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The ability of transcription factors to differentially regulate gene expression is a 1 

crucial component of the mechanism underlying inversion, a frequently observed 2 

genetic interaction pattern 3 
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 2 

Abstract 19 

Genetic interactions, a phenomenon whereby combinations of mutations lead to 20 

unexpected effects, reflect how cellular processes are wired and play an important 21 

role in complex genetic diseases. Understanding the molecular basis of genetic 22 

interactions is crucial for deciphering pathway organization as well as understanding 23 

the relationship between genetic variation and disease. Several putative molecular 24 

mechanisms have been linked to different genetic interaction types. However, 25 

differences in genetic interaction patterns and their underlying mechanisms have 26 

not yet been compared systematically between different functional gene classes. 27 

Here, differences in the occurrence and types of genetic interactions are compared 28 

for two classes, gene-specific transcription factors (GSTFs) and signaling genes 29 

(kinases and phosphatases). Genome-wide gene expression data for 63 single and 30 

double deletion mutants in baker’s yeast reveals that the two most common genetic 31 

interaction patterns are buffering and inversion. Buffering is typically associated with 32 

redundancy and is well understood. In inversion, genes show opposite behavior in 33 

the double mutant compared to the corresponding single mutants. The underlying 34 

mechanism is poorly understood. Although both classes show buffering and 35 

inversion patterns, the prevalence of inversion is much stronger in GSTFs. To 36 

decipher potential mechanisms, a Petri Net modeling approach was employed, 37 

where genes are represented as nodes and relationships between genes as edges. 38 

This allowed over 9 million possible three and four node models to be exhaustively 39 

enumerated. The models show that a quantitative difference in interaction strength 40 

is a strict requirement for obtaining inversion. In addition, this difference is 41 

frequently accompanied with a second gene that shows buffering. Taken together, 42 
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 3 

these results provide a mechanistic explanation for inversion. Furthermore, the 43 

ability of transcription factors to differentially regulate expression of their targets 44 

provides a likely explanation why inversion is more prevalent for GSTFs compared to 45 

kinases and phosphatases.  46 
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Author Summary 47 

The relationship between genotype and phenotype is one of the major challenges in 48 

biology. While many previous studies have identified genes involved in complex 49 

genetic diseases, there is still a gap between genotype and phenotype. One of the 50 

difficulties in filling this gap has been attributed to genetic interactions. Large-scale 51 

studies have revealed that genetic interactions are widespread in model organisms 52 

such as baker’s yeast. Several molecular mechanisms have been proposed for 53 

different genetic interaction types. However, differences in occurrence and 54 

underlying molecular mechanism of genetic interactions have not yet been 55 

compared between gene classes of different function. Here, we compared genetic 56 

interaction patterns identified using gene expression profiling for two classes of 57 

genes: gene specific transcription factors and signaling related genes. We modelled 58 

all possible molecular networks to unravel putative molecular differences underlying 59 

different genetic interaction patterns. Our study proposes a new mechanistic 60 

explanation for a certain genetic interaction pattern that is more strongly associated 61 

with transcription factors compared to signaling related genes. Overall, our findings 62 

and the computational methodologies implemented here can be valuable for 63 

understanding the molecular mechanisms underlying genetic interactions.  64 

 65 

 66 

 67 

 68 

 69 

 70 
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Introduction 71 

Understanding the relationship between genotype and phenotype of an organism is 72 

a major challenge [1,2]. One of the difficulties for unravelling genotype-phenotype 73 

relationship has been genetic interactions, when combinations of mutations lead to 74 

phenotypic effects that are unexpected based on the phenotypes of the individual 75 

mutations [3–5]. Large-scale analyses of single and double deletion mutants have 76 

revealed that genetic interactions are pervasive in many model organisms [6–11]. 77 

Recently, efforts have been initiated to investigate genetic interactions in human cell 78 

lines too, using large-scale RNA interference and Crispr-Cas9 knock downs [12–15]. 79 

Our understanding of the molecular mechanisms that underlie genetic interactions 80 

lags behind our ability to detect genetic interactions. Understanding the molecular 81 

basis of genetic interactions and their interplay with cellular processes is important 82 

for unraveling how different processes are connected [16–18], to what degree 83 

genetic interactions shape pathway architecture [6], as well as for understanding the 84 

role genetic interactions play in human disease [5,19].  85 

 86 

One of the phenotypes that is frequently used to investigate genetic interactions is 87 

cell growth [6,20–28]. Based on this phenotype, genetic interactions can be broadly 88 

subdivided in two types, negative genetic interactions where the double mutant is 89 

growing slower than expected given the growth rate of the single deletion mutants, 90 

and positive genetic interactions where the double mutant is growing faster than 91 

expected [3]. Negative genetic interactions have frequently been associated with a 92 

redundancy relationship between two functionally related genes [29]. The 93 

redundancy mechanisms by which two genes can compensate for each other’s loss 94 
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has been linked with close paralog genes or redundant pathways [30,31]. Positive 95 

genetic interactions have been associated with genes participating in the same 96 

protein complex or pathway [32]. There are however many exceptions to these rules 97 

and it also has become clear that there are many other potential mechanisms 98 

underlying these genetic interactions [3,18]. 99 

 100 

Another phenotype that has been less frequently used for investigating genetic 101 

interactions is gene expression [16,17,33–36]. Expression-based genetic interaction 102 

profiling provides detailed information at the molecular level which is beneficial for 103 

unraveling mechanisms of genetic interactions [16,17,33–36]. Unlike growth-based 104 

profiling, which gives a subdivision into either positive or negative interactions, 105 

expression-based genetic interaction profiling provides further subdivision into more 106 

specific genetic interaction patterns including buffering, quantitative buffering, 107 

suppression, quantitative suppression, masking and inversion [17]. A more detailed 108 

sub classification that includes information on expression of downstream genes, can 109 

also contribute to understanding the mechanisms by which two genes interact 110 

[16,17,37]. 111 

 112 

To provide mechanistic insights into biological networks, Boolean modeling has been 113 

used successfully [38,39]. It has also been applied to unravel regulatory networks 114 

underlying genetic interaction patterns between kinases and phosphatases [16]. Due 115 

to their intrinsically simple nature, such Boolean network models allow exhaustive 116 

enumeration of network topologies. The outcomes of these models can then be 117 

easily compared to the patterns observed in experimental data. Boolean operators 118 
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however, are limited to on and off values and cannot easily accommodate 119 

quantitative measurements, which limits the types of genetic interaction patterns 120 

that can be investigated using this approach. Unravelling the regulatory network 121 

underlying genetic interaction patterns would potentially benefit from application of 122 

modeling approaches that allow some degree of quantitativeness to be introduced 123 

while still being computationally feasible to exhaustively explore all potential 124 

models. In this way, Petri nets may be considered an extension of Boolean modeling 125 

that provides more flexibility, in particular by choosing different network edge 126 

strengths, without the need to incorporate detailed prior quantitative knowledge 127 

