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Abstract: The human postsynaptic density is an elaborate network comprising thousands of 

proteins, playing a vital role in the molecular events of learning and the formation of memory. 

Despite our growing knowledge of specific proteins and their interactions, atomic-level details of 

their full three-dimensional structure and their rearrangements are mostly elusive. Advancements 

in structural bioinformatics enabled us to depict the characteristic features of proteins involved in 

different processes aiding neurotransmission. We show that postsynaptic protein-protein 

interactions are mediated through the delicate balance of intrinsically disordered regions and 

folded domains, and this duality is also imprinted in the amino acid sequence. We introduce 

Diversity of Potential Interactions (DPI), a structure and regulation based descriptor to assess the 

diversity of interactions. Our approach reveals that the postsynaptic proteome has its own 

characteristic features and these properties reliably discriminate them from other proteins of the 

human proteome. Our results suggest that postsynaptic proteins are especially susceptible to 

forming diverse interactions with each other, which might be key in the reorganization of the PSD 

in molecular processes related to learning and memory.  
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1. Introduction 

Synaptic signal transduction is an elaborate process that not only provides the means of 

transmitting the excited state of one neuron to another but also plays an important role in basic 

phenomena underlying neural development, learning and memory [1,2]. The basic cellular 

phenomenon of memory, long-term potentiation (LTP) results in the strengthening of synaptic 

connections. The postsynaptic density (PSD) is a key structure in this process, as an essential part of 

excitatory chemical synapses. It is composed of a dense network of proteins and provides an 

intricate link between the intracellular parts of membrane receptors and adhesion molecules and the 

cytoskeleton [3]. PSD composition and organization changes during development and the 

individual history of the particular neuron [4,5], leading to morphological differences between PSDs 

in different brain regions [6]. Recent results point to a reorganization of the PSD during sleep by the 

exchange of Homer protein isoforms and contributing to synaptic scaling [7,8]. The emerging view is 

that the PSD is continuously remodeled and has a characteristic dynamics that is manifested not 

only by the addition and elimination of components over time but also by dynamic restructuring 

while retaining its composition [9–11]. 

 

From a structural point of view, interactions can be formed via a diverse range of structural 

elements. Protein intrinsic disorder is defined by the lack of ability of a particular protein/segment to 

adopt a stable three-dimensional structure. Disordered segments can play many different roles, 
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including the mediation of protein-protein interactions (PPIs), during which they may get fully or 

partially folded (folding upon binding [12]) or retain a considerable degree of disorder (fuzzy 

complexes [13]). Disordered segments have been shown to play important roles in the postsynaptic 

scaffold (PSC) proteins [14], signaling pathways [15–17] and be at key positions within interaction 

networks [18]. The organization of synaptic proteins also exhibits a high amount of ordered domain 

interactions, resulting in macromolecular assemblies occupying the PSD. The highly organized 

assembly of PSD strongly suggests the presence of several intermolecular interacting sites with an 

elaborate and thoroughly regulated distribution of occupied and unavailable or available partner 

binding sites with a high level of redundancy. The PSD can most likely be imagined as a 

supramolecular association capable of integrating and transmitting signals via reorganization. The 

underlying mechanisms likely include competitive binding events, allostery, and cooperativity 

tightly regulated through post-translational modifications (PTMs) [5,19], short linear motifs [20], and 

alternative splicing [21]. 

 

Recently, the role of liquid-liquid phase separation (LLPS) in the organization of the PSD has 

been suggested [22,23]. It has been shown that appropriate combinations of selected PSD proteins 

result in the formation of droplets [24,25]. The presence or absence of specific proteins and/or 

binding sites was shown to substantially influence the phase separation properties of PSD proteins 

[25]. To date, LLPS is most extensively studied for RNA-binding nuclear proteins, where RNA is an 

important component of the supramolecular associations exhibiting phase separation. It should be 

noted that RNA molecules are abundant in dendrites as a pool for in situ translation [26]. A key 

feature of proteins capable of LLPS is multivalency, the presence of multiple partner binding sites 

that can be folded domains or linear motifs in intrinsically disordered regions (IDRs) [27]. 

Bioinformatics analysis of phase separation is rather laborious, as the first databases containing 

proteins or regions driving LLPS are just being developed [28], protein-protein interactions can be 

reliable investigated using various tools and databases, which may open prospects to the hallmark 

of LLPS [29,30]. 

