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Abstract

Recent investigation indicated that latent reservoir and immune impairment are
responsible for the post-treatment control of HIV infection. In this paper, we simplify
the disease model with latent reservoir and immune impairment and perform a series of
mathematical analysis. We obtain the basic infection reproductive number Ry to
characterize the viral dynamics. We prove that when Ry < 1, the uninfected equilibrium
of the proposed model is globally asymptotically stable. When Ry > 1, we obtain two

thresholds, the post-treatment immune control threshold and the elite control threshold.

The model has bistable behaviors in the interval between the two thresholds. If the
proliferation rate of CTLs is less than the post-treatment immune control threshold, the
model does not have positive equilibria. In this case, the immune free equilibrium is
stable and the system will have virus rebound. On the other hand, when the
proliferation rate of CTLs is greater than the elite control threshold, the system has
stable positive immune equilibrium and unstable immune free equilibrium. Thus, the
system is under elite control.

Author summary

In this article, we use mathematical model to investigate the combined effect of latent
reservoir and immune impairment on the post-treatment control of HIV infection. By
simplifying an HIV model with latent reservoir and immune impairment, and performing
mathematical analysis, we obtain the post-treatment immune control threshold and the
elite control threshold for the HIV dynamics when Ry > 1. The HIV model displays
bistable behaviors in the interval between the two thresholds. We illustrate our results
using both mathematical analysis and numerical simulation. Our result is consistent
with recent medical experiment. We show that patient with low proliferation rate of
CTLs may undergo virus rebound, and patient with high proliferation rate of CTLs may
obtain elite control of HIV infection. We perform bifurcation analysis to illustrate the
infection status of patient with the variation of proliferation rate of CTLs, which
potentially explain the reason behind different outcomes among HIV patients.
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Introduction

In 2010, an HIV-infected mother gave birth to a baby prematurely in a Mississippi
clinic. The infant was known as the ‘Mississippi baby’. Before delivery, the mother was
not diagnosed with HIV infection did not receive antiretroviral treatment [26]. At the
age of 30 hours, the baby received liquid, triple-drug antiretroviral treatment. Such
treatment was terminated at the age of 18 months and since then, the virus level in the
baby remains undetectable. Though it was thought that the baby was cured of HIV, a
routine clinical test on July 10, 2014 showed that the level of virus in the ‘Mississippi
baby’ became detectable (16,750 copies/ml) [26].

Antiretroviral therapy (ART) is effective in inhibiting the HIV infection and
prolongs the life of infected individuals. However, due to the existence of latent
reservoirs, it is unable to totally eliminate the virus infection[7, 8, 12, 13, 48]. The time
it takes the virus to rebound varies. For example, the virus level of the Mississippi baby
remains undetectable for years before the virus rebound [26, 30]. Sometimes, a host may
have low virus load after antiretroviral therapy. Investigations have been carried out to
reveal the causes of low virus level and virus rebound[9, 30, 38].

Conway and Perelson constructed a mathematical model to investigate the dynamics
of virus rebound [9]. Their investigation reveals the interplay between immune response
and latent reservoir, and shows that post-treatment control may appear. Recent
investigations indicated that early antiretroviral therapy may be responsible for the
development of post-treatment control with plasma virus remaining undetectable after
the cessation of treatment. However, only a small proportion of patients receiving early
antiretroviral therapy developed post-treatment control. Further investigations are to be
carried out to reveal the reasons behind this.

Treasure et al investigated the HIV rebound in patients who terminated the
antiretroviral therapy. They showed that a patient who discontinued the antiretroviral
therapy may or may not undergo immediate HIV rebound[38].

As an important approach to investigate disease transmission, mathematical
modeling provides insights into interactions between viral and host factors. Evaluating
the behaviors of the viral models yields a better understanding of the disease and is
beneficial to the development of appropriate therapy strategies. In the literature,
mathematical models of within-host viral dynamics have been designed
[1, 3, 10, 11, 15, 2729, 44-46]. Immune response has also been integrated into within
host models to investigate the combined effects of viral dynamics and immune process
of the host [6, 16, 23, 36, 40, 41, 43, 49].