[40–44]. Petri net modeling would therefore allow investigation of all possible 128 

genetic interaction patterns in an exhaustive and semi-quantitative manner. 129 

 130 

It is evident that genetic interactions are widespread in Saccharomyces cerevisiae [6] 131 

as well as other organisms [7,8]. Nevertheless, extensive characterization of the 132 

molecular mechanisms underlying genetic interactions, as well as a comparison of 133 

the molecular mechanisms underlying genetic interactions between different 134 

functional classes have, as yet, not been performed. Here, two functional classes, 135 

gene specific transcription factors (GSTFs) and signaling related genes (kinases and 136 

phosphatases) have been compared with regard to negative genetic interaction 137 

patterns and the possible underlying molecular mechanisms. This revealed that the 138 

two most common genetic interaction patterns are buffering and inversion. The 139 

prevalence of inversion however, is much stronger in GSTFs. The underlying 140 

mechanism of inversion, whereby genes show opposite behavior in the double 141 

mutant compared to the corresponding single mutants, is poorly understood. 142 
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Exhaustive enumeration of network topologies using Petri net modelling reveals that 143 

the minimum requirement for observing inversion is having a quantitative difference 144 

in interaction strength (edge weight) from the two upstream transcription factors to 145 

a shared downstream gene. In addition, this quantitative edge difference is 146 

frequently accompanied by an intermediate node, that displays a buffering pattern. 147 

The proposed model provides a mechanistic explanation for inversion, thereby 148 

further aiding a better understanding of genetic interactions. GSTFs, more so than 149 

kinases/phosphatases, can modulate or fine-tune the activation levels of their target 150 

genes, which suggests quantitative differences in regulating downstream target 151 

genes are important for the functioning of GSTFs. This is consistent with the fact that 152 

inversion occurs more often between GSTFs than between signaling genes, as well as 153 

our observation that quantitative edge differences are required for inversion to 154 

occur and provides a likely explanation why inversion is more prevalent for 155 

transcription factors. 156 

 157 

Results 158 

 159 

A single dataset to compare mechanisms of genetic interactions between gene-160 

specific transcription factors and kinases/phosphatases 161 

To investigate potential differences in mechanisms of genetic interactions between 162 

groups of genes with a different function, data from two previously published 163 

datasets were combined [16,17]. The first dataset includes genome-wide gene 164 

expression measurements of 154 single and double gene-specific transcription factor 165 
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(GSTF) deletion mutants [17]. The second dataset contains genome-wide gene 166 

expression measurements of 54 single and double kinase/phosphatase (K/P) 167 

deletion mutants [16]. These studies applied different criteria to select for 168 

interacting pairs. Whereas the GSTF dataset includes both positive and negative 169 

genetic interactions, the kinase/phosphatase dataset was restricted to negative 170 

genetic interactions only. To avoid potential biases, the selection criteria of the 171 

kinase/phosphatase dataset [16] were adopted and applied to both datasets. In 172 

short, selection was based on pairs having a significant growth-based negative 173 

genetic interaction score (p < 0.05, Methods) to include redundancy relationships 174 

that influence fitness. In addition, for a given double mutant, at least one of the 175 

corresponding single mutants has an expression profile similar to wildtype (WT) 176 

(eight or more transcripts changing significantly (p < 0.05, fold-change > 1.7)) to 177 

ensure that genetic interactions such as redundancy are considered. These selection 178 

criteria yield a uniform dataset consisting of 11 GSTF double mutants and 15 179 

kinase/phosphatase double mutants as well as their respective single mutants (63 180 

single and double mutants in total; S1 Table). 181 

 182 

Genetic interaction profiles indicate a large degree of buffering 183 

Genetic interactions can be investigated in different ways. Here, both growth as well 184 

as genome-wide gene expression is used to compare genetic interactions between 185 

GSTFs and kinases/phosphatases, as described before [17]. In short, a growth-based 186 

genetic interaction score εgrowth,XY  between two genes X and Y is obtained by 187 

comparing the observed fitness for double mutant WxΔyΔ to the fitness that is 188 

expected based on both single mutants WxΔ ⋅ WyΔ (εgrowth,XY  = WxΔyΔ - WxΔ ⋅ WyΔ) [45]. 189 
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A gene expression-based genetic interaction score between two genes X and Y is 190 

calculated in two consecutive steps [17]. First, the effect of a genetic interaction 191 

between two genes X and Y on any downstream gene i is calculated as the deviation 192 

between the expression change observed in the double mutant Mi,xΔyΔ and the 193 

expected expression change based on the corresponding single mutants Mi,xΔ + Mi,yΔ 194 

(εtxpn_i,XY =|Mi,xΔyΔ – (Mi,xΔ + Mi,yΔ)|). The overall genetic interaction score between 195 

gene X and Y is then obtained by counting the total number of genes for which 196 

εtxpn_i,XY  is greater than 1.5 [17]. Gene expression changes from single and double 197 

mutants were subsequently grouped into the six genetic interaction patterns, 198 

buffering, suppression, quantitative buffering, quantitative suppression, masking and 199 

inversion, as previously described (Fig 1A) [17]. When investigating the genetic 200 

interaction profiles of GSTFs (Fig 1B) as well as kinases/phosphatases (Fig 1C), it is 201 

clear that buffering is prevalent in many of the larger genetic interaction profiles, but 202 

the degree of buffering differs for the smaller genetic interaction profiles.  203 

 204 

Fig 1. Genetic interaction profiles of GSTF and kinase/phosphatase pairs. 205 

(A) Cartoon depicting expression changes in single and double mutants with different 206 

genetic interaction patterns color coded underneath. At the bottom, the direction of 207 

expression differences between the observed expression change (MxΔyΔ) and expected 208 

(MxΔ+MyΔ) is stated. Color scale from yellow for an increase in expression levels compared to 209 

WT (p ≤ 0.01, log2(FC) > 0), black for unchanged expression (p > 0.01) and blue for a decrease 210 

in expression levels compared to WT (p ≤ 0.01, log2(FC) < 0). (B) Expression changes 211 

compared to WT (horizontal) in GSTF single and double mutants (vertical). Different colors 212 

underneath the gene expression profiles represent different genetic interaction patterns as 213 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449520doi: bioRxiv preprint 

https://doi.org/10.1101/449520
http://creativecommons.org/licenses/by-nc/4.0/


 11 

indicated in A. Gray depicts gene expression changes not part of a genetic interaction 214 

pattern. Pairs are sorted based on the number of genetic interaction effects, increasing from 215 

bottom to top. (C) Expression changes compared to WT (horizontal) in kinase and 216 

phosphatase single and double mutants (vertical). Layout and ordering as in B. 217 

 218 

Removal of a slow growth associated expression signature for improved 219 

identification of direct effects 220 

Hierarchical clustering was applied to group pairs with similar genetic interaction 221 

patterns (S1 Fig), thereby disregarding the identity of individual downstream genes. 222 

