantitative suppression, masking and inversion [17]. A more detailed
sub classification that includes information on expression of downstream genes, can
also contribute to understanding the mechanisms by which two genes interact

[16,17,37].

To provide mechanistic insights into biological networks, Boolean modeling has been
used successfully [38,39]. It has also been applied to unravel regulatory networks
underlying genetic interaction patterns between kinases and phosphatases [16]. Due
to their intrinsically simple nature, such Boolean network models allow exhaustive
enumeration of network topologies. The outcomes of these models can then be

easily compared to the patterns observed in experimental data. Boolean operators
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119  however, are limited to on and off values and cannot easily accommodate

120  gquantitative measurements, which limits the types of genetic interaction patterns
121  that can be investigated using this approach. Unravelling the regulatory network
122 underlying genetic interaction patterns would potentially benefit from application of
123 modeling approaches that allow some degree of quantitativeness to be introduced
124 while still being computationally feasible to exhaustively explore all potential

125  models. In this way, Petri nets may be considered an extension of Boolean modeling
126 that provides more flexibility, in particular by choosing different network edge

127  strengths, without the need to incorporate detailed prior quantitative knowledge
128  [40—44]. Petri net modeling would therefore allow investigation of all possible

129  genetic interaction patterns in an exhaustive and semi-quantitative manner.

130

131  Itis evident that genetic interactions are widespread in Saccharomyces cerevisiae [6]
132 as well as other organisms [7,8]. Nevertheless, extensive characterization of the

133 molecular mechanisms underlying genetic interactions, as well as a comparison of
134  the molecular mechanisms underlying genetic interactions between different

135  functional classes have, as yet, not been performed. Here, two functional classes,
136  gene specific transcription factors (GSTFs) and signaling related genes (kinases and
137  phosphatases) have been compared with regard to negative genetic interaction

138  patterns and the possible underlying molecular mechanisms. This revealed that the
139  two most common genetic interaction patterns are buffering and inversion. The

140  prevalence of inversion however, is much stronger in GSTFs. The underlying

141  mechanism of inversion, whereby genes show opposite behavior in the double

142  mutant compared to the corresponding single mutants, is poorly understood.
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Exhaustive enumeration of network topologies using Petri net modelling reveals that
the minimum requirement for observing inversion is having a quantitative difference
in interaction strength (edge weight) from the two upstream transcription factors to
a shared downstream gene. In addition, this quantitative edge difference is
frequently accompanied by an intermediate node, that displays a buffering pattern.
The proposed model provides a mechanistic explanation for inversion, thereby
further aiding a better understanding of genetic interactions. GSTFs, more so than
kinases/phosphatases, can modulate or fine-tune the activation levels of their target
genes, which suggests quantitative differences in regulating downstream target
genes are important for the functioning of GSTFs. This is consistent with the fact that
inversion occurs more often between GSTFs than between signaling genes, as well as
our observation that quantitative edge differences are required for inversion to
occur and provides a likely explanation why inversion is more prevalent for

transcription factors.

Results

A single dataset to compare mechanisms of genetic interactions between gene-
specific transcription factors and kinases/phosphatases

To investigate potential differences in mechanisms of genetic interactions between
groups of genes with a different function, data from two previously published
datasets were combined [16,17]. The first dataset includes genome-wide gene

expression measurements of 154 single and double gene-specific transcription factor
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(GSTF) deletion mutants [17]. The second dataset contains genome-wide gene
expression measurements of 54 single and double kinase/phosphatase {K/P)
deletion mutants [16]. These studies applied different criteria to select for
interacting pairs. Whereas the GSTF dataset includes both positive and negative
genetic interactions, the kinase/phosphatase dataset was restricted to negative
genetic interactions only. To avoid potential biases, the selection criteria of the
kinase/phosphatase dataset [16] were adopted and applied to both datasets. In
short, selection was based on pairs having a significant growth-based negative
genetic interaction score (p < 0.05, Methods) to include redundancy relationships
that influence fitness. In addition, for a given double mutant, at least one of the
corresponding single mutants has an expression profile similar to wildtype (WT)
(eight or more transcripts changing significantly (p < 0.05, fold-change > 1.7)) to
ensure that genetic interactions such as redundancy are considered. These selection
criteria yield a uniform dataset consisting of 11 GSTF double mutants and 15
kinase/phosphatase double mutants as well as their respective single mutants (63

single and double mutants in total; S1 Table).

Genetic interaction profiles indicate a large degree of buffering

Genetic interactions can be investigated in different ways. Here, both growth as well
as genome-wide gene expression is used to compare genetic interactions between
GSTFs and kinases/phosphatases, as described before [17]. In short, a growth-based
genetic interaction score gg4,0wth, xy between two genes X and Y is obtained by
comparing the observed fitness for double mutant W,,,4 to the fitness that is

expected based on both single mutants Wy Wy (€growth,xv = Wiaya - Wya- W, 4) [45].
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A gene expression-based genetic interaction score between two genes X and Y is
calculated in two consecutive steps [17]. First, the effect of a genetic interaction
between two genes X and Y on any downstream gene i is calculated as the deviation
between the expression change observed in the double mutant M; 4,4 and the
expected expression change based on the corresponding single mutants M; 4+ M; 4
(€txpn_ixv=| Mixaya — (Mixa+ M; 4} | ). The overall genetic interaction score between
gene X and Y is then obtained by counting the total number of genes for which
Erpn_ixv 1S greater than 1.5 [17]. Gene expression changes from single and double
mutants were subsequently grouped into the six genetic interaction patterns,
buffering, suppression, quantitative buffering, quantitative suppression, masking and
inversion, as previously described (Fig 1A) [17]. When investigating the genetic
interaction profiles of GSTFs (Fig 1B) as well as kinases/phosphatases (Fig 1C), it is
clear that buffering is prevalent in many of the larger genetic interaction profiles, but

the degree of buffering differs for the smaller genetic interaction profiles.