 

Most current descriptions of human postsynaptic proteome characterize PSD proteins using 

experimental procedures [31] or literature-based collection extended with gene annotation services 

[32]. To our knowledge, there is no comprehensive computational analysis focusing on the structural 

organization of PSD proteins. In this paper we use a wide range of bioinformatics methods to 

describe the structural characteristics of PSD proteins, focusing on features that may directly 

contribute to the synaptic plasticity through the formation of (PPIs).  

2. Materials and Methods  

2.1. Datasets 

The human proteome was downloaded from UniProt [33] (2018_June release). For synaptic 

proteins, the SynaptomeDB [34] database and its classification of protein localization were used, 

defining four sets: postsynaptic, presynaptic, presynaptic active zone and vesicle-associated 

proteins. An additional PSD-related set was defined based on a simple search on the UniProt 

website with the term ‘postsynaptic scaffold human’. Proteins of the immunome were extracted 

from the Immunome Knowledge Base [35]. The list of nuclear proteins was taken from the 

supplementary material of Frege et al. [36], whereas the set of histone methylases were extracted 

from the accompanying data of Lazar et al. [37]. Lists of interacting protein pairs were taken from 

the BioPlex 2.0 database [38].  

 

 

2.2. Annotation and prediction of protein properties  
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Amino acids were classified into different groups, based on their physicochemical properties: 

hydrophobic (A, I, L, M, V), aromatic (F, W, Y), polar (N, Q, S, T), positively charged (H, K, R,), 

negatively charged (D, E), rigid (P), flexible (G), and covalently interacting (C).  AAIndex was used 

to obtain various amino acid scales [39]. To reduce the number of features, the ward.d2 function of R 

was used for K-means clustering [40], then based on the elbow method 5 clusters were selected to 

represent the features (Supplementary Figure 1). The following amino acid scales were selected 

randomly, each from one of the clusters: NAKH900104, KHAG800101, JUNJ780101, HUTJ700103, 

FAUJ880103 (for explanation see Supplementary Table 1).  

Disorder prediction was made in a way that aims to minimize false positive hits arising from 

the inclusion of oligomeric fibrillar motifs [41]. First, the consensus of two disorder prediction 

methods, IUPred [42] and VSL2B [43] were determined. In the second step, all residues predicted to 

be in oligomeric fibrillar motifs were eliminated from the set of disordered residues [41]. Oligomeric 

fibrillar motifs were determined using a permissive prediction, namely, residues to form coiled coils 

as predicted either by COILS [44] or Paircoil2 [45], single α-helices as identified using FT_CHARGE 

[46] or collagen triple helix as obtained by HMMER [47] with the Pfam HMM for collagen (ID: 

PF01391.13) segments in Pfam [48]. The remaining set of residues is considered to be a good 

representation of segments being disordered under cellular conditions.  

Binding regions within disordered segments were predicted with Anchor [42], low complexity 

regions with SEG [49], transmembrane (TM) regions with CCTOP [50,51], and signal peptides were 

predicted using SignalP [52]. Linear motifs participating in binding events were retrieved from the 

ELM database [53], considering only “LIG/DOC” classes. The ELM prediction was also utilized, 

considering only those hits that passed the various filters as described by Gouw et al. [53]. Protein 

domains were taken from UniProt (2018_June release), PTMs were downloaded from 

PhosphoSitePlus [54] and were also predicted by NetPhos [55]. Venn diagrams were created using 

Venny [56]. 

All calculated values for each protein are available in Supplementary Table 1. 

 

2.3. Statistical analysis 

We calculated the mean and standard deviation of these features on all datasets listed in 2.1. 

Furthermore, to compare the statistics of the proteome to Synaptome, PSD and PSC we also used 

exclusive sets. Due to the unbalanced distribution of proteins in various datasets we used 

bootstrapping and random sampled all datasets 1000 times. The size of these samples was derived 

from the smallest dataset: 80% of protein belonging to PSC was used as reference. The calculations 

were used to show the enrichment of features in different datasets compared to the proteome, by 

applying logarithmic scale on their proportion.. Means and variances for different groups are 

available in Supplementary Table 2. To further confirm the significance of the differences in the 

distributions of features, we also performed Kolmogorov-Smirnov tests for all sets vs. the full 

human proteome (i.e. we compared the distribution of features between the proteome and the 

different subsets). This data is available in Supplementary Table 3. We also counted the number of 

PSD and non-PSD proteins with given features above and below their respective mean values 

(calculated for the proteome) and performed Χ-square tests (with Yates correction) on the 

contingency tables resulted from this procedure (Supplementary Table 4). 