Regoes et al. [32] incorporated immune impairment into viral models to consider the
effects that target cell limitation and immune responses have on the evolution of virus.
Their investigations indicated that the immune system of the host may collapse when
the impairment rate of HIV surpasses its threshold value. Iwami et al. [17, 18]
investigated the HIV dynamics with immune impairment using mathematical models.
The authors got the ‘risky threshold’ and ‘immunodeficiency threshold’” by performing
analysis. The results implied that the immune system always collapses when the
impairment rate is greater than the threshold value. Immune impairment in within-host
virus models have received much attention in the literature [2, 37, 39].

HIV latent reservoir is responsible for the rebound in HIV viral load. As a major
barrier to the eradication of HIV-1 virus, latent reservoir poses persistent risks to the
hosts. The infected cells in the latent reservoir remain undetectable to the immune
system and can be reactivated to produce virions with the termination of drug therapy
[19, 20, 33, 34, 42]. Investigations showed that the size of the virus reservoir is relatively
stable [42]. For a patient under sufficient antiretroviral therapy (ART), ongoing viral
replication rate in the reservoir remains low [19]. However, for infected individuals
under ART of lower efficiency, there might be coexistence of latent reservoir and virus.
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Rong and Perelson [34] performed a thorough study on the replenishment of the latent
reservoir induced by latently infected cells that are occasionally reactivated. The
authors indicated that such scenario corresponds to the half-life of the latent reservoir.

Post-treatment control of HIV attracted the attention of researchers. Conway and
Perelson integrated the post treatment into an HIV model and performed analysis [9].
Here, we simplify the model proposed in [9] to obtain

W) — 5 — da(t) — (1 - €)Bz(t)y(t),

dilg“ = ar (1 —&)Ba(t)y(t) + (p—a—d)L(1),

W — (1 —ap)(1 - e)Bz(t)y(t) + aL(t) (1.1)
—dy(t) — py(t)z(t),

0 — WO () — my (1) (1),

where = denotes the concentration of activated CD4™ T cells, L latently infected cells, y
productively infected CD4+ T cells and z the immune cells. The effectiveness of both
drug classes is represented by e € [0, 1]. Here € is also known as the overall treatment
effectiveness of HIV. If the treatment is terminated, e = 0. If the therapy is 100%
effective, we have e = 1 [9, 33].

In the literature, the immune and immune impairment function % — bz —myz
has been applied to the viral models to characterize the interaction between the immune
cells and the productively infected CD4™ T cells [11, 31, 39]. Wang and Liu [39]
constructed a within-host viral dynamics models to consider HIV infection with immune
impairment. In this article, we consider the post-treatment immune control, the
biological implication behind the ‘Mississippi baby’. By mathematical analysis, we
obtain the threshold of proliferation rate of CTLs, which determines the HIV infection
status. We also perform bifurcation analysis and demonstrate the bistable behavior of
the model, which is consistence with results from recent medical trial.

1 Preparation

In this section, we perform mathematical analysis for the model (1.1). We prove the
positiveness and boundedness of the solutions to system (1.1) and calculate the
equilibria of the model.

1.1 Positiveness and boundedness

In the following, we show that system (1.1) is well-posed.
Theorem 2.1. System (1.1) has a unique nonnegative solution with initial values
(z(0), L(0),y(0), 2(0)) € R4, where R} = {(21, 22,23, 24)|z; > 0,5 = 1,2,3,4}.
Furthermore, the solution is bounded.
Proof. It follows from the fundamental theory of ordinary differential equations [14]
that there exists a unique solution to system (1.1) with nonnegative initial conditions.
For any nonnegative initial data, let t; > 0 be the first time when z(¢;) = 0. From
the first equation of (1.1) we have that &(¢1) = s > 0, which implies that z(¢) < 0 for
t € (t1 —e1,t1), where €1 is an arbitrarily small positive constant. This is a
contradiction. Therefore, x(¢) is always positive. Since z = 0 is a constant solution of
the last equation of (1.1), it follows from the fundamental existence and uniqueness
theorem that z > 0 for all ¢ > 0.
Suppose there is a first time t3 > 0 when y(¢2)z(t2) = 0. Then we have
(i) L(t2) = 0,y(t) > 0 for t € [0, 2], or
(ii) y(t2) = 0, L(t) > 0 for ¢ € [0, t2].
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For case(i), since z(t) is positive, it follows from the variation of constants formula
that L(ts) = L(0) + e~ Jo*(eFde=)d€ [12 o (1 — &) Bx(¢)y(€)de > 0, which is in
contradiction to L(tz) = 0.