Fig 1. Genetic interaction profiles of GSTF and kinase/phosphatase pairs.

(A) Cartoon depicting expression changes in single and double mutants with different
genetic interaction patterns color coded underneath. At the bottom, the direction of
expression differences between the observed expression change (Mya,4) and expected
(Mya+M,,) is stated. Color scale from yellow for an increase in expression levels compared to
WT (p £0.01, log»(FC) > 0), black for unchanged expression (p >0.01) and blue for a decrease
in expression levels compared to WT (p < 0.01, logx(FC) < 0). (B) Expression changes
compared to WT (horizontal) in GSTF single and double mutants (vertical). Different colors

underneath the gene expression profiles represent different genetic interaction patterns as

10
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indicated in A. Gray depicts gene expression changes not part of a genetic interaction
pattern. Pairs are sorted based on the number of genetic interaction effects, increasing from
bottom to top. (C) Expression changes compared to WT (horizontal) in kinase and

phosphatase single and double mutants (vertical). Layout and ordering as in B.

Removal of a slow growth associated expression signature for improved
identification of direct effects

Hierarchical clustering was applied to group pairs with similar genetic interaction
patterns (S1 Fig), thereby disregarding the identity of individual downstream genes.
From this clustering, it is clear that there is no distinct separation between pairs
consisting of GSTFs and kinases/phosphatases. Instead, most pairs are characterized
by large buffering effects, grouped together in a single large cluster (S1A Fig, red
branch labeled as 1). This is not surprising, since all pairs are selected for having a
significant growth-based negative genetic interaction score. This in turn is based on
double mutants growing slower than expected based on the single mutants. Slow
growing strains are known to display a common gene expression signature [46,47].
This slow growth gene expression signature is caused by a change in the distribution
of cells over different cell cycle phases [48]. To facilitate investigating mechanisms of
genetic interactions, such effects are better disregarded. As described previously
[48], the dataset was transformed by removing the slow growth signature
(Methods). Removing the slow growth signature and thereby reducing effects due to
a cell cycle population shift improves identification of direct target genes of GSTF

pairs (S2 Fig) as shown before for individual GSTFs [48].

11
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Discerning potential mechanisms with slow growth corrected genetic interaction
profiles

Hierarchical clustering of the slow growth corrected genetic interaction profiles was
then applied to unravel potential differences in observed genetic interactions
patterns between GSTFs and K/P (Fig 2A-C). Three striking differences emerge when
comparing this clustering with the clustering of the original, untransformed data (S1
Fig). First, pairs are grouped into four distinct clusters, whereas previously, most
were grouped into a single large cluster. Second, a cluster of predominantly
kinase/phosphatase pairs emerges (Fig 2A, green branch, labeled as 1). These
contain mixtures of different genetic interaction patterns, corresponding to ‘mixed
epistasis’ [16]. Third, a smaller cluster dominated by buffering appears (Fig 2A, red
branch, labeled as 2). This cluster also has strong growth-based negative genetic
interaction scores (Fig 2C), which is known to be associated with redundancy.

The ‘buffering’ cluster, with its strong growth-based negative interactions, mostly
consists of pairs with a high sequence identity (average 43.7%) compared to the
others (average 21%). These include Nhp6a-Nhp6b, Met31-Met32, Ecm22-Upc2 and
Ark1-Prk1, for all of which redundancy relationships have been described previously
[49-52]. The high sequence identity here indicates a homology-based redundancy, in
which both genes can perform the same function [30,31,53,54]. The only exception
here, is the kinase/phosphatase pair EIm1-Mih1. This pair may be explained through
pathway-based redundancy where two parallel pathways can compensate for each
other’s function [55]. EIm1 is a serine/threonine kinase, and Mih1 a tyrosine
phosphatase, which are both involved in cell cycle control (S3 Fig, left panel) [56,57].

Mih1 directly regulates the cyclin-dependent kinase Cdc28, a master regulator of the

12
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G2/M transition [57]. EIm1, on the other hand, indirectly regulates Cdc28 activity by
promoting Swel degradation through the recruitment of Hsl1 [58,59]. The timing of
entry into mitosis is controlled by balancing the opposing activities of Swel and
Mih1 on Cdc28, and both Swel and Mih1 are key in the checkpoint mediated G2
arrest [60,61]. Deletion of EIm1 does not result in many gene expression changes
(Fig 1C) which can be explained through compensatory activity of Mih1 (S3 Fig,
middle panel). Downregulation of Mih1 activity has also been suggested before as an
effective mechanism to counter stabilization of Swe1, as neither stabilization of
Swel or elimination of Mih1 in itself is sufficient to promote G2 delay, but
simultaneous stabilization of Swel and elimination of Mih1 does cause G2 arrest
[59]. Simultaneous deletion of EIm1 and Mih1 leads to higher levels of inactive
Cdc28 causing a G2 delay and stress (S3 Fig, right panel) [59] . All pairs within this
cluster can therefore be associated with a redundancy mechanism.

Taken together, these results suggest that the clustering of the slow growth
corrected genetic interaction profiles is able to discern potential differences in
mechanisms. Even though most pairs in the four clusters (Fig 2A) show negative
genetic interactions (Fig 2C), different mechanisms are likely underlying each

individual cluster.