To investigate the co-occurrence of ordered and disordered structural elements in proteins of 

the PSD, we counted proteins with different individual structural entities and their combinations. 

Significance of this data is confirmed by randomly selecting 80% of data 1000 times (as described 

above) and calculating the mean and standard deviations. Whenever the mean ± (1,2 and 3 fold) 

standard deviations did not overlap, we accepted the result to be significant with p<0.32, p<0.05 and 

p<0.01, respectively (Supplementary Table 5).  

Similar analysis was used to analyze the possible connection between PPIs and PTMs 

(Supplementary Table 6). 
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For Diversity of Potential Interactions (DPI, see 3.5) and PPI values of the different subsets 

Spearman’s rank correlation was calculated.  

2.4. Machine learning 

As a first step we preprocessed the data used for machine learning by removing homologous 

sequences and assigning labels. For redundancy filtering CD-HIT [57] was used in an incremental 

manner, filtering identical proteins to 90, 70, 50 and finally to 40% identity. The remaining sequences 

were used to train the predictor. Labels were assigned based on the SynaptomeDB annotation. 

For machine learning a feed forward neural network was developed, using one hidden layer 

with 40 neurons and stochastic gradient descent. Due to the non-proportional data for training and 

testing, bootstrap aggregating (BAGGING) was used. In each step, ten down-sampled sets were 

created and used to calibrate the Artificial Neural Networks (ANNs). For the final prediction, the 

results of individual ANNs were aggregated and weighted based on their reliability (defined as the 

output neuron probability). Benchmarking was done using ten-fold cross-validation and 

independent datasets. 

Two different predictors were built: the first uses all annotations presented in Supplementary 

Table 1. The second predictor only uses features that can be derived from the amino acid sequence 

and do not depend on the annotation of different databases (shown with a grey background in 

Supplementary Table 1). Training and testing data are available in Supplementary Table 7. 

3. Results 

3.1. Datasets 

In this paper, we investigated three nested subsets of proteins to the human proteome (21766 

proteins): all proteins from the synaptome (1891 proteins), proteins localizing into the postsynaptic 

density (1761 proteins), and postsynaptic scaffold proteins (51 proteins). Three additional control 

datasets were defined: histone methylases (52 proteins), proteins from the nucleus (180 proteins) and 

the immunome (834 proteins). 

According to our definition (derived from SynaptomeDB), there is considerable overlap 

between the synaptic proteome and proteins of the PSD, and their characteristics are on par in every 

case. Therefore, conclusions drawn for PSD are valid for the synaptome too, even if it is not explicitly 

declared. 

3.2. Sequences feature a mix of disorder and order promoting properties 

General sequence properties often help to gain insight about structural features of proteins. As 

a very first step we compared the length distribution of proteins in the PSD to other proteins of the 

proteome: on average proteins in the PSD are longer (the average length of proteins is 524 and 705 

residue in the proteome and in the PSD, respectively) (Figure 1, Supplementary Figure 2). We also 

calculated the average amino acid content of proteins. On the one hand, these values seem similar 

and their variances are high, therefore these properties cannot be used alone to reliably distinguish 

proteins in different localizations. On the other hand, these differences are mostly significant and 

according to the distribution of structural domains (see 3.3) it is clear that in some level, the function 

and structure of proteins are imprinted in their amino acid sequence: PSD proteins have some 

preference to include more charged residues (~28% and ~25%, in the PSD and in the proteome, 

respectively) and to avoid cysteines (~2% and ~3%, in the PSD and in the proteome, respectively). 

These properties alone may promote disorder content, however, on some level, the lower proline 

content (~5% and ~6%, in the PSD and in the proteome, respectively) suggest globular domains may 

also emerge. Low complexity regions (LCRs) often, but not always, coincide with intrinsically 

disordered segments: interestingly proteins in PSD are not enriched in such regions (see 

Kolmogorov-Smirnov test: Supplementary Table 3; Χ-square test: Supplementary Table 4). These 

results may hint a balanced presence of intrinsically disordered regions (IDRs) and ordered globular 
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domains in the PSD, however to unambiguously prove our hypothesis specialized predictions and 

analysis were performed (see 3.3). 

 

 
Figure 1. Difference sequence (blue), structure (yellow) and function (red) related properties in PSD 

(darker shade) and PSC (lighter shade) compared to the human proteome. Amino acids were 

grouped as hydrophobic (A, I, L, M, V), aromatic (F, W, Y), polar (N, Q, S, T), positively charged (H, 

K, R), negatively charged (D, E), rigid (P), flexible (G), and covalently interacting (C). 