For case (ii), the third equation of system (1.1) implies that
y(t2) = y(0) + eJo? [(1=ar)(1=e)a(€) =0 —p=(§)ld¢ fg2 aL(§)d¢ > 0, which is in contradiction
to y(t2) = 0. Thus, L(t) and y(t) are always positive.

Next, we expatiate upon the boundedness of solutions of (1.1). Let

pla+dr —p)z(t)

K(t) = ox(t) + aL(t) + (a + dg, — p)y(t) + P ,

where 0 = aar, + (1 — ap)(a+ dr, — p). Since all solutions of (1.1) are positive, we have

% = o{s—d:c— (176)ﬁxy]
+a [aL(l —€e)fxy+ (p—a— dL)L}
+m+dL—MB1—amﬂ—dﬁw
+al — oy — pyz}

(atdr—p) ( cyz
e (ﬁ’nyszfmyz
Us—crdm—(a—ﬁ—d,;—p)éy—%bz

os —orK,

<
<
where r = min {g, U %} > 0. Let ¢ denote the solution to the following system

dp
— = 0S8 —O0r
dt & 0+ ds—5)
a — zZ
900=U$0+GL0+(a+dL—P)yo+%,

where g, yo and zo are the initial values of system (1.1) and g = Ky > 0. We then
obtain lim;_, o sup ¢(t) = 2. By comparison theorem [35], we get K (t) < ¢(t).
Therefore, x(t), L(t), y(t) and z(¢) are bounded.

1.2  Equilibria

In this section, we consider the existence of the equilibria to system (1.1).
(i) If Ry < 1, system (1.1) only has an infection-free equilibrium £y = (3,0,0,0),
where

$8(1 = Olaas + (1 — a)(a+ dg — p)]
dé(a+dp —p)

is the basic infection reproductive number. Here, Ry is the expected number of newly
infected cells generated from an infected cell at the beginning of the infectious process.

(i) If Ry > 1, system (1.1) also has an immune-free equilibrium Fy = (21, L1,91,0),
where

Ry =

1 = S(at+dr—p)
L= B—9lear+(T—ar)(atdr—p)]’
1—
_ d(Ro-1)
mo= Gu-o-
Solving equation 140-1:731 — b —my = 0 yields two positive roots, given by

c1 = m+ by —2y/bmn and co = m + bn + 2,/bmn. We then get the existence conditions
for the positive equilibria.
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(iii) If R* > 1 and ¢ > c¢g, system (1.1) has an immune equilibrium
E* = (x*,L*,y*,2"). If R} > 1 and ¢ > ¢, system (1.1) has an immune equilibrium
E} = (x+,L* Y4,z ) as well. Here

371 = d_;,_[g(ls_e)y; )
L* _ O‘L(lfe)ﬁwlyl
+= = at+dp—p )
« —B¥F+/B2—4bmn
Y= = T ammg
a4 = 6(R§—1)7
B = m+b—c,
R* = 2mnsB(l=¢) laap+(atdr—p)(1—ar)]
- olatdr=p) (2mnd+B(1—e)[c—m—by—/(c—m—bn)2—4bmn]}’
d
an R* _ 2mnsB(1—e) laar+(a+dr—p)(1—ayr)]
* latdr=p) {2mnd+B(1—e)[c—m—bn+y/(c—m—bn)2—4bmn]}
Denote
= mt byt 2dmn(Ry — 1)
Bl—e) 7
bB(1 —¢€) dmn(Ry—1)
c =m+bn+ +
TR 1) T T B(I— )
and

1-— b

R, =1+ 2L vimn
dmn

We then have the following results.
Lemma 1.1. Ry>R.>1<c¢* > c**
Proof.

* . dmn(Ro—1) bB(1—e)
c*>c & A1 06) > f= 1)

dmn
Lemma 1.2. (i) Rg>R.>1S "> (ii) 1< Ry < R. & ¢* < co.

Proof.
>0 & 7dmﬁn((R0 U o,

& R0>1+5( dgjn = R..

cF <oy & %<\/b ,
& Ry <14 Bu=avbmn )V =R..

Lemma 1.3. (i) Assume 1 < Ry < R.. If R* > 1, then ¢ > c¢**. (ii) Assume
Ry > R.>1.If R* > 1, then ¢ > cs.