Fig 2. Hierarchical clustering of slow growth corrected genetic interaction profiles is better

suited to discern underlying mechanisms

(A) Hierarchical clustering of all pairs according to their genetic interaction effects after slow
growth correction. Average linkage clustering was applied to group pairs with similar genetic

interaction patterns. The number of occurrences for each genetic interaction pattern (Fig

13
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1A) was used and the identity of individual genes was disregarded. Similarity between pairs
was calculated using cosine correlation. Branch depicted in red, label 2, indicates pairs that
are dominated by buffering. Branch depicted in orange, label 3, indicates pairs dominated by
inversion. Branch depicted in green, label 1, indicates pairs explained by mixed epistasis. The
number of genetic interaction effects underlying the clustering are shown as bar plots below
the dendrogram (colors as in Fig 1A). (B) Number of genes showing no genetic interaction
pattern but significantly changing in one of the mutants compared to WT (p < 0.01, FC > 1.5).
Dark gray for the first named gene, light gray for the second named gene. (C) Growth-based
genetic interaction scores depicted by solid circles. Significant genetic interaction scores are
shown in black, gray otherwise. Ordering of pairs is the same as in A and B. (D) Boxplot
highlighting the difference between the percentage of genes showing inversion for GSTF
pairs within the orange branch (Fig 2A), GSTF pairs outside this cluster and K/P pairs. p

values are based on a two-sided Mann-Whitney test.

Inversion is associated with a specific subset of GSTFs

Within the slow growth corrected genetic interaction profiles another interesting
cluster stands out: the orange branch where five out of six pairs involve GSTFs which
predominantly show the inversion pattern (Fig 2A, branch 3). This suggests that
inversion may be strongly associated with a particular group of GSTFs, whereas this
does not seem to be the case for kinases and phosphatases. The overall percentage
of genes showing inversion is already much higher for GSTFs (28.6%) than for
kinases/phosphatases (18.7%) (S2 Table). When investigating the GSTF pairs within
the cluster, it is clear that these display an even higher percentage of inversion

compared to kinases and phosphatases (Fig 2D; p=0.00026) as well as compared to

14
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other GSTF pairs (Fig 2D; p=0.0043). In order to determine whether inversion was
specific to the set of GSTFs analyzed here, or part of a more general phenomenon
common to GSTFs, we included both positive and negative genetic interactions
between GSTF pairs, expanding the number of GSTF pairs to 44. Clustering of all 44
GSTF pairs (S4 Fig) also shows that a large fraction of the GSTF pairs contain many
genes showing inversion, with most of the inversion dominated GSTF pairs still
clustering together (5S4 Fig, indicated with an asterisk). Note though, that because
the 44 GSTF pairs include both positive and negative genetic interactions, the results
are not directly comparable to the kinase/phosphatase pairs as these only include
negative genetic interactions. Taken together, this indicates that not only is inversion
more frequently associated with GSTFs compared to kinases and phosphatases, but

one particular subset of GSTFs is also predominantly defined by inversion.

An exhaustive modeling approach to explore potential mechanisms underlying
inversion

Unlike buffering, where redundancy is a likely mechanistic explanation, the
underlying mechanism of inversion is still unknown [17]. The GSTF pairs within the
inversion dominated cluster also do not share a common biological process,
function, pathway or protein domain other than general transcription related
processes and functions. To investigate potential mechanisms of inversion, an
exhaustive exploration was initiated. Previously, Boolean modeling has been applied
to exhaustively explore all mechanisms underlying two genetic interaction patterns
for the Fus3-Kss1 kinase phosphatase pair [16]. However, to explore all potential

mechanisms underlying inversion, a Boolean approach may not suffice as more

15
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subtle, quantitative effects, may be needed to obtain inversion. At the same time,
any modeling approach must remain computationally feasible. For this purpose, a
modeling approach based on Petri nets was devised to exhaustively evaluate all
possible three and four node models but taking into account the possibility of
guantitatively different effects (Fig 3, Methods). Interactions between nodes (edges)
can be activating (positive) or inhibiting (negative). In order to incorporate
quantitative differences, both strong and weak edges were used (Methods).
Counting all possible combinations of different edges results in 152,587,890,625
possible edge weight matrices. To reduce the number of models, three conditions
were imposed, as used previously [16]. In short, nodes contain no self-edges, the
number of incoming edges on any node is limited to two and the model includes at
least two edges from one of the regulators (R1, R2) to the downstream genes (G1,
G2). Applying these requirements and filtering for mirror edge weight matrices
results in 2,323,936 matrices. By including AND/OR logics the final number of models
to be evaluated was 9,172,034 (Methods). Petri net simulations were then run and
genetic interaction patterns determined for G1 and G2, analogous to what was done
for the original data (Methods) {Fig 1A). Depending on the topology, Petri net
models can be stochastic, in other words, they do not show the same behavior when
simulated multiple times and therefore result in unstable models. Only 2.3% of the
models were found to be unstable, i.e. showed inconsistent genetic interaction
patterns for G1 and G2 across five times simulation runs. Thus, stochasticity hardly
influences the observation of genetic interaction patterns in our simulations (Fig 3).
Nevertheless, unstable models were excluded from further analysis. In total, 168,987

models (1.8%) show inversion in either G1, G2, or both downstream nodes.
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Fig 3. Schematic overview of Petri net simulation pipeline

Schematic overview of the pipeline implemented for performing Petri net simulations. The
left panels show from top to bottom the different steps performed when running the
simulation pipeline. The right panels show the different data representations used
throughout the pipeline. The right panel above the dashed line indicates a series of steps
where edge weight matrices are used. The right panel below the dashed line indicates steps

where models or Petri net notation are used.