 

PSC proteins are a subset of PSD proteins with somewhat distinct features. We observed their 

average length is even higher compared to proteins from PSD, and almost the double of proteins of 

the proteome (on average 970 residue length). In contrast to the PSD, they contain a lot of IDRs Other 

characteristics of PSC proteins are on par with PSD proteins.  

3.3. PSD proteins exhibit a diverse range of structured elements 

As sequence data indicate differences compared to the proteome, various prediction methods 

were utilized to reveal different types of structural elements. We classified segments as disordered 

regions and ordered globular domains; then we extended this classification to groups often falling 

outside the classical "globular-disordered" partition: coiled-coils, a structural element already 

described in various PSD proteins and transmembrane segments assumed to play important role in 

transmitting information outside the cell. On the one hand, PSD proteins operate with a similar 

amount of disorder content as other proteins from the proteome (Figure 1). On the other hand, PSD 

proteins contain a large number of coiled coils and structured domains. We observed that not only 

the number of structured domains is higher, but flexible linker regions are also generally shorter in 

proteins of the PSD, allowing more dense placements of domains along the polypeptide chain 

(Supplementary Figure 3). Note that our stringent structure prediction pipeline (see Methods) has an 

emphasis on discriminating disordered and coiled-coil regions. Therefore the commonly occurring 

cross predictions between them are expected to only moderately bias these results. Another 

distinctive feature is the distribution of transmembrane proteins: proteins composed of seven 

transmembrane helices are greatly missing from the PSD (Supplementary Figure 4).  
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PSC proteins are on par with PSD proteins according to most of these features, however, on a 

more extreme way, utilizing even more coiled coils and domains. As expected from sequence 

characteristics, they utilize a larger amount of IDRs (Figure 1). 

Another notable trend is the mutual presence of ordered and disordered segments in PSD 

proteins (Table 1). While the PSD exclusive proteome outnumbers PSD proteins in single-domain 

proteins (i.e. containing a single coiled-coil, intrinsically disordered segment, a single domain or 

embedded in the membrane) or in proteins where multiple IDRs or other elements appear 

independently, in the PSD these elements seem to emerge in a more coordinated fashion, likely to 

promote more diverse possibilities for PPI formation (also see significance test in Supplementary 

Table 5). 

 

Table 1. Occurrence of structural elements in proteins (* marks significant co-occurrences, see 

Supplementary Table 5). IDR: Intrinsically Disordered Region; CC: Coiled-coil, TM: 

Transmembrane; DOM: Domain).  

 Number of proteins Proportion 

Proteome PSD Proteome PSD 

IDR* 2851 128 0.14 0.07 

CC* 1187 231 0.06 0.13 

TM* 3460 154 0.17 0.08 

DOMAIN* 2614 187 0.13 0.11 

IDR+CC* 1194 132 0.06 0.07 

IDR+TM 1224 92 0.06 0.05 

IDR+DOMAIN* 2288 221 0.11 0.13 

IDR+CC+DOMAIN* 1088 229 0.05 0.13 

ALL* 125 21 0.01 0.01 

All other combination of 

ordered domains* (CC, 

TM and Domain) 

3884 366 0.19 0.21 

 

 

 

3.4. The overlap between protein-protein interactions and post-translational modifications hint a tightly 

regulated protein network in PSD 

PSD proteins operate with a high amount of PPIs (Figure 1, Supplementary Figure 5), compared 

to the human proteome. Interestingly, proteins from the PSD are not particularly enriched in IDRs, a 

commonly used element to mediate PPIs. This is also reflected in the relatively low number of 

predicted disordered binding regions. The extremely high amount of phosphorylation and 
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ubiquitination sites suggest that post-translational regulation may play an essential role in PSD 

proteins.  

As the increased number of IDRs and binding regions suggest, PSC proteins may use different 

mechanisms to promote PPIs. In the case of phosphorylation and ubiquitination, the trends are 

similar to PSD proteins. However, methylation and acetylation values are more close to the 

proteome used as a reference. 

Since we do not have information about the specific binding regions and the interacting 

partners, we tried to characterize the nature of these interactions by observing their co-occurrence 

with proteins containing IDRs and PTMs (i.e. they emerge in the same protein, but they do not 

necessarily overlap). We assessed the mutual presence of PPIs, PTMs and protein disorder in the 

proteins of the PSD. Protein disorder for PPI formation may be somewhat less frequently employed 

mechanism in the PSD compared to the human proteome (i.e., ~49% and ~53% of interacting proteins 

do not contain any IDR at all in the proteome and the PSD, respectively). However, PTMs may 

regulate the emerging PPIs more tightly (i.e., only ~98% compared to ~92% of proteins participating 

in interactions have phosphorylation or ubiquitination site in the PSD and the proteome, 

respectively) (Figure 2). All these differences between the proteome and the PSD are significant 

according to mean and standard variation values (Supplementary Table 6). 