From this clustering, it is clear that there is no distinct separation between pairs 223 

consisting of GSTFs and kinases/phosphatases. Instead, most pairs are characterized 224 

by large buffering effects, grouped together in a single large cluster (S1A Fig, red 225 

branch labeled as 1). This is not surprising, since all pairs are selected for having a 226 

significant growth-based negative genetic interaction score. This in turn is based on 227 

double mutants growing slower than expected based on the single mutants. Slow 228 

growing strains are known to display a common gene expression signature [46,47]. 229 

This slow growth gene expression signature is caused by a change in the distribution 230 

of cells over different cell cycle phases [48]. To facilitate investigating mechanisms of 231 

genetic interactions, such effects are better disregarded. As described previously 232 

[48], the dataset was transformed by removing the slow growth signature 233 

(Methods). Removing the slow growth signature and thereby reducing effects due to 234 

a cell cycle population shift improves identification of direct target genes of GSTF 235 

pairs (S2 Fig) as shown before for individual GSTFs [48]. 236 

 237 
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Discerning potential mechanisms with slow growth corrected genetic interaction 238 

profiles 239 

Hierarchical clustering of the slow growth corrected genetic interaction profiles was 240 

then applied to unravel potential differences in observed genetic interactions 241 

patterns between GSTFs and K/P (Fig 2A-C). Three striking differences emerge when 242 

comparing this clustering with the clustering of the original, untransformed data (S1 243 

Fig). First, pairs are grouped into four distinct clusters, whereas previously, most 244 

were grouped into a single large cluster. Second, a cluster of predominantly 245 

kinase/phosphatase pairs emerges (Fig 2A, green branch, labeled as 1). These 246 

contain mixtures of different genetic interaction patterns, corresponding to ‘mixed 247 

epistasis’ [16]. Third, a smaller cluster dominated by buffering appears (Fig 2A, red 248 

branch, labeled as 2). This cluster also has strong growth-based negative genetic 249 

interaction scores (Fig 2C), which is known to be associated with redundancy. 250 

The ‘buffering’ cluster, with its strong growth-based negative interactions, mostly 251 

consists of pairs with a high sequence identity (average 43.7%) compared to the 252 

others (average 21%). These include Nhp6a-Nhp6b, Met31-Met32, Ecm22-Upc2 and 253 

Ark1-Prk1, for all of which redundancy relationships have been described previously 254 

[49–52]. The high sequence identity here indicates a homology-based redundancy, in 255 

which both genes can perform the same function [30,31,53,54]. The only exception 256 

here, is the kinase/phosphatase pair Elm1-Mih1. This pair may be explained through 257 

pathway-based redundancy where two parallel pathways can compensate for each 258 

other’s function [55]. Elm1 is a serine/threonine kinase, and Mih1 a tyrosine 259 

phosphatase, which are both involved in cell cycle control (S3 Fig, left panel) [56,57]. 260 

Mih1 directly regulates the cyclin-dependent kinase Cdc28, a master regulator of the 261 
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G2/M transition [57]. Elm1, on the other hand, indirectly regulates Cdc28 activity by 262 

promoting Swe1 degradation through the recruitment of Hsl1 [58,59]. The timing of 263 

entry into mitosis is controlled by balancing the opposing activities of Swe1 and 264 

Mih1 on Cdc28, and both Swe1 and Mih1 are key in the checkpoint mediated G2 265 

arrest [60,61]. Deletion of Elm1 does not result in many gene expression changes 266 

(Fig 1C) which can be explained through compensatory activity of Mih1 (S3 Fig, 267 

middle panel). Downregulation of Mih1 activity has also been suggested before as an 268 

effective mechanism to counter stabilization of Swe1, as neither stabilization of 269 

Swe1 or elimination of Mih1 in itself is sufficient to promote G2 delay, but 270 

simultaneous stabilization of Swe1 and elimination of Mih1 does cause G2 arrest 271 

[59]. Simultaneous deletion of Elm1 and Mih1 leads to higher levels of inactive 272 

Cdc28 causing a G2 delay and stress (S3 Fig, right panel) [59] . All pairs within this 273 

cluster can therefore be associated with a redundancy mechanism.  274 

Taken together, these results suggest that the clustering of the slow growth 275 

corrected genetic interaction profiles is able to discern potential differences in 276 

mechanisms. Even though most pairs in the four clusters (Fig 2A) show negative 277 

genetic interactions (Fig 2C), different mechanisms are likely underlying each 278 

individual cluster.  279 

 280 

Fig 2. Hierarchical clustering of slow growth corrected genetic interaction profiles is better 281 

suited to discern underlying mechanisms  282 

(A) Hierarchical clustering of all pairs according to their genetic interaction effects after slow 283 

growth correction. Average linkage clustering was applied to group pairs with similar genetic 284 

interaction patterns. The number of occurrences for each genetic interaction pattern (Fig 285 
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1A) was used and the identity of individual genes was disregarded. Similarity between pairs 286 

was calculated using cosine correlation. Branch depicted in red, label 2, indicates pairs that 287 

are dominated by buffering. Branch depicted in orange, label 3, indicates pairs dominated by 288 

inversion. Branch depicted in green, label 1, indicates pairs explained by mixed epistasis. The 289 

number of genetic interaction effects underlying the clustering are shown as bar plots below 290 

the dendrogram (colors as in Fig 1A). (B) Number of genes showing no genetic interaction 291 

pattern but significantly changing in one of the mutants compared to WT (p ≤ 0.01, FC > 1.5). 292 

Dark gray for the first named gene, light gray for the second named gene. (C) Growth-based 293 

genetic interaction scores depicted by solid circles. Significant genetic interaction scores are 294 

shown in black, gray otherwise. Ordering of pairs is the same as in A and B. (D) Boxplot 295 

highlighting the difference between the percentage of genes showing inversion for GSTF 296 

pairs within the orange branch (Fig 2A), GSTF pairs outside this cluster and K/P pairs. p 297 

values are based on a two-sided Mann-Whitney test. 298 

 299 

Inversion is associated with a specific subset of GSTFs 300 

Within the slow growth corrected genetic interaction profiles another interesting 301 

cluster stands out: the orange branch where five out of six pairs involve GSTFs which 302 

predominantly show the inversion pattern (Fig 2A, branch 3). This suggests that 303 

inversion may be strongly associated with a particular group of GSTFs, whereas this 304 

does not seem to be the case for kinases and phosphatases. The overall percentage 305 

of genes showing inversion is already much higher for GSTFs (28.6%) than for 306 

kinases/phosphatases (18.7%) (S2 Table). When investigating the GSTF pairs within 307 

the cluster, it is clear that these display an even higher percentage of inversion 308 

compared to kinases and phosphatases (Fig 2D; p=0.00026) as well as compared to 309 
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other GSTF pairs (Fig 2D; p= 0.0043). In order to determine whether inversion was 310 

specific to the set of GSTFs analyzed here, or part of a more general phenomenon 311 

common to GSTFs, we included both positive and negative genetic interactions 312 

between GSTF pairs, expanding the number of GSTF pairs to 44. Clustering of all 44 313 