Proof.
" sB(1—e)laar+(atdr—p)(1—a
R >1 & L 5L(a4(rdL—Lp) -
> d+ ﬂ;nno[c_m_bn_ V(e —m —bn)% — 4bmn),
& Vle—m—bn? —4bmn > c—m — by — F525(Ry — 1),

= \/(c—m—bn)2—4bmn>c—c*.

If ¢ < ¢* and one of the conditions ¢ < ¢; or ¢ > ¢ holds, then R* is always greater
than one. If ¢ > ¢*, solving /(c —m — bn)2 — 4bmn > ¢ — ¢* yields ¢ > ¢**

(i) If 1 < Ry < R, then ¢* < ¢g. From R* > 1, we can deduce that ¢ > ¢**

(ii) If Ry > R. > 1, then ¢* > ¢3. From R* > 1, we can deduce that ¢ > cs.
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Lemma 1.4. (i) If 1 < Ry < R., then R% > 1 has no solution. (ii) Assume that 134
Ry > R. > 1. IfRi>1, then ¢y < ¢ < c**. 135
Proof. 136

sB(1—e)[acr+(atdr—p)(1—cr)]

Ry >1 &

5(a+dL—p)
> d o+ 252 e — m — by + /(e = m—bn)? — dbm),
& —(c—m—bn) + FFL(Ro — 1) > \/(c—m — bn)? — 4bmn,

= ¢t —c>/(c—m—bn)2 — 4bmn.

i) If 1 < Ry < R, then ¢* < ¢5. Thus R% > 1 has no solution. (ii) If Ry > R, > 1, 1
+

then ¢* > cy. Solving R} > 1, we have ¢; < ¢ < c**. 138
By Lemma 2.1~2.4, summing up the above analysis yields the existence results of 139
the equilibria of system (1.1) 140
Theorem 1.2 141
(i) System (1.1) always has an infection-free equilibrium Ej. 12
(i) If Ry > 1, system (1.1) also has an immune-free equilibrium FEj. 13
(ili) If 1 < Ry < R, and ¢ > ¢**, system (1.1) has only one positive equilibrium E7. 1
(iv) If Rp > R. > 1 and ¢z < ¢ < ¢**, system (1.1) has two positive equilibria E* 145

and £ . While Ry > R, and ¢ > ¢**, system (1.1) has only one positive equilibrium E7. e
The existence of the positive equilibria of the model is summarized in Tables 1 and 2. 14

Table 1. The existence of the positive equilibria when 1 < Ry < R,.

o <c<c™ | e>c*
E* — exist

*
EY — —

Table 2. The existence of the positive equilibria when Ry > R, > 1.

cp<c<c* | e>c**
E* exist exist
EY exist —
2 Stability analysis w48
In this section, we consider the stability of the equilibria of system (1.1). 149
Let E be any arbitrary equilibrium of system (1.1). Its corresponding Jacobian 150
matrix is obtained as 151

Ju 0 Jiz 0
Jor Jog Jaz O
J31 Jz2 Jzz Jas |
0 0 Jiz Ju

J =

where 152

October 16, 2018 6/21


https://doi.org/10.1101/448308
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/448308; this version posted October 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Ju = —d-p(1l-ey,
J13 = —6(1 — E)i‘,

Jor = apB(l—e)y,

J22 = p—a— dL,

J23 = aL(l — 6)65’,

Js1 = (1—ap)p(l -6y,
J2 = aq,

Jsz = (1—ap)B(l—e€)7—0—pz,
Jsa = —py,

J43 = (1_‘[0#)2 — mé,

J44 = lvﬁlnj —-b-— mg}

The characteristic equation of the linearized system of (1.1) at E is given by

AT —J|=0. (3.1)

2.1 Stability analysis of Equilibrium £

Theorem 2.1. If Ry < 1, then the infection-free equilibrium Ey of system (1.1) is
locally asymptotically stable. If Ry > 1, then Fy is unstable.
Proof. For equilibrium Ey(xg,0,0,0), the characteristic equation (3.1) reduces to

A+dA+b)(A+a+dp —p)[A+d—(1—ar)(l —e)Bxg] =0. (3.2)
It is easy to see that equation (3.2) has two negative roots, obtained as
A1 =—d, A= —b. (3.3)

The other eigenvalues are determined by

M+ a A +ax =0, (3.4)
where
a1 = a+dp—p+ o[l - Uzer)lzdbro)
as = (a+dp —p)— @Porlizd (35)
—af(l—e)[d — (1 —ar)(1 —€)Bxo] :

= d(a+dr —p)(1 - Ro).