  

 

Figure 2. Venn diagram of proteins utilizing IDRs and PTMs to establish PPIs. A) PSD; B) human 

proteome. All the differences are significant with P<0.05. 

 

Alternative splicing can also contribute to regulation, by inclusion or exclusion of binding 

regions and rewiring PPI networks. PSD and PSC proteins both seem to utilize this mechanism with 

an increased amount of isoforms compared to the human proteome (Figure 1). 

3.5. Potential of the proteins to be engaged in multivalent interactions 

Proteins in the PSD are capable of establishing a high amount of interactions, which heavily 

depends on the number of basic building blocks: coiled-coils can multimerize to build protein 

complexes, while IDRs, transmembrane proteins, and globular domains also can form inter- or 

intramolecular interactions. To estimate the bias caused by overlapping definitions, we calculated 

the overlap between these elements: we found that less than 1% of them overlap on residue level. We 

defined Diversity of Potential Interaction (DPI) as a composite descriptor and introduced the 

following elements in the equation: 

 

    ��� � �����	
� �����10
� ������10
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     (1) 
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where DOM is the number of domains, CC10 is the number of coiled-coil regions longer than 

ten residues, IDR10 is the number of IDRs longer than ten residues, and TMH is the number of 

transmembrane segments, Ph and Ub are the number of phosphorylations and ubiquitination sites 

along the protein sequence and ELM is the number of short linear motifs aiding binding processes 

(LIG/DOC classes of the ELM database). These features and the calculated DPI have somewhat 

better distinctive properties than residue distribution (Supplementary Figures 6-13) and applying 

Spearman’s rank correlation indicates a significant relationship between PPIs and DPI (S. 

correlation=0.35; p-value<0.01). Using DPI as measure PSD proteins are on par with PSC proteins, as 

expected from the number of interactions (see Figure 1 and Figure 3), while the proteome has rather 

lower values in both cases. 

To have a better picture how these descriptors behave, we also included three control sets with 

distinct features: immunome as a set of primarily globular multidomain proteins, histone 

methylases, known to have high IDR content and a more comprehensive list of proteins from the 

nucleus, shown to operate with a high amount of PPIs. We calculated the Spearman’s rank 

correlation between the descriptors and the average number of interactions in the selected protein 

sets. DPI fairly correctly estimates the potential to the formation of complexes (correlation: 0.71; 

p-value<0.1). 

 
Figure 3. Average DPI (red) and number protein interaction values (yellow) in different protein sets. 

3.6. Sequential and structural features discriminate PSD proteins from other proteins 

Although some of the above-discussed trends indicate that PSD proteins have distinctive 

properties, to demonstrate the prediction power of these features we established an artificial neural 

network (ANN). The input of the ANN consists of the calculated features discussed above. The 

output is a binary classification defining the localization of the protein (i.e., localizing in the 

PSD/not). The distribution of the positive and negative labels was not proportional; therefore we 
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used bootstrap aggregation on the data.  Briefly, this means that random samples of the data are 

used to train several predictors, and the final result is provided by aggregating the various outputs. 

The approach also helps to deal with the relatively noisy data, as in some cases it is expected that the 

same proteins localize inside and outside the PSD too. The algorithm achieved moderately high 

accuracy by incorporating all of the features presented in previous chapters (Area Under Curve 

(AUC): 0.84) (Figure 4 and Table 2). 

Some of the characteristics used as input are database dependent, reflecting a bias in our 

knowledge; therefore it is hard to assess how the ANN works on proteins with more/less annotation. 

To overcome this problem, a second predictor was built, in which the feature space was reduced to 

contain only those characteristics that can be estimated based on the amino acid sequence of the 

proteins (intrinsic features). In some cases, annotations were replaced by prediction (e.g., 

phosphorylation). Although the performance of the prediction decreased, these features alone still 

reliably discriminate PSD proteins from others (AUC: 0.76). 