GSTF pairs (S4 Fig) also shows that a large fraction of the GSTF pairs contain many 314 

genes showing inversion, with most of the inversion dominated GSTF pairs still 315 

clustering together (S4 Fig, indicated with an asterisk). Note though, that because 316 

the 44 GSTF pairs include both positive and negative genetic interactions, the results 317 

are not directly comparable to the kinase/phosphatase pairs as these only include 318 

negative genetic interactions. Taken together, this indicates that not only is inversion 319 

more frequently associated with GSTFs compared to kinases and phosphatases, but 320 

one particular subset of GSTFs is also predominantly defined by inversion.  321 

 322 

An exhaustive modeling approach to explore potential mechanisms underlying 323 

inversion 324 

Unlike buffering, where redundancy is a likely mechanistic explanation, the 325 

underlying mechanism of inversion is still unknown [17]. The GSTF pairs within the 326 

inversion dominated cluster also do not share a common biological process, 327 

function, pathway or protein domain other than general transcription related 328 

processes and functions. To investigate potential mechanisms of inversion, an 329 

exhaustive exploration was initiated. Previously, Boolean modeling has been applied 330 

to exhaustively explore all mechanisms underlying two genetic interaction patterns 331 

for the Fus3-Kss1 kinase phosphatase pair [16]. However, to explore all potential 332 

mechanisms underlying inversion, a Boolean approach may not suffice as more 333 
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subtle, quantitative effects, may be needed to obtain inversion. At the same time, 334 

any modeling approach must remain computationally feasible. For this purpose, a 335 

modeling approach based on Petri nets was devised to exhaustively evaluate all 336 

possible three and four node models but taking into account the possibility of 337 

quantitatively different effects (Fig 3, Methods). Interactions between nodes (edges) 338 

can be activating (positive) or inhibiting (negative). In order to incorporate 339 

quantitative differences, both strong and weak edges were used (Methods). 340 

Counting all possible combinations of different edges results in 152,587,890,625 341 

possible edge weight matrices. To reduce the number of models, three conditions 342 

were imposed, as used previously [16]. In short, nodes contain no self-edges, the 343 

number of incoming edges on any node is limited to two and the model includes at 344 

least two edges from one of the regulators (R1, R2) to the downstream genes (G1, 345 

G2). Applying these requirements and filtering for mirror edge weight matrices 346 

results in 2,323,936 matrices. By including AND/OR logics the final number of models 347 

to be evaluated was 9,172,034 (Methods). Petri net simulations were then run and 348 

genetic interaction patterns determined for G1 and G2, analogous to what was done 349 

for the original data (Methods) (Fig 1A). Depending on the topology, Petri net 350 

models can be stochastic, in other words, they do not show the same behavior when 351 

simulated multiple times and therefore result in unstable models. Only 2.3% of the 352 

models were found to be unstable, i.e. showed inconsistent genetic interaction 353 

patterns for G1 and G2 across five times simulation runs. Thus, stochasticity hardly 354 

influences the observation of genetic interaction patterns in our simulations (Fig 3). 355 

Nevertheless, unstable models were excluded from further analysis. In total, 168,987 356 

models (1.8%) show inversion in either G1, G2, or both downstream nodes.  357 
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 358 

Fig 3. Schematic overview of Petri net simulation pipeline 359 

Schematic overview of the pipeline implemented for performing Petri net simulations. The 360 

left panels show from top to bottom the different steps performed when running the 361 

simulation pipeline. The right panels show the different data representations used 362 

throughout the pipeline. The right panel above the dashed line indicates a series of steps 363 

where edge weight matrices are used. The right panel below the dashed line indicates steps 364 

where models or Petri net notation are used. 365 

 366 

A quantitative difference in interaction strength is a strict requirement when 367 

observing inversion 368 

To investigate which potential regulatory patterns underlie the 168,987 models 369 

showing inversion, low complexity models with few edges were analyzed first. Two 370 

interesting observations can be made. First, although there are many high 371 

complexity models involving four nodes and many edges (up to eight), three nodes 372 

and three edges are sufficient to explain inversion (Fig 4A). Second, only two three-373 

node models exist that show inversion (Fig 4A). These two models only differ in the 374 

strength of the inhibiting edge from R1 to R2. Both models involve inhibition of R2 375 

through R1 and weak activation of G1 by R1 in combination with a strong activation 376 

of G1 by R2, i.e. a quantitative edge difference between the incoming edges of G1. 377 

Deletion of R1 in these two models results in activation of R2, and therefore 378 

upregulation of G1 due to a strong activating edge. Deletion of R2 however, will not 379 

result in any changes compared to WT as it is normally inhibited by R1. Deletion of 380 
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both R1 and R2 will lead to downregulation of G1 as the weak activating edge from 381 

R1 to G1 is lost. Taken together, the analysis of the low complexity models indicates 382 

that a quantitative difference in interaction strength is required to explain inversion. 383 

To investigate whether this requirement also holds for higher complexity models, all 384 

models containing two to eight edges were further analyzed. Inversion models were 385 

grouped by the number of edges (complexity) and then analyzed for their relative 386 

frequency of having a quantitative edge difference (Fig 4B, top left panel, note that 387 

the number of possible models grows exponentially with the number of edges). 388 

Almost all of these models show a quantitative edge difference, with only a very 389 

small fraction (1.3% overall) of models not having a quantitative edge difference. 390 

Except for masking, the other genetic interaction patterns show different behavior, 391 

indicating that the relative ratio of quantitative versus non-quantitative edges is not 392 

an inherent network property. Based on both the low complexity models as well as 393 

the high complexity models showing inversion, it is evident that a quantitative 394 

difference in interaction strength of two genes or pathways acting on a downstream 395 

gene is required to explain inversion. 396 

 397 

Fig 4. A quantitative edge difference is the minimum requirement for observing inversion 398 

(A) Petri net simulation results for the only two models with three nodes that result in 399 

inversion (indicated in orange) for the G1 node. Heat maps indicate the log2(FC) of the 400 

number of tokens in simulated deletion mutants (single and double mutant) relative to the 401 

WT situation. Thicker lines indicate edges with a strong effect. (B) For each genetic 402 

interaction pattern (inversion, buffering, quantitative buffering, suppression, quantitative 403 

suppression and masking), the percentage of models showing that particular genetic 404 
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interaction pattern is shown, split up per complexity (number of edges). The percentage per 405 

complexity is calculated as the number of models showing a particular genetic interaction 406 

pattern for a certain complexity, divided by the total number of models for that complexity. 407 

Bar plots are subdivided into two types of models, models that have quantitative differences 408 

between edge weights (bright gray) and models that have no quantitative differences 409 

between edge weights (dark gray). The number of models showing the particular genetic 410 

interaction pattern per complexity is shown on top of each bar plot. 411 

 412 

A quantitative difference in interaction strength is frequently accompanied by an 413 

intermediate buffering node 414 

With the exception of the two models discussed above, all other inversion models 415 

consist of four nodes with two regulator nodes and two downstream effector nodes. 416 