If Ry < 1, we have a3 > 0 and ay > 0, and as such equation (3.4) has two negative
roots. Thus, Ej is locally stable for Ry < 1.

If Ry > 1, from (3.5) we know that Fjy is a saddle, and hence unstable. The proof of
Theorem 3.1 is complete.
Theorem 2.2. If Ry < 1, then the infection-free equilibrium Ey of system (1.1) is
globally asymptotically stable.
Proof. Define a function

pB
Z’

1
V= 3(@—w)*+ AL+ By + -

where A and B are undetermined positive coefficients. It is easy to see that V is a
positive Lyapunov function. Evaluating the time derivative of V' along the solution of
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system (1.1) yields

Vieny = (@ —ao)ls —dz — (1~ €)zy]
+Alar(l —€)fry — (a+dr — p)L]
+B[(1 —ar)(1 —e¢)Bzy + aL — 0y — pyz]

pB cyz
cfm(l +ny
= (z—xo)[dxo—dx— (1 —¢€)Bzy
+(1 = €)Broy — (1 — €)fzoy]
+Aar(l —€)Bxy — Ala+dr — p)L
+B(1—ar)(1—e€)pxy

— bz —myz)

pB cyz
+Bal — Béy — Bpyz + —————
YO T T ()
pB pB
— bz — myz
-m c—m
< (d+1—dﬁw@—xwz
—[xo — Aar, — B(1 — ap)](1 — €)Bzy
—[Bd—(1— 6)5%]
—[A(a +dp — p) — Ba]L
—(Bp— Nc+ Nm)yz — Nbz.
If we choose
T
A = ,
(1— o )[etde=e 4 or |
B - A(aerL*P),
a
then
:L'()—AO[L—B(].—QL) > s
Bj — (1 - E)Bxg > ’
Ala+dp —p)—Ba >

Thus, if Ry < 1, then V\(M) < 0. Since z, L, y, z are positive, we have V =0 if and only
if (z,L,y,2) = (x0,0,0,0). Therefore, it follows from the classical Krasovskii-LaSalle
principle [21, 22] that Fjy is globally asymptotically stable.

Biologically, the global asymptotic stability of the uninfected equilibrium Ey of
system (1.1) implies that the virus will die out in the host if the treatment is strong
enough to ensure Ry < 1.

2.2 Stability analysis of Equilibrium £,

Now we consider the stability of equilibrium Ej.

Theorem 3.3. Suppose that the immune-free equilibrium exists (i.e., Ry > 1). When
0 < ¢ < ¢, Eq is locally asymptotically stable. When ¢ > ¢**, F; is unstable.

Proof. The characteristic equation of the linearized system of (1.1) at Ej is given by

CY1
L+ ny1

(X% + BN 4 bod + by) —b—my;) =0,

where
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by = d+(1—€)fy1+a+dr—p
——

aar (1 —e€)Bry
a+dp —p

by = d(a+dp—p+ %)+ (1—e)bals
+ (1 —€)Byi(a+dr —p)

+ (1= €)Br1(1 —ag)(1 —€)By,

@
bs = aap(l—¢)Bxi(l—e¢)Byr
+(a+dr —p)(1 —€)Bx1(1 —ar)(1 —€)Bys.

Clearly,

@X@+@X@—b3:0.

Thus, we have b1bs — b3 > 0. We then consider the sign of the eigenvalue

— 5ty (Ro — 1) + (¢ = m — by) (Ro — 1) = 279
[B(1—€) + dn(Ro — 1)]/d 7

which is determined by
A = (c—m —by)? — 4bm.

Let A =0, we have ¢ = ¢1 or ¢ = cs.

(i) If A =0, then ¢ = ¢; or ¢ = ¢g, which is a critical situation.

(ii) If A <0, then ¢; < ¢ < ¢g, and we have A < 0.

(iii) If A > 0, then ¢ < ¢1 or ¢ > co. To get A < 0, we must ensure ¢ < m + by and
Ry <14 Ry, or Ry > 1+ Ry. Meanwhile, from Ry < 1+ Ry and Ry > 1+ R, we have

B(1—e¢) | (c—=m—bn)F+/(c—m—bn)2—4bmn
c<c™. Here Ry o = — . In view of ¢y < ¢**, if
c<m+bnorce <c<c*™, then the elgenvalue A <0.If ¢ > ¢**, we have A > 0.