 

Table 2. Prediction accuracy of the Neural Network. (MCC: Matthew Correlation Coefficient, BAC: 

Balanced Accuracy, AUC: Area Under Curve) 

 Cross-validation Independent dataset 

MCC BAC AUC MCC BAC AUC 

All features 0.54+-0.09 0.77+-0.04 0.85+-0.03 0.52 0.76 0.84 

Intrinsic features 0.32+-0.08 0.66+-0.04 0.75+-0.03 0.38 0.68 0.76 

 

Besides AUC we also calculated Matthew Correlation Coefficient and Balanced Accuracy. We 

observed similar values during the cross-validation and on the independent dataset. The results 

suggest the selected structural features are descriptive for PSD proteins and the prediction method is 

quite robust regarding both the features and sample sets. 
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Figure 4. Receiver operating characteristics of ANN predictors.  

4. Discussion 

Synaptic plasticity is facilitated by proteins of the PSD, most plausibly by using their functional 

repertoire provided by the ability to reorganize PPIs dynamically. Our results indicate that PSD and 

especially PSC proteins have an increased potential to form diverse interactions and their features 

can be used to discriminate PSD proteins from the rest of the proteome. 

 

General sequence properties are often used to characterize particular protein subsets, as they 

open prospects to structural features. Grouping amino acids based on physicochemical properties 

highlights exciting trends. The increased number of charged residues would hint a higher extent of 

intrinsic disorder; however, the low amount of prolines seems to counterbalance this effect. PSC 

proteins have similar characteristics, however with higher proline content that may promote 

intrinsic disorder.  

In a recent study protein interactions were analyzed based on the structural state of 

participating partners, revealing major differences between “classical” protein disorder, and 

complexes formed by various partners. Three basic types of complexes were distinguished: 

autonomous folding and independent binding (i.e., the binding of two or more ordered proteins), 

coupled folding and binding (where an ordered protein stabilize an IDP partner) and mutual 

synergistic folding (interactions formed exclusively by disordered proteins) [58]. According to 

sequence analysis, the amino acid content of the constitutive partners in the different groups have 

their own characteristic, and they also differ from those described in “classical” disordered protein 

papers. Besides sequence analysis, differences were also shown in the bound structure: distinct 

groups exhibit different secondary structures, unique residue/atomic level interaction features and 

energy properties. They also have different biological roles in different subcellular localizations. The 

overall amino acid content of PSC proteins shows high correlation with the group composed of 

proteins going through coupled binding and folding. In contrast, proteins from PSD are more close 

to the “mutual synergistic folding” (MSF) class (Supplementary Figure 14). We also noted that the 

predicted IDR content of PSD proteins lags behind that of the proteome (Figure 1). These 

observations raise the question whether PSD proteins utilize a different flavor of intrinsic disorder to 

establish interactions. A possible scenario might be that such flexible regions are overlooked by 

disorder prediction methods, as they lacked MSF protein sets for training. We note that coiled coils 

can be regarded as a subclass of MSF complexes, however our pipeline explicitly detects them and 

they do not show enrichment compared to PSC proteins (Figure 1). Thus, it is plausible that MSF 

mechanisms other than coiled-coil formation also contribute to complex formation in the PSD. 

 

The structural organization of the PSD utilizes a balanced distribution of different types of 

elements promoting PPIs. Coiled-coils, domain-domain interactions, intrinsically disordered 

regions, and transmembrane proteins all contribute to the formation of protein complexes in the 

PSD. Notably, in PSD proteins, IDRs are often paired with with other structural elements, in contrast 

to the full proteome, where this association is much less frequent. Although the common presence of 

TM segments and IDRs shows an exception (also see [59]), other combinations between IDRs and 

ordered segments are significantly higher. By exhibiting a diverse range of structural segments as 

binding regions PSD proteins likely involved in a wide range of different types of interactions to 

maintain the PPI network of the PSD. 

Besides statistics presented in the results, detailed structure-function studies provide 

experimental evidence on how PPIs are formed and maintained in the PSD. Below we discuss 

different aspects of PSD organization by using specific well-characterized proteins as demonstrative 

examples. 

The Shaker channel is a voltage-dependent potassium channel responsible for conducting 

depolarizing potassium currents when the membrane potential increases [60]. The C-terminal tail of 

the channel is in random coil state and contains a PDZ domain recognition motif. The motif assists 
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the interaction with the PSD-95 scaffolding protein, helping the channel to cluster at unique 

membrane sites, which is important for the proper assembly and functioning of the synapse [61]. 