To better understand the interplay between all four nodes, besides the node 417 

displaying inversion (G1), the second downstream gene (G2) was also analyzed for 418 

the occurrence of different genetic interaction patterns (Fig 5A). Most G2 nodes tend 419 

to have no genetic interaction pattern (27%). The most common genetic interaction 420 

patterns are buffering (23%) and quantitative buffering (18%). These both are very 421 

alike in their genetic interaction pattern (Fig 1A) and only show slight differences in 422 

their quantitative behavior. They may therefore be considered as part of the same 423 

superclass of “buffering”. The buffering node is frequently positioned upstream of 424 

the inversion node, and always downstream of R1/R2 (Fig 5B). The combination of 425 

inversion and buffering is also significantly overrepresented within inversion models 426 

when compared to all models (Table 1, p < 0.005). Taken together this shows that a 427 

quantitative difference in interaction strength of two genes or pathways acting on a 428 
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downstream gene is frequently accompanied by an intermediate gene or pathway 429 

that displays buffering. 430 

 431 

Fig 5. Inversion is frequently accompanied by buffering 432 

(A) Bar plots showing the percentage of models that either have no genetic interaction 433 

(gray, left bar) or a different genetic interaction pattern in node G2 when node G1 is 434 

displaying inversion. The number of models per category is shown on top of each bar plot. 435 

Color scheme of the genetic interaction patterns as in Fig 1A. (B) Petri net simulation results 436 

for two models with four nodes with node G1 always displaying inversion and node G2 437 

displaying either buffering (left) or quantitative buffering (right). Heat maps as in Fig 4A. 438 

 439 

Table 1. Models with a quantitative edge difference and intermediate buffering 440 

node 441 

 Quantitative edge difference 

YES NO 

Buffering or 

quantitative buffering 

YES 

69,333 (41.03%) * 

1,754,000 (23.66%) 
#
 

1,098 (0.65%) * 

65,618 (0.89%) 
#
 

NO 

97,418 (57.65%) * 

5,412,614 (73.01%) 
#
 

1,138 (0.67%) * 

180,808 (2.44%) 
#
 

Inversion models are indicated with *. All models are indicated with 
#
. The 442 

combination of a quantitative difference in edge strength and buffering is enriched 443 

for the inversion models (41% vs. 24%, p < 0.005). 444 
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 445 

Gat1 and Gln3 might differentially regulate mitochondrial-to-nuclear signaling 446 

One gene pair within the inversion dominated GSTF cluster (Fig 2A, branch 3; Fig 6A) 447 

that largely consists of inversion is Gat1-Gln3. By combining the three node model 448 

derived from the Petri Net modelling (Fig 4A, left panel) with existing literature, a 449 

potential mechanistic explanation for the interaction between this pair can be 450 

obtained (Fig 6B). Both Gln3 and Gat1 are activators involved in regulating nitrogen 451 

catabolite repression (NCR) sensitive genes [62–64]. When cells are grown under 452 

nitrogen rich conditions, as was done here, Gat1 is repressed by Dal80 [63]. Dal80 in 453 

turn can be activated by Gln3 [63,65], which provides a plausible mechanism for the 454 

predicted inhibition edge between Gln3 and Gat1 (Fig 6B). The degree to which Gln3 455 

and Gat1 influence downstream genes has also been reported to differentiate 456 

between individual genes [66], which is fully consistent with the quantitative edge 457 

difference as predicted in the model (Fig 6B). The set of inversion related genes (Fig 458 

6A, gene set 1) is enriched for nuclear encoded mitochondrial respiratory genes (Fig 459 

6A, denoted with a dot, p value 3.2x10
-17

). Previously, NCR has been linked with 460 

mitochondrial-to-nuclear signaling through the retrograde signaling pathway [67,68], 461 

although an alternative mitochondrial-to-nuclear signaling pathway, such as the 462 

intergenomic signaling pathway, may instead be involved [69]. Taken together, this 463 

suggests that Gat1 and Gln3 might differentially influence mitochondrial-to-nuclear 464 

signaling, although additional experiments would be needed to confirm this initial 465 

hypothesis. 466 

 467 
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Fig 6. Gln3 and Gat1 might differentially regulate mitochondrial-to-nuclear signaling 468 

(A) Expression changes compared to WT (horizontal) in gat1Δ, gln3Δ, and gat1Δ gln3Δ 469 

mutants (vertical) after slow growth correction. Different colors underneath the gene 470 

expression profiles represent different genetic interaction patterns as indicated in Fig 1A. 471 

Gray depicts gene expression changes not part of a genetic interaction pattern. Nuclear 472 

encoded mitochondrial respiratory genes are denoted with a dot. (B) Proposed model to 473 

explain the inversion pattern between Gat1 and Gln3 based on the Petri net simulation 474 

result in Fig 4A. 475 

 476 

Pdr3 likely acts as the intermediate buffering gene in mediating the inversion 477 

pattern observed for Hac1-Rpn4 478 

Another interesting pair of genes within the GSTF cluster dominated by the inversion 479 

pattern (Fig 2A, branch 3) is Hac1-Rpn4. This pair displays a substantial amount of 480 

both inversion as well as buffering (Fig 7A) and lends itself well for testing some of 481 

the model predictions. Hac1 and Rpn4 are both involved in the processing of 482 

inappropriately folding proteins, either by activating genes of the unfolded protein 483 

response [70] (UPR, Hac1) or via the endoplasmic reticulum-associated degradation 484 

[71] (ERAD, Rpn4). Two genes that display inversion, Pdr5 and Pdr15, show stronger 485 

expression changes compared to the other genes in the same gene set (Fig 7A, gene 486 

set 1). Both Pdr5 and Pdr15 are multidrug transporters involved in the pleiotropic 487 

drug response [72]. Expression of these two genes is tightly regulated by Pdr1 and 488 

Pdr3 [73,74]. Pdr5 is also positively regulated by expression of Yap1, a basic leucine 489 

zipper transcription factor that is required for oxidative stress tolerance [75]. Of the 490 
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three transcription factors Pdr1, Pdr3 and Yap1, only PDR3 shows a clear 491 

upregulation in the hac1Δ rpn4Δ double mutant and hardly any change in the 492 

respective single mutants (Fig 7B). This is consistent with the role of the 493 

intermediate buffering gene as derived from our Petri net modelling results. If Pdr3 494 

acts as the intermediate buffering gene as predicted based on our model, it is also 495 

expected that deletion of PDR3 leads to a more severe downregulation of PDR5 and 496 

PDR15 expression levels when compared to expression levels of PDR5 and PDR15 in 497 

the rpn4Δ mutant. To test this prediction, mRNA expression changes of PDR5 and 498 

PDR15 where investigated in the pdr3Δ and rpn4Δ mutants. As expected, deletion of 499 

PDR3 results in a much stronger downregulation of PDR5 (p=7.26x10
-4

) and PDR15 500 

(p=5.95x10
-5

) compared to deletion of RPN4 (Fig 7C), thereby confirming the model 501 

prediction. Taken together, these results provide a likely mechanistic explanation 502 

where Pdr3 acts as the intermediate buffering gene in regulating Pdr5 and Pdr15 (Fig 503 