A quantitative difference in interaction strength is a strict requirement when
observing inversion

To investigate which potential regulatory patterns underlie the 168,987 models
showing inversion, low complexity models with few edges were analyzed first. Two
interesting observations can be made. First, although there are many high
complexity models involving four nodes and many edges (up to eight), three nodes
and three edges are sufficient to explain inversion (Fig 4A). Second, only two three-
node models exist that show inversion (Fig 4A). These two models only differ in the
strength of the inhibiting edge from R1 to R2. Both models involve inhibition of R2
through R1 and weak activation of G1 by R1 in combination with a strong activation
of G1 by R2, i.e. a quantitative edge difference between the incoming edges of G1.
Deletion of R1 in these two models results in activation of R2, and therefore
upregulation of G1 due to a strong activating edge. Deletion of R2 however, will not

result in any changes compared to WT as it is normally inhibited by R1. Deletion of
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both R1 and R2 will lead to downregulation of G1 as the weak activating edge from
R1 to G1 is lost. Taken together, the analysis of the low complexity models indicates
that a quantitative difference in interaction strength is required to explain inversion.
To investigate whether this requirement also holds for higher complexity models, all
models containing two to eight edges were further analyzed. Inversion models were
grouped by the number of edges (complexity) and then analyzed for their relative
frequency of having a quantitative edge difference (Fig 4B, top left panel, note that
the number of possible models grows exponentially with the number of edges).
Almost all of these models show a quantitative edge difference, with only a very
small fraction (1.3% overall) of models not having a quantitative edge difference.
Except for masking, the other genetic interaction patterns show different behavior,
indicating that the relative ratio of quantitative versus non-quantitative edges is not
an inherent network property. Based on both the low complexity models as well as
the high complexity models showing inversion, it is evident that a quantitative
difference in interaction strength of two genes or pathways acting on a downstream

gene is required to explain inversion.

Fig 4. A quantitative edge difference is the minimum requirement for observing inversion

(A) Petri net simulation results for the only two models with three nodes that result in
inversion (indicated in orange) for the G1 node. Heat maps indicate the log,(FC) of the
number of tokens in simulated deletion mutants (single and double mutant) relative to the
WT situation. Thicker lines indicate edges with a strong effect. (B) For each genetic
interaction pattern (inversion, buffering, quantitative buffering, suppression, quantitative

suppression and masking), the percentage of models showing that particular genetic
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interaction pattern is shown, split up per complexity (number of edges). The percentage per
complexity is calculated as the number of models showing a particular genetic interaction
pattern for a certain complexity, divided by the total number of models for that complexity.
Bar plots are subdivided into two types of models, models that have quantitative differences
between edge weights (bright gray) and models that have no quantitative differences
between edge weights (dark gray). The number of models showing the particular genetic

interaction pattern per complexity is shown on top of each bar plot.

A quantitative difference in interaction strength is frequently accompanied by an
intermediate buffering node

With the exception of the two models discussed above, all other inversion models
consist of four nodes with two regulator nodes and two downstream effector nodes.
To better understand the interplay between all four nodes, besides the node
displaying inversion (G1), the second downstream gene (G2) was also analyzed for
the occurrence of different genetic interaction patterns (Fig 5A). Most G2 nodes tend
to have no genetic interaction pattern (27%). The most common genetic interaction
patterns are buffering (23%) and quantitative buffering (18%). These both are very
alike in their genetic interaction pattern (Fig 1A) and only show slight differences in
their quantitative behavior. They may therefore be considered as part of the same
superclass of “buffering”. The buffering node is frequently positioned upstream of
the inversion node, and always downstream of R1/R2 (Fig 5B). The combination of
inversion and buffering is also significantly overrepresented within inversion models
when compared to all models (Table 1, p < 0.005). Taken together this shows that a

quantitative difference in interaction strength of two genes or pathways acting on a
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429  downstream gene is frequently accompanied by an intermediate gene or pathway

430 that displays buffering.

431

432 Fig 5. Inversion is frequently accompanied by buffering

433  (A) Bar plots showing the percentage of models that either have no genetic interaction

434  (gray, left bar) or a different genetic interaction pattern in node G2 when node G1 s

435  displaying inversion. The number of models per category is shown on top of each bar plot.
436 Color scheme of the genetic interaction patterns as in Fig 1A. (B) Petri net simulation results
437  for two models with four nodes with node G1 always displaying inversion and node G2

438  displaying either buffering (left) or quantitative buffering (right). Heat maps as in Fig 4A.

439

440 Table 1. Models with a quantitative edge difference and intermediate buffering

441 node
Quantitative edge difference
YES NO
69,333 (41.03%) * 1,098 (0.65%) *
YES
Buffering or 1,754,000 (23.66%) * 65,618 (0.89%) *
quantitative buffering 97,418 (57.65%) * 1,138 (0.67%) *
NO
5,412,614 (73.01%) * 180,808 (2.44%) *

442 Inversion models are indicated with *. All models are indicated with *. The
443  combination of a quantitative difference in edge strength and buffering is enriched

444  forthe inversion models (41% vs. 24%, p < 0.005).
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Gatl and GIn3 might differentially regulate mitochondrial-to-nuclear signaling