Anchor [62] can relatively accurately predict such interactions, also described as coupled binding 

and folding [63]. Both amino acid content (Supplementary Figure 14) and Anchor predictions 

indicate that PSC proteins are enriched in disordered binding regions relative to the proteome, while 

the number of unique partners lags behind this enrichment (Figure 1/b). The stacking of WW 

domain and MAPK binding motifs was described earlier in the case of TANC protein [64], also 

supporting the idea that PSC proteins “allow” their partners to pick from multiple unoccupied sites 

to fine-tune their function. In contrast, this enrichment is less pronounced in PSD and does not 

follow the enrichment in the number of interacting partners. These results theorize PSD proteins 

either more heavily utilize competitive binding with alternative partners binding to the same region, 

or promote different interaction modes. Since our former suggestion is rather hard to assess using 

computational methods, we collected other possible interaction modes between proteins. 

Activity-regulated cytoskeleton-associated protein (Arc) is a crucial regulator of long-term 

synaptic plasticity. The protein is highly modular and contains a flexible C-terminal tail [65]. Arc 

oligomerization is aided by the terminal IDRs, leading to the assembly of a structure reminiscent to  

an HIV capsid. This way Arc can encapsulate RNA and can mediate their transfer, which was shown 

to play a role in cell to cell communication in the nervous system [66]. Coiled-coils are also important 

oligomerization motifs, linking two or more partners with high specificity and a wide range of 

stability [67]. The PSD protein Homer can form high-order complexes with a diverse range of 

partners. A tetrameric form resulting in a coiled-coil develops in a two-step process: first, the 

C-terminal ~70 residues of the proteins form a parallel dimer, then two Homer dimers serve as a base 

for the antiparallel tetramer structure [68]. This arrangement is long enough to connect elements 

through the thickness of the PSD, serving direct connection between the plasma membrane and 

intracellular proteins through EVH1 domains binding to various scaffolding partners [69]. The 

mechanisms mentioned above share the characteristic feature of forming complexes by natively 

unfolded regions.  

One can argue whether computational tools cross predict IDRs and coiled-coils, leading to a 

bias in our observations. To overcome this problem, our pipeline uses coiled coils as a filter when 

predicting IDRs. However, the lack of abundance of IDRs in PSD proteins could be explained by the 

fact, that we classified them as coiled coils. Calculating the overlap between IDR and coiled-coil 

containing proteins, and proteins forming interactions confirmed that this is not the case 

(Supplementary Figure 15), IDR and coiled-coil containing proteins do not dominate PPIs in PSD 

proteins.  

 

PPIs depend on structural elements providing binding sites, however, they are also intensively 

regulated through the spatiotemporal control in the cell, often using post-translational modifications 

to precisely modulate the properties of the protein.  

PSD-95 is a scaffolding protein in the synaptome, and the Serine at 561 position was shown to 

be subject to phosphorylation and work as a molecular switch. Phosphomimetic (Ser -> Asp) 

mutation promotes an intramolecular interaction between the guanylate kinase (GK) and the SH3 

domains, inducing a highly dynamic, yet closed conformation with buried binding sites. In contrast, 

mutating Ser561 to Alanine leads to a stable open conformation, facilitating the interaction between 

PSD-95 and its partners [70]. Besides such simple mechanism phosphorylation is often used 

cumulatively to produce an electrostatic effect [71] to fine-tune PPIs [72] or in a combinatorial way, 

where specific patterns can be responsible for regulating synaptic activity [73]. 

Additional regulation phenomena may provide further functional diversity. Using alternative 

splicing, different isoforms displaying characteristic sets and distributions of interaction sites may 

carry out distinct functions, as it was described in the case of PDZ-containing proteins [21]. Short 

Linear Motifs also play a role by mediating protein-protein interactions to contribute to a plethora of 

functions. Their short length and structural flexibility provide plasticity to emerge by convergent 

evolution and fine-tune interaction networks [74]. 
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The multivalent nature of PSD proteins can also lead to additional structure-related 

phenomena: the SynGAP postsynaptic protein forms a coiled-coil trimer, shortly followed by a 

C-terminal binding motif interacting with the third PDZ domain of PSD-95. After complex 

formation, the assembly goes through liquid-liquid phase separation. The enrichment of SynGap 

and PSD-95 was shown to highly correlate with synaptic activity [75], advocating the critical role of 

the formation of membraneless organelles in synaptic processes [23]. 