In summary, if ¢ < ¢ or ¢ < ¢ < ¢**, then A < 0. By the Routh Hurartz criterion,
for Rg > 1, if ¢ < ¢3 or ¢3 < ¢ < ¢**, the equilibrium F; of system (1.1) is locally
asymptotically stable. If ¢ > ¢**, F; is unstable.

Biologically, if the proliferation rate of CTLs is less than the critical value ¢**, the
viral load can be at high level.

2.3 Stability analysis of positive equilibria

In this subsection, we consider the stability of the positive equilibria. Here, we use
E* = (z*,L*,y*, z*) to denote a positive equilibrium of system (1.1).
Theorem 3.4.
(l) Assume A3(A1A2 — Ag) - A%Az; > 0. If
(A1) 1< Ry<R.andc>c*™, or
(A.2) Rop>R.>1andc> co,
system (1.1) has an immune equilibrium E*, which is a stable node.
(ii) If Ry > R, > 1 and ¢3 < ¢ < ¢**, system (1.1) also has an immune equilibrium
EY, which is an unstable saddle.
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Proof. The characteristic equation of the linearized system of (1.1) at an arbitrary
positive equilibrium E* is given by

M4 AN+ AN+ A\ + Ay =0,

where
A = atdp—pt+d+B(1-ey + 2,
A = (a+dp—p)[d+5(1- ey
—l—ayL* [d +8(1 — e)y*} + py*z* [m — m}
H(1—a)(1 - 9B {1 - By,
Ay = ok (a+dp —p)(1 —€)py*

v
+py*z* [m — m} [a +dp —p+d+ 81— e)y*}
+(1 —ar)(1 —e)Bx*(1 —€)By*(a+dr — p),

Av = e a+ds - p) | rger —m] [d+ B - 9y.

Then we have

Aids — Ay =L d(a+dy — p)+ (5)?[d+ 51— e)y”]

Y y*

+2 (1 —ap)(1 - o)z (1 — €)By*
+(a+dy, *p){aerL —p+d+8(1 fe)y*}
x[d+B(1 = y] + =L |d+ 81— Oy

X a+dL—p+d+B(1—e)y*}

+(1 —ap)(l —€)fz" (1 —€)By"
X[a+dL7p+d+6(1*6)y*}.

(i) For equilibrium E*, if ¢ > ¢3, we have m(,/<£ —1) > \/%’_1. It thus follows that
V(e —m —bn)? —4bmn > ¢ —m — by — 2m(y/S — 1). Therefore, gz —m>0.
Clearly, A; > 0,2=1,2,3 and A1Ay — A3 > 0. If Ad(A1A2 — A3) — A%A4 > 0, by
Routh-Hurartz Criterion, we know that the positive equilibrium E7 is a stable node in
this case.

(ii) For equilibrium E%, if Ry > R, > 1 and ¢ < ¢ < ¢**, then m -—m<0
and A4 < 0. Thus, equilibrium EY is an unstable saddle for Ry > R. and ¢y < ¢ < ¢**.

By Theorem 3.3 and Theorem 3.4, we have the following result.

Theorem 3.5. If Ry > R. > 1 and ¢ = ¢p, the immune equilibrium E} and E*
coincide with each other and a saddle-node bifurcation occurs when ¢ passes through cs.

The stabilities of the equilibria and the behaviors of system (1.1) are summarized in
Tables 3 and 4.

Table 3. The stabilities of the equilibria and the behaviors of system (1.1) in the case
1 < Ry < R.. Here, ¢** is the critical value, and we assume A3(A; Ay — Az) — A2A, > 0.

Ey Eq E*  E% System (1.1)
Ry <1 GAS — — —  Converges to Fy
1< Ry<R.,,0<ec<c*™ | US LAS — —  Converges to F
1< Ry <R, c**<c US US LAS —  Converges to £}
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Table 4. The stabilities of the equilibria and the behaviors of system (1.1) in the case
Ry > R. > 1. Here, co, c* and ¢** are critical values, and cs is a saddle-node bifurcation
point. Here we assume Az(A; Ay — Az) — A2A, > 0.