7D). 504 

 505 

Fig 7. Pdr3 acts as an intermediate gene for observing inversion in PDR5 and PDR15 506 

(A) Expression changes compared to WT (horizontal) in rpn4Δ, hac1Δ, and hac1Δ rpn4Δ 507 

mutants (vertical) after slow growth correction. Different colors underneath the gene 508 

expression profiles represent different genetic interaction patterns as indicated in Fig 1A. 509 

Gray depicts gene expression changes not part of a genetic interaction pattern.  (B) 510 

Expression changes of Pdr1, Pdr3 and Yap1 compared to WT in rpn4Δ, hac1Δ and hac1Δ 511 

rpn4Δ mutants. (C) Expression changes of Pdr5 and Pdr15 compared to WT in rpn4Δ and 512 

pdr3Δ mutants. P values are obtained from a limma analysis comparing gene expression 513 
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changes between rpn4Δ and pdr3Δ mutants. (D) Proposed model to explain the inversion 514 

pattern between Hac1 and Rpn4 based on the Petri net simulation result in Fig 5B. 515 

 516 

Discussion 517 

 518 

Genome-wide gene expression measurements to investigate the genetic 519 

interaction landscape 520 

To investigate genetic interactions in a high-throughput manner, growth-based 521 

assays have frequently been deployed, resulting in the identification of an 522 

overwhelming number of both negative and positive genetic interactions [6,20–28]. 523 

Based on these surveys, several theoretical mechanisms have been proposed to 524 

explain genetic interactions [3,18,76,77]. More efforts, also using different types of 525 

assays, are however still needed to systematically and thoroughly investigate the 526 

underlying mechanisms. Alongside growth-based genetic interactions, genome-wide 527 

gene expression measurements have been applied to elucidate potential molecular 528 

mechanisms underlying genetic interactions [16,17,33–36]. Although more 529 

laborious, expression-based genetic interactions potentially allow for more in-depth 530 

characterization of the genetic interaction landscape. Here, we show that buffering 531 

is the most frequently occurring pattern underlying most negative genetic 532 

interactions. These are however to a large degree related to slow growing strains, 533 

hindering the investigation of the underlying mechanisms. By applying a slow growth 534 

transformation that removes a cell cycle associated gene expression signature, many 535 

such effects can be filtered out [48]. The transformation results in distinct clusters 536 

that can be more easily aligned with potential underlying mechanisms. Recent 537 
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advances using Crispr-Cas9 single and double knock-down screens, followed by 538 

single cell RNA sequencing have also shown that results are greatly influenced by the 539 

cell-cycle phase in which different cells are found [35,78]. It is therefore essential for 540 

future studies on genetic interactions to incorporate methods that decompose such 541 

large confounding effects, as they greatly influence the ability to deduce mechanism. 542 

 543 

Systematic modelling to understand mechanisms of genetic interactions 544 

To infer underlying mechanisms from the genetic interaction landscape as obtained 545 

from genome-wide gene expression measurements, systematic modeling 546 

approaches are warranted [3,18]. Various modeling techniques have been 547 

instrumental in understanding various aspects of experimental data (reviewed in 548 

[79]). Different modeling methods have different applications, depending on the 549 

question asked and available data types. To infer the underlying mechanisms for 550 

many genetic interactions, an approach is needed that is able to exhaustively explore 551 

the complete genetic interaction landscape while at the same time incorporating 552 

(semi-) quantitative values. Here, using Petri net modeling, we have been able to 553 

exhaustively explore more than nine million models that included semi-quantitative 554 

effects. Inversion, a pattern strongly associated with a group of GSTF pairs was 555 

investigated in more detail, resulting in the striking conclusion that a quantitative 556 

difference in interaction strength is needed to explain inversion. The approach taken 557 

here, by combining slow growth corrected genome-wide gene expression 558 

measurements with the exhaustive semi-quantitative Petri-net modeling thus 559 

highlights the benefits of using such an approach to understand mechanisms of 560 

genetic interactions. Applying this approach to other types of genetic interactions or 561 
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across many more genetic interaction pairs can help us in further characterizing 562 

mechanisms of genetic interactions and relating these to pathway organization and 563 

cellular states. 564 

 565 

Inversion as a way to differentially regulate between two redundant processes and 566 

a third, compensatory process 567 

Previously, a mechanism termed “buffering by induced dependency” was proposed 568 

to explain parts of the genetic interaction patterns observed between Rpn4 and 569 

Hac1 (Fig 8, dotted inset) [17]. This mechanism links the endoplasmic reticulum-570 

associated degradation (ERAD) by the proteasome (Rpn4) with the unfolded protein 571 

response (UPR, Hac1), two distinct processes dealing with misfolded and unfolded 572 

proteins. By combining the “buffering by induced dependency” mechanism with the 573 

model proposed for inversion here, most genetic interaction patterns observed for 574 

Rpn4 and Hac1 can be explained (Fig 7A; 8). The combined model introduces a third, 575 

compensatory process, the pleiotropic drug response (PDR; Fig 8, bottom light gray 576 

inset). Even though the exact relationship between ERAD, UPR and pleiotropic drug 577 

response is unclear, the interplay between UPR and drug export has been shown in 578 

mammalian cells [80]. In yeast, Pdr5 and Pdr15 have been implicated in cellular 579 

detoxification [74,81] and may also be required for cellular detoxification under 580 

normal growth conditions [81]. Both Pdr5 and Pdr15 have been reported to be 581 

regulated through Pdr1 and Yap1 [75,82], as well as through Rpn4 [83,84]. This is 582 

also confirmed here by downregulation of both Pdr1 and Yap1 as well as 583 

downregulation of their target genes Pdr5 and Pdr15 in rpn4Δ (Fig 7B, C). It is 584 

therefore likely that in the wildtype situation when Rpn4 is active, both ERAD and 585 
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the PDR are functioning (Fig 8). Deletion of RPN4 leads to deactivation of the ERAD 586 

and PDR pathways and activation of the UPR through Hac1 (Fig 8, rpn4Δ dotted red 587 

line). Deletion of both RPN4 and HAC1 results in a major growth defect and 588 

accumulation of misfolded and unfolded proteins, most likely leading to a stronger 589 

activation of the PDR through Pdr3 compared to the wildtype situation (Fig 7B, C; Fig 590 

8, hac1Δ rpn4Δ dotted red line) [73,74]. Taken together, this model thus provides a 591 

potential regulatory mechanism in which two redundant processes, each with 592 

slightly different efficacies, can be differentially regulated, or fine-tuned, through a 593 

third, compensatory process. The requirement to fine-tune slightly different 594 

efficacies of different cellular processes then also provides a potential explanation 595 

why inversion is observed more frequently for gene-specific transcription factors 596 

since these allow for more fine-grained control than protein kinases and 597 

phosphatases.   598 

 599 

Fig 8. Combination of buffering by induced dependency and proposed model for inversion 600 