 

Due to the high variance of presented features, they cannot be used alone to describe PSD 

proteins. However, we assumed that using their combination may reveal certain aspects of PSD 

proteins. For this purpose we introduced descriptors to assess the presence and distribution of 

different elements in PSD proteins and their possible role in interactions. Since PPI formation may 

occur through many distinct structural elements, we included several of these to thoroughly catch 

many possible aspects of protein complex formation. Using Diversity of Potential Interactions (DPI), 

including structural and post-translational regulation members, the potential of a protein to form 

distinct interactions can be adequately defined. Verification with different control sets confirmed 

that it can be used directly on proteins sets to estimate their tendency to establish elaborate protein 

networks. 

 

Our protein-level descriptions are all focused on PPIs, and thus it is not trivial whether they are 

discriminative features of PSD proteins, or they are only relevant in the context of specific protein 

complexes. Machine learning is a commonly used tool to discriminate protein subsets when the 

number of features and their variance is too high to overlook. Our results demonstrate the prediction 

power of the presented sequential, structural and regulation features. Considering the noise present 

in the datasets (as some proteins may be localized in the PSD and other locations too, moreover the 

possible false classification of source databases also adds a bias), the prediction is remarkably 

accurate. Applying structure based machine learning algorithm may enhance synaptome database 

development by expediting data collection and reducing manual effort. 

 

In conclusion, we suggest that postsynaptic proteins and in particular, postsynaptic scaffold 

proteins are capable of forming diverse kinds of interactions with their partners that we propose to 

play a key role in the functional organization of the postsynaptic density and its dynamic 

rearrangements upon stimuli. We also found this ability is imprinted in the amino acid sequence and 

can be used to discriminate proteins with propensity to form a high number of interactions, or using 

machine learning to distinguish the PSD proteome from other proteins. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1 
SMaterial: Includes Supplementary Discussion and Supplementary Figures. 

SFigure 1: K-means evaluation of various numbers of clusters of AAIndex. 

SFigure 2: Protein length distribution (blue: PSD, red: human proteome) 

SFigure 3: Flexible linker length distribution compared to the human proteome (blue: synaptome, yellow: PSD, 

red: PSC)  

SFigure 4: Transmembrane helix distribution (blue: PSD, red: human proteome) 

SFigure 5: Distribution of the number of interacting partners (blue: PSD, red: human proteome) 

SFigure 6: Distribution of protein lengths in all datasets. 

SFigure 7: Distribution of intrinsically disordered residue content in all datasets. 

SFigure 8: Distribution of coiled-coils residue content in all datasets.  

SFigure 9: Distribution of transmembrane residue content in all datasets. 

SFigure 10: Distribution of the number of globular domains in all datasets.  

SFigure 11: Distribution of the number of phosphorylation sites in all datasets.  

SFigure 12: Distribution of the number of ubiquitination sites in all datasets.  
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SFigure 13: Distribution of the DPI values in all datasets.  

SFigure 14: A: Correlation of amino acid content between interaction classes based on the structural state of 

participating partners and postsynaptic proteins. Columns: Autonomous folding and independent binding (i.e., 

the binding of two or more ordered proteins), coupled folding and binding (where an ordered protein stabilize 

an IDP partner) and mutual synergistic folding (interactions formed exclusively by disordered proteins), No 

folding, no binding (i.e., the “classical” disordered definition). Rows: Postsynaptic Scaffold proteins, and 

proteins from the postsynaptic density. Color scales from red (negative correlation) to green (positive 

correlation). B: Change of amino acid content of the group mutual synergistic folding (blue) and PSD proteins 

(red) compared to the proteome. C: Change of amino acid content of the group coupled binding and folding 

(blue) and PSC proteins (red) compared to the proteome. 

SFigure 15: Overlap of coiled coils, IDRs and PPIs in PSD proteins. 

Stable 1: Calculated properties and labels of all proteins used in the study. 

Stable 2: Mean and standard deviation of calculated properties in different groups. Top: sets derived from other 

sources (i.e. SynaptomeDB, Uniprot etc). Middle: Exclusive human proteome datasets. Bottom: Values 

calculated by downsampling and bootstrapping default sets 1000 times 

Stable 3: P-values of Kolmogorov Smirnov tests calculated between the proteome and different sets on all 

features 

Stable 4: Contingency tables and calculated p-values of chi-square tests.  The independent observations are: I) 

PSD/nonPSD II) feature is above/below of the mean calculated on the proteome 

Stable 5: Co-occurence of structral formations in PSD/nonPSD proteins. Means and standard deviations were 

calculated for selected combinations 

Stable 6: Co-occurence of PPI promoting features in the PSD and proteome proteins. Means and standard 

deviations were calculated for all combinations 

Stable 7: List of proteins used to train and test the Artificial Neural Network. 
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