E() E1 Ei Ei System (11)
Ry<1 GAS — — —  Converges to Fy
Ry>1,0<c<co, US LAS — —  Converges to E
Ry>R.>1,c0<c<c*™ | US LAS LAS US Bistable
Ry>R.>1,c* <ec<c* | US US LAS US Converges to £
Ry >R.>1,¢>c** US US LAS —  Converges to I}

3 Sensitive analysis and numerical simulations

3.1 Sensitive analysis

Sensitive analysis provides insights into the basic infection reproductive number Ry with
respect to system parameters [47]. In this section, we use latin hypercube sampling
(LHS) and partial rank correlation coefficients (PRCCs) [4, 24] to reveal the dependence
of the basic infection reproduction number Ry on a variety of system parameters. As a
statistical sampling method, LHS provides efficient analysis of parameter variations
across simultaneous uncertainty ranges in each parameter [4]. PRCC, which is obtained
from the rank transformed LHS matrix and output matrix [24], indicates the
parameters that have the most significant influences on the behaviors of the model. In
this work, we perform 4000 simulations per run. We use a uniform distribution function
to test the PRCCs for a variety of system parameters.

The PRCC results of the model, Fig. 1, illustrate the dependence of Ry on different
system parameters. The estimations of the distributions for Ry is approximately a
normal distribution. We use |[PRCC]| as an index to test if the parameter has important
correlation with the infection reproduction number Ry. If [PRCC| > 0.4, we say that

the correlation is strong. If 0.4 > |[PRCC| > 0.2, we say that the correlation is moderate.

For 0.2 > |[PRCC]| > 0, there correlation is weak. As is shown in Fig. 1, the general rate
of CD4T T cells s, the decay rate of CD4% T cells d, the infection rate of CD41 T cells
B, the drug efficacy € and the latently infected cell death rate dy have significant
influence on the infection reproduction number Ry.

3.2 Numerical simulations

In this section, we carry out numerical simulations to consider the HIV dynamics of our
model. The parameter values are listed in Table 5. We then calculate the thresholds
Ry =~ 3.0030 > 1, R, =~ 1.4243, c5 ~ 0.2914 and ¢** ~ 0.4988. Notice that

A3(A1As — A3) — A2A, = 8.9125 x 107 > 0. We then get the bistable interval
(0.2914,0.4988). In this case, when ¢ < cg, the immune-free equilibrium E; is stable.
When ¢; < ¢ < ¢**, the immune-free equilibrium F; and the positive equilibrium £7%
are stable. When ¢ > ¢**, only the positive equilibrium E7 is stable.

Fig.2 shows that there is no positive equilibrium if ¢ < 0.2914 and a saddle-node
bifurcation appear when c¢ passes through 0.2914. The system display bistable behavior
for 0.2914 < ¢ < 0.4988. As an example, we simulate the time history of the system for
¢ =0.45 € (0.2914, 0.4988) with different initial conditions (see Fig. 3). We find that,
with the same parameter values and different initial conditions, the system may
converge to different equilibriums. Such simulation result is consistent with recent clinic
trial performed by Treasure et al [38].
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We also consider the influence of system parameters on the elite control threshold
c** by PRCCs. Fig.4 shows that the immune impairment rate of virus m and the
proliferation rate of latently infected cells p are positively correlated with the elite
control threshold ¢**. On the other hand, the death rate of infected cells § has negative
correlation with the elite control threshold ¢**. It thus follows that decreasing immune
impairment rate m is beneficial for obtaining post-treatment immune control. Decrease
the immune impairment rate m and the proliferation rate of latently infected cells p, and

increasing the death rate of infected cells § are beneficial for the host to get elite control.

4  Discussion

In this paper, we investigate the viral dynamics of a simplified within host model. By
performing mathematical analysis and numerical simulations, we obtain the
post-treatment immune control threshold and the elite control threshold. We get
conditions for the model to reach post-treatment immune control and elite control.

The expression of the post treatment control threshold implies that the immune
impairment rate of virus m has positive correlation with the post treatment control
threshold . Early initiation of ART after infection allows PTC by limiting the size of
latent reservoir. A patient with latent HIV reservoir small enough may obtain adaptive
immune response to prevent viral rebound (VR), and thus has controlled infection
Conway and Perelson [9].

Sensitive analysis and numerical simulations imply that decreasing the immune
impairment rate is beneficial for the host obtain post-treatment immune control and the
elite control. A comprehensive HIV treatment involving decreasing the immune
impairment rate of virus, decay rate of CTLs and effector cell production Hill function
scaling allows the host to obtain elite control efficiently.