Carton depiction of proposed model for genetic interaction between Rpn4 and Hac1. Red 601 

arrows indicate the consequence of disrupted genes and pathways. The dashed rectangle 602 

indicates a previously proposed model, “buffering by induced dependency”, to explain genes 603 

showing buffering for Hac1-Rpn4 . A thicker arrow represents a stronger activation strength. 604 

 605 

In conclusion, we have shown how exhaustive exploration of regulatory networks 606 

can be used to generate plausible hypothetical regulatory mechanisms underlying 607 

inversion. Almost all models showing inversion contain a quantitative difference in 608 

edge strengths, which suggests quantitative differences in regulating downstream 609 
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target genes are important for the functioning of GSTFs. These hypothetical 610 

mechanisms have subsequently been tested against known and new experimental 611 

data. For GSTFs we show a validated example of Hac1-Rpn4 where differential 612 

regulation of gene expression is key to understanding the genetic interaction pattern 613 

inversion. 614 

 615 

Materials and Methods 616 

 617 

Selection of GSTF and kinase/phosphatase pairs 618 

Two selection criteria were applied to select genetically interacting GSTF and 619 

kinase/phosphatase pairs. First, one of the mutants of each individual pair should 620 

show genome-wide gene expression measurements similar to wildtype (WT). DNA 621 

microarray data from Kemmeren et al [85] was used to determine whether a single 622 

deletion mutant is similar to WT. A deletion mutant is considered similar to WT 623 

when fewer than eight genes are changing significantly (p < 0.05, FC > 1.7) in the 624 

deletion mutant gene expression profile, as previously described [16]. Second, 625 

selected pairs should show a significant growth-based negative genetic interaction 626 

score. Growth-based genetic interaction scores for GSTF [28] and kinase/phosphate 627 

[26] pairs were converted to Z-scores. A negative Z-score significance of p < 0.05 628 

after multiple testing correction was used as the significance threshold. Applying 629 

these selection criteria resulted in 11 GSTF pairs and 15 kinase/phosphatase pairs 630 

(S1 Table). 631 
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 632 

Genome-wide gene expression measurements and statistical analyses 633 

Genome-wide gene expression measurements of single and double mutant GSTF 634 

pairs were obtained from Sameith et al [17]. Genome-wide gene expression 635 

measurements of single and double mutant kinase/ phosphatase pairs were 636 

obtained from van Wageningen et al [16]. Genome-wide gene expression 637 

measurements of pdr3Δ and rpn4Δ were obtained from Kemmeren et al [85]. 638 

Statistical analysis of these gene expression profiles was performed as previously 639 

described [85]. In summary, mutants were grown in Synthetic Complete (SC) 640 

medium with 2% glucose and harvested during exponential growth. WT cultures 641 

were grown alongside mutants in parallel to monitor for day to day effects. For each 642 

mutant statistical analysis using limma was performed versus a collection of WTs 643 

[16,85]. Reported FC for each transcript is the average of four replicate expression 644 

profiles over a WT pools consisting of 200 WT strains. 645 

 646 

Growth-based genetic interaction scores 647 

Growth measurements for single and double mutant GSTF and kinase/phosphatase 648 

pairs were obtained from Sameith et al [17] and van Wageningen et al [16] 649 

respectively. Growth-based genetic interaction scores were calculated for both GSTF 650 

and kinase/phosphatase pairs as performed before [17]. In summary, the fitness W 651 

of single and double mutants was determined as the ratio between the WT growth 652 

rate and the mutant growth rate. The growth-based genetic interaction score 653 
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�growth,XY was calculated as the deviation of the observed fitness in a double mutant 654 

from the expected fitness based on the respective single mutants (�growth,XY  = WxΔyΔ - 655 

WxΔ . WyΔ). P values were assigned to genetic interaction scores based on the mean 656 

and standard deviation of a generated background distribution [17]. P values were 657 

corrected for multiple testing using Benjamini-Hochberg. Adjusted p values lower 658 

than 0.05 were considered significant. Fitness values of all single and double 659 

mutants, as well as calculated genetic interaction scores can be found in S1 Table. 660 

 661 

Expression-based genetic interaction scores 662 

Expression-based genetic interaction scores were calculated for both GSTF and 663 

kinase/phosphatase pairs as described before [17]. In summary, the effect of a 664 

genetic interaction between two genes X and Y on gene i is calculated as the 665 

deviation between the observed expression change in the double mutant and the 666 

expected expression change based on the corresponding single mutants (εtxpn_i,XY = 667 

|Mi,xΔyΔ − (Mi,xΔ + Mi,yΔ)|). The overall genetic interaction score between X and Y is 668 

calculated as the sum all genes i for which εtxpn_i,XY > log2(1.5). All genetic interaction 669 

scores consisting of at least 10 genes were kept for further downstream analyses. 670 

Genes with similar gene expression changes were divided into the 6 different 671 

patterns (buffering, quantitative buffering, suppression, quantitative suppression, 672 

masking, inversion), as previously described [17] (Fig 1A). 673 

 674 

Clustering of expression-based genetic interaction scores 675 
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Genetic interaction profiles for both classes of proteins were grouped together 676 

based on the number of occurrences of the six different patterns using hierarchical 677 

clustering. Average linkage was applied for the clustering. Identity of genes in each 678 

genetic interaction profile was disregarded. 679 

Slow growth transformation  680 

Slow growth signature transformation of the gene expression profiles was 681 

performed as previously described [48]. In short, for each mutant, the correlation of 682 

its expression profile with the first principal component of 1,484 deletion strains [85] 683 

was removed, thus minimizing correlation with the relative growth rate. The 684 

transformation reduces correlation with the relative growth rate from 0.29 to 0.10 685 

on average [48]. 686 

 687 

Model generation 688 

Exhaustive modeling of possible network topologies underlying the genetic 689 

interaction patterns was carried out by creating Petri net models consisting of four 690 

nodes, representing two regulator genes (R1 and R2) and two downstream genes 691 

(G1 and G2). With four nodes and directed edges, there are 4
2
=16 possible edges, 692 

and 2
16

=65536 possible edge weight matrices, which is a tractable number. 693 

However, each interaction can in addition be positive or negative, and weak or 694 

strong (and absent), leading to 5
16

=1.5V10
11

 possible interaction graphs (edge weight 695 

matrices), which becomes intractable.  Many of these models, however, will be 696 

irrelevant for the understanding the biological behavior of genetic interaction 697 
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patterns of two genes. To exclude these types of models, the following conditions 698 

were applied: 1) No self-edges are allowed. 2) The number of incoming edges on any 699 

node must be limited to two. 3) At least two incoming edges from at least one of the 700 

regulators (upstream nodes) to the genes (downstream nodes). Applying these 701 

conditions reduces the number of relevant edge weight matrices to 9,287,616. 702 

Furthermore, most generated matrices have mirror counterparts, therefore only one 703 

of the matrices was included in downstream analyses. Applying this filtering step 704 

results in 2,323,936 matrices. Fig 3 gives an overview of the various filtering steps, 705 

and shows which representation of the models was relevant in different stages of 706 

the filtering. Edge weight matrices were generated in R, version 3.2.2 (the function 707 

expand.grid was used to generate all combinations of edges per row in a given 708 

matrix). 709 

 710 

Petri net simulations 711 

Regulatory effects of two potentially interacting genes (R1 and R2) on two 712 

downstream genes (G1 and G1) were simulated using a Petri net approach 713 

[42,44,86,87] to recapitulate genetic interaction patterns observed in the gene 714 

expression data.  715 

In the Petri net notation, nodes in a given model are represented by places (denoted 716 

as circles). Interactions between nodes always go via a transition (denoted as 717 

squares), connected via directed arcs (drawn as arrows). An incoming arc to a 718 

transition can be either activating or inhibiting. The weight on arcs going to a 719 
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transition is always fixed to 1. The weight on arcs going from a transition to a place 720 

depends on the edge weight between two nodes, 1 for weak and 5 for strong (Fig 3).  721 