One gene pair within the inversion dominated GSTF cluster {Fig 2A, branch 3; Fig 6A)
that largely consists of inversion is Gat1-GIn3. By combining the three node model
derived from the Petri Net modelling (Fig 4A, left panel) with existing literature, a
potential mechanistic explanation for the interaction between this pair can be
obtained (Fig 6B). Both GIn3 and Gat1 are activators involved in regulating nitrogen
catabolite repression (NCR) sensitive genes [62—-64]. When cells are grown under
nitrogen rich conditions, as was done here, Gat1 is repressed by Dal80 [63]. Dal80 in
turn can be activated by GIn3 [63,65], which provides a plausible mechanism for the
predicted inhibition edge between GIn3 and Gatl (Fig 6B). The degree to which GIn3
and Gatl influence downstream genes has also been reported to differentiate
between individual genes [66], which is fully consistent with the quantitative edge
difference as predicted in the model (Fig 6B). The set of inversion related genes (Fig
6A, gene set 1) is enriched for nuclear encoded mitochondrial respiratory genes (Fig
6A, denoted with a dot, p value 3.2x10™"). Previously, NCR has been linked with
mitochondrial-to-nuclear signaling through the retrograde signaling pathway [67,68],
although an alternative mitochondrial-to-nuclear signaling pathway, such as the
intergenomic signaling pathway, may instead be involved [69]. Taken together, this
suggests that Gat1 and GIn3 might differentially influence mitochondrial-to-nuclear
signaling, although additional experiments would be needed to confirm this initial

hypothesis.
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Fig 6. GIn3 and Gatl might differentially regulate mitochondrial-to-nuclear signaling

(A) Expression changes compared to WT (horizontal) in gat14, gin34, and gat14 gin34
mutants (vertical) after slow growth correction. Different colors underneath the gene
expression profiles represent different genetic interaction patterns as indicated in Fig 1A.
Gray depicts gene expression changes not part of a genetic interaction pattern. Nuclear
encoded mitochondrial respiratory genes are denoted with a dot. (B) Proposed model to
explain the inversion pattern between Gatl and GIn3 based on the Petri net simulation

result in Fig 4A.

Pdr3 likely acts as the intermediate buffering gene in mediating the inversion

pattern observed for Hac1-Rpn4

Another interesting pair of genes within the GSTF cluster dominated by the inversion
pattern (Fig 2A, branch 3) is Hac1-Rpn4. This pair displays a substantial amount of
both inversion as well as buffering (Fig 7A) and lends itself well for testing some of
the model predictions. Hacl and Rpn4 are both involved in the processing of
inappropriately folding proteins, either by activating genes of the unfolded protein
response [70] (UPR, Hac1) or via the endoplasmic reticulum-associated degradation
[71] (ERAD, Rpn4). Two genes that display inversion, Pdr5 and Pdri15, show stronger
expression changes compared to the other genes in the same gene set (Fig 7A, gene
set 1). Both Pdr5 and Pdr15 are multidrug transporters involved in the pleiotropic
drug response [72]. Expression of these two genes is tightly regulated by Pdr1 and
Pdr3 [73,74]. Pdr5 is also positively regulated by expression of Yap1, a basic leucine

zipper transcription factor that is required for oxidative stress tolerance [75]. Of the
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three transcription factors Pdri, Pdr3 and Yap1, only PDR3 shows a clear
upregulation in the hac14 rpn44 double mutant and hardly any change in the
respective single mutants (Fig 7B). This is consistent with the role of the
intermediate buffering gene as derived from our Petri net modelling results. If Pdr3
acts as the intermediate buffering gene as predicted based on our model, it is also
expected that deletion of PDR3 leads to a more severe downregulation of PDR5 and
PDR15 expression levels when compared to expression levels of PDR5 and PDR15 in
the rpn44 mutant. To test this prediction, mRNA expression changes of PDR5 and
PDR15 where investigated in the pdr34 and rpn44 mutants. As expected, deletion of
PDR3 results in a much stronger downregulation of PDR5 (p=7.26x10™) and PDR15
(p=5.95x10"°) compared to deletion of RPN4 (Fig 7C), thereby confirming the model
prediction. Taken together, these results provide a likely mechanistic explanation
where Pdr3 acts as the intermediate buffering gene in regulating Pdr5 and Pdr15 (Fig

7D).

Fig 7. Pdr3 acts as an intermediate gene for observing inversion in PDR5 and PDR15

(A) Expression changes compared to WT (horizontal) in rpn44, hacid, and haclA rpn4A
mutants (vertical) after slow growth correction. Different colors underneath the gene
expression profiles represent different genetic interaction patterns as indicated in Fig 1A.
Gray depicts gene expression changes not part of a genetic interaction pattern. (B)
Expression changes of Pdrl, Pdr3 and Yap1 compared to WT in rpn4A, hac1A4 and hac14
rpn44 mutants. (C) Expression changes of Pdr5 and Pdr15 compared to WT in rpn44 and

pdr34 mutants. P values are obtained from a limma analysis comparing gene expression
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changes between rpn44 and pdr34 mutants. (D) Proposed model to explain the inversion

pattern between Hacl and Rpn4 based on the Petri net simulation result in Fig 5B.

Discussion

Genome-wide gene expression measurements to investigate the genetic
interaction landscape

To investigate genetic interactions in a high-throughput manner, growth-based
assays have frequently been deployed, resulting in the identification of an
overwhelming number of both negative and positive genetic interactions [6,20—28].
Based on these surveys, several theoretical mechanisms have been proposed to
explain genetic interactions [3,18,76,77]. More efforts, also using different types of
assays, are however still needed to systematically and thoroughly investigate the
underlying mechanisms. Alongside growth-based genetic interactions, genome-wide
gene expression measurements have been applied to elucidate potential molecular
mechanisms underlying genetic interactions [16,17,33-36]. Although more
laborious, expression-based genetic interactions potentially allow for more in-depth
characterization of the genetic interaction landscape. Here, we show that buffering
is the most frequently occurring pattern underlying most negative genetic
interactions. These are however to a large degree related to slow growing strains,
hindering the investigation of the underlying mechanisms. By applying a slow growth
transformation that removes a cell cycle associated gene expression signature, many
such effects can be filtered out [48]. The transformation results in distinct clusters

that can be more easily aligned with potential underlying mechanisms. Recent
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advances using Crispr-Cas9 single and double knock-down screens, followed by
single cell RNA sequencing have also shown that results are greatly influenced by the
cell-cycle phase in which different cells are found [35,78]. It is therefore essential for
future studies on genetic interactions to incorporate methods that decompose such

large confounding effects, as they greatly influence the ability to deduce mechanism.