The proliferation rate of latently infected cells p plays an important role in the elite
control. It is worth carrying out further investigation to reveal the viral dynamics of the
within host model with logistic proliferation rate of latently infected cells, given by
system (5.1).

) — 5 da(t) — (1 ©)Ba(t)y(t),

L — (1 - )Ba(t)y(t) — (a+ di)L(t)
+pL(t)(1 — 2D,

WD = (1-ar)(1 - €)Ba(t)y(t) + aL(t)
—oy(t) — py(t)=(1),

dz & z
d(tt) = 1%23;((5)) ~ b=(t) = my(D)2(0),

(5.1)

Using the same method of analyzing system (1.1), we can get theoretical results.
Here, we carry out numerical simulations to show its bistable behaviors. As shown in
Fig.5, if we choose parameters listed in Table 5 and L;,4, = 50, system (5.1) displays
bistable behaviors.
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Table 5. Parameters for the model.

Symbol Description Value Reference
s Proliferation rate of CD4T T cells 10 cells /p L/ day [5]
d  Decay rate of CD4" T cells 0.01 day~*! [5]
B Infection rate of CD4T T cells 0.015 p L / day -

e Drug efficacy 0.8 -
«a, Fraction of newly infected cells that become latently infected 0.001 -
p  Proliferation rate of latently infected cells 0.0045 day ! 9]
a  Activation rate 0.001 day~* [9]
dr,  Latently infected cell death rate 0.004 day ! 9]
6 Infected cell death rate 1 day~! [25
p Killing rate of infected CD4" T cells 0.42 day~?! -
¢ Proliferation rate of CTLs 0.45 day ! -
n  Effector cell production Hill function scaling 1 cells/p L -
b  Decay rate of CTLs 0.1 day~*! -
m

Immune impairment rate of viral

0.05 cells /u L / day
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Partial rank correlation coefficients for R0 Frequency of RO

600

s B d deapS

Fig 1. Partial rank correlation coefficients for Ry and the frequency distribution of Rg. The
parameters are shown in Table 5.
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Fig 2. Bistability and saddle-node bifurcation diagram of system (1.1). Here ¢ = 0.2914 is a
saddle-node bifurcation (SN) point. The bistable interval is (0.2914, 0.4988). The parameter values are
shown in Table 5. There are three phases in this figure. In phase I (0 < ¢ < ¢2), the system has virus
rebound. In phase II (c2 < ¢ < ¢**), the system has bistable behavior. In phase III (¢ > ¢**), the
system is under elite control.
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Fig 3. Time history of system (1.1) for ¢ = 0.45 (c2 < ¢ < ¢**). All the other parameter values are
listed in Table 5. The trajectories of system (1.1) converge to different equilibria for different initial
values, i.e., system (1.1) has bistable behavior. The initial values are z(0) = 600, L(0) = 13, y(0) = 20,
z(0) =1 (blue) and x(0) = 600, L(0) = 13, y(0) = 20, 2(0) = 20 (red).
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Fig 4. Partial rank correlation coefficients for ¢**. The parameter values are shown in Table 5.

October 16, 2018 17/21


https://doi.org/10.1101/448308
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/448308; this version posted October 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

1000, —_——— 14 ——
% P ve T —— S12 1(0)=600,L(0)=13y(0)=20.2(0)=
¢ 1(0)=600,L(0)=13y(0)=20,2(0)=20 5 X
-
5, 500 Elo
0 |\Me— ¢
o}
® X(0)=600,L(0)=13 y(0)=20,2(0)=1 3 8 X(O)ZGOO,L(OFB
0 100 200 300 40 50 600 0100 0 N0 40 500 60
Days Days

1 25— g——————————
3

0 ¢

f; 76 X060 0130202020
15 )

8 Y0600 L(0=13y(0)=2020)1 gy

g 22

7] ~

£’ X0=600L(0=13(0)-2020/-20 i XOFRI0L0713y0-20205L
3 LA 0 X X X X X
0 100 20 30 40 50 600 0 10 20 30 40 50 60

Days Days

Fig 5. Time history of system (5.1). The trajectories of system (5.1) converge to different equilibria
for different initial values, i.e., system (5.1) has bistable behavior. The initial values are x(0) = 600,
L(0) =13, y(0) = 20, 2(0) = 1 (blue) and z(0) = 600, L(0) = 13, y(0) = 20, 2(0) = 20 (red). The
parameter values are shown in Table 5.
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