For nodes with two incoming edges, one has to decide how these two inputs should 722 

be combined: does the transition require both inputs to be activated (AND logic), or 723 

can one or the other activate it (OR logic). To incorporate this, for each pair of 724 

incoming edges with the same weight, two Petri net models were generated: one 725 

using the AND logic, and one using the OR logic (Fig 3, bottom right panel). For two 726 

incoming edges with different weights only the Petri net model using the OR logic 727 

was generated. For cases with two incoming edges to a node with two different 728 

directions, activation and inhibition, inhibition dominates. 729 

To simulate the regulatory effects of two upstream genes (R1 and R2), 200 tokens 730 

were provided to represent the mRNA resources for each regulator, except when 731 

one of the regulators has an incoming edge from the other regulator as shown in 732 

(S5A Fig). Each step in the simulation process comprises of firing all enabled 733 

transitions (maximal parallel execution) [88,89]. A transition is enabled to fire when 734 

resources (tokens) in the input place(s) match or exceed the weight(s) on the 735 

respective incoming arc(s) to the transition (S5B Fig). In total 50 consecutive 736 

transition firing steps were performed. 737 

To incorporate deletion mutants in the simulation process, tokens were removed 738 

from corresponding regulators. To prevent accumulation of tokens in deleted 739 

regulators, each outgoing arc from a transition to the corresponding deleted places 740 

were also removed in simulated deletion strains. The number of tokens in G1 and G2 741 

after 50 steps of firing transitions in single and double mutants were compared with 742 
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that in the WT situation where both R1 and R2 are active. To avoid division by zero 743 

one token was added to the total number of tokens in G1 and G1. These fold 744 

changes were then log2 transformed (M values). 745 

Simulation-based genetic interaction scores for G1 and G2 were calculated based on 746 

the deviation between observed M values in the double mutant and the expected M 747 

value based on the single mutants, as follows: εsim,R1R2i = |MR1ΔR2Δi − (MR1Δi + MR2Δi)|, 748 

where i can be either G1 or G2. Each node with εsim,R1R2i > log2(1.7) was further 749 

divided into genetic interaction patterns, as defined before based on gene 750 

expression data [17]. Simulated expression levels for single and double mutants are 751 

considered to be increased relative to WT when M > log2(1.7) and decreased when 752 

M < -log2(1.7). 753 

 754 

Functional enrichment tests 755 

Functional enrichment analyses were performed using a hypergeometric testing 756 

procedure on Gene Ontology (GO) biological process (BP) annotations [67] obtained 757 

from the Saccharomyces Cerevisiae Database [68]. The background population of 758 

genes was set to 6,359 and p values were corrected for multiple testing using 759 

Bonferroni. 760 

 761 

Visualization of models 762 

Models were visualized in R, version 3.2.2, using diagram package (version 1.6.3). 763 

Weak and strong activation/inhibition edges are represented as thin and thick lines, 764 

respectively.  765 
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Supporting Information 1049 

 1050 

S1 Table. Single and double mutant GSTF and kinase/phosphatase pairs 1051 

 1052 

S2 Table. Number of genes for each genetic interaction pattern for both GSTF as well as 1053 

kinases/phosphatase pairs.  1054 

 1055 

S1 Fig. Buffering dominates genetic interaction profiles 1056 

(A) Hierarchical clustering of all pairs according to their genetic interaction effects. Average 1057 

linkage clustering was applied to group pairs with similar genetic interaction patterns. The 1058 

number of occurrences for each genetic interaction pattern was used and the identity of 1059 

individual genes was disregarded. Similarity between pairs was calculated using the cosine 1060 

correlation. Most pairs are grouped together in a single branch (indicated in red), which is 1061 

dominated by buffering. (B) The number of genetic interaction effects underlying the 1062 

clustering are shown as bar plots below the dendrogram (top; colors as in Fig 1A). (B) 1063 

Number of genes showing no genetic interaction pattern but significantly changing in one of 1064 

the mutants compared to WT (bottom; p ≤ 0.01, FC > 1.5). Dark gray for the first named 1065 

gene, light gray for the second named gene. 1066 

 1067 

S2 Fig. Slow growth correction improves identification of GSTF targets 1068 

Scatter plots showing gene expression levels in the GSTF double mutant pairs hac1Δ rpn4Δ 1069 

(A), met31Δ met32Δ (B), gat1Δ gln3Δ (C) and cbf1Δ hac1Δ (D) versus WT before (left) or 1070 
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after (right) slow growth correction. Individual transcripts are represented as dots. The 1071 

dashed line indicates a FC of 1.7. Dots depicted in blue and red correspond to targets of the 1072 

first and second gene in a named GSTF pair. P-values are calculated using a hypergeometric 1073 

testing procedure to test the enrichment of GSTF targets among genes that change more 1074 

than 1.7 fold before (left) or after (right) slow growth correction. 1075 

 1076 

S3 Fig. The genetic interaction between Elm1 and Mih1 can be explained through pathway 1077 

redundancy  1078 

Cartoon depicting the proposed genetic interaction between Elm1 and Mih1. (left panel) WT 1079 

situation where the activity of Cdc28 is not disrupted by Swe1 phosphorylation. (Middle 1080 

panel) Deletion of Elm1 leads to derepression of Swe1 activity. The increase of Swe1 activity 1081 

can be compensated by Mih1. (Right panel) Deletion of both Elm1 and Mih1 will cause an 1082 

increase of phosphorylated Cdc28 (inactive form), which in turn can lead to G2 delay/stress 1083 

and therefore many gene expression changes. 1084 

 1085 

S4 Fig. Hierarchical clustering of positive and negative genetic interaction GSTF pairs.  1086 

Hierarchical clustering of 44 GSTF pairs according to their genetic interaction effects after 1087 

slow growth correction. These pairs include both negative and positive genetic interactions. 1088 

Layout and analysis similar to Fig 2. 1089 

 1090 

S5 Fig. Provided tokens to places in WT condition and transition firing rules 1091 
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(A) Provided tokens to regulators depending on edges between them. (B) Transition 1092 

firing rules for activation and inhibition edges depending on the presence of tokens 1093 

in upstream places. 1094 
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