Systematic modelling to understand mechanisms of genetic interactions

To infer underlying mechanisms from the genetic interaction landscape as obtained
from genome-wide gene expression measurements, systematic modeling
approaches are warranted [3,18]. Various modeling techniques have been
instrumental in understanding various aspects of experimental data (reviewed in
[79]). Different modeling methods have different applications, depending on the
question asked and available data types. To infer the underlying mechanisms for
many genetic interactions, an approach is needed that is able to exhaustively explore
the complete genetic interaction landscape while at the same time incorporating
(semi-) quantitative values. Here, using Petri net modeling, we have been able to
exhaustively explore more than nine million models that included semi-quantitative
effects. Inversion, a pattern strongly associated with a group of GSTF pairs was
investigated in more detail, resulting in the striking conclusion that a quantitative
difference in interaction strength is needed to explain inversion. The approach taken
here, by combining slow growth corrected genome-wide gene expression
measurements with the exhaustive semi-quantitative Petri-net modeling thus
highlights the benefits of using such an approach to understand mechanisms of

genetic interactions. Applying this approach to other types of genetic interactions or
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across many more genetic interaction pairs can help us in further characterizing
mechanisms of genetic interactions and relating these to pathway organization and

cellular states.

Inversion as a way to differentially regulate between two redundant processes and
a third, compensatory process

Previously, a mechanism termed “buffering by induced dependency” was proposed
to explain parts of the genetic interaction patterns observed between Rpn4 and
Hac1 (Fig 8, dotted inset) [17]. This mechanism links the endoplasmic reticulum-
associated degradation (ERAD) by the proteasome (Rpn4) with the unfolded protein
response (UPR, Hacl), two distinct processes dealing with misfolded and unfolded
proteins. By combining the “buffering by induced dependency” mechanism with the
model proposed for inversion here, most genetic interaction patterns observed for
Rpn4 and Hac1l can be explained (Fig 7A; 8). The combined model introduces a third,
compensatory process, the pleiotropic drug response (PDR; Fig 8, bottom light gray
inset). Even though the exact relationship between ERAD, UPR and pleiotropic drug
response is unclear, the interplay between UPR and drug export has been shown in
mammalian cells [80]. In yeast, Pdr5 and Pdr15 have been implicated in cellular
detoxification [74,81] and may also be required for cellular detoxification under
normal growth conditions [81]. Both Pdr5 and Pdrl5 have been reported to be
regulated through Pdrl and Yap1 [75,82], as well as through Rpn4 [83,84]. This is
also confirmed here by downregulation of both Pdr1 and Yap1 as well as
downregulation of their target genes Pdr5 and Pdr15 in rpn44 (Fig 7B, C). It is

therefore likely that in the wildtype situation when Rpn4 is active, both ERAD and
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the PDR are functioning (Fig 8). Deletion of RPN4 leads to deactivation of the ERAD
and PDR pathways and activation of the UPR through Hac1 (Fig 8, rpn44 dotted red
line). Deletion of both RPN4 and HACL1 results in a major growth defect and
accumulation of misfolded and unfolded proteins, most likely leading to a stronger
activation of the PDR through Pdr3 compared to the wildtype situation (Fig 7B, C; Fig
8, hacl4 rpn4A dotted red line) [73,74]. Taken together, this model thus provides a
potential regulatory mechanism in which two redundant processes, each with
slightly different efficacies, can be differentially regulated, or fine-tuned, through a
third, compensatory process. The requirement to fine-tune slightly different
efficacies of different cellular processes then also provides a potential explanation
why inversion is observed more frequently for gene-specific transcription factors
since these allow for more fine-grained control than protein kinases and

phosphatases.

Fig 8. Combination of buffering by induced dependency and proposed model for inversion

Carton depiction of proposed model for genetic interaction between Rpn4 and Hacl. Red
arrows indicate the consequence of disrupted genes and pathways. The dashed rectangle
indicates a previously proposed model, “buffering by induced dependency”, to explain genes

showing buffering for Hac1-Rpn4 . A thicker arrow represents a stronger activation strength.

In conclusion, we have shown how exhaustive exploration of regulatory networks
can be used to generate plausible hypothetical regulatory mechanisms underlying
inversion. Almost all models showing inversion contain a quantitative difference in

edge strengths, which suggests quantitative differences in regulating downstream
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target genes are important for the functioning of GSTFs. These hypothetical
mechanisms have subsequently been tested against known and new experimental
data. For GSTFs we show a validated example of Hac1-Rpn4 where differential
regulation of gene expression is key to understanding the genetic interaction pattern

inversion.

Materials and Methods

Selection of GSTF and kinase/phosphatase pairs

Two selection criteria were applied to select genetically interacting GSTF and
kinase/phosphatase pairs. First, one of the mutants of each individual pair should
show genome-wide gene expression measurements similar to wildtype (WT). DNA
microarray data from Kemmeren et al [85] was used to determine whether a single
deletion mutant is similar to WT. A deletion mutant is considered similar to WT
when fewer than eight genes are changing significantly (p < 0.05, FC > 1.7) in the
deletion mutant gene expression profile, as previously described [16]. Second,
selected pairs should show a significant growth-based negative genetic interaction
score. Growth-based genetic interaction scores for GSTF [28] and kinase/phosphate
[26] pairs were converted to Z-scores. A negative Z-score significance of p < 0.05
after multiple testing correction was used as the significance threshold. Applying
these selection criteria resulted in 11 GSTF pairs and 15 kinase/phosphatase pairs

(S1 Table).
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Genome-wide gene expression measurements and statistical analyses

Genome-wide gene expression measurements of single and double mutant GSTF
pairs were obtained from Sameith et al [17]. Genome-wide gene expression
measurements of single and double mutant kinase/ phosphatase pairs were
obtained from van Wageningen et al [16]. Genome-wide gene expression
measurements of pdr34 and ron4A were obtained from Kemmeren et al [85].
Statistical analysis of these gene expression profiles was performed as previously
described [85]. In summary, mutants were grown in Synthetic Complete (SC)
medium with 2% glucose and harvested during exponential growth. WT cultures
were grown alongside mutants in parallel to monitor for day to day effects. For each
mutant statistical analysis using limma was performed versus a collection of WTs
[16,85]. Reported FC for each transcript is the average of four replicate expression

profiles over a WT pools consisting of 200 WT strains.

Growth-based genetic interaction scores

Growth measurements for single and double mutant GSTF and kinase/phosphatase
pairs were obtained from Sameith et al [17] and van Wageningen et al [16]
respectively. Growth-based genetic interaction scores were calculated for both GSTF
and kinase/phosphatase pairs as performed before [17]. In summary, the fitness W
of single and double mutants was determined as the ratio between the WT growth

rate and the mutant growth rate. The growth-based genetic interaction score
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Blyrowth,xy Was calculated as the deviation of the observed fitness in a double mutant
from the expected fitness based on the respective single mutants (Bgrowtn xy = Wiaya -
Wia . Wya). P values were assigned to genetic interaction scores based on the mean
and standard deviation of a generated background distribution [17]. P values were
corrected for multiple testing using Benjamini-Hochberg. Adjusted p values lower
than 0.05 were considered significant. Fitness values of all single and double

mutants, as well as calculated genetic interaction scores can be found in S1 Table.

Expression-based genetic interaction scores

Expression-based genetic interaction scores were calculated for both GSTF and
kinase/phosphatase pairs as described before [17]. In summary, the effect of a
genetic interaction between two genes X and Y on gene i is calculated as the
deviation between the observed expression change in the double mutant and the
expected expression change based on the corresponding single mutants (€upn ixv =
[Mixaya = (Mixa + M, ,4)| ). The overall genetic interaction score between X and Y is
calculated as the sum all genes i for which €, ;i xy > l0g2(1.5). All genetic interaction
scores consisting of at least 10 genes were kept for further downstream analyses.
Genes with similar gene expression changes were divided into the 6 different
patterns (buffering, quantitative buffering, suppression, quantitative suppression,

masking, inversion), as previously described [17] (Fig 1A).

Clustering of expression-based genetic interaction scores
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Genetic interaction profiles for both classes of proteins were grouped together
based on the number of occurrences of the six different patterns using hierarchical
clustering. Average linkage was applied for the clustering. Identity of genes in each

genetic interaction profile was disregarded.

Slow growth transformation

Slow growth signature transformation of the gene expression profiles was
performed as previously described [48]. In short, for each mutant, the correlation of
its expression profile with the first principal component of 1,484 deletion strains [85]
was removed, thus minimizing correlation with the relative growth rate. The
transformation reduces correlation with the relative growth rate from 0.29 to 0.10

on average [48].

Model generation

Exhaustive modeling of possible network topologies underlying the genetic
interaction patterns was carried out by creating Petri net models consisting of four
nodes, representing two regulator genes (R1 and R2) and two downstream genes
(G1 and G2). With four nodes and directed edges, there are 4°=16 possible edges,
and 2'°=65536 possible edge weight matrices, which is a tractable number.

However, each interaction can in addition be positive or negative, and weak or
strong (and absent), leading to 5'°=1.5810"" possible interaction graphs (edge weight
matrices), which becomes intractable. Many of these models, however, will be

irrelevant for the understanding the biological behavior of genetic interaction
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698  patterns of two genes. To exclude these types of models, the following conditions
699  were applied: 1) No self-edges are allowed. 2) The number of incoming edges on any
700 node must be limited to two. 3) At least two incoming edges from at least one of the
701  regulators (upstream nodes) to the genes (downstream nodes). Applying these

702  conditions reduces the number of relevant edge weight matrices to 9,287,616.

703  Furthermore, most generated matrices have mirror counterparts, therefore only one
704  of the matrices was included in downstream analyses. Applying this filtering step
705  results in 2,323,936 matrices. Fig 3 gives an overview of the various filtering steps,
706  and shows which representation of the models was relevant in different stages of
707  thefiltering. Edge weight matrices were generated in R, version 3.2.2 (the function
708  expand.grid was used to generate all combinations of edges per row in a given

709  matrix).

710

711  Petri net simulations

712  Regulatory effects of two potentially interacting genes (R1 and R2) on two
713  downstream genes (G1 and G1) were simulated using a Petri net approach
714  [42,44,86,87] to recapitulate genetic interaction patterns observed in the gene

715  expression data.

716  Inthe Petri net notation, nodes in a given model are represented by places (denoted
717  ascircles). Interactions between nodes always go via a transition (denoted as
718  squares), connected via directed arcs (drawn as arrows). An incoming arc to a

719  transition can be either activating or inhibiting. The weight on arcs going to a
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transition is always fixed to 1. The weight on arcs going from a transition to a place

depends on the edge weight between two nodes, 1 for weak and 5 for strong (Fig 3).

For nodes with two incoming edges, one has to decide how these two inputs should
be combined: does the transition require both inputs to be activated (AND logic), or
can one or the other activate it (OR logic). To incorporate this, for each pair of
incoming edges with the same weight, two Petri net models were generated: one
using the AND logic, and one using the OR logic (Fig 3, bottom right panel). For two
incoming edges with different weights only the Petri net model using the OR logic
was generated. For cases with two incoming edges to a node with two different

directions, activation and inhibition, inhibition dominates.

To simulate the regulatory effects of two upstream genes (R1 and R2), 200 tokens
were provided to represent the mRNA resources for each regulator, except when
one of the regulators has an incoming edge from the other regulator as shown in
(S5A Fig). Each step in the simulation process comprises of firing all enabled
transitions (maximal parallel execution) [88,89]. A transition is enabled to fire when
resources (tokens) in the input place(s) match or exceed the weight(s) on the
respective incoming arc(s) to the transition (S5B Fig). In total 50 consecutive

transition firing steps were performed.

To incorporate deletion mutants in the simulation process, tokens were removed
from corresponding regulators. To prevent accumulation of tokens in deleted
regulators, each outgoing arc from a transition to the corresponding deleted places
were also removed in simulated deletion strains. The number of tokens in G1 and G2

after 50 steps of firing transitions in single and double mutants were compared with
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that in the WT situation where both R1 and R2 are active. To avoid division by zero
one token was added to the total number of tokens in G1 and G1. These fold

changes were then log2 transformed (M values).

Simulation-based genetic interaction scores for G1 and G2 were calculated based on
the deviation between observed M values in the double mutant and the expected M
value based on the single mutants, as follows: €sim r1r2i = | Mg1ar2ai = (Mgiai + Mg2ai) |,
where i can be either G1 or G2. Each node with €, r1r2i > l0g2(1.7) was further
divided into genetic interaction patterns, as defined before based on gene
expression data [17]. Simulated expression levels for single and double mutants are
considered to be increased relative to WT when M > log,(1.7) and decreased when

M < -log,(1.7).

Functional enrichment tests

Functional enrichment analyses were performed using a hypergeometric testing
procedure on Gene Ontology (GO) biological process (BP) annotations [67] obtained
from the Saccharomyces Cerevisiae Database [68]. The background population of
genes was set to 6,359 and p values were corrected for multiple testing using

Bonferroni.

Visualization of models
Models were visualized in R, version 3.2.2, using diagram package (version 1.6.3).
Weak and strong activation/inhibition edges are represented as thin and thick lines,

respectively.
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Supporting Information

S1 Table. Single and double mutant GSTF and kinase/phosphatase pairs

S2 Table. Number of genes for each genetic interaction pattern for both GSTF as well as

kinases/phosphatase pairs.

S1 Fig. Buffering dominates genetic interaction profiles

(A) Hierarchical clustering of all pairs according to their genetic interaction effects. Average
linkage clustering was applied to group pairs with similar genetic interaction patterns. The
number of occurrences for each genetic interaction pattern was used and the identity of
individual genes was disregarded. Similarity between pairs was calculated using the cosine
correlation. Most pairs are grouped together in a single branch (indicated in red), which is
dominated by buffering. (B) The number of genetic interaction effects underlying the
clustering are shown as bar plots below the dendrogram (top; colors as in Fig 1A). (B)
Number of genes showing no genetic interaction pattern but significantly changing in one of
the mutants compared to WT (bottom; p < 0.01, FC > 1.5). Dark gray for the first named

gene, light gray for the second named gene.

S2 Fig. Slow growth correction improves identification of GSTF targets

Scatter plots showing gene expression levels in the GSTF double mutant pairs hac14 rpn44

(A), met314 met324 (B), gat1A gin34 (C) and cbf14 hacl4 (D) versus WT before (left) or
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after (right) slow growth correction. Individual transcripts are represented as dots. The
dashed line indicates a FC of 1.7. Dots depicted in blue and red correspond to targets of the
first and second gene in a named GSTF pair. P-values are calculated using a hypergeometric
testing procedure to test the enrichment of GSTF targets among genes that change more

than 1.7 fold before (left) or after (right) slow growth correction.

S3 Fig. The genetic interaction between EIm1 and Mih1 can be explained through pathway

redundancy

Cartoon depicting the proposed genetic interaction between EIm1 and Mih1. (left panel) WT
situation where the activity of Cdc28 is not disrupted by Swel phosphorylation. (Middle
panel) Deletion of EIm1 leads to derepression of Swel activity. The increase of Swel activity
can be compensated by Mih1. (Right panel) Deletion of both EIm1 and Mih1 will cause an
increase of phosphorylated Cdc28 (inactive form), which in turn can lead to G2 delay/stress

and therefore many gene expression changes.

S4 Fig. Hierarchical clustering of positive and negative genetic interaction GSTF pairs.

Hierarchical clustering of 44 GSTF pairs according to their genetic interaction effects after
slow growth correction. These pairs include both negative and positive genetic interactions.

Layout and analysis similar to Fig 2.

S5 Fig. Provided tokens to places in WT condition and transition firing rules
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1092  (A) Provided tokens to regulators depending on edges between them. (B) Transition
1093  firing rules for activation and inhibition edges depending on the presence of tokens

1094  in upstream places